aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMichael Brown <mcb30@ipxe.org>2023-06-07 12:27:06 +0100
committerMichael Brown <mcb30@ipxe.org>2023-06-07 12:27:06 +0100
commit92ab2de3a448fd0175c59f68582fee62114fde64 (patch)
tree1b06339a7d961da7f80fd01bfe920cc1e686eae0
parent3184ff74eb5fb65e12537b4047e941d406392561 (diff)
downloadipxe-92ab2de3a448fd0175c59f68582fee62114fde64.zip
ipxe-92ab2de3a448fd0175c59f68582fee62114fde64.tar.gz
ipxe-92ab2de3a448fd0175c59f68582fee62114fde64.tar.bz2
[efi] Add IPv6 versions of existing IPv4 headers and GUID definitions
Signed-off-by: Michael Brown <mcb30@ipxe.org>
-rw-r--r--src/include/ipxe/efi/Protocol/Dhcp6.h782
-rw-r--r--src/include/ipxe/efi/Protocol/Ip6.h948
-rw-r--r--src/include/ipxe/efi/Protocol/Ip6Config.h369
-rw-r--r--src/include/ipxe/efi/Protocol/Mtftp6.h820
-rw-r--r--src/include/ipxe/efi/Protocol/Tcp6.h858
-rw-r--r--src/include/ipxe/efi/Protocol/Udp6.h576
-rw-r--r--src/include/ipxe/efi/efi.h11
-rw-r--r--src/interface/efi/efi_debug.c22
-rw-r--r--src/interface/efi/efi_guid.c50
9 files changed, 4436 insertions, 0 deletions
diff --git a/src/include/ipxe/efi/Protocol/Dhcp6.h b/src/include/ipxe/efi/Protocol/Dhcp6.h
new file mode 100644
index 0000000..19f5908
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Dhcp6.h
@@ -0,0 +1,782 @@
+/** @file
+ UEFI Dynamic Host Configuration Protocol 6 Definition, which is used to get IPv6
+ addresses and other configuration parameters from DHCPv6 servers.
+
+ Copyright (c) 2008 - 2018, Intel Corporation. All rights reserved.<BR>
+ SPDX-License-Identifier: BSD-2-Clause-Patent
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.2
+
+**/
+
+#ifndef __EFI_DHCP6_PROTOCOL_H__
+#define __EFI_DHCP6_PROTOCOL_H__
+
+FILE_LICENCE ( BSD2_PATENT );
+
+#define EFI_DHCP6_PROTOCOL_GUID \
+ { \
+ 0x87c8bad7, 0x595, 0x4053, {0x82, 0x97, 0xde, 0xde, 0x39, 0x5f, 0x5d, 0x5b } \
+ }
+
+#define EFI_DHCP6_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0x9fb9a8a1, 0x2f4a, 0x43a6, {0x88, 0x9c, 0xd0, 0xf7, 0xb6, 0xc4, 0x7a, 0xd5 } \
+ }
+
+typedef struct _EFI_DHCP6_PROTOCOL EFI_DHCP6_PROTOCOL;
+
+typedef enum {
+ ///
+ /// The EFI DHCPv6 Protocol instance is configured, and start() needs
+ /// to be called
+ ///
+ Dhcp6Init = 0x0,
+ ///
+ /// A Solicit packet is sent out to discover DHCPv6 server, and the EFI
+ /// DHCPv6 Protocol instance is collecting Advertise packets.
+ ///
+ Dhcp6Selecting = 0x1,
+ ///
+ /// A Request is sent out to the DHCPv6 server, and the EFI DHCPv6
+ /// Protocol instance is waiting for Reply packet.
+ ///
+ Dhcp6Requesting = 0x2,
+ ///
+ /// A Decline packet is sent out to indicate one or more addresses of the
+ /// configured IA are in use by another node, and the EFI DHCPv6.
+ /// Protocol instance is waiting for Reply packet.
+ ///
+ Dhcp6Declining = 0x3,
+ ///
+ /// A Confirm packet is sent out to confirm the IPv6 addresses of the
+ /// configured IA, and the EFI DHCPv6 Protocol instance is waiting for Reply packet.
+ ///
+ Dhcp6Confirming = 0x4,
+ ///
+ /// A Release packet is sent out to release one or more IPv6 addresses of
+ /// the configured IA, and the EFI DHCPv6 Protocol instance is waiting for Reply packet.
+ ///
+ Dhcp6Releasing = 0x5,
+ ///
+ /// The DHCPv6 S.A.R.R process is completed for the configured IA.
+ ///
+ Dhcp6Bound = 0x6,
+ ///
+ /// A Renew packet is sent out to extend lifetime for the IPv6 addresses of
+ /// the configured IA, and the EFI DHCPv6 Protocol instance is waiting for Reply packet.
+ ///
+ Dhcp6Renewing = 0x7,
+ ///
+ /// A Rebind packet is sent out to extend lifetime for the IPv6 addresses of
+ /// the configured IA, and the EFI DHCPv6 Protocol instance is waiting for Reply packet.
+ ///
+ Dhcp6Rebinding = 0x8
+} EFI_DHCP6_STATE;
+
+typedef enum {
+ ///
+ /// A Solicit packet is about to be sent. The packet is passed to Dhcp6Callback and
+ /// can be modified or replaced in Dhcp6Callback.
+ ///
+ Dhcp6SendSolicit = 0x0,
+ ///
+ /// An Advertise packet is received and will be passed to Dhcp6Callback.
+ ///
+ Dhcp6RcvdAdvertise = 0x1,
+ ///
+ /// It is time for Dhcp6Callback to determine whether select the default Advertise
+ /// packet by RFC 3315 policy, or overwrite it by specific user policy.
+ ///
+ Dhcp6SelectAdvertise = 0x2,
+ ///
+ /// A Request packet is about to be sent. The packet is passed to Dhcp6Callback and
+ /// can be modified or replaced in Dhcp6Callback.
+ ///
+ Dhcp6SendRequest = 0x3,
+ ///
+ /// A Reply packet is received and will be passed to Dhcp6Callback.
+ ///
+ Dhcp6RcvdReply = 0x4,
+ ///
+ /// A Reconfigure packet is received and will be passed to Dhcp6Callback.
+ ///
+ Dhcp6RcvdReconfigure = 0x5,
+ ///
+ /// A Decline packet is about to be sent. The packet is passed to Dhcp6Callback and
+ /// can be modified or replaced in Dhcp6Callback.
+ ///
+ Dhcp6SendDecline = 0x6,
+ ///
+ /// A Confirm packet is about to be sent. The packet is passed to Dhcp6Callback and
+ /// can be modified or replaced in Dhcp6Callback.
+ ///
+ Dhcp6SendConfirm = 0x7,
+ ///
+ /// A Release packet is about to be sent. The packet is passed to Dhcp6Callback and
+ /// can be modified or replaced in Dhcp6Callback.
+ ///
+ Dhcp6SendRelease = 0x8,
+ ///
+ /// A Renew packet is about to be sent. The packet is passed to Dhcp6Callback and
+ /// can be modified or replaced in Dhcp6Callback.
+ ///
+ Dhcp6EnterRenewing = 0x9,
+ ///
+ /// A Rebind packet is about to be sent. The packet is passed to Dhcp6Callback and
+ /// can be modified or replaced in Dhcp6Callback.
+ ///
+ Dhcp6EnterRebinding = 0xa
+} EFI_DHCP6_EVENT;
+
+///
+/// An IA which carries assigned not temporary address.
+///
+#define EFI_DHCP6_IA_TYPE_NA 3
+///
+/// An IA which carries assigned temporary address.
+///
+#define EFI_DHCP6_IA_TYPE_TA 4
+
+#pragma pack(1)
+///
+/// EFI_DHCP6_PACKET_OPTION
+/// defines the format of the DHCPv6 option, See RFC 3315 for more information.
+/// This data structure is used to reference option data that is packed in the DHCPv6 packet.
+///
+typedef struct {
+ ///
+ /// The DHCPv6 option code, stored in network order.
+ ///
+ UINT16 OpCode;
+ ///
+ /// Length of the DHCPv6 option data, stored in network order.
+ /// From the first byte to the last byte of the Data field.
+ ///
+ UINT16 OpLen;
+ ///
+ /// The data for the DHCPv6 option, stored in network order.
+ ///
+ UINT8 Data[1];
+} EFI_DHCP6_PACKET_OPTION;
+
+///
+/// EFI_DHCP6_HEADER
+/// defines the format of the DHCPv6 header. See RFC 3315 for more information.
+///
+typedef struct {
+ ///
+ /// The DHCPv6 transaction ID.
+ ///
+ UINT32 MessageType : 8;
+ ///
+ /// The DHCPv6 message type.
+ ///
+ UINT32 TransactionId : 24;
+} EFI_DHCP6_HEADER;
+
+///
+/// EFI_DHCP6_PACKET
+/// defines the format of the DHCPv6 packet. See RFC 3315 for more information.
+///
+typedef struct {
+ ///
+ /// Size of the EFI_DHCP6_PACKET buffer.
+ ///
+ UINT32 Size;
+ ///
+ /// Length of the EFI_DHCP6_PACKET from the first byte of the Header field to the last
+ /// byte of the Option[] field.
+ ///
+ UINT32 Length;
+ struct {
+ ///
+ /// The DHCPv6 packet header.
+ ///
+ EFI_DHCP6_HEADER Header;
+ ///
+ /// Start of the DHCPv6 packed option data.
+ ///
+ UINT8 Option[1];
+ } Dhcp6;
+} EFI_DHCP6_PACKET;
+
+#pragma pack()
+
+typedef struct {
+ ///
+ /// Length of DUID in octects.
+ ///
+ UINT16 Length;
+ ///
+ /// Array of DUID octects.
+ ///
+ UINT8 Duid[1];
+} EFI_DHCP6_DUID;
+
+typedef struct {
+ ///
+ /// Initial retransmission timeout.
+ ///
+ UINT32 Irt;
+ ///
+ /// Maximum retransmission count for one packet. If Mrc is zero, there's no upper limit
+ /// for retransmission count.
+ ///
+ UINT32 Mrc;
+ ///
+ /// Maximum retransmission timeout for each retry. It's the upper bound of the number of
+ /// retransmission timeout. If Mrt is zero, there is no upper limit for retransmission
+ /// timeout.
+ ///
+ UINT32 Mrt;
+ ///
+ /// Maximum retransmission duration for one packet. It's the upper bound of the numbers
+ /// the client may retransmit a message. If Mrd is zero, there's no upper limit for
+ /// retransmission duration.
+ ///
+ UINT32 Mrd;
+} EFI_DHCP6_RETRANSMISSION;
+
+typedef struct {
+ ///
+ /// The IPv6 address.
+ ///
+ EFI_IPv6_ADDRESS IpAddress;
+ ///
+ /// The preferred lifetime in unit of seconds for the IPv6 address.
+ ///
+ UINT32 PreferredLifetime;
+ ///
+ /// The valid lifetime in unit of seconds for the IPv6 address.
+ ///
+ UINT32 ValidLifetime;
+} EFI_DHCP6_IA_ADDRESS;
+
+typedef struct {
+ UINT16 Type; ///< Type for an IA.
+ UINT32 IaId; ///< The identifier for an IA.
+} EFI_DHCP6_IA_DESCRIPTOR;
+
+typedef struct {
+ ///
+ /// The descriptor for IA.
+ ///
+ EFI_DHCP6_IA_DESCRIPTOR Descriptor;
+ ///
+ /// The state of the configured IA.
+ ///
+ EFI_DHCP6_STATE State;
+ ///
+ /// Pointer to the cached latest Reply packet. May be NULL if no packet is cached.
+ ///
+ EFI_DHCP6_PACKET *ReplyPacket;
+ ///
+ /// Number of IPv6 addresses of the configured IA.
+ ///
+ UINT32 IaAddressCount;
+ ///
+ /// List of the IPv6 addresses of the configured IA. When the state of the configured IA is
+ /// in Dhcp6Bound, Dhcp6Renewing and Dhcp6Rebinding, the IPv6 addresses are usable.
+ ///
+ EFI_DHCP6_IA_ADDRESS IaAddress[1];
+} EFI_DHCP6_IA;
+
+typedef struct {
+ ///
+ /// Pointer to the DHCPv6 unique identifier. The caller is responsible for freeing this buffer.
+ ///
+ EFI_DHCP6_DUID *ClientId;
+ ///
+ /// Pointer to the configured IA of current instance. The caller can free this buffer after
+ /// using it.
+ ///
+ EFI_DHCP6_IA *Ia;
+} EFI_DHCP6_MODE_DATA;
+
+/**
+ EFI_DHCP6_CALLBACK is provided by the consumer of the EFI DHCPv6 Protocol instance to
+ intercept events that occurs in the DHCPv6 S.A.R.R process.
+
+ @param[in] This Pointer to the EFI_DHCP6_PROTOCOL instance that is used to configure this
+ callback function.
+ @param[in] Context Pointer to the context that is initialized by EFI_DHCP6_PROTOCOL.Configure().
+ @param[in] CurrentState The current state of the configured IA.
+ @param[in] Dhcp6Event The event that occurs in the current state, which usually means a state transition.
+ @param[in] Packet Pointer to the DHCPv6 packet that is about to be sent or has been received.
+ The EFI DHCPv6 Protocol instance is responsible for freeing the buffer.
+ @param[out] NewPacket Pointer to the new DHCPv6 packet to overwrite the Packet. NewPacket can not
+ share the buffer with Packet. If *NewPacket is not NULL, the EFI DHCPv6
+ Protocol instance is responsible for freeing the buffer.
+
+ @retval EFI_SUCCESS Tell the EFI DHCPv6 Protocol instance to continue the DHCPv6 S.A.R.R process.
+ @retval EFI_ABORTED Tell the EFI DHCPv6 Protocol instance to abort the DHCPv6 S.A.R.R process,
+ and the state of the configured IA will be transferred to Dhcp6Init.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP6_CALLBACK)(
+ IN EFI_DHCP6_PROTOCOL *This,
+ IN VOID *Context,
+ IN EFI_DHCP6_STATE CurrentState,
+ IN EFI_DHCP6_EVENT Dhcp6Event,
+ IN EFI_DHCP6_PACKET *Packet,
+ OUT EFI_DHCP6_PACKET **NewPacket OPTIONAL
+ );
+
+typedef struct {
+ ///
+ /// The callback function is to intercept various events that occur in the DHCPv6 S.A.R.R
+ /// process. Set to NULL to ignore all those events.
+ ///
+ EFI_DHCP6_CALLBACK Dhcp6Callback;
+ ///
+ /// Pointer to the context that will be passed to Dhcp6Callback.
+ ///
+ VOID *CallbackContext;
+ ///
+ /// Number of the DHCPv6 options in the OptionList.
+ ///
+ UINT32 OptionCount;
+ ///
+ /// List of the DHCPv6 options to be included in Solicit and Request packet. The buffer
+ /// can be freed after EFI_DHCP6_PROTOCOL.Configure() returns. Ignored if
+ /// OptionCount is zero. OptionList should not contain Client Identifier option
+ /// and any IA option, which will be appended by EFI DHCPv6 Protocol instance
+ /// automatically.
+ ///
+ EFI_DHCP6_PACKET_OPTION **OptionList;
+ ///
+ /// The descriptor for the IA of the EFI DHCPv6 Protocol instance.
+ ///
+ EFI_DHCP6_IA_DESCRIPTOR IaDescriptor;
+ ///
+ /// If not NULL, the event will be signaled when any IPv6 address information of the
+ /// configured IA is updated, including IPv6 address, preferred lifetime and valid
+ /// lifetime, or the DHCPv6 S.A.R.R process fails. Otherwise, Start(),
+ /// renewrebind(), decline(), release() and stop() will be blocking
+ /// operations, and they will wait for the exchange process completion or failure.
+ ///
+ EFI_EVENT IaInfoEvent;
+ ///
+ /// If TRUE, the EFI DHCPv6 Protocol instance is willing to accept Reconfigure packet.
+ /// Otherwise, it will ignore it. Reconfigure Accept option can not be specified through
+ /// OptionList parameter.
+ ///
+ BOOLEAN ReconfigureAccept;
+ ///
+ /// If TRUE, the EFI DHCPv6 Protocol instance will send Solicit packet with Rapid
+ /// Commit option. Otherwise, Rapid Commit option will not be included in Solicit
+ /// packet. Rapid Commit option can not be specified through OptionList parameter.
+ ///
+ BOOLEAN RapidCommit;
+ ///
+ /// Parameter to control Solicit packet retransmission behavior. The
+ /// buffer can be freed after EFI_DHCP6_PROTOCOL.Configure() returns.
+ ///
+ EFI_DHCP6_RETRANSMISSION *SolicitRetransmission;
+} EFI_DHCP6_CONFIG_DATA;
+
+/**
+ EFI_DHCP6_INFO_CALLBACK is provided by the consumer of the EFI DHCPv6 Protocol
+ instance to intercept events that occurs in the DHCPv6 Information Request exchange process.
+
+ @param[in] This Pointer to the EFI_DHCP6_PROTOCOL instance that is used to configure this
+ callback function.
+ @param[in] Context Pointer to the context that is initialized in the EFI_DHCP6_PROTOCOL.InfoRequest().
+ @param[in] Packet Pointer to Reply packet that has been received. The EFI DHCPv6 Protocol instance is
+ responsible for freeing the buffer.
+
+ @retval EFI_SUCCESS Tell the EFI DHCPv6 Protocol instance to finish Information Request exchange process.
+ @retval EFI_NOT_READY Tell the EFI DHCPv6 Protocol instance to continue Information Request exchange process.
+ @retval EFI_ABORTED Tell the EFI DHCPv6 Protocol instance to abort the Information Request exchange process.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP6_INFO_CALLBACK)(
+ IN EFI_DHCP6_PROTOCOL *This,
+ IN VOID *Context,
+ IN EFI_DHCP6_PACKET *Packet
+ );
+
+/**
+ Retrieve the current operating mode data and configuration data for the EFI DHCPv6 Protocol instance.
+
+ @param[in] This Pointer to the EFI_DHCP6_PROTOCOL instance.
+ @param[out] Dhcp6ModeData Pointer to the DHCPv6 mode data structure. The caller is responsible for freeing this
+ structure and each reference buffer.
+ @param[out] Dhcp6ConfigData Pointer to the DHCPv6 configuration data structure. The caller is responsible for
+ freeing this structure and each reference buffer.
+
+ @retval EFI_SUCCESS The mode data was returned.
+ @retval EFI_ACCESS_DENIED The EFI DHCPv6 Protocol instance has not been configured when Dhcp6ConfigData is not NULL.
+ @retval EFI_INVALID_PARAMETER One or more following conditions are TRUE:
+ - This is NULL.
+ - Both Dhcp6ConfigData and Dhcp6ModeData are NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP6_GET_MODE_DATA)(
+ IN EFI_DHCP6_PROTOCOL *This,
+ OUT EFI_DHCP6_MODE_DATA *Dhcp6ModeData OPTIONAL,
+ OUT EFI_DHCP6_CONFIG_DATA *Dhcp6ConfigData OPTIONAL
+ );
+
+/**
+ Initialize or clean up the configuration data for the EFI DHCPv6 Protocol instance.
+
+ The Configure() function is used to initialize or clean up the configuration data of the EFI
+ DHCPv6 Protocol instance.
+ - When Dhcp6CfgData is not NULL and Configure() is called successfully, the
+ configuration data will be initialized in the EFI DHCPv6 Protocol instance and the state of the
+ configured IA will be transferred into Dhcp6Init.
+ - When Dhcp6CfgData is NULL and Configure() is called successfully, the configuration
+ data will be cleaned up and no IA will be associated with the EFI DHCPv6 Protocol instance.
+
+ To update the configuration data for an EFI DCHPv6 Protocol instance, the original data must be
+ cleaned up before setting the new configuration data.
+
+ @param[in] This Pointer to the EFI_DHCP6_PROTOCOL instance.
+ @param[in] Dhcp6CfgData Pointer to the DHCPv6 configuration data structure.
+
+ @retval EFI_SUCCESS The mode data was returned.
+ @retval EFI_INVALID_PARAMETER One or more following conditions are TRUE
+ - This is NULL.
+ - OptionCount > 0 and OptionList is NULL.
+ - OptionList is not NULL, and Client Id option, Reconfigure Accept option,
+ Rapid Commit option or any IA option is specified in the OptionList.
+ - IaDescriptor.Type is neither EFI_DHCP6_IA_TYPE_NA nor EFI_DHCP6_IA_TYPE_NA.
+ - IaDescriptor is not unique.
+ - Both IaInfoEvent and SolicitRetransimssion are NULL.
+ - SolicitRetransmission is not NULL, and both SolicitRetransimssion->Mrc and
+ SolicitRetransmission->Mrd are zero.
+ @retval EFI_ACCESS_DENIED The EFI DHCPv6 Protocol instance has been already configured
+ when Dhcp6CfgData is not NULL.
+ The EFI DHCPv6 Protocol instance has already started the
+ DHCPv6 S.A.R.R when Dhcp6CfgData is NULL.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP6_CONFIGURE)(
+ IN EFI_DHCP6_PROTOCOL *This,
+ IN EFI_DHCP6_CONFIG_DATA *Dhcp6CfgData OPTIONAL
+ );
+
+/**
+ Start the DHCPv6 S.A.R.R process.
+
+ The Start() function starts the DHCPv6 S.A.R.R process. This function can be called only when
+ the state of the configured IA is in the Dhcp6Init state. If the DHCPv6 S.A.R.R process completes
+ successfully, the state of the configured IA will be transferred through Dhcp6Selecting and
+ Dhcp6Requesting to Dhcp6Bound state. The update of the IPv6 addresses will be notified through
+ EFI_DHCP6_CONFIG_DATA.IaInfoEvent. At the time when each event occurs in this process, the
+ callback function set by EFI_DHCP6_PROTOCOL.Configure() will be called and the user can take
+ this opportunity to control the process. If EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL, the
+ Start() function call is a blocking operation. It will return after the DHCPv6 S.A.R.R process
+ completes or aborted by users. If the process is aborted by system or network error, the state of
+ the configured IA will be transferred to Dhcp6Init. The Start() function can be called again to
+ restart the process.
+
+ @param[in] This Pointer to the EFI_DHCP6_PROTOCOL instance.
+
+ @retval EFI_SUCCESS The DHCPv6 S.A.R.R process is completed and at least one IPv6
+ address has been bound to the configured IA when
+ EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.
+ The DHCPv6 S.A.R.R process is started when
+ EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not NULL.
+ @retval EFI_ACCESS_DENIED The EFI DHCPv6 Child instance hasn't been configured.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_ALREADY_STARTED The DHCPv6 S.A.R.R process has already started.
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred.
+ @retval EFI_NO_RESPONSE The DHCPv6 S.A.R.R process failed because of no response.
+ @retval EFI_NO_MAPPING No IPv6 address has been bound to the configured IA after the
+ DHCPv6 S.A.R.R process.
+ @retval EFI_ABORTED The DHCPv6 S.A.R.R process aborted by user.
+ @retval EFI_NO_MEDIA There was a media error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP6_START)(
+ IN EFI_DHCP6_PROTOCOL *This
+ );
+
+/**
+ Request configuration information without the assignment of any IA addresses of the client.
+
+ The InfoRequest() function is used to request configuration information without the assignment
+ of any IPv6 address of the client. Client sends out Information Request packet to obtain
+ the required configuration information, and DHCPv6 server responds with Reply packet containing
+ the information for the client. The received Reply packet will be passed to the user by
+ ReplyCallback function. If user returns EFI_NOT_READY from ReplyCallback, the EFI DHCPv6
+ Protocol instance will continue to receive other Reply packets unless timeout according to
+ the Retransmission parameter. Otherwise, the Information Request exchange process will be
+ finished successfully if user returns EFI_SUCCESS from ReplyCallback.
+
+ @param[in] This Pointer to the EFI_DHCP6_PROTOCOL instance.
+ @param[in] SendClientId If TRUE, the EFI DHCPv6 Protocol instance will build Client
+ Identifier option and include it into Information Request
+ packet. If FALSE, Client Identifier option will not be included.
+ Client Identifier option can not be specified through OptionList
+ parameter.
+ @param[in] OptionRequest Pointer to the Option Request option in the Information Request
+ packet. Option Request option can not be specified through
+ OptionList parameter.
+ @param[in] OptionCount Number of options in OptionList.
+ @param[in] OptionList List of other DHCPv6 options. These options will be appended
+ to the Option Request option. The caller is responsible for
+ freeing this buffer. Type is defined in EFI_DHCP6_PROTOCOL.GetModeData().
+ @param[in] Retransmission Parameter to control Information Request packet retransmission
+ behavior. The buffer can be freed after EFI_DHCP6_PROTOCOL.InfoRequest()
+ returns.
+ @param[in] TimeoutEvent If not NULL, this event is signaled when the information request
+ exchange aborted because of no response. If NULL, the function
+ call is a blocking operation; and it will return after the
+ information-request exchange process finish or aborted by users.
+ @param[in] ReplyCallback The callback function is to intercept various events that occur
+ in the Information Request exchange process. It should not be
+ set to NULL.
+ @param[in] CallbackContext Pointer to the context that will be passed to ReplyCallback.
+
+ @retval EFI_SUCCESS The DHCPv6 S.A.R.R process is completed and at least one IPv6
+ @retval EFI_SUCCESS The DHCPv6 information request exchange process completed
+ when TimeoutEvent is NULL. Information Request packet has been
+ sent to DHCPv6 server when TimeoutEvent is not NULL.
+ @retval EFI_INVALID_PARAMETER One or more following conditions are TRUE:
+ - This is NULL.
+ - OptionRequest is NULL or OptionRequest->OpCode is invalid.
+ - OptionCount > 0 and OptionList is NULL.
+ - OptionList is not NULL, and Client Identify option or
+ Option Request option is specified in the OptionList.
+ - Retransimssion is NULL.
+ - Both Retransimssion->Mrc and Retransmission->Mrd are zero.
+ - ReplyCallback is NULL.
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred.
+ @retval EFI_NO_RESPONSE The DHCPv6 information request exchange process failed
+ because of no response, or not all requested-options are
+ responded by DHCPv6 servers when Timeout happened.
+ @retval EFI_ABORTED The DHCPv6 information request exchange process aborted by user.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP6_INFO_REQUEST)(
+ IN EFI_DHCP6_PROTOCOL *This,
+ IN BOOLEAN SendClientId,
+ IN EFI_DHCP6_PACKET_OPTION *OptionRequest,
+ IN UINT32 OptionCount,
+ IN EFI_DHCP6_PACKET_OPTION *OptionList[] OPTIONAL,
+ IN EFI_DHCP6_RETRANSMISSION *Retransmission,
+ IN EFI_EVENT TimeoutEvent OPTIONAL,
+ IN EFI_DHCP6_INFO_CALLBACK ReplyCallback,
+ IN VOID *CallbackContext OPTIONAL
+ );
+
+/**
+ Manually extend the valid and preferred lifetimes for the IPv6 addresses of the configured
+ IA and update other configuration parameters by sending Renew or Rebind packet.
+
+ The RenewRebind() function is used to manually extend the valid and preferred lifetimes for the
+ IPv6 addresses of the configured IA and update other configuration parameters by sending Renew or
+ Rebind packet.
+ - When RebindRequest is FALSE and the state of the configured IA is Dhcp6Bound, it
+ will send Renew packet to the previously DHCPv6 server and transfer the state of the configured
+ IA to Dhcp6Renewing. If valid Reply packet received, the state transfers to Dhcp6Bound
+ and the valid and preferred timer restarts. If fails, the state transfers to Dhcp6Bound but the
+ timer continues.
+ - When RebindRequest is TRUE and the state of the configured IA is Dhcp6Bound, it will
+ send Rebind packet. If valid Reply packet received, the state transfers to Dhcp6Bound and the
+ valid and preferred timer restarts. If fails, the state transfers to Dhcp6Init and the IA can't
+ be used.
+
+ @param[in] This Pointer to the EFI_DHCP4_PROTOCOL instance.
+ @param[in] RebindRequest If TRUE, it will send Rebind packet and enter the Dhcp6Rebinding state.
+ Otherwise, it will send Renew packet and enter the Dhcp6Renewing state.
+
+ @retval EFI_SUCCESS The DHCPv6 renew/rebind exchange process has completed and at
+ least one IPv6 address of the configured IA has been bound again
+ when EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.
+ The EFI DHCPv6 Protocol instance has sent Renew or Rebind packet
+ when EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not NULL.
+ @retval EFI_ACCESS_DENIED The EFI DHCPv6 Child instance hasn't been configured, or the state
+ of the configured IA is not in Dhcp6Bound.
+ @retval EFI_ALREADY_STARTED The state of the configured IA has already entered Dhcp6Renewing
+ when RebindRequest is FALSE.
+ The state of the configured IA has already entered Dhcp6Rebinding
+ when RebindRequest is TRUE.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_DEVICE_ERROR An unexpected system or system error occurred.
+ @retval EFI_NO_RESPONSE The DHCPv6 renew/rebind exchange process failed because of no response.
+ @retval EFI_NO_MAPPING No IPv6 address has been bound to the configured IA after the DHCPv6
+ renew/rebind exchange process.
+ @retval EFI_ABORTED The DHCPv6 renew/rebind exchange process aborted by user.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP6_RENEW_REBIND)(
+ IN EFI_DHCP6_PROTOCOL *This,
+ IN BOOLEAN RebindRequest
+ );
+
+/**
+ Inform that one or more IPv6 addresses assigned by a server are already in use by
+ another node.
+
+ The Decline() function is used to manually decline the assignment of IPv6 addresses, which
+ have been already used by another node. If all IPv6 addresses of the configured IA are declined
+ through this function, the state of the IA will switch through Dhcp6Declining to Dhcp6Init,
+ otherwise, the state of the IA will restore to Dhcp6Bound after the declining process. The
+ Decline() can only be called when the IA is in Dhcp6Bound state. If the
+ EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL, this function is a blocking operation. It
+ will return after the declining process finishes, or aborted by user.
+
+ @param[in] This Pointer to the EFI_DHCP4_PROTOCOL instance.
+ @param[in] AddressCount Number of declining IPv6 addresses.
+ @param[in] Addresses Pointer to the buffer stored all the declining IPv6 addresses.
+
+ @retval EFI_SUCCESS The DHCPv6 decline exchange process has completed when
+ EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.
+ The EFI DHCPv6 Protocol instance has sent Decline packet when
+ EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not NULL.
+ @retval EFI_INVALID_PARAMETER One or more following conditions are TRUE
+ - This is NULL.
+ - AddressCount is zero or Addresses is NULL.
+ @retval EFI_NOT_FOUND Any specified IPv6 address is not correlated with the configured IA
+ for this instance.
+ @retval EFI_ACCESS_DENIED The EFI DHCPv6 Child instance hasn't been configured, or the
+ state of the configured IA is not in Dhcp6Bound.
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred.
+ @retval EFI_ABORTED The DHCPv6 decline exchange process aborted by user.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP6_DECLINE)(
+ IN EFI_DHCP6_PROTOCOL *This,
+ IN UINT32 AddressCount,
+ IN EFI_IPv6_ADDRESS *Addresses
+ );
+
+/**
+ Release one or more IPv6 addresses associated with the configured IA for current instance.
+
+ The Release() function is used to manually release the one or more IPv6 address. If AddressCount
+ is zero, it will release all IPv6 addresses of the configured IA. If all IPv6 addresses of the IA
+ are released through this function, the state of the IA will switch through Dhcp6Releasing to
+ Dhcp6Init, otherwise, the state of the IA will restore to Dhcp6Bound after the releasing process.
+ The Release() can only be called when the IA is in Dhcp6Bound state. If the
+ EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL, the function is a blocking operation. It will return
+ after the releasing process finishes, or aborted by user.
+
+ @param[in] This Pointer to the EFI_DHCP6_PROTOCOL instance.
+ @param[in] AddressCount Number of releasing IPv6 addresses.
+ @param[in] Addresses Pointer to the buffer stored all the releasing IPv6 addresses.
+ Ignored if AddressCount is zero.
+ @retval EFI_SUCCESS The DHCPv6 release exchange process has completed when
+ EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.
+ The EFI DHCPv6 Protocol instance has sent Release packet when
+ EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not NULL.
+ @retval EFI_INVALID_PARAMETER One or more following conditions are TRUE
+ - This is NULL.
+ - AddressCount is not zero or Addresses is NULL.
+ @retval EFI_NOT_FOUND Any specified IPv6 address is not correlated with the configured
+ IA for this instance.
+ @retval EFI_ACCESS_DENIED The EFI DHCPv6 Child instance hasn't been configured, or the
+ state of the configured IA is not in Dhcp6Bound.
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred.
+ @retval EFI_ABORTED The DHCPv6 release exchange process aborted by user.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP6_RELEASE)(
+ IN EFI_DHCP6_PROTOCOL *This,
+ IN UINT32 AddressCount,
+ IN EFI_IPv6_ADDRESS *Addresses
+ );
+
+/**
+ Stop the DHCPv6 S.A.R.R process.
+
+ The Stop() function is used to stop the DHCPv6 S.A.R.R process. If this function is called
+ successfully, all the IPv6 addresses of the configured IA will be released and the state of
+ the configured IA will be transferred to Dhcp6Init.
+
+ @param[in] This Pointer to the EFI_DHCP6_PROTOCOL instance.
+
+ @retval EFI_SUCCESS The DHCPv6 S.A.R.R process has been stopped when
+ EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.
+ The EFI DHCPv6 Protocol instance has sent Release packet if
+ need release or has been stopped if needn't, when
+ EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not NULL.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP6_STOP)(
+ IN EFI_DHCP6_PROTOCOL *This
+ );
+
+/**
+ Parse the option data in the DHCPv6 packet.
+
+ The Parse() function is used to retrieve the option list in the DHCPv6 packet.
+
+ @param[in] This Pointer to the EFI_DHCP6_PROTOCOL instance.
+
+ @param[in] Packet Pointer to packet to be parsed.
+ @param[in] OptionCount On input, the number of entries in the PacketOptionList.
+ On output, the number of DHCPv6 options in the Packet.
+ @param[in] PacketOptionList List of pointers to the DHCPv6 options in the Packet.
+ The OpCode and OpLen in EFI_DHCP6_PACKET_OPTION are
+ both stored in network byte order.
+ @retval EFI_SUCCESS The packet was successfully parsed.
+ @retval EFI_INVALID_PARAMETER One or more following conditions are TRUE
+ - This is NULL.
+ - Packet is NULL.
+ - Packet is not a well-formed DHCPv6 packet.
+ - OptionCount is NULL.
+ - *OptionCount is not zero and PacketOptionList is NULL.
+ @retval EFI_BUFFER_TOO_SMALL *OptionCount is smaller than the number of options that were
+ found in the Packet.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP6_PARSE)(
+ IN EFI_DHCP6_PROTOCOL *This,
+ IN EFI_DHCP6_PACKET *Packet,
+ IN OUT UINT32 *OptionCount,
+ OUT EFI_DHCP6_PACKET_OPTION *PacketOptionList[] OPTIONAL
+ );
+
+///
+/// The EFI DHCPv6 Protocol is used to get IPv6 addresses and other configuration parameters
+/// from DHCPv6 servers.
+///
+struct _EFI_DHCP6_PROTOCOL {
+ EFI_DHCP6_GET_MODE_DATA GetModeData;
+ EFI_DHCP6_CONFIGURE Configure;
+ EFI_DHCP6_START Start;
+ EFI_DHCP6_INFO_REQUEST InfoRequest;
+ EFI_DHCP6_RENEW_REBIND RenewRebind;
+ EFI_DHCP6_DECLINE Decline;
+ EFI_DHCP6_RELEASE Release;
+ EFI_DHCP6_STOP Stop;
+ EFI_DHCP6_PARSE Parse;
+};
+
+extern EFI_GUID gEfiDhcp6ProtocolGuid;
+extern EFI_GUID gEfiDhcp6ServiceBindingProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/Ip6.h b/src/include/ipxe/efi/Protocol/Ip6.h
new file mode 100644
index 0000000..c70df19
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Ip6.h
@@ -0,0 +1,948 @@
+/** @file
+ This file defines the EFI IPv6 (Internet Protocol version 6)
+ Protocol interface. It is split into the following three main
+ sections:
+ - EFI IPv6 Service Binding Protocol
+ - EFI IPv6 Variable (deprecated in UEFI 2.4B)
+ - EFI IPv6 Protocol
+ The EFI IPv6 Protocol provides basic network IPv6 packet I/O services,
+ which includes support for Neighbor Discovery Protocol (ND), Multicast
+ Listener Discovery Protocol (MLD), and a subset of the Internet Control
+ Message Protocol (ICMPv6).
+
+ Copyright (c) 2008 - 2014, Intel Corporation. All rights reserved.<BR>
+ SPDX-License-Identifier: BSD-2-Clause-Patent
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.2
+
+**/
+
+#ifndef __EFI_IP6_PROTOCOL_H__
+#define __EFI_IP6_PROTOCOL_H__
+
+FILE_LICENCE ( BSD2_PATENT );
+
+#include <ipxe/efi/Protocol/ManagedNetwork.h>
+
+#define EFI_IP6_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0xec835dd3, 0xfe0f, 0x617b, {0xa6, 0x21, 0xb3, 0x50, 0xc3, 0xe1, 0x33, 0x88 } \
+ }
+
+#define EFI_IP6_PROTOCOL_GUID \
+ { \
+ 0x2c8759d5, 0x5c2d, 0x66ef, {0x92, 0x5f, 0xb6, 0x6c, 0x10, 0x19, 0x57, 0xe2 } \
+ }
+
+typedef struct _EFI_IP6_PROTOCOL EFI_IP6_PROTOCOL;
+
+///
+/// EFI_IP6_ADDRESS_PAIR is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ ///
+ /// The EFI IPv6 Protocol instance handle that is using this address/prefix pair.
+ ///
+ EFI_HANDLE InstanceHandle;
+ ///
+ /// IPv6 address in network byte order.
+ ///
+ EFI_IPv6_ADDRESS Ip6Address;
+ ///
+ /// The length of the prefix associated with the Ip6Address.
+ ///
+ UINT8 PrefixLength;
+} EFI_IP6_ADDRESS_PAIR;
+
+///
+/// EFI_IP6_VARIABLE_DATA is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ ///
+ /// The handle of the driver that creates this entry.
+ ///
+ EFI_HANDLE DriverHandle;
+ ///
+ /// The number of IPv6 address pairs that follow this data structure.
+ ///
+ UINT32 AddressCount;
+ ///
+ /// List of IPv6 address pairs that are currently in use.
+ ///
+ EFI_IP6_ADDRESS_PAIR AddressPairs[1];
+} EFI_IP6_VARIABLE_DATA;
+
+///
+/// ICMPv6 type definitions for error messages
+///
+///@{
+#define ICMP_V6_DEST_UNREACHABLE 0x1
+#define ICMP_V6_PACKET_TOO_BIG 0x2
+#define ICMP_V6_TIME_EXCEEDED 0x3
+#define ICMP_V6_PARAMETER_PROBLEM 0x4
+///@}
+
+///
+/// ICMPv6 type definition for informational messages
+///
+///@{
+#define ICMP_V6_ECHO_REQUEST 0x80
+#define ICMP_V6_ECHO_REPLY 0x81
+#define ICMP_V6_LISTENER_QUERY 0x82
+#define ICMP_V6_LISTENER_REPORT 0x83
+#define ICMP_V6_LISTENER_DONE 0x84
+#define ICMP_V6_ROUTER_SOLICIT 0x85
+#define ICMP_V6_ROUTER_ADVERTISE 0x86
+#define ICMP_V6_NEIGHBOR_SOLICIT 0x87
+#define ICMP_V6_NEIGHBOR_ADVERTISE 0x88
+#define ICMP_V6_REDIRECT 0x89
+#define ICMP_V6_LISTENER_REPORT_2 0x8F
+///@}
+
+///
+/// ICMPv6 code definitions for ICMP_V6_DEST_UNREACHABLE
+///
+///@{
+#define ICMP_V6_NO_ROUTE_TO_DEST 0x0
+#define ICMP_V6_COMM_PROHIBITED 0x1
+#define ICMP_V6_BEYOND_SCOPE 0x2
+#define ICMP_V6_ADDR_UNREACHABLE 0x3
+#define ICMP_V6_PORT_UNREACHABLE 0x4
+#define ICMP_V6_SOURCE_ADDR_FAILED 0x5
+#define ICMP_V6_ROUTE_REJECTED 0x6
+///@}
+
+///
+/// ICMPv6 code definitions for ICMP_V6_TIME_EXCEEDED
+///
+///@{
+#define ICMP_V6_TIMEOUT_HOP_LIMIT 0x0
+#define ICMP_V6_TIMEOUT_REASSEMBLE 0x1
+///@}
+
+///
+/// ICMPv6 code definitions for ICMP_V6_PARAMETER_PROBLEM
+///
+///@{
+#define ICMP_V6_ERRONEOUS_HEADER 0x0
+#define ICMP_V6_UNRECOGNIZE_NEXT_HDR 0x1
+#define ICMP_V6_UNRECOGNIZE_OPTION 0x2
+///@}
+
+///
+/// EFI_IP6_CONFIG_DATA
+/// is used to report and change IPv6 session parameters.
+///
+typedef struct {
+ ///
+ /// For the IPv6 packet to send and receive, this is the default value
+ /// of the 'Next Header' field in the last IPv6 extension header or in
+ /// the IPv6 header if there are no extension headers. Ignored when
+ /// AcceptPromiscuous is TRUE.
+ ///
+ UINT8 DefaultProtocol;
+ ///
+ /// Set to TRUE to receive all IPv6 packets that get through the
+ /// receive filters.
+ /// Set to FALSE to receive only the DefaultProtocol IPv6
+ /// packets that get through the receive filters. Ignored when
+ /// AcceptPromiscuous is TRUE.
+ ///
+ BOOLEAN AcceptAnyProtocol;
+ ///
+ /// Set to TRUE to receive ICMP error report packets. Ignored when
+ /// AcceptPromiscuous or AcceptAnyProtocol is TRUE.
+ ///
+ BOOLEAN AcceptIcmpErrors;
+ ///
+ /// Set to TRUE to receive all IPv6 packets that are sent to any
+ /// hardware address or any protocol address. Set to FALSE to stop
+ /// receiving all promiscuous IPv6 packets.
+ ///
+ BOOLEAN AcceptPromiscuous;
+ ///
+ /// The destination address of the packets that will be transmitted.
+ /// Ignored if it is unspecified.
+ ///
+ EFI_IPv6_ADDRESS DestinationAddress;
+ ///
+ /// The station IPv6 address that will be assigned to this EFI IPv6
+ /// Protocol instance. This field can be set and changed only when
+ /// the EFI IPv6 driver is transitioning from the stopped to the started
+ /// states. If the StationAddress is specified, the EFI IPv6 Protocol
+ /// driver will deliver only incoming IPv6 packets whose destination
+ /// matches this IPv6 address exactly. The StationAddress is required
+ /// to be one of currently configured IPv6 addresses. An address
+ /// containing all zeroes is also accepted as a special case. Under this
+ /// situation, the IPv6 driver is responsible for binding a source
+ /// address to this EFI IPv6 protocol instance according to the source
+ /// address selection algorithm. Only incoming packets destined to
+ /// the selected address will be delivered to the user. And the
+ /// selected station address can be retrieved through later
+ /// GetModeData() call. If no address is available for selecting,
+ /// EFI_NO_MAPPING will be returned, and the station address will
+ /// only be successfully bound to this EFI IPv6 protocol instance
+ /// after IP6ModeData.IsConfigured changed to TRUE.
+ ///
+ EFI_IPv6_ADDRESS StationAddress;
+ ///
+ /// TrafficClass field in transmitted IPv6 packets. Default value
+ /// is zero.
+ ///
+ UINT8 TrafficClass;
+ ///
+ /// HopLimit field in transmitted IPv6 packets.
+ ///
+ UINT8 HopLimit;
+ ///
+ /// FlowLabel field in transmitted IPv6 packets. Default value is
+ /// zero.
+ ///
+ UINT32 FlowLabel;
+ ///
+ /// The timer timeout value (number of microseconds) for the
+ /// receive timeout event to be associated with each assembled
+ /// packet. Zero means do not drop assembled packets.
+ ///
+ UINT32 ReceiveTimeout;
+ ///
+ /// The timer timeout value (number of microseconds) for the
+ /// transmit timeout event to be associated with each outgoing
+ /// packet. Zero means do not drop outgoing packets.
+ ///
+ UINT32 TransmitTimeout;
+} EFI_IP6_CONFIG_DATA;
+
+///
+/// EFI_IP6_ADDRESS_INFO
+///
+typedef struct {
+ EFI_IPv6_ADDRESS Address; ///< The IPv6 address.
+ UINT8 PrefixLength; ///< The length of the prefix associated with the Address.
+} EFI_IP6_ADDRESS_INFO;
+
+///
+/// EFI_IP6_ROUTE_TABLE
+/// is the entry structure that is used in routing tables
+///
+typedef struct {
+ ///
+ /// The IPv6 address of the gateway to be used as the next hop for
+ /// packets to this prefix. If the IPv6 address is all zeros, then the
+ /// prefix is on-link.
+ ///
+ EFI_IPv6_ADDRESS Gateway;
+ ///
+ /// The destination prefix to be routed.
+ ///
+ EFI_IPv6_ADDRESS Destination;
+ ///
+ /// The length of the prefix associated with the Destination.
+ ///
+ UINT8 PrefixLength;
+} EFI_IP6_ROUTE_TABLE;
+
+///
+/// EFI_IP6_NEIGHBOR_STATE
+///
+typedef enum {
+ ///
+ /// Address resolution is being performed on this entry. Specially,
+ /// Neighbor Solicitation has been sent to the solicited-node
+ /// multicast address of the target, but corresponding Neighbor
+ /// Advertisement has not been received.
+ ///
+ EfiNeighborInComplete,
+ ///
+ /// Positive confirmation was received that the forward path to the
+ /// neighbor was functioning properly.
+ ///
+ EfiNeighborReachable,
+ ///
+ /// Reachable Time has elapsed since the last positive confirmation
+ /// was received. In this state, the forward path to the neighbor was
+ /// functioning properly.
+ ///
+ EfiNeighborStale,
+ ///
+ /// This state is an optimization that gives upper-layer protocols
+ /// additional time to provide reachability confirmation.
+ ///
+ EfiNeighborDelay,
+ ///
+ /// A reachability confirmation is actively sought by retransmitting
+ /// Neighbor Solicitations every RetransTimer milliseconds until a
+ /// reachability confirmation is received.
+ ///
+ EfiNeighborProbe
+} EFI_IP6_NEIGHBOR_STATE;
+
+///
+/// EFI_IP6_NEIGHBOR_CACHE
+/// is the entry structure that is used in neighbor cache. It records a set
+/// of entries about individual neighbors to which traffic has been sent recently.
+///
+typedef struct {
+ EFI_IPv6_ADDRESS Neighbor; ///< The on-link unicast/anycast IP address of the neighbor.
+ EFI_MAC_ADDRESS LinkAddress; ///< Link-layer address of the neighbor.
+ EFI_IP6_NEIGHBOR_STATE State; ///< State of this neighbor cache entry.
+} EFI_IP6_NEIGHBOR_CACHE;
+
+///
+/// EFI_IP6_ICMP_TYPE
+/// is used to describe those ICMP messages that are supported by this EFI
+/// IPv6 Protocol driver.
+///
+typedef struct {
+ UINT8 Type; ///< The type of ICMP message.
+ UINT8 Code; ///< The code of the ICMP message.
+} EFI_IP6_ICMP_TYPE;
+
+///
+/// EFI_IP6_MODE_DATA
+///
+typedef struct {
+ ///
+ /// Set to TRUE after this EFI IPv6 Protocol instance is started.
+ /// All other fields in this structure are undefined until this field is TRUE.
+ /// Set to FALSE when the EFI IPv6 Protocol instance is stopped.
+ ///
+ BOOLEAN IsStarted;
+ ///
+ /// The maximum packet size, in bytes, of the packet which the upper layer driver could feed.
+ ///
+ UINT32 MaxPacketSize;
+ ///
+ /// Current configuration settings. Undefined until IsStarted is TRUE.
+ ///
+ EFI_IP6_CONFIG_DATA ConfigData;
+ ///
+ /// Set to TRUE when the EFI IPv6 Protocol instance is configured.
+ /// The instance is configured when it has a station address and
+ /// corresponding prefix length.
+ /// Set to FALSE when the EFI IPv6 Protocol instance is not configured.
+ ///
+ BOOLEAN IsConfigured;
+ ///
+ /// Number of configured IPv6 addresses on this interface.
+ ///
+ UINT32 AddressCount;
+ ///
+ /// List of currently configured IPv6 addresses and corresponding
+ /// prefix lengths assigned to this interface. It is caller's
+ /// responsibility to free this buffer.
+ ///
+ EFI_IP6_ADDRESS_INFO *AddressList;
+ ///
+ /// Number of joined multicast groups. Undefined until
+ /// IsConfigured is TRUE.
+ ///
+ UINT32 GroupCount;
+ ///
+ /// List of joined multicast group addresses. It is caller's
+ /// responsibility to free this buffer. Undefined until
+ /// IsConfigured is TRUE.
+ ///
+ EFI_IPv6_ADDRESS *GroupTable;
+ ///
+ /// Number of entries in the routing table. Undefined until
+ /// IsConfigured is TRUE.
+ ///
+ UINT32 RouteCount;
+ ///
+ /// Routing table entries. It is caller's responsibility to free this buffer.
+ ///
+ EFI_IP6_ROUTE_TABLE *RouteTable;
+ ///
+ /// Number of entries in the neighbor cache. Undefined until
+ /// IsConfigured is TRUE.
+ ///
+ UINT32 NeighborCount;
+ ///
+ /// Neighbor cache entries. It is caller's responsibility to free this
+ /// buffer. Undefined until IsConfigured is TRUE.
+ ///
+ EFI_IP6_NEIGHBOR_CACHE *NeighborCache;
+ ///
+ /// Number of entries in the prefix table. Undefined until
+ /// IsConfigured is TRUE.
+ ///
+ UINT32 PrefixCount;
+ ///
+ /// On-link Prefix table entries. It is caller's responsibility to free this
+ /// buffer. Undefined until IsConfigured is TRUE.
+ ///
+ EFI_IP6_ADDRESS_INFO *PrefixTable;
+ ///
+ /// Number of entries in the supported ICMP types list.
+ ///
+ UINT32 IcmpTypeCount;
+ ///
+ /// Array of ICMP types and codes that are supported by this EFI
+ /// IPv6 Protocol driver. It is caller's responsibility to free this
+ /// buffer.
+ ///
+ EFI_IP6_ICMP_TYPE *IcmpTypeList;
+} EFI_IP6_MODE_DATA;
+
+///
+/// EFI_IP6_HEADER
+/// The fields in the IPv6 header structure are defined in the Internet
+/// Protocol version6 specification.
+///
+#pragma pack(1)
+typedef struct _EFI_IP6_HEADER {
+ UINT8 TrafficClassH : 4;
+ UINT8 Version : 4;
+ UINT8 FlowLabelH : 4;
+ UINT8 TrafficClassL : 4;
+ UINT16 FlowLabelL;
+ UINT16 PayloadLength;
+ UINT8 NextHeader;
+ UINT8 HopLimit;
+ EFI_IPv6_ADDRESS SourceAddress;
+ EFI_IPv6_ADDRESS DestinationAddress;
+} EFI_IP6_HEADER;
+#pragma pack()
+
+///
+/// EFI_IP6_FRAGMENT_DATA
+/// describes the location and length of the IPv6 packet
+/// fragment to transmit or that has been received.
+///
+typedef struct _EFI_IP6_FRAGMENT_DATA {
+ UINT32 FragmentLength; ///< Length of fragment data. This field may not be set to zero.
+ VOID *FragmentBuffer; ///< Pointer to fragment data. This field may not be set to NULL.
+} EFI_IP6_FRAGMENT_DATA;
+
+///
+/// EFI_IP6_RECEIVE_DATA
+///
+typedef struct _EFI_IP6_RECEIVE_DATA {
+ ///
+ /// Time when the EFI IPv6 Protocol driver accepted the packet.
+ /// Ignored if it is zero.
+ ///
+ EFI_TIME TimeStamp;
+ ///
+ /// After this event is signaled, the receive data structure is released
+ /// and must not be referenced.
+ ///
+ EFI_EVENT RecycleSignal;
+ ///
+ /// Length of the IPv6 packet headers, including both the IPv6
+ /// header and any extension headers.
+ ///
+ UINT32 HeaderLength;
+ ///
+ /// Pointer to the IPv6 packet header. If the IPv6 packet was
+ /// fragmented, this argument is a pointer to the header in the first
+ /// fragment.
+ ///
+ EFI_IP6_HEADER *Header;
+ ///
+ /// Sum of the lengths of IPv6 packet buffers in FragmentTable. May
+ /// be zero.
+ ///
+ UINT32 DataLength;
+ ///
+ /// Number of IPv6 payload fragments. May be zero.
+ ///
+ UINT32 FragmentCount;
+ ///
+ /// Array of payload fragment lengths and buffer pointers.
+ ///
+ EFI_IP6_FRAGMENT_DATA FragmentTable[1];
+} EFI_IP6_RECEIVE_DATA;
+
+///
+/// EFI_IP6_OVERRIDE_DATA
+/// The information and flags in the override data structure will override
+/// default parameters or settings for one Transmit() function call.
+///
+typedef struct _EFI_IP6_OVERRIDE_DATA {
+ UINT8 Protocol; ///< Protocol type override.
+ UINT8 HopLimit; ///< Hop-Limit override.
+ UINT32 FlowLabel; ///< Flow-Label override.
+} EFI_IP6_OVERRIDE_DATA;
+
+///
+/// EFI_IP6_TRANSMIT_DATA
+///
+typedef struct _EFI_IP6_TRANSMIT_DATA {
+ ///
+ /// The destination IPv6 address. If it is unspecified,
+ /// ConfigData.DestinationAddress will be used instead.
+ ///
+ EFI_IPv6_ADDRESS DestinationAddress;
+ ///
+ /// If not NULL, the IPv6 transmission control override data.
+ ///
+ EFI_IP6_OVERRIDE_DATA *OverrideData;
+ ///
+ /// Total length in byte of the IPv6 extension headers specified in
+ /// ExtHdrs.
+ ///
+ UINT32 ExtHdrsLength;
+ ///
+ /// Pointer to the IPv6 extension headers. The IP layer will append
+ /// the required extension headers if they are not specified by
+ /// ExtHdrs. Ignored if ExtHdrsLength is zero.
+ ///
+ VOID *ExtHdrs;
+ ///
+ /// The protocol of first extension header in ExtHdrs. Ignored if
+ /// ExtHdrsLength is zero.
+ ///
+ UINT8 NextHeader;
+ ///
+ /// Total length in bytes of the FragmentTable data to transmit.
+ ///
+ UINT32 DataLength;
+ ///
+ /// Number of entries in the fragment data table.
+ ///
+ UINT32 FragmentCount;
+ ///
+ /// Start of the fragment data table.
+ ///
+ EFI_IP6_FRAGMENT_DATA FragmentTable[1];
+} EFI_IP6_TRANSMIT_DATA;
+
+///
+/// EFI_IP6_COMPLETION_TOKEN
+/// structures are used for both transmit and receive operations.
+///
+typedef struct {
+ ///
+ /// This Event will be signaled after the Status field is updated by
+ /// the EFI IPv6 Protocol driver. The type of Event must be EFI_NOTIFY_SIGNAL.
+ ///
+ EFI_EVENT Event;
+ ///
+ /// Will be set to one of the following values:
+ /// - EFI_SUCCESS: The receive or transmit completed
+ /// successfully.
+ /// - EFI_ABORTED: The receive or transmit was aborted
+ /// - EFI_TIMEOUT: The transmit timeout expired.
+ /// - EFI_ICMP_ERROR: An ICMP error packet was received.
+ /// - EFI_DEVICE_ERROR: An unexpected system or network
+ /// error occurred.
+ /// - EFI_SECURITY_VIOLATION: The transmit or receive was
+ /// failed because of an IPsec policy check.
+ /// - EFI_NO_MEDIA: There was a media error.
+ ///
+ EFI_STATUS Status;
+ union {
+ ///
+ /// When the Token is used for receiving, RxData is a pointer to the EFI_IP6_RECEIVE_DATA.
+ ///
+ EFI_IP6_RECEIVE_DATA *RxData;
+ ///
+ /// When the Token is used for transmitting, TxData is a pointer to the EFI_IP6_TRANSMIT_DATA.
+ ///
+ EFI_IP6_TRANSMIT_DATA *TxData;
+ } Packet;
+} EFI_IP6_COMPLETION_TOKEN;
+
+/**
+ Gets the current operational settings for this instance of the EFI IPv6 Protocol driver.
+
+ The GetModeData() function returns the current operational mode data for this driver instance.
+ The data fields in EFI_IP6_MODE_DATA are read only. This function is used optionally to
+ retrieve the operational mode data of underlying networks or drivers..
+
+ @param[in] This Pointer to the EFI_IP6_PROTOCOL instance.
+ @param[out] Ip6ModeData Pointer to the EFI IPv6 Protocol mode data structure.
+ @param[out] MnpConfigData Pointer to the managed network configuration data structure.
+ @param[out] SnpModeData Pointer to the simple network mode data structure.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_OUT_OF_RESOURCES The required mode data could not be allocated.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_GET_MODE_DATA)(
+ IN EFI_IP6_PROTOCOL *This,
+ OUT EFI_IP6_MODE_DATA *Ip6ModeData OPTIONAL,
+ OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
+ OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
+ );
+
+/**
+ Assigns an IPv6 address and subnet mask to this EFI IPv6 Protocol driver instance.
+
+ The Configure() function is used to set, change, or reset the operational parameters and filter
+ settings for this EFI IPv6 Protocol instance. Until these parameters have been set, no network traffic
+ can be sent or received by this instance. Once the parameters have been reset (by calling this
+ function with Ip6ConfigData set to NULL), no more traffic can be sent or received until these
+ parameters have been set again. Each EFI IPv6 Protocol instance can be started and stopped
+ independently of each other by enabling or disabling their receive filter settings with the
+ Configure() function.
+
+ If Ip6ConfigData.StationAddress is a valid non-zero IPv6 unicast address, it is required
+ to be one of the currently configured IPv6 addresses list in the EFI IPv6 drivers, or else
+ EFI_INVALID_PARAMETER will be returned. If Ip6ConfigData.StationAddress is
+ unspecified, the IPv6 driver will bind a source address according to the source address selection
+ algorithm. Clients could frequently call GetModeData() to check get currently configured IPv6
+ address list in the EFI IPv6 driver. If both Ip6ConfigData.StationAddress and
+ Ip6ConfigData.Destination are unspecified, when transmitting the packet afterwards, the
+ source address filled in each outgoing IPv6 packet is decided based on the destination of this packet. .
+
+ If operational parameters are reset or changed, any pending transmit and receive requests will be
+ cancelled. Their completion token status will be set to EFI_ABORTED and their events will be
+ signaled.
+
+ @param[in] This Pointer to the EFI_IP6_PROTOCOL instance.
+ @param[in] Ip6ConfigData Pointer to the EFI IPv6 Protocol configuration data structure.
+
+ @retval EFI_SUCCESS The driver instance was successfully opened.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - Ip6ConfigData.StationAddress is neither zero nor
+ a unicast IPv6 address.
+ - Ip6ConfigData.StationAddress is neither zero nor
+ one of the configured IP addresses in the EFI IPv6 driver.
+ - Ip6ConfigData.DefaultProtocol is illegal.
+ @retval EFI_OUT_OF_RESOURCES The EFI IPv6 Protocol driver instance data could not be allocated.
+ @retval EFI_NO_MAPPING The IPv6 driver was responsible for choosing a source address for
+ this instance, but no source address was available for use.
+ @retval EFI_ALREADY_STARTED The interface is already open and must be stopped before the IPv6
+ address or prefix length can be changed.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI IPv6
+ Protocol driver instance is not opened.
+ @retval EFI_UNSUPPORTED Default protocol specified through
+ Ip6ConfigData.DefaulProtocol isn't supported.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_CONFIGURE)(
+ IN EFI_IP6_PROTOCOL *This,
+ IN EFI_IP6_CONFIG_DATA *Ip6ConfigData OPTIONAL
+ );
+
+/**
+ Joins and leaves multicast groups.
+
+ The Groups() function is used to join and leave multicast group sessions. Joining a group will
+ enable reception of matching multicast packets. Leaving a group will disable reception of matching
+ multicast packets. Source-Specific Multicast isn't required to be supported.
+
+ If JoinFlag is FALSE and GroupAddress is NULL, all joined groups will be left.
+
+ @param[in] This Pointer to the EFI_IP6_PROTOCOL instance.
+ @param[in] JoinFlag Set to TRUE to join the multicast group session and FALSE to leave.
+ @param[in] GroupAddress Pointer to the IPv6 multicast address.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_INVALID_PARAMETER One or more of the following is TRUE:
+ - This is NULL.
+ - JoinFlag is TRUE and GroupAddress is NULL.
+ - GroupAddress is not NULL and *GroupAddress is
+ not a multicast IPv6 address.
+ - GroupAddress is not NULL and *GroupAddress is in the
+ range of SSM destination address.
+ @retval EFI_NOT_STARTED This instance has not been started.
+ @retval EFI_OUT_OF_RESOURCES System resources could not be allocated.
+ @retval EFI_UNSUPPORTED This EFI IPv6 Protocol implementation does not support multicast groups.
+ @retval EFI_ALREADY_STARTED The group address is already in the group table (when
+ JoinFlag is TRUE).
+ @retval EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is FALSE).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_GROUPS)(
+ IN EFI_IP6_PROTOCOL *This,
+ IN BOOLEAN JoinFlag,
+ IN EFI_IPv6_ADDRESS *GroupAddress OPTIONAL
+ );
+
+/**
+ Adds and deletes routing table entries.
+
+ The Routes() function adds a route to or deletes a route from the routing table.
+
+ Routes are determined by comparing the leftmost PrefixLength bits of Destination with
+ the destination IPv6 address arithmetically. The gateway address must be on the same subnet as the
+ configured station address.
+
+ The default route is added with Destination and PrefixLegth both set to all zeros. The
+ default route matches all destination IPv6 addresses that do not match any other routes.
+
+ All EFI IPv6 Protocol instances share a routing table.
+
+ @param[in] This Pointer to the EFI_IP6_PROTOCOL instance.
+ @param[in] DeleteRoute Set to TRUE to delete this route from the routing table. Set to
+ FALSE to add this route to the routing table. Destination,
+ PrefixLength and Gateway are used as the key to each
+ route entry.
+ @param[in] Destination The address prefix of the subnet that needs to be routed.
+ @param[in] PrefixLength The prefix length of Destination. Ignored if Destination
+ is NULL.
+ @param[in] GatewayAddress The unicast gateway IPv6 address for this route.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_NOT_STARTED The driver instance has not been started.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - When DeleteRoute is TRUE, both Destination and
+ GatewayAddress are NULL.
+ - When DeleteRoute is FALSE, either Destination or
+ GatewayAddress is NULL.
+ - *GatewayAddress is not a valid unicast IPv6 address.
+ - *GatewayAddress is one of the local configured IPv6
+ addresses.
+ @retval EFI_OUT_OF_RESOURCES Could not add the entry to the routing table.
+ @retval EFI_NOT_FOUND This route is not in the routing table (when DeleteRoute is TRUE).
+ @retval EFI_ACCESS_DENIED The route is already defined in the routing table (when
+ DeleteRoute is FALSE).
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_ROUTES)(
+ IN EFI_IP6_PROTOCOL *This,
+ IN BOOLEAN DeleteRoute,
+ IN EFI_IPv6_ADDRESS *Destination OPTIONAL,
+ IN UINT8 PrefixLength,
+ IN EFI_IPv6_ADDRESS *GatewayAddress OPTIONAL
+ );
+
+/**
+ Add or delete Neighbor cache entries.
+
+ The Neighbors() function is used to add, update, or delete an entry from neighbor cache.
+ IPv6 neighbor cache entries are typically inserted and updated by the network protocol driver as
+ network traffic is processed. Most neighbor cache entries will time out and be deleted if the network
+ traffic stops. Neighbor cache entries that were inserted by Neighbors() may be static (will not
+ timeout) or dynamic (will time out).
+
+ The implementation should follow the neighbor cache timeout mechanism which is defined in
+ RFC4861. The default neighbor cache timeout value should be tuned for the expected network
+ environment
+
+ @param[in] This Pointer to the EFI_IP6_PROTOCOL instance.
+ @param[in] DeleteFlag Set to TRUE to delete the specified cache entry, set to FALSE to
+ add (or update, if it already exists and Override is TRUE) the
+ specified cache entry. TargetIp6Address is used as the key
+ to find the requested cache entry.
+ @param[in] TargetIp6Address Pointer to Target IPv6 address.
+ @param[in] TargetLinkAddress Pointer to link-layer address of the target. Ignored if NULL.
+ @param[in] Timeout Time in 100-ns units that this entry will remain in the neighbor
+ cache, it will be deleted after Timeout. A value of zero means that
+ the entry is permanent. A non-zero value means that the entry is
+ dynamic.
+ @param[in] Override If TRUE, the cached link-layer address of the matching entry will
+ be overridden and updated; if FALSE, EFI_ACCESS_DENIED
+ will be returned if a corresponding cache entry already existed.
+
+ @retval EFI_SUCCESS The data has been queued for transmission.
+ @retval EFI_NOT_STARTED This instance has not been started.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - TargetIpAddress is NULL.
+ - *TargetLinkAddress is invalid when not NULL.
+ - *TargetIpAddress is not a valid unicast IPv6 address.
+ - *TargetIpAddress is one of the local configured IPv6
+ addresses.
+ @retval EFI_OUT_OF_RESOURCES Could not add the entry to the neighbor cache.
+ @retval EFI_NOT_FOUND This entry is not in the neighbor cache (when DeleteFlag is
+ TRUE or when DeleteFlag is FALSE while
+ TargetLinkAddress is NULL.).
+ @retval EFI_ACCESS_DENIED The to-be-added entry is already defined in the neighbor cache,
+ and that entry is tagged as un-overridden (when DeleteFlag
+ is FALSE).
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_NEIGHBORS)(
+ IN EFI_IP6_PROTOCOL *This,
+ IN BOOLEAN DeleteFlag,
+ IN EFI_IPv6_ADDRESS *TargetIp6Address,
+ IN EFI_MAC_ADDRESS *TargetLinkAddress,
+ IN UINT32 Timeout,
+ IN BOOLEAN Override
+ );
+
+/**
+ Places outgoing data packets into the transmit queue.
+
+ The Transmit() function places a sending request in the transmit queue of this
+ EFI IPv6 Protocol instance. Whenever the packet in the token is sent out or some
+ errors occur, the event in the token will be signaled and the status is updated.
+
+ @param[in] This Pointer to the EFI_IP6_PROTOCOL instance.
+ @param[in] Token Pointer to the transmit token.
+
+ @retval EFI_SUCCESS The data has been queued for transmission.
+ @retval EFI_NOT_STARTED This instance has not been started.
+ @retval EFI_NO_MAPPING The IPv6 driver was responsible for choosing a source address for
+ this transmission, but no source address was available for use.
+ @retval EFI_INVALID_PARAMETER One or more of the following is TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token.Event is NULL.
+ - Token.Packet.TxData is NULL.
+ - Token.Packet.ExtHdrsLength is not zero and Token.Packet.ExtHdrs is NULL.
+ - Token.Packet.FragmentCount is zero.
+ - One or more of the Token.Packet.TxData.FragmentTable[].FragmentLength fields is zero.
+ - One or more of the Token.Packet.TxData.FragmentTable[].FragmentBuffer fields is NULL.
+ - Token.Packet.TxData.DataLength is zero or not equal to the sum of fragment lengths.
+ - Token.Packet.TxData.DestinationAddress is non-zero when DestinationAddress is configured as
+ non-zero when doing Configure() for this EFI IPv6 protocol instance.
+ - Token.Packet.TxData.DestinationAddress is unspecified when DestinationAddress is unspecified
+ when doing Configure() for this EFI IPv6 protocol instance.
+ @retval EFI_ACCESS_DENIED The transmit completion token with the same Token.Event
+ was already in the transmit queue.
+ @retval EFI_NOT_READY The completion token could not be queued because the transmit
+ queue is full.
+ @retval EFI_NOT_FOUND Not route is found to destination address.
+ @retval EFI_OUT_OF_RESOURCES Could not queue the transmit data.
+ @retval EFI_BUFFER_TOO_SMALL Token.Packet.TxData.TotalDataLength is too
+ short to transmit.
+ @retval EFI_BAD_BUFFER_SIZE If Token.Packet.TxData.DataLength is beyond the
+ maximum that which can be described through the Fragment Offset
+ field in Fragment header when performing fragmentation.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_TRANSMIT)(
+ IN EFI_IP6_PROTOCOL *This,
+ IN EFI_IP6_COMPLETION_TOKEN *Token
+ );
+
+/**
+ Places a receiving request into the receiving queue.
+
+ The Receive() function places a completion token into the receive packet queue.
+ This function is always asynchronous.
+
+ The Token.Event field in the completion token must be filled in by the caller
+ and cannot be NULL. When the receive operation completes, the EFI IPv6 Protocol
+ driver updates the Token.Status and Token.Packet.RxData fields and the Token.Event
+ is signaled.
+
+ @param[in] This Pointer to the EFI_IP6_PROTOCOL instance.
+ @param[in] Token Pointer to a token that is associated with the receive data descriptor.
+
+ @retval EFI_SUCCESS The receive completion token was cached.
+ @retval EFI_NOT_STARTED This EFI IPv6 Protocol instance has not been started.
+ @retval EFI_NO_MAPPING When IP6 driver responsible for binding source address to this instance,
+ while no source address is available for use.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system
+ resources (usually memory).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ The EFI IPv6 Protocol instance has been reset to startup defaults.
+ @retval EFI_ACCESS_DENIED The receive completion token with the same Token.Event was already
+ in the receive queue.
+ @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_RECEIVE)(
+ IN EFI_IP6_PROTOCOL *This,
+ IN EFI_IP6_COMPLETION_TOKEN *Token
+ );
+
+/**
+ Abort an asynchronous transmit or receive request.
+
+ The Cancel() function is used to abort a pending transmit or receive request.
+ If the token is in the transmit or receive request queues, after calling this
+ function, Token->Status will be set to EFI_ABORTED and then Token->Event will
+ be signaled. If the token is not in one of the queues, which usually means the
+ asynchronous operation has completed, this function will not signal the token
+ and EFI_NOT_FOUND is returned.
+
+ @param[in] This Pointer to the EFI_IP6_PROTOCOL instance.
+ @param[in] Token Pointer to a token that has been issued by
+ EFI_IP6_PROTOCOL.Transmit() or
+ EFI_IP6_PROTOCOL.Receive(). If NULL, all pending
+ tokens are aborted. Type EFI_IP6_COMPLETION_TOKEN is
+ defined in EFI_IP6_PROTOCOL.Transmit().
+
+ @retval EFI_SUCCESS The asynchronous I/O request was aborted and
+ Token->Event was signaled. When Token is NULL, all
+ pending requests were aborted and their events were signaled.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_STARTED This instance has not been started.
+ @retval EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was
+ not found in the transmit or receive queue. It has either completed
+ or was not issued by Transmit() and Receive().
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_CANCEL)(
+ IN EFI_IP6_PROTOCOL *This,
+ IN EFI_IP6_COMPLETION_TOKEN *Token OPTIONAL
+ );
+
+/**
+ Polls for incoming data packets and processes outgoing data packets.
+
+ The Poll() function polls for incoming data packets and processes outgoing data
+ packets. Network drivers and applications can call the EFI_IP6_PROTOCOL.Poll()
+ function to increase the rate that data packets are moved between the communications
+ device and the transmit and receive queues.
+
+ In some systems the periodic timer event may not poll the underlying communications
+ device fast enough to transmit and/or receive all data packets without missing
+ incoming packets or dropping outgoing packets. Drivers and applications that are
+ experiencing packet loss should try calling the EFI_IP6_PROTOCOL.Poll() function
+ more often.
+
+ @param[in] This Pointer to the EFI_IP6_PROTOCOL instance.
+
+ @retval EFI_SUCCESS Incoming or outgoing data was processed.
+ @retval EFI_NOT_STARTED This EFI IPv6 Protocol instance has not been started.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_NOT_READY No incoming or outgoing data is processed.
+ @retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
+ Consider increasing the polling rate.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_POLL)(
+ IN EFI_IP6_PROTOCOL *This
+ );
+
+///
+/// The EFI IPv6 Protocol implements a simple packet-oriented interface that can be
+/// used by drivers, daemons, and applications to transmit and receive network packets.
+///
+struct _EFI_IP6_PROTOCOL {
+ EFI_IP6_GET_MODE_DATA GetModeData;
+ EFI_IP6_CONFIGURE Configure;
+ EFI_IP6_GROUPS Groups;
+ EFI_IP6_ROUTES Routes;
+ EFI_IP6_NEIGHBORS Neighbors;
+ EFI_IP6_TRANSMIT Transmit;
+ EFI_IP6_RECEIVE Receive;
+ EFI_IP6_CANCEL Cancel;
+ EFI_IP6_POLL Poll;
+};
+
+extern EFI_GUID gEfiIp6ServiceBindingProtocolGuid;
+extern EFI_GUID gEfiIp6ProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/Ip6Config.h b/src/include/ipxe/efi/Protocol/Ip6Config.h
new file mode 100644
index 0000000..5665e93
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Ip6Config.h
@@ -0,0 +1,369 @@
+/** @file
+ This file provides a definition of the EFI IPv6 Configuration
+ Protocol.
+
+Copyright (c) 2008 - 2018, Intel Corporation. All rights reserved.<BR>
+SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#ifndef __EFI_IP6CONFIG_PROTOCOL_H__
+#define __EFI_IP6CONFIG_PROTOCOL_H__
+
+FILE_LICENCE ( BSD2_PATENT );
+
+#include <ipxe/efi/Protocol/Ip6.h>
+
+#define EFI_IP6_CONFIG_PROTOCOL_GUID \
+ { \
+ 0x937fe521, 0x95ae, 0x4d1a, {0x89, 0x29, 0x48, 0xbc, 0xd9, 0x0a, 0xd3, 0x1a } \
+ }
+
+typedef struct _EFI_IP6_CONFIG_PROTOCOL EFI_IP6_CONFIG_PROTOCOL;
+
+///
+/// EFI_IP6_CONFIG_DATA_TYPE
+///
+typedef enum {
+ ///
+ /// The interface information of the communication
+ /// device this EFI IPv6 Configuration Protocol instance manages.
+ /// This type of data is read only.The corresponding Data is of type
+ /// EFI_IP6_CONFIG_INTERFACE_INFO.
+ ///
+ Ip6ConfigDataTypeInterfaceInfo,
+ ///
+ /// The alternative interface ID for the
+ /// communication device this EFI IPv6 Configuration Protocol
+ /// instance manages if the link local IPv6 address generated from
+ /// the interfaced ID based on the default source the EFI IPv6
+ /// Protocol uses is a duplicate address. The length of the interface
+ /// ID is 64 bit. The corresponding Data is of type
+ /// EFI_IP6_CONFIG_INTERFACE_ID.
+ ///
+ Ip6ConfigDataTypeAltInterfaceId,
+ ///
+ /// The general configuration policy for the EFI IPv6 network
+ /// stack running on the communication device this EFI IPv6
+ /// Configuration Protocol instance manages. The policy will affect
+ /// other configuration settings. The corresponding Data is of type
+ /// EFI_IP6_CONFIG_POLICY.
+ ///
+ Ip6ConfigDataTypePolicy,
+ ///
+ /// The number of consecutive
+ /// Neighbor Solicitation messages sent while performing Duplicate
+ /// Address Detection on a tentative address. A value of zero
+ /// indicates that Duplicate Address Detection will not be performed
+ /// on tentative addresses. The corresponding Data is of type
+ /// EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS.
+ ///
+ Ip6ConfigDataTypeDupAddrDetectTransmits,
+ ///
+ /// The station addresses set manually for the EFI
+ /// IPv6 network stack. It is only configurable when the policy is
+ /// Ip6ConfigPolicyManual. The corresponding Data is a
+ /// pointer to an array of EFI_IPv6_ADDRESS instances. When
+ /// DataSize is 0 and Data is NULL, the existing configuration
+ /// is cleared from the EFI IPv6 Configuration Protocol instance.
+ ///
+ Ip6ConfigDataTypeManualAddress,
+ ///
+ /// The gateway addresses set manually for the EFI IPv6
+ /// network stack running on the communication device this EFI
+ /// IPv6 Configuration Protocol manages. It is not configurable when
+ /// the policy is Ip6ConfigPolicyAutomatic. The gateway
+ /// addresses must be unicast IPv6 addresses. The corresponding
+ /// Data is a pointer to an array of EFI_IPv6_ADDRESS instances.
+ /// When DataSize is 0 and Data is NULL, the existing configuration
+ /// is cleared from the EFI IPv6 Configuration Protocol instance.
+ ///
+ Ip6ConfigDataTypeGateway,
+ ///
+ /// The DNS server list for the EFI IPv6 network stack
+ /// running on the communication device this EFI IPv6
+ /// Configuration Protocol manages. It is not configurable when the
+ /// policy is Ip6ConfigPolicyAutomatic.The DNS server
+ /// addresses must be unicast IPv6 addresses. The corresponding
+ /// Data is a pointer to an array of EFI_IPv6_ADDRESS instances.
+ /// When DataSize is 0 and Data is NULL, the existing configuration
+ /// is cleared from the EFI IPv6 Configuration Protocol instance.
+ ///
+ Ip6ConfigDataTypeDnsServer,
+ ///
+ /// The number of this enumeration memebers.
+ ///
+ Ip6ConfigDataTypeMaximum
+} EFI_IP6_CONFIG_DATA_TYPE;
+
+///
+/// EFI_IP6_CONFIG_INTERFACE_INFO
+/// describes the operational state of the interface this
+/// EFI IPv6 Configuration Protocol instance manages.
+///
+typedef struct {
+ ///
+ /// The name of the interface. It is a NULL-terminated string.
+ ///
+ CHAR16 Name[32];
+ ///
+ /// The interface type of the network interface.
+ ///
+ UINT8 IfType;
+ ///
+ /// The size, in bytes, of the network interface's hardware address.
+ ///
+ UINT32 HwAddressSize;
+ ///
+ /// The hardware address for the network interface.
+ ///
+ EFI_MAC_ADDRESS HwAddress;
+ ///
+ /// Number of EFI_IP6_ADDRESS_INFO structures pointed to by AddressInfo.
+ ///
+ UINT32 AddressInfoCount;
+ ///
+ /// Pointer to an array of EFI_IP6_ADDRESS_INFO instances
+ /// which contain the local IPv6 addresses and the corresponding
+ /// prefix length information. Set to NULL if AddressInfoCount
+ /// is zero.
+ ///
+ EFI_IP6_ADDRESS_INFO *AddressInfo;
+ ///
+ /// Number of route table entries in the following RouteTable.
+ ///
+ UINT32 RouteCount;
+ ///
+ /// The route table of the IPv6 network stack runs on this interface.
+ /// Set to NULL if RouteCount is zero.
+ ///
+ EFI_IP6_ROUTE_TABLE *RouteTable;
+} EFI_IP6_CONFIG_INTERFACE_INFO;
+
+///
+/// EFI_IP6_CONFIG_INTERFACE_ID
+/// describes the 64-bit interface ID.
+///
+typedef struct {
+ UINT8 Id[8];
+} EFI_IP6_CONFIG_INTERFACE_ID;
+
+///
+/// EFI_IP6_CONFIG_POLICY
+/// defines the general configuration policy the EFI IPv6
+/// Configuration Protocol supports.
+///
+typedef enum {
+ ///
+ /// Under this policy, the IpI6ConfigDataTypeManualAddress,
+ /// Ip6ConfigDataTypeGateway and Ip6ConfigDataTypeDnsServer
+ /// configuration data are required to be set manually.
+ /// The EFI IPv6 Protocol will get all required configuration
+ /// such as address, prefix and gateway settings from the EFI
+ /// IPv6 Configuration protocol.
+ ///
+ Ip6ConfigPolicyManual,
+ ///
+ /// Under this policy, the IpI6ConfigDataTypeManualAddress,
+ /// Ip6ConfigDataTypeGateway and Ip6ConfigDataTypeDnsServer
+ /// configuration data are not allowed to set via SetData().
+ /// All of these configurations are retrieved from some auto
+ /// configuration mechanism.
+ /// The EFI IPv6 Protocol will use the IPv6 stateless address
+ /// autoconfiguration mechanism and/or the IPv6 stateful address
+ /// autoconfiguration mechanism described in the related RFCs to
+ /// get address and other configuration information
+ ///
+ Ip6ConfigPolicyAutomatic
+} EFI_IP6_CONFIG_POLICY;
+
+///
+/// EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS
+/// describes the number of consecutive Neighbor Solicitation messages sent
+/// while performing Duplicate Address Detection on a tentative address.
+/// The default value for a newly detected communication device is 1.
+///
+typedef struct {
+ UINT32 DupAddrDetectTransmits; ///< The number of consecutive Neighbor Solicitation messages sent.
+} EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS;
+
+///
+/// EFI_IP6_CONFIG_MANUAL_ADDRESS
+/// is used to set the station address information for the EFI IPv6 network
+/// stack manually when the policy is Ip6ConfigPolicyManual.
+///
+typedef struct {
+ EFI_IPv6_ADDRESS Address; ///< The IPv6 unicast address.
+ BOOLEAN IsAnycast; ///< Set to TRUE if Address is anycast.
+ UINT8 PrefixLength; ///< The length, in bits, of the prefix associated with this Address.
+} EFI_IP6_CONFIG_MANUAL_ADDRESS;
+
+/**
+ Set the configuration for the EFI IPv6 network stack running on the communication
+ device this EFI IPv6 Configuration Protocol instance manages.
+
+ This function is used to set the configuration data of type DataType for the EFI
+ IPv6 network stack running on the communication device this EFI IPv6 Configuration
+ Protocol instance manages.
+
+ The DataSize is used to calculate the count of structure instances in the Data for
+ some DataType that multiple structure instances are allowed.
+
+ This function is always non-blocking. When setting some type of configuration data,
+ an asynchronous process is invoked to check the correctness of the data, such as
+ doing Duplicate Address Detection on the manually set local IPv6 addresses.
+ EFI_NOT_READY is returned immediately to indicate that such an asynchronous process
+ is invoked and the process is not finished yet. The caller willing to get the result
+ of the asynchronous process is required to call RegisterDataNotify() to register an
+ event on the specified configuration data. Once the event is signaled, the caller
+ can call GetData() to get back the configuration data in order to know the result.
+ For other types of configuration data that do not require an asynchronous configuration
+ process, the result of the operation is immediately returned.
+
+ @param[in] This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.
+ @param[in] DataType The type of data to set.
+ @param[in] DataSize Size of the buffer pointed to by Data in bytes.
+ @param[in] Data The data buffer to set. The type of the data buffer is
+ associated with the DataType.
+
+ @retval EFI_SUCCESS The specified configuration data for the EFI IPv6
+ network stack is set successfully.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - One or more fields in Data and DataSize do not match the
+ requirement of the data type indicated by DataType.
+ @retval EFI_WRITE_PROTECTED The specified configuration data is read-only or the specified
+ configuration data can not be set under the current policy
+ @retval EFI_ACCESS_DENIED Another set operation on the specified configuration
+ data is already in process.
+ @retval EFI_NOT_READY An asynchronous process is invoked to set the specified
+ configuration data and the process is not finished yet.
+ @retval EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type
+ indicated by DataType.
+ @retval EFI_UNSUPPORTED This DataType is not supported.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_DEVICE_ERROR An unexpected system error or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_CONFIG_SET_DATA)(
+ IN EFI_IP6_CONFIG_PROTOCOL *This,
+ IN EFI_IP6_CONFIG_DATA_TYPE DataType,
+ IN UINTN DataSize,
+ IN VOID *Data
+ );
+
+/**
+ Get the configuration data for the EFI IPv6 network stack running on the communication
+ device this EFI IPv6 Configuration Protocol instance manages.
+
+ This function returns the configuration data of type DataType for the EFI IPv6 network
+ stack running on the communication device this EFI IPv6 Configuration Protocol instance
+ manages.
+
+ The caller is responsible for allocating the buffer used to return the specified
+ configuration data and the required size will be returned to the caller if the size of
+ the buffer is too small.
+
+ EFI_NOT_READY is returned if the specified configuration data is not ready due to an
+ already in progress asynchronous configuration process. The caller can call RegisterDataNotify()
+ to register an event on the specified configuration data. Once the asynchronous configuration
+ process is finished, the event will be signaled and a subsequent GetData() call will return
+ the specified configuration data.
+
+ @param[in] This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.
+ @param[in] DataType The type of data to get.
+ @param[in,out] DataSize On input, in bytes, the size of Data. On output, in bytes, the
+ size of buffer required to store the specified configuration data.
+ @param[in] Data The data buffer in which the configuration data is returned. The
+ type of the data buffer is associated with the DataType.
+
+ @retval EFI_SUCCESS The specified configuration data is got successfully.
+ @retval EFI_INVALID_PARAMETER One or more of the followings are TRUE:
+ - This is NULL.
+ - DataSize is NULL.
+ - Data is NULL if *DataSize is not zero.
+ @retval EFI_BUFFER_TOO_SMALL The size of Data is too small for the specified configuration data
+ and the required size is returned in DataSize.
+ @retval EFI_NOT_READY The specified configuration data is not ready due to an already in
+ progress asynchronous configuration process.
+ @retval EFI_NOT_FOUND The specified configuration data is not found.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_CONFIG_GET_DATA)(
+ IN EFI_IP6_CONFIG_PROTOCOL *This,
+ IN EFI_IP6_CONFIG_DATA_TYPE DataType,
+ IN OUT UINTN *DataSize,
+ IN VOID *Data OPTIONAL
+ );
+
+/**
+ Register an event that is to be signaled whenever a configuration process on the specified
+ configuration data is done.
+
+ This function registers an event that is to be signaled whenever a configuration process
+ on the specified configuration data is done. An event can be registered for different DataType
+ simultaneously and the caller is responsible for determining which type of configuration data
+ causes the signaling of the event in such case.
+
+ @param[in] This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.
+ @param[in] DataType The type of data to unregister the event for.
+ @param[in] Event The event to register.
+
+ @retval EFI_SUCCESS The notification event for the specified configuration data is
+ registered.
+ @retval EFI_INVALID_PARAMETER This is NULL or Event is NULL.
+ @retval EFI_UNSUPPORTED The configuration data type specified by DataType is not
+ supported.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_ACCESS_DENIED The Event is already registered for the DataType.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_CONFIG_REGISTER_NOTIFY)(
+ IN EFI_IP6_CONFIG_PROTOCOL *This,
+ IN EFI_IP6_CONFIG_DATA_TYPE DataType,
+ IN EFI_EVENT Event
+ );
+
+/**
+ Remove a previously registered event for the specified configuration data.
+
+ This function removes a previously registered event for the specified configuration data.
+
+ @param[in] This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.
+ @param[in] DataType The type of data to remove the previously registered event for.
+ @param[in] Event The event to unregister.
+
+ @retval EFI_SUCCESS The event registered for the specified configuration data is removed.
+ @retval EFI_INVALID_PARAMETER This is NULL or Event is NULL.
+ @retval EFI_NOT_FOUND The Event has not been registered for the specified
+ DataType.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP6_CONFIG_UNREGISTER_NOTIFY)(
+ IN EFI_IP6_CONFIG_PROTOCOL *This,
+ IN EFI_IP6_CONFIG_DATA_TYPE DataType,
+ IN EFI_EVENT Event
+ );
+
+///
+/// The EFI_IP6_CONFIG_PROTOCOL provides the mechanism to set and get various
+/// types of configurations for the EFI IPv6 network stack.
+///
+struct _EFI_IP6_CONFIG_PROTOCOL {
+ EFI_IP6_CONFIG_SET_DATA SetData;
+ EFI_IP6_CONFIG_GET_DATA GetData;
+ EFI_IP6_CONFIG_REGISTER_NOTIFY RegisterDataNotify;
+ EFI_IP6_CONFIG_UNREGISTER_NOTIFY UnregisterDataNotify;
+};
+
+extern EFI_GUID gEfiIp6ConfigProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/Mtftp6.h b/src/include/ipxe/efi/Protocol/Mtftp6.h
new file mode 100644
index 0000000..b08af87
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Mtftp6.h
@@ -0,0 +1,820 @@
+/** @file
+ UEFI Multicast Trivial File Transfer Protocol v6 Definition, which is built upon
+ the EFI UDPv6 Protocol and provides basic services for client-side unicast and/or
+ multicast TFTP operations.
+
+ Copyright (c) 2008 - 2011, Intel Corporation. All rights reserved.<BR>
+ (C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
+
+ SPDX-License-Identifier: BSD-2-Clause-Patent
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.2
+
+**/
+
+#ifndef __EFI_MTFTP6_PROTOCOL_H__
+#define __EFI_MTFTP6_PROTOCOL_H__
+
+FILE_LICENCE ( BSD2_PATENT );
+
+#define EFI_MTFTP6_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0xd9760ff3, 0x3cca, 0x4267, {0x80, 0xf9, 0x75, 0x27, 0xfa, 0xfa, 0x42, 0x23 } \
+ }
+
+#define EFI_MTFTP6_PROTOCOL_GUID \
+ { \
+ 0xbf0a78ba, 0xec29, 0x49cf, {0xa1, 0xc9, 0x7a, 0xe5, 0x4e, 0xab, 0x6a, 0x51 } \
+ }
+
+typedef struct _EFI_MTFTP6_PROTOCOL EFI_MTFTP6_PROTOCOL;
+typedef struct _EFI_MTFTP6_TOKEN EFI_MTFTP6_TOKEN;
+
+///
+/// MTFTP Packet OpCodes
+///@{
+#define EFI_MTFTP6_OPCODE_RRQ 1 ///< The MTFTPv6 packet is a read request.
+#define EFI_MTFTP6_OPCODE_WRQ 2 ///< The MTFTPv6 packet is a write request.
+#define EFI_MTFTP6_OPCODE_DATA 3 ///< The MTFTPv6 packet is a data packet.
+#define EFI_MTFTP6_OPCODE_ACK 4 ///< The MTFTPv6 packet is an acknowledgement packet.
+#define EFI_MTFTP6_OPCODE_ERROR 5 ///< The MTFTPv6 packet is an error packet.
+#define EFI_MTFTP6_OPCODE_OACK 6 ///< The MTFTPv6 packet is an option acknowledgement packet.
+#define EFI_MTFTP6_OPCODE_DIR 7 ///< The MTFTPv6 packet is a directory query packet.
+#define EFI_MTFTP6_OPCODE_DATA8 8 ///< The MTFTPv6 packet is a data packet with a big block number.
+#define EFI_MTFTP6_OPCODE_ACK8 9 ///< The MTFTPv6 packet is an acknowledgement packet with a big block number.
+///@}
+
+///
+/// MTFTP ERROR Packet ErrorCodes
+///@{
+///
+/// The error code is not defined. See the error message in the packet (if any) for details.
+///
+#define EFI_MTFTP6_ERRORCODE_NOT_DEFINED 0
+///
+/// The file was not found.
+///
+#define EFI_MTFTP6_ERRORCODE_FILE_NOT_FOUND 1
+///
+/// There was an access violation.
+///
+#define EFI_MTFTP6_ERRORCODE_ACCESS_VIOLATION 2
+///
+/// The disk was full or its allocation was exceeded.
+///
+#define EFI_MTFTP6_ERRORCODE_DISK_FULL 3
+///
+/// The MTFTPv6 operation was illegal.
+///
+#define EFI_MTFTP6_ERRORCODE_ILLEGAL_OPERATION 4
+///
+/// The transfer ID is unknown.
+///
+#define EFI_MTFTP6_ERRORCODE_UNKNOWN_TRANSFER_ID 5
+///
+/// The file already exists.
+///
+#define EFI_MTFTP6_ERRORCODE_FILE_ALREADY_EXISTS 6
+///
+/// There is no such user.
+///
+#define EFI_MTFTP6_ERRORCODE_NO_SUCH_USER 7
+///
+/// The request has been denied due to option negotiation.
+///
+#define EFI_MTFTP6_ERRORCODE_REQUEST_DENIED 8
+///@}
+
+#pragma pack(1)
+
+///
+/// EFI_MTFTP6_REQ_HEADER
+///
+typedef struct {
+ ///
+ /// For this packet type, OpCode = EFI_MTFTP6_OPCODE_RRQ for a read request
+ /// or OpCode = EFI_MTFTP6_OPCODE_WRQ for a write request.
+ ///
+ UINT16 OpCode;
+ ///
+ /// The file name to be downloaded or uploaded.
+ ///
+ UINT8 Filename[1];
+} EFI_MTFTP6_REQ_HEADER;
+
+///
+/// EFI_MTFTP6_OACK_HEADER
+///
+typedef struct {
+ ///
+ /// For this packet type, OpCode = EFI_MTFTP6_OPCODE_OACK.
+ ///
+ UINT16 OpCode;
+ ///
+ /// The option strings in the option acknowledgement packet.
+ ///
+ UINT8 Data[1];
+} EFI_MTFTP6_OACK_HEADER;
+
+///
+/// EFI_MTFTP6_DATA_HEADER
+///
+typedef struct {
+ ///
+ /// For this packet type, OpCode = EFI_MTFTP6_OPCODE_DATA.
+ ///
+ UINT16 OpCode;
+ ///
+ /// Block number of this data packet.
+ ///
+ UINT16 Block;
+ ///
+ /// The content of this data packet.
+ ///
+ UINT8 Data[1];
+} EFI_MTFTP6_DATA_HEADER;
+
+///
+/// EFI_MTFTP6_ACK_HEADER
+///
+typedef struct {
+ ///
+ /// For this packet type, OpCode = EFI_MTFTP6_OPCODE_ACK.
+ ///
+ UINT16 OpCode;
+ ///
+ /// The block number of the data packet that is being acknowledged.
+ ///
+ UINT16 Block[1];
+} EFI_MTFTP6_ACK_HEADER;
+
+///
+/// EFI_MTFTP6_DATA8_HEADER
+///
+typedef struct {
+ ///
+ /// For this packet type, OpCode = EFI_MTFTP6_OPCODE_DATA8.
+ ///
+ UINT16 OpCode;
+ ///
+ /// The block number of data packet.
+ ///
+ UINT64 Block;
+ ///
+ /// The content of this data packet.
+ ///
+ UINT8 Data[1];
+} EFI_MTFTP6_DATA8_HEADER;
+
+///
+/// EFI_MTFTP6_ACK8_HEADER
+///
+typedef struct {
+ ///
+ /// For this packet type, OpCode = EFI_MTFTP6_OPCODE_ACK8.
+ ///
+ UINT16 OpCode;
+ ///
+ /// The block number of the data packet that is being acknowledged.
+ ///
+ UINT64 Block[1];
+} EFI_MTFTP6_ACK8_HEADER;
+
+///
+/// EFI_MTFTP6_ERROR_HEADER
+///
+typedef struct {
+ ///
+ /// For this packet type, OpCode = EFI_MTFTP6_OPCODE_ERROR.
+ ///
+ UINT16 OpCode;
+ ///
+ /// The error number as defined by the MTFTPv6 packet error codes.
+ ///
+ UINT16 ErrorCode;
+ ///
+ /// Error message string.
+ ///
+ UINT8 ErrorMessage[1];
+} EFI_MTFTP6_ERROR_HEADER;
+
+///
+/// EFI_MTFTP6_PACKET
+///
+typedef union {
+ UINT16 OpCode; ///< Type of packets as defined by the MTFTPv6 packet opcodes.
+ EFI_MTFTP6_REQ_HEADER Rrq; ///< Read request packet header.
+ EFI_MTFTP6_REQ_HEADER Wrq; ///< write request packet header.
+ EFI_MTFTP6_OACK_HEADER Oack; ///< Option acknowledge packet header.
+ EFI_MTFTP6_DATA_HEADER Data; ///< Data packet header.
+ EFI_MTFTP6_ACK_HEADER Ack; ///< Acknowledgement packet header.
+ EFI_MTFTP6_DATA8_HEADER Data8; ///< Data packet header with big block number.
+ EFI_MTFTP6_ACK8_HEADER Ack8; ///< Acknowledgement header with big block number.
+ EFI_MTFTP6_ERROR_HEADER Error; ///< Error packet header.
+} EFI_MTFTP6_PACKET;
+
+#pragma pack()
+
+///
+/// EFI_MTFTP6_CONFIG_DATA
+///
+typedef struct {
+ ///
+ /// The local IP address to use. Set to zero to let the underlying IPv6
+ /// driver choose a source address. If not zero it must be one of the
+ /// configured IP addresses in the underlying IPv6 driver.
+ ///
+ EFI_IPv6_ADDRESS StationIp;
+ ///
+ /// Local port number. Set to zero to use the automatically assigned port number.
+ ///
+ UINT16 LocalPort;
+ ///
+ /// The IP address of the MTFTPv6 server.
+ ///
+ EFI_IPv6_ADDRESS ServerIp;
+ ///
+ /// The initial MTFTPv6 server port number. Request packets are
+ /// sent to this port. This number is almost always 69 and using zero
+ /// defaults to 69.
+ UINT16 InitialServerPort;
+ ///
+ /// The number of times to transmit MTFTPv6 request packets and wait for a response.
+ ///
+ UINT16 TryCount;
+ ///
+ /// The number of seconds to wait for a response after sending the MTFTPv6 request packet.
+ ///
+ UINT16 TimeoutValue;
+} EFI_MTFTP6_CONFIG_DATA;
+
+///
+/// EFI_MTFTP6_MODE_DATA
+///
+typedef struct {
+ ///
+ /// The configuration data of this instance.
+ ///
+ EFI_MTFTP6_CONFIG_DATA ConfigData;
+ ///
+ /// The number of option strings in the following SupportedOptions array.
+ ///
+ UINT8 SupportedOptionCount;
+ ///
+ /// An array of null-terminated ASCII option strings that are recognized and supported by
+ /// this EFI MTFTPv6 Protocol driver implementation. The buffer is
+ /// read only to the caller and the caller should NOT free the buffer.
+ ///
+ UINT8 **SupportedOptions;
+} EFI_MTFTP6_MODE_DATA;
+
+///
+/// EFI_MTFTP_OVERRIDE_DATA
+///
+typedef struct {
+ ///
+ /// IP address of the MTFTPv6 server. If set to all zero, the value that
+ /// was set by the EFI_MTFTP6_PROTOCOL.Configure() function will be used.
+ ///
+ EFI_IPv6_ADDRESS ServerIp;
+ ///
+ /// MTFTPv6 server port number. If set to zero, it will use the value
+ /// that was set by the EFI_MTFTP6_PROTOCOL.Configure() function.
+ ///
+ UINT16 ServerPort;
+ ///
+ /// Number of times to transmit MTFTPv6 request packets and wait
+ /// for a response. If set to zero, the value that was set by
+ /// theEFI_MTFTP6_PROTOCOL.Configure() function will be used.
+ ///
+ UINT16 TryCount;
+ ///
+ /// Number of seconds to wait for a response after sending the
+ /// MTFTPv6 request packet. If set to zero, the value that was set by
+ /// the EFI_MTFTP6_PROTOCOL.Configure() function will be used.
+ ///
+ UINT16 TimeoutValue;
+} EFI_MTFTP6_OVERRIDE_DATA;
+
+///
+/// EFI_MTFTP6_OPTION
+///
+typedef struct {
+ UINT8 *OptionStr; ///< Pointer to the null-terminated ASCII MTFTPv6 option string.
+ UINT8 *ValueStr; ///< Pointer to the null-terminated ASCII MTFTPv6 value string.
+} EFI_MTFTP6_OPTION;
+
+/**
+ EFI_MTFTP6_TIMEOUT_CALLBACK is a callback function that the caller provides to capture the
+ timeout event in the EFI_MTFTP6_PROTOCOL.ReadFile(), EFI_MTFTP6_PROTOCOL.WriteFile() or
+ EFI_MTFTP6_PROTOCOL.ReadDirectory() functions.
+
+ Whenever a timeout occurs, the EFI MTFTPv6 Protocol driver will call the EFI_MTFTP6_TIMEOUT_CALLBACK
+ function to notify the caller of the timeout event. Any status code other than EFI_SUCCESS
+ that is returned from this function will abort the current download process.
+
+ @param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
+ @param[in] Token The token that the caller provided in the EFI_MTFTP6_PROTOCOl.ReadFile(),
+ WriteFile() or ReadDirectory() function.
+ @param[in] PacketLen Indicates the length of the packet.
+ @param[in] Packet Pointer to an MTFTPv6 packet.
+
+ @retval EFI_SUCCESS Operation success.
+ @retval Others Aborts session.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP6_CHECK_PACKET)(
+ IN EFI_MTFTP6_PROTOCOL *This,
+ IN EFI_MTFTP6_TOKEN *Token,
+ IN UINT16 PacketLen,
+ IN EFI_MTFTP6_PACKET *Packet
+ );
+
+/**
+ EFI_MTFTP6_TIMEOUT_CALLBACK is a callback function that the caller provides to capture the
+ timeout event in the EFI_MTFTP6_PROTOCOL.ReadFile(), EFI_MTFTP6_PROTOCOL.WriteFile() or
+ EFI_MTFTP6_PROTOCOL.ReadDirectory() functions.
+
+ Whenever a timeout occurs, the EFI MTFTPv6 Protocol driver will call the EFI_MTFTP6_TIMEOUT_CALLBACK
+ function to notify the caller of the timeout event. Any status code other than EFI_SUCCESS
+ that is returned from this function will abort the current download process.
+
+ @param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
+ @param[in] Token The token that is provided in the EFI_MTFTP6_PROTOCOL.ReadFile() or
+ EFI_MTFTP6_PROTOCOL.WriteFile() or EFI_MTFTP6_PROTOCOL.ReadDirectory()
+ functions by the caller.
+
+ @retval EFI_SUCCESS Operation success.
+ @retval Others Aborts session.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP6_TIMEOUT_CALLBACK)(
+ IN EFI_MTFTP6_PROTOCOL *This,
+ IN EFI_MTFTP6_TOKEN *Token
+ );
+
+/**
+ EFI_MTFTP6_PACKET_NEEDED is a callback function that the caller provides to feed data to the
+ EFI_MTFTP6_PROTOCOL.WriteFile() function.
+
+ EFI_MTFTP6_PACKET_NEEDED provides another mechanism for the caller to provide data to upload
+ other than a static buffer. The EFI MTFTP6 Protocol driver always calls EFI_MTFTP6_PACKET_NEEDED
+ to get packet data from the caller if no static buffer was given in the initial call to
+ EFI_MTFTP6_PROTOCOL.WriteFile() function. Setting *Length to zero signals the end of the session.
+ Returning a status code other than EFI_SUCCESS aborts the session.
+
+ @param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
+ @param[in] Token The token provided in the EFI_MTFTP6_PROTOCOL.WriteFile() by the caller.
+ @param[in, out] Length Indicates the length of the raw data wanted on input, and the
+ length the data available on output.
+ @param[out] Buffer Pointer to the buffer where the data is stored.
+
+ @retval EFI_SUCCESS Operation success.
+ @retval Others Aborts session.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP6_PACKET_NEEDED)(
+ IN EFI_MTFTP6_PROTOCOL *This,
+ IN EFI_MTFTP6_TOKEN *Token,
+ IN OUT UINT16 *Length,
+ OUT VOID **Buffer
+ );
+
+struct _EFI_MTFTP6_TOKEN {
+ ///
+ /// The status that is returned to the caller at the end of the operation
+ /// to indicate whether this operation completed successfully.
+ /// Defined Status values are listed below.
+ ///
+ EFI_STATUS Status;
+ ///
+ /// The event that will be signaled when the operation completes. If
+ /// set to NULL, the corresponding function will wait until the read or
+ /// write operation finishes. The type of Event must be EVT_NOTIFY_SIGNAL.
+ ///
+ EFI_EVENT Event;
+ ///
+ /// If not NULL, the data that will be used to override the existing
+ /// configure data.
+ ///
+ EFI_MTFTP6_OVERRIDE_DATA *OverrideData;
+ ///
+ /// Pointer to the null-terminated ASCII file name string.
+ ///
+ UINT8 *Filename;
+ ///
+ /// Pointer to the null-terminated ASCII mode string. If NULL, octet is used.
+ ///
+ UINT8 *ModeStr;
+ ///
+ /// Number of option/value string pairs.
+ ///
+ UINT32 OptionCount;
+ ///
+ /// Pointer to an array of option/value string pairs. Ignored if
+ /// OptionCount is zero. Both a remote server and this driver
+ /// implementation should support these options. If one or more
+ /// options are unrecognized by this implementation, it is sent to the
+ /// remote server without being changed.
+ ///
+ EFI_MTFTP6_OPTION *OptionList;
+ ///
+ /// On input, the size, in bytes, of Buffer. On output, the number
+ /// of bytes transferred.
+ ///
+ UINT64 BufferSize;
+ ///
+ /// Pointer to the data buffer. Data that is downloaded from the
+ /// MTFTPv6 server is stored here. Data that is uploaded to the
+ /// MTFTPv6 server is read from here. Ignored if BufferSize is zero.
+ ///
+ VOID *Buffer;
+ ///
+ /// Pointer to the context that will be used by CheckPacket,
+ /// TimeoutCallback and PacketNeeded.
+ ///
+ VOID *Context;
+ ///
+ /// Pointer to the callback function to check the contents of the
+ /// received packet.
+ ///
+ EFI_MTFTP6_CHECK_PACKET CheckPacket;
+ ///
+ /// Pointer to the function to be called when a timeout occurs.
+ ///
+ EFI_MTFTP6_TIMEOUT_CALLBACK TimeoutCallback;
+ ///
+ /// Pointer to the function to provide the needed packet contents.
+ /// Only used in WriteFile() operation.
+ ///
+ EFI_MTFTP6_PACKET_NEEDED PacketNeeded;
+};
+
+/**
+ Read the current operational settings.
+
+ The GetModeData() function reads the current operational settings of this EFI MTFTPv6
+ Protocol driver instance.
+
+ @param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
+ @param[out] ModeData The buffer in which the EFI MTFTPv6 Protocol driver mode
+ data is returned.
+
+ @retval EFI_SUCCESS The configuration data was successfully returned.
+ @retval EFI_OUT_OF_RESOURCES The required mode data could not be allocated.
+ @retval EFI_INVALID_PARAMETER This is NULL or ModeData is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP6_GET_MODE_DATA)(
+ IN EFI_MTFTP6_PROTOCOL *This,
+ OUT EFI_MTFTP6_MODE_DATA *ModeData
+ );
+
+/**
+ Initializes, changes, or resets the default operational setting for this EFI MTFTPv6
+ Protocol driver instance.
+
+ The Configure() function is used to set and change the configuration data for this EFI
+ MTFTPv6 Protocol driver instance. The configuration data can be reset to startup defaults by calling
+ Configure() with MtftpConfigData set to NULL. Whenever the instance is reset, any
+ pending operation is aborted. By changing the EFI MTFTPv6 Protocol driver instance configuration
+ data, the client can connect to different MTFTPv6 servers. The configuration parameters in
+ MtftpConfigData are used as the default parameters in later MTFTPv6 operations and can be
+ overridden in later operations.
+
+ @param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
+ @param[in] MtftpConfigData Pointer to the configuration data structure.
+
+ @retval EFI_SUCCESS The EFI MTFTPv6 Protocol instance was configured successfully.
+ @retval EFI_INVALID_PARAMETER One or more following conditions are TRUE:
+ - This is NULL.
+ - MtftpConfigData.StationIp is neither zero nor one
+ of the configured IP addresses in the underlying IPv6 driver.
+ - MtftpCofigData.ServerIp is not a valid IPv6 unicast address.
+ @retval EFI_ACCESS_DENIED - The configuration could not be changed at this time because there
+ is some MTFTP background operation in progress.
+ - MtftpCofigData.LocalPort is already in use.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
+ address for this instance, but no source address was available for use.
+ @retval EFI_OUT_OF_RESOURCES The EFI MTFTPv6 Protocol driver instance data could not be
+ allocated.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI
+ MTFTPv6 Protocol driver instance is not configured.
+
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP6_CONFIGURE)(
+ IN EFI_MTFTP6_PROTOCOL *This,
+ IN EFI_MTFTP6_CONFIG_DATA *MtftpConfigData OPTIONAL
+ );
+
+/**
+ Get information about a file from an MTFTPv6 server.
+
+ The GetInfo() function assembles an MTFTPv6 request packet with options, sends it to the
+ MTFTPv6 server, and may return an MTFTPv6 OACK, MTFTPv6 ERROR, or ICMP ERROR packet.
+ Retries occur only if no response packets are received from the MTFTPv6 server before the
+ timeout expires.
+
+ @param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
+ @param[in] OverrideData Data that is used to override the existing parameters. If NULL, the
+ default parameters that were set in the EFI_MTFTP6_PROTOCOL.Configure()
+ function are used.
+ @param[in] Filename Pointer to null-terminated ASCII file name string.
+ @param[in] ModeStr Pointer to null-terminated ASCII mode string. If NULL, octet will be used
+ @param[in] OptionCount Number of option/value string pairs in OptionList.
+ @param[in] OptionList Pointer to array of option/value string pairs. Ignored if
+ OptionCount is zero.
+ @param[out] PacketLength The number of bytes in the returned packet.
+ @param[out] Packet The pointer to the received packet. This buffer must be freed by
+ the caller.
+
+ @retval EFI_SUCCESS An MTFTPv6 OACK packet was received and is in the Packet.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - Filename is NULL
+ - OptionCount is not zero and OptionList is NULL.
+ - One or more options in OptionList have wrong format.
+ - PacketLength is NULL.
+ - OverrideData.ServerIp is not valid unicast IPv6 addresses.
+ @retval EFI_UNSUPPORTED One or more options in the OptionList are unsupported by
+ this implementation.
+ @retval EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
+ address for this instance, but no source address was available for use.
+ @retval EFI_ACCESS_DENIED The previous operation has not completed yet.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_TFTP_ERROR An MTFTPv6 ERROR packet was received and is in the Packet.
+ @retval EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received and the Packet is set to NULL.
+ @retval EFI_HOST_UNREACHABLE An ICMP host unreachable error packet was received and the Packet is set to NULL.
+ @retval EFI_PROTOCOL_UNREACHABLE An ICMP protocol unreachable error packet was received and the Packet is set to NULL.
+ @retval EFI_PORT_UNREACHABLE An ICMP port unreachable error packet was received and the Packet is set to NULL.
+ @retval EFI_ICMP_ERROR Some other ICMP ERROR packet was received and the Packet is set to NULL.
+ @retval EFI_PROTOCOL_ERROR An unexpected MTFTPv6 packet was received and is in the Packet.
+ @retval EFI_TIMEOUT No responses were received from the MTFTPv6 server.
+ @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
+ @retval EFI_NO_MEDIA There was a media error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP6_GET_INFO)(
+ IN EFI_MTFTP6_PROTOCOL *This,
+ IN EFI_MTFTP6_OVERRIDE_DATA *OverrideData OPTIONAL,
+ IN UINT8 *Filename,
+ IN UINT8 *ModeStr OPTIONAL,
+ IN UINT8 OptionCount,
+ IN EFI_MTFTP6_OPTION *OptionList OPTIONAL,
+ OUT UINT32 *PacketLength,
+ OUT EFI_MTFTP6_PACKET **Packet OPTIONAL
+ );
+
+/**
+ Parse the options in an MTFTPv6 OACK packet.
+
+ The ParseOptions() function parses the option fields in an MTFTPv6 OACK packet and
+ returns the number of options that were found and optionally a list of pointers to
+ the options in the packet.
+ If one or more of the option fields are not valid, then EFI_PROTOCOL_ERROR is returned
+ and *OptionCount and *OptionList stop at the last valid option.
+
+ @param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
+ @param[in] PacketLen Length of the OACK packet to be parsed.
+ @param[in] Packet Pointer to the OACK packet to be parsed.
+ @param[out] OptionCount Pointer to the number of options in the following OptionList.
+ @param[out] OptionList Pointer to EFI_MTFTP6_OPTION storage. Each pointer in the
+ OptionList points to the corresponding MTFTP option buffer
+ in the Packet. Call the EFI Boot Service FreePool() to
+ release the OptionList if the options in this OptionList
+ are not needed any more.
+
+ @retval EFI_SUCCESS The OACK packet was valid and the OptionCount and
+ OptionList parameters have been updated.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - PacketLen is 0.
+ - Packet is NULL or Packet is not a valid MTFTPv6 packet.
+ - OptionCount is NULL.
+ @retval EFI_NOT_FOUND No options were found in the OACK packet.
+ @retval EFI_OUT_OF_RESOURCES Storage for the OptionList array can not be allocated.
+ @retval EFI_PROTOCOL_ERROR One or more of the option fields is invalid.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP6_PARSE_OPTIONS)(
+ IN EFI_MTFTP6_PROTOCOL *This,
+ IN UINT32 PacketLen,
+ IN EFI_MTFTP6_PACKET *Packet,
+ OUT UINT32 *OptionCount,
+ OUT EFI_MTFTP6_OPTION **OptionList OPTIONAL
+ );
+
+/**
+ Download a file from an MTFTPv6 server.
+
+ The ReadFile() function is used to initialize and start an MTFTPv6 download process and
+ optionally wait for completion. When the download operation completes, whether successfully or
+ not, the Token.Status field is updated by the EFI MTFTPv6 Protocol driver and then
+ Token.Event is signaled if it is not NULL.
+
+ Data can be downloaded from the MTFTPv6 server into either of the following locations:
+ - A fixed buffer that is pointed to by Token.Buffer
+ - A download service function that is pointed to by Token.CheckPacket
+
+ If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket
+ will be called first. If the call is successful, the packet will be stored in Token.Buffer.
+
+ @param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
+ @param[in] Token Pointer to the token structure to provide the parameters that are
+ used in this operation.
+
+ @retval EFI_SUCCESS The data file has been transferred successfully.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_BUFFER_TOO_SMALL BufferSize is not zero but not large enough to hold the
+ downloaded data in downloading process.
+ @retval EFI_ABORTED Current operation is aborted by user.
+ @retval EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received.
+ @retval EFI_HOST_UNREACHABLE An ICMP host unreachable error packet was received.
+ @retval EFI_PROTOCOL_UNREACHABLE An ICMP protocol unreachable error packet was received.
+ @retval EFI_PORT_UNREACHABLE An ICMP port unreachable error packet was received.
+ @retval EFI_ICMP_ERROR An ICMP ERROR packet was received.
+ @retval EFI_TIMEOUT No responses were received from the MTFTPv6 server.
+ @retval EFI_TFTP_ERROR An MTFTPv6 ERROR packet was received.
+ @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
+ @retval EFI_NO_MEDIA There was a media error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP6_READ_FILE)(
+ IN EFI_MTFTP6_PROTOCOL *This,
+ IN EFI_MTFTP6_TOKEN *Token
+ );
+
+/**
+ Send a file to an MTFTPv6 server. May be unsupported in some implementations.
+
+ The WriteFile() function is used to initialize an uploading operation with the given option list
+ and optionally wait for completion. If one or more of the options is not supported by the server, the
+ unsupported options are ignored and a standard TFTP process starts instead. When the upload
+ process completes, whether successfully or not, Token.Event is signaled, and the EFI MTFTPv6
+ Protocol driver updates Token.Status.
+
+ The caller can supply the data to be uploaded in the following two modes:
+ - Through the user-provided buffer
+ - Through a callback function
+
+ With the user-provided buffer, the Token.BufferSize field indicates the length of the buffer,
+ and the driver will upload the data in the buffer. With an EFI_MTFTP6_PACKET_NEEDED
+ callback function, the driver will call this callback function to get more data from the user to upload.
+ See the definition of EFI_MTFTP6_PACKET_NEEDED for more information. These two modes
+ cannot be used at the same time. The callback function will be ignored if the user provides the
+ buffer.
+
+ @param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
+ @param[in] Token Pointer to the token structure to provide the parameters that are
+ used in this operation.
+
+ @retval EFI_SUCCESS The upload session has started.
+ @retval EFI_UNSUPPORTED The operation is not supported by this implementation.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token.Filename is NULL.
+ - Token.OptionCount is not zero and Token.OptionList is NULL.
+ - One or more options in Token.OptionList have wrong format.
+ - Token.Buffer and Token.PacketNeeded are both NULL.
+ - Token.OverrideData.ServerIp is not valid unicast IPv6 addresses.
+ @retval EFI_UNSUPPORTED One or more options in the Token.OptionList are not
+ supported by this implementation.
+ @retval EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
+ address for this instance, but no source address was available for use.
+ @retval EFI_ALREADY_STARTED This Token is already being used in another MTFTPv6 session.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_ACCESS_DENIED The previous operation has not completed yet.
+ @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP6_WRITE_FILE)(
+ IN EFI_MTFTP6_PROTOCOL *This,
+ IN EFI_MTFTP6_TOKEN *Token
+ );
+
+/**
+ Download a data file directory from an MTFTPv6 server. May be unsupported in some implementations.
+
+ The ReadDirectory() function is used to return a list of files on the MTFTPv6 server that are
+ logically (or operationally) related to Token.Filename. The directory request packet that is sent
+ to the server is built with the option list that was provided by caller, if present.
+
+ The file information that the server returns is put into either of the following locations:
+ - A fixed buffer that is pointed to by Token.Buffer
+ - A download service function that is pointed to by Token.CheckPacket
+
+ If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket
+ will be called first. If the call is successful, the packet will be stored in Token.Buffer.
+
+ The returned directory listing in the Token.Buffer or EFI_MTFTP6_PACKET consists of a list
+ of two or three variable-length ASCII strings, each terminated by a null character, for each file in the
+ directory. If the multicast option is involved, the first field of each directory entry is the static
+ multicast IP address and UDP port number that is associated with the file name. The format of the
+ field is ip:ip:ip:ip:port. If the multicast option is not involved, this field and its terminating
+ null character are not present.
+
+ The next field of each directory entry is the file name and the last field is the file information string.
+ The information string contains the file size and the create/modify timestamp. The format of the
+ information string is filesize yyyy-mm-dd hh:mm:ss:ffff. The timestamp is
+ Coordinated Universal Time (UTC; also known as Greenwich Mean Time [GMT]).
+
+ @param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
+ @param[in] Token Pointer to the token structure to provide the parameters that are
+ used in this operation.
+
+ @retval EFI_SUCCESS The MTFTPv6 related file "directory" has been downloaded.
+ @retval EFI_UNSUPPORTED The EFI MTFTPv6 Protocol driver does not support this function.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token.Filename is NULL.
+ - Token.OptionCount is not zero and Token.OptionList is NULL.
+ - One or more options in Token.OptionList have wrong format.
+ - Token.Buffer and Token.CheckPacket are both NULL.
+ - Token.OverrideData.ServerIp is not valid unicast IPv6 addresses.
+ @retval EFI_UNSUPPORTED One or more options in the Token.OptionList are not
+ supported by this implementation.
+ @retval EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
+ address for this instance, but no source address was available for use.
+ @retval EFI_ALREADY_STARTED This Token is already being used in another MTFTPv6 session.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_ACCESS_DENIED The previous operation has not completed yet.
+ @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP6_READ_DIRECTORY)(
+ IN EFI_MTFTP6_PROTOCOL *This,
+ IN EFI_MTFTP6_TOKEN *Token
+ );
+
+/**
+ Polls for incoming data packets and processes outgoing data packets.
+
+ The Poll() function can be used by network drivers and applications to increase the rate that data
+ packets are moved between the communications device and the transmit and receive queues.
+ In some systems, the periodic timer event in the managed network driver may not poll the
+ underlying communications device fast enough to transmit and/or receive all data packets without
+ missing incoming packets or dropping outgoing packets. Drivers and applications that are
+ experiencing packet loss should try calling the Poll() function more often.
+
+ @param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
+
+ @retval EFI_SUCCESS Incoming or outgoing data was processed.
+ @retval EFI_NOT_STARTED This EFI MTFTPv6 Protocol instance has not been started.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
+ Consider increasing the polling rate.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP6_POLL)(
+ IN EFI_MTFTP6_PROTOCOL *This
+ );
+
+///
+/// The EFI_MTFTP6_PROTOCOL is designed to be used by UEFI drivers and applications to transmit
+/// and receive data files. The EFI MTFTPv6 Protocol driver uses the underlying EFI UDPv6 Protocol
+/// driver and EFI IPv6 Protocol driver.
+///
+struct _EFI_MTFTP6_PROTOCOL {
+ EFI_MTFTP6_GET_MODE_DATA GetModeData;
+ EFI_MTFTP6_CONFIGURE Configure;
+ EFI_MTFTP6_GET_INFO GetInfo;
+ EFI_MTFTP6_PARSE_OPTIONS ParseOptions;
+ EFI_MTFTP6_READ_FILE ReadFile;
+ EFI_MTFTP6_WRITE_FILE WriteFile;
+ EFI_MTFTP6_READ_DIRECTORY ReadDirectory;
+ EFI_MTFTP6_POLL Poll;
+};
+
+extern EFI_GUID gEfiMtftp6ServiceBindingProtocolGuid;
+extern EFI_GUID gEfiMtftp6ProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/Tcp6.h b/src/include/ipxe/efi/Protocol/Tcp6.h
new file mode 100644
index 0000000..eed2f7c
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Tcp6.h
@@ -0,0 +1,858 @@
+/** @file
+ EFI TCPv6(Transmission Control Protocol version 6) Protocol Definition
+ The EFI TCPv6 Service Binding Protocol is used to locate EFI TCPv6 Protocol drivers to create
+ and destroy child of the driver to communicate with other host using TCP protocol.
+ The EFI TCPv6 Protocol provides services to send and receive data stream.
+
+ Copyright (c) 2008 - 2014, Intel Corporation. All rights reserved.<BR>
+ SPDX-License-Identifier: BSD-2-Clause-Patent
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.2
+
+**/
+
+#ifndef __EFI_TCP6_PROTOCOL_H__
+#define __EFI_TCP6_PROTOCOL_H__
+
+FILE_LICENCE ( BSD2_PATENT );
+
+#include <ipxe/efi/Protocol/ManagedNetwork.h>
+#include <ipxe/efi/Protocol/Ip6.h>
+
+#define EFI_TCP6_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0xec20eb79, 0x6c1a, 0x4664, {0x9a, 0x0d, 0xd2, 0xe4, 0xcc, 0x16, 0xd6, 0x64 } \
+ }
+
+#define EFI_TCP6_PROTOCOL_GUID \
+ { \
+ 0x46e44855, 0xbd60, 0x4ab7, {0xab, 0x0d, 0xa6, 0x79, 0xb9, 0x44, 0x7d, 0x77 } \
+ }
+
+typedef struct _EFI_TCP6_PROTOCOL EFI_TCP6_PROTOCOL;
+
+///
+/// EFI_TCP6_SERVICE_POINT is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ ///
+ /// The EFI TCPv6 Protocol instance handle that is using this
+ /// address/port pair.
+ ///
+ EFI_HANDLE InstanceHandle;
+ ///
+ /// The local IPv6 address to which this TCP instance is bound. Set
+ /// to 0::/128, if this TCP instance is configured to listen on all
+ /// available source addresses.
+ ///
+ EFI_IPv6_ADDRESS LocalAddress;
+ ///
+ /// The local port number in host byte order.
+ ///
+ UINT16 LocalPort;
+ ///
+ /// The remote IPv6 address. It may be 0::/128 if this TCP instance is
+ /// not connected to any remote host.
+ ///
+ EFI_IPv6_ADDRESS RemoteAddress;
+ ///
+ /// The remote port number in host byte order. It may be zero if this
+ /// TCP instance is not connected to any remote host.
+ ///
+ UINT16 RemotePort;
+} EFI_TCP6_SERVICE_POINT;
+
+///
+/// EFI_TCP6_VARIABLE_DATA is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ EFI_HANDLE DriverHandle; ///< The handle of the driver that creates this entry.
+ UINT32 ServiceCount; ///< The number of address/port pairs following this data structure.
+ EFI_TCP6_SERVICE_POINT Services[1]; ///< List of address/port pairs that are currently in use.
+} EFI_TCP6_VARIABLE_DATA;
+
+///
+/// EFI_TCP6_ACCESS_POINT
+///
+typedef struct {
+ ///
+ /// The local IP address assigned to this TCP instance. The EFI
+ /// TCPv6 driver will only deliver incoming packets whose
+ /// destination addresses exactly match the IP address. Set to zero to
+ /// let the underlying IPv6 driver choose a source address. If not zero
+ /// it must be one of the configured IP addresses in the underlying
+ /// IPv6 driver.
+ ///
+ EFI_IPv6_ADDRESS StationAddress;
+ ///
+ /// The local port number to which this EFI TCPv6 Protocol instance
+ /// is bound. If the instance doesn't care the local port number, set
+ /// StationPort to zero to use an ephemeral port.
+ ///
+ UINT16 StationPort;
+ ///
+ /// The remote IP address to which this EFI TCPv6 Protocol instance
+ /// is connected. If ActiveFlag is FALSE (i.e. a passive TCPv6
+ /// instance), the instance only accepts connections from the
+ /// RemoteAddress. If ActiveFlag is TRUE the instance will
+ /// connect to the RemoteAddress, i.e., outgoing segments will be
+ /// sent to this address and only segments from this address will be
+ /// delivered to the application. When ActiveFlag is FALSE, it
+ /// can be set to zero and means that incoming connection requests
+ /// from any address will be accepted.
+ ///
+ EFI_IPv6_ADDRESS RemoteAddress;
+ ///
+ /// The remote port to which this EFI TCPv6 Protocol instance
+ /// connects or from which connection request will be accepted by
+ /// this EFI TCPv6 Protocol instance. If ActiveFlag is FALSE it
+ /// can be zero and means that incoming connection request from
+ /// any port will be accepted. Its value can not be zero when
+ /// ActiveFlag is TRUE.
+ ///
+ UINT16 RemotePort;
+ ///
+ /// Set it to TRUE to initiate an active open. Set it to FALSE to
+ /// initiate a passive open to act as a server.
+ ///
+ BOOLEAN ActiveFlag;
+} EFI_TCP6_ACCESS_POINT;
+
+///
+/// EFI_TCP6_OPTION
+///
+typedef struct {
+ ///
+ /// The size of the TCP receive buffer.
+ ///
+ UINT32 ReceiveBufferSize;
+ ///
+ /// The size of the TCP send buffer.
+ ///
+ UINT32 SendBufferSize;
+ ///
+ /// The length of incoming connect request queue for a passive
+ /// instance. When set to zero, the value is implementation specific.
+ ///
+ UINT32 MaxSynBackLog;
+ ///
+ /// The maximum seconds a TCP instance will wait for before a TCP
+ /// connection established. When set to zero, the value is
+ /// implementation specific.
+ ///
+ UINT32 ConnectionTimeout;
+ ///
+ /// The number of times TCP will attempt to retransmit a packet on
+ /// an established connection. When set to zero, the value is
+ /// implementation specific.
+ ///
+ UINT32 DataRetries;
+ ///
+ /// How many seconds to wait in the FIN_WAIT_2 states for a final
+ /// FIN flag before the TCP instance is closed. This timeout is in
+ /// effective only if the application has called Close() to
+ /// disconnect the connection completely. It is also called
+ /// FIN_WAIT_2 timer in other implementations. When set to zero,
+ /// it should be disabled because the FIN_WAIT_2 timer itself is
+ /// against the standard. The default value is 60.
+ ///
+ UINT32 FinTimeout;
+ ///
+ /// How many seconds to wait in TIME_WAIT state before the TCP
+ /// instance is closed. The timer is disabled completely to provide a
+ /// method to close the TCP connection quickly if it is set to zero. It
+ /// is against the related RFC documents.
+ ///
+ UINT32 TimeWaitTimeout;
+ ///
+ /// The maximum number of TCP keep-alive probes to send before
+ /// giving up and resetting the connection if no response from the
+ /// other end. Set to zero to disable keep-alive probe.
+ ///
+ UINT32 KeepAliveProbes;
+ ///
+ /// The number of seconds a connection needs to be idle before TCP
+ /// sends out periodical keep-alive probes. When set to zero, the
+ /// value is implementation specific. It should be ignored if keep-
+ /// alive probe is disabled.
+ ///
+ UINT32 KeepAliveTime;
+ ///
+ /// The number of seconds between TCP keep-alive probes after the
+ /// periodical keep-alive probe if no response. When set to zero, the
+ /// value is implementation specific. It should be ignored if keep-
+ /// alive probe is disabled.
+ ///
+ UINT32 KeepAliveInterval;
+ ///
+ /// Set it to TRUE to enable the Nagle algorithm as defined in
+ /// RFC896. Set it to FALSE to disable it.
+ ///
+ BOOLEAN EnableNagle;
+ ///
+ /// Set it to TRUE to enable TCP timestamps option as defined in
+ /// RFC1323. Set to FALSE to disable it.
+ ///
+ BOOLEAN EnableTimeStamp;
+ ///
+ /// Set it to TRUE to enable TCP window scale option as defined in
+ /// RFC1323. Set it to FALSE to disable it.
+ ///
+ BOOLEAN EnableWindowScaling;
+ ///
+ /// Set it to TRUE to enable selective acknowledge mechanism
+ /// described in RFC 2018. Set it to FALSE to disable it.
+ /// Implementation that supports SACK can optionally support
+ /// DSAK as defined in RFC 2883.
+ ///
+ BOOLEAN EnableSelectiveAck;
+ ///
+ /// Set it to TRUE to enable path MTU discovery as defined in
+ /// RFC 1191. Set to FALSE to disable it.
+ ///
+ BOOLEAN EnablePathMtuDiscovery;
+} EFI_TCP6_OPTION;
+
+///
+/// EFI_TCP6_CONFIG_DATA
+///
+typedef struct {
+ ///
+ /// TrafficClass field in transmitted IPv6 packets.
+ ///
+ UINT8 TrafficClass;
+ ///
+ /// HopLimit field in transmitted IPv6 packets.
+ ///
+ UINT8 HopLimit;
+ ///
+ /// Used to specify TCP communication end settings for a TCP instance.
+ ///
+ EFI_TCP6_ACCESS_POINT AccessPoint;
+ ///
+ /// Used to configure the advance TCP option for a connection. If set
+ /// to NULL, implementation specific options for TCP connection will be used.
+ ///
+ EFI_TCP6_OPTION *ControlOption;
+} EFI_TCP6_CONFIG_DATA;
+
+///
+/// EFI_TCP6_CONNECTION_STATE
+///
+typedef enum {
+ Tcp6StateClosed = 0,
+ Tcp6StateListen = 1,
+ Tcp6StateSynSent = 2,
+ Tcp6StateSynReceived = 3,
+ Tcp6StateEstablished = 4,
+ Tcp6StateFinWait1 = 5,
+ Tcp6StateFinWait2 = 6,
+ Tcp6StateClosing = 7,
+ Tcp6StateTimeWait = 8,
+ Tcp6StateCloseWait = 9,
+ Tcp6StateLastAck = 10
+} EFI_TCP6_CONNECTION_STATE;
+
+///
+/// EFI_TCP6_COMPLETION_TOKEN
+/// is used as a common header for various asynchronous tokens.
+///
+typedef struct {
+ ///
+ /// The Event to signal after request is finished and Status field is
+ /// updated by the EFI TCPv6 Protocol driver.
+ ///
+ EFI_EVENT Event;
+ ///
+ /// The result of the completed operation.
+ ///
+ EFI_STATUS Status;
+} EFI_TCP6_COMPLETION_TOKEN;
+
+///
+/// EFI_TCP6_CONNECTION_TOKEN
+/// will be set if the active open succeeds or an unexpected
+/// error happens.
+///
+typedef struct {
+ ///
+ /// The Status in the CompletionToken will be set to one of
+ /// the following values if the active open succeeds or an unexpected
+ /// error happens:
+ /// EFI_SUCCESS: The active open succeeds and the instance's
+ /// state is Tcp6StateEstablished.
+ /// EFI_CONNECTION_RESET: The connect fails because the connection is reset
+ /// either by instance itself or the communication peer.
+ /// EFI_CONNECTION_REFUSED: The receiving or transmission operation fails because this
+ /// connection is refused.
+ /// EFI_ABORTED: The active open is aborted.
+ /// EFI_TIMEOUT: The connection establishment timer expires and
+ /// no more specific information is available.
+ /// EFI_NETWORK_UNREACHABLE: The active open fails because
+ /// an ICMP network unreachable error is received.
+ /// EFI_HOST_UNREACHABLE: The active open fails because an
+ /// ICMP host unreachable error is received.
+ /// EFI_PROTOCOL_UNREACHABLE: The active open fails
+ /// because an ICMP protocol unreachable error is received.
+ /// EFI_PORT_UNREACHABLE: The connection establishment
+ /// timer times out and an ICMP port unreachable error is received.
+ /// EFI_ICMP_ERROR: The connection establishment timer times
+ /// out and some other ICMP error is received.
+ /// EFI_DEVICE_ERROR: An unexpected system or network error occurred.
+ /// EFI_SECURITY_VIOLATION: The active open was failed because of IPSec policy check.
+ /// EFI_NO_MEDIA: There was a media error.
+ ///
+ EFI_TCP6_COMPLETION_TOKEN CompletionToken;
+} EFI_TCP6_CONNECTION_TOKEN;
+
+///
+/// EFI_TCP6_LISTEN_TOKEN
+/// returns when list operation finishes.
+///
+typedef struct {
+ ///
+ /// The Status in CompletionToken will be set to the
+ /// following value if accept finishes:
+ /// EFI_SUCCESS: A remote peer has successfully established a
+ /// connection to this instance. A new TCP instance has also been
+ /// created for the connection.
+ /// EFI_CONNECTION_RESET: The accept fails because the connection is reset either
+ /// by instance itself or communication peer.
+ /// EFI_ABORTED: The accept request has been aborted.
+ /// EFI_SECURITY_VIOLATION: The accept operation was failed because of IPSec policy check.
+ ///
+ EFI_TCP6_COMPLETION_TOKEN CompletionToken;
+ EFI_HANDLE NewChildHandle;
+} EFI_TCP6_LISTEN_TOKEN;
+
+///
+/// EFI_TCP6_FRAGMENT_DATA
+/// allows multiple receive or transmit buffers to be specified. The
+/// purpose of this structure is to provide scattered read and write.
+///
+typedef struct {
+ UINT32 FragmentLength; ///< Length of data buffer in the fragment.
+ VOID *FragmentBuffer; ///< Pointer to the data buffer in the fragment.
+} EFI_TCP6_FRAGMENT_DATA;
+
+///
+/// EFI_TCP6_RECEIVE_DATA
+/// When TCPv6 driver wants to deliver received data to the application,
+/// it will pick up the first queued receiving token, update its
+/// Token->Packet.RxData then signal the Token->CompletionToken.Event.
+///
+typedef struct {
+ ///
+ /// Whether the data is urgent. When this flag is set, the instance is in
+ /// urgent mode.
+ ///
+ BOOLEAN UrgentFlag;
+ ///
+ /// When calling Receive() function, it is the byte counts of all
+ /// Fragmentbuffer in FragmentTable allocated by user.
+ /// When the token is signaled by TCPv6 driver it is the length of
+ /// received data in the fragments.
+ ///
+ UINT32 DataLength;
+ ///
+ /// Number of fragments.
+ ///
+ UINT32 FragmentCount;
+ ///
+ /// An array of fragment descriptors.
+ ///
+ EFI_TCP6_FRAGMENT_DATA FragmentTable[1];
+} EFI_TCP6_RECEIVE_DATA;
+
+///
+/// EFI_TCP6_TRANSMIT_DATA
+/// The EFI TCPv6 Protocol user must fill this data structure before sending a packet.
+/// The packet may contain multiple buffers in non-continuous memory locations.
+///
+typedef struct {
+ ///
+ /// Push If TRUE, data must be transmitted promptly, and the PUSH bit in
+ /// the last TCP segment created will be set. If FALSE, data
+ /// transmission may be delayed to combine with data from
+ /// subsequent Transmit()s for efficiency.
+ ///
+ BOOLEAN Push;
+ ///
+ /// The data in the fragment table are urgent and urgent point is in
+ /// effect if TRUE. Otherwise those data are NOT considered urgent.
+ ///
+ BOOLEAN Urgent;
+ ///
+ /// Length of the data in the fragments.
+ ///
+ UINT32 DataLength;
+ ///
+ /// Number of fragments.
+ ///
+ UINT32 FragmentCount;
+ ///
+ /// An array of fragment descriptors.
+ ///
+ EFI_TCP6_FRAGMENT_DATA FragmentTable[1];
+} EFI_TCP6_TRANSMIT_DATA;
+
+///
+/// EFI_TCP6_IO_TOKEN
+/// returns When transmission finishes or meets any unexpected error.
+///
+typedef struct {
+ ///
+ /// When transmission finishes or meets any unexpected error it will
+ /// be set to one of the following values:
+ /// EFI_SUCCESS: The receiving or transmission operation
+ /// completes successfully.
+ /// EFI_CONNECTION_FIN: The receiving operation fails because the communication peer
+ /// has closed the connection and there is no more data in the
+ /// receive buffer of the instance.
+ /// EFI_CONNECTION_RESET: The receiving or transmission operation fails
+ /// because this connection is reset either by instance
+ /// itself or the communication peer.
+ /// EFI_ABORTED: The receiving or transmission is aborted.
+ /// EFI_TIMEOUT: The transmission timer expires and no more
+ /// specific information is available.
+ /// EFI_NETWORK_UNREACHABLE: The transmission fails
+ /// because an ICMP network unreachable error is received.
+ /// EFI_HOST_UNREACHABLE: The transmission fails because an
+ /// ICMP host unreachable error is received.
+ /// EFI_PROTOCOL_UNREACHABLE: The transmission fails
+ /// because an ICMP protocol unreachable error is received.
+ /// EFI_PORT_UNREACHABLE: The transmission fails and an
+ /// ICMP port unreachable error is received.
+ /// EFI_ICMP_ERROR: The transmission fails and some other
+ /// ICMP error is received.
+ /// EFI_DEVICE_ERROR: An unexpected system or network error occurs.
+ /// EFI_SECURITY_VIOLATION: The receiving or transmission
+ /// operation was failed because of IPSec policy check
+ /// EFI_NO_MEDIA: There was a media error.
+ ///
+ EFI_TCP6_COMPLETION_TOKEN CompletionToken;
+ union {
+ ///
+ /// When this token is used for receiving, RxData is a pointer to
+ /// EFI_TCP6_RECEIVE_DATA.
+ ///
+ EFI_TCP6_RECEIVE_DATA *RxData;
+ ///
+ /// When this token is used for transmitting, TxData is a pointer to
+ /// EFI_TCP6_TRANSMIT_DATA.
+ ///
+ EFI_TCP6_TRANSMIT_DATA *TxData;
+ } Packet;
+} EFI_TCP6_IO_TOKEN;
+
+///
+/// EFI_TCP6_CLOSE_TOKEN
+/// returns when close operation finishes.
+///
+typedef struct {
+ ///
+ /// When close finishes or meets any unexpected error it will be set
+ /// to one of the following values:
+ /// EFI_SUCCESS: The close operation completes successfully.
+ /// EFI_ABORTED: User called configure with NULL without close stopping.
+ /// EFI_SECURITY_VIOLATION: The close operation was failed because of IPSec policy check.
+ ///
+ EFI_TCP6_COMPLETION_TOKEN CompletionToken;
+ ///
+ /// Abort the TCP connection on close instead of the standard TCP
+ /// close process when it is set to TRUE. This option can be used to
+ /// satisfy a fast disconnect.
+ ///
+ BOOLEAN AbortOnClose;
+} EFI_TCP6_CLOSE_TOKEN;
+
+/**
+ Get the current operational status.
+
+ The GetModeData() function copies the current operational settings of this EFI TCPv6
+ Protocol instance into user-supplied buffers. This function can also be used to retrieve
+ the operational setting of underlying drivers such as IPv6, MNP, or SNP.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[out] Tcp6State The buffer in which the current TCP state is returned.
+ @param[out] Tcp6ConfigData The buffer in which the current TCP configuration is returned.
+ @param[out] Ip6ModeData The buffer in which the current IPv6 configuration data used by
+ the TCP instance is returned.
+ @param[out] MnpConfigData The buffer in which the current MNP configuration data used
+ indirectly by the TCP instance is returned.
+ @param[out] SnpModeData The buffer in which the current SNP mode data used indirectly by
+ the TCP instance is returned.
+
+ @retval EFI_SUCCESS The mode data was read.
+ @retval EFI_NOT_STARTED No configuration data is available because this instance hasn't
+ been started.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_GET_MODE_DATA)(
+ IN EFI_TCP6_PROTOCOL *This,
+ OUT EFI_TCP6_CONNECTION_STATE *Tcp6State OPTIONAL,
+ OUT EFI_TCP6_CONFIG_DATA *Tcp6ConfigData OPTIONAL,
+ OUT EFI_IP6_MODE_DATA *Ip6ModeData OPTIONAL,
+ OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
+ OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
+ );
+
+/**
+ Initialize or brutally reset the operational parameters for this EFI TCPv6 instance.
+
+ The Configure() function does the following:
+ - Initialize this TCP instance, i.e., initialize the communication end settings and
+ specify active open or passive open for an instance.
+ - Reset this TCP instance brutally, i.e., cancel all pending asynchronous tokens, flush
+ transmission and receiving buffer directly without informing the communication peer.
+
+ No other TCPv6 Protocol operation except Poll() can be executed by this instance until
+ it is configured properly. For an active TCP instance, after a proper configuration it
+ may call Connect() to initiates the three-way handshake. For a passive TCP instance,
+ its state will transit to Tcp6StateListen after configuration, and Accept() may be
+ called to listen the incoming TCP connection requests. If Tcp6ConfigData is set to NULL,
+ the instance is reset. Resetting process will be done brutally, the state machine will
+ be set to Tcp6StateClosed directly, the receive queue and transmit queue will be flushed,
+ and no traffic is allowed through this instance.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] Tcp6ConfigData Pointer to the configure data to configure the instance.
+ If Tcp6ConfigData is set to NULL, the instance is reset.
+
+ @retval EFI_SUCCESS The operational settings are set, changed, or reset
+ successfully.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
+ address for this instance, but no source address was available for
+ use.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions are TRUE:
+ - This is NULL.
+ - Tcp6ConfigData->AccessPoint.StationAddress is neither zero nor
+ one of the configured IP addresses in the underlying IPv6 driver.
+ - Tcp6ConfigData->AccessPoint.RemoteAddress isn't a valid unicast
+ IPv6 address.
+ - Tcp6ConfigData->AccessPoint.RemoteAddress is zero or
+ Tcp6ConfigData->AccessPoint.RemotePort is zero when
+ Tcp6ConfigData->AccessPoint.ActiveFlag is TRUE.
+ - A same access point has been configured in other TCP
+ instance properly.
+ @retval EFI_ACCESS_DENIED Configuring TCP instance when it is configured without
+ calling Configure() with NULL to reset it.
+ @retval EFI_UNSUPPORTED One or more of the control options are not supported in
+ the implementation.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate enough system resources when
+ executing Configure().
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_CONFIGURE)(
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_CONFIG_DATA *Tcp6ConfigData OPTIONAL
+ );
+
+/**
+ Initiate a nonblocking TCP connection request for an active TCP instance.
+
+ The Connect() function will initiate an active open to the remote peer configured
+ in current TCP instance if it is configured active. If the connection succeeds or
+ fails due to any error, the ConnectionToken->CompletionToken.Event will be signaled
+ and ConnectionToken->CompletionToken.Status will be updated accordingly. This
+ function can only be called for the TCP instance in Tcp6StateClosed state. The
+ instance will transfer into Tcp6StateSynSent if the function returns EFI_SUCCESS.
+ If TCP three-way handshake succeeds, its state will become Tcp6StateEstablished,
+ otherwise, the state will return to Tcp6StateClosed.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] ConnectionToken Pointer to the connection token to return when the TCP three
+ way handshake finishes.
+
+ @retval EFI_SUCCESS The connection request is successfully initiated and the state of
+ this TCP instance has been changed to Tcp6StateSynSent.
+ @retval EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.
+ @retval EFI_ACCESS_DENIED One or more of the following conditions are TRUE:
+ - This instance is not configured as an active one.
+ - This instance is not in Tcp6StateClosed state.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - ConnectionToken is NULL.
+ - ConnectionToken->CompletionToken.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES The driver can't allocate enough resource to initiate the active open.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_CONNECT)(
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_CONNECTION_TOKEN *ConnectionToken
+ );
+
+/**
+ Listen on the passive instance to accept an incoming connection request. This is a
+ nonblocking operation.
+
+ The Accept() function initiates an asynchronous accept request to wait for an incoming
+ connection on the passive TCP instance. If a remote peer successfully establishes a
+ connection with this instance, a new TCP instance will be created and its handle will
+ be returned in ListenToken->NewChildHandle. The newly created instance is configured
+ by inheriting the passive instance's configuration and is ready for use upon return.
+ The new instance is in the Tcp6StateEstablished state.
+
+ The ListenToken->CompletionToken.Event will be signaled when a new connection is
+ accepted, user aborts the listen or connection is reset.
+
+ This function only can be called when current TCP instance is in Tcp6StateListen state.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] ListenToken Pointer to the listen token to return when operation finishes.
+
+
+ @retval EFI_SUCCESS The listen token has been queued successfully.
+ @retval EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.
+ @retval EFI_ACCESS_DENIED One or more of the following are TRUE:
+ - This instance is not a passive instance.
+ - This instance is not in Tcp6StateListen state.
+ - The same listen token has already existed in the listen
+ token queue of this TCP instance.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - ListenToken is NULL.
+ - ListentToken->CompletionToken.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.
+ @retval EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_ACCEPT)(
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_LISTEN_TOKEN *ListenToken
+ );
+
+/**
+ Queues outgoing data into the transmit queue.
+
+ The Transmit() function queues a sending request to this TCP instance along with the
+ user data. The status of the token is updated and the event in the token will be
+ signaled once the data is sent out or some error occurs.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] Token Pointer to the completion token to queue to the transmit queue.
+
+ @retval EFI_SUCCESS The data has been queued for transmission.
+ @retval EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a
+ source address for this instance, but no source address was
+ available for use.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token->CompletionToken.Event is NULL.
+ - Token->Packet.TxData is NULL.
+ - Token->Packet.FragmentCount is zero.
+ - Token->Packet.DataLength is not equal to the sum of fragment lengths.
+ @retval EFI_ACCESS_DENIED One or more of the following conditions are TRUE:
+ - A transmit completion token with the same Token->
+ CompletionToken.Event was already in the
+ transmission queue.
+ - The current instance is in Tcp6StateClosed state.
+ - The current instance is a passive one and it is in
+ Tcp6StateListen state.
+ - User has called Close() to disconnect this connection.
+ @retval EFI_NOT_READY The completion token could not be queued because the
+ transmit queue is full.
+ @retval EFI_OUT_OF_RESOURCES Could not queue the transmit data because of resource
+ shortage.
+ @retval EFI_NETWORK_UNREACHABLE There is no route to the destination network or address.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_TRANSMIT)(
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_IO_TOKEN *Token
+ );
+
+/**
+ Places an asynchronous receive request into the receiving queue.
+
+ The Receive() function places a completion token into the receive packet queue. This
+ function is always asynchronous. The caller must allocate the Token->CompletionToken.Event
+ and the FragmentBuffer used to receive data. The caller also must fill the DataLength which
+ represents the whole length of all FragmentBuffer. When the receive operation completes, the
+ EFI TCPv6 Protocol driver updates the Token->CompletionToken.Status and Token->Packet.RxData
+ fields and the Token->CompletionToken.Event is signaled. If got data the data and its length
+ will be copied into the FragmentTable, at the same time the full length of received data will
+ be recorded in the DataLength fields. Providing a proper notification function and context
+ for the event will enable the user to receive the notification and receiving status. That
+ notification function is guaranteed to not be re-entered.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] Token Pointer to a token that is associated with the receive data
+ descriptor.
+
+ @retval EFI_SUCCESS The receive completion token was cached.
+ @retval EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
+ address for this instance, but no source address was available for use.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token->CompletionToken.Event is NULL.
+ - Token->Packet.RxData is NULL.
+ - Token->Packet.RxData->DataLength is 0.
+ - The Token->Packet.RxData->DataLength is not the
+ sum of all FragmentBuffer length in FragmentTable.
+ @retval EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of
+ system resources (usually memory).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ The EFI TCPv6 Protocol instance has been reset to startup defaults.
+ @retval EFI_ACCESS_DENIED One or more of the following conditions is TRUE:
+ - A receive completion token with the same Token->CompletionToken.Event
+ was already in the receive queue.
+ - The current instance is in Tcp6StateClosed state.
+ - The current instance is a passive one and it is in
+ Tcp6StateListen state.
+ - User has called Close() to disconnect this connection.
+ @retval EFI_CONNECTION_FIN The communication peer has closed the connection and there is no
+ any buffered data in the receive buffer of this instance
+ @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_RECEIVE)(
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_IO_TOKEN *Token
+ );
+
+/**
+ Disconnecting a TCP connection gracefully or reset a TCP connection. This function is a
+ nonblocking operation.
+
+ Initiate an asynchronous close token to TCP driver. After Close() is called, any buffered
+ transmission data will be sent by TCP driver and the current instance will have a graceful close
+ working flow described as RFC 793 if AbortOnClose is set to FALSE, otherwise, a rest packet
+ will be sent by TCP driver to fast disconnect this connection. When the close operation completes
+ successfully the TCP instance is in Tcp6StateClosed state, all pending asynchronous
+ operations are signaled and any buffers used for TCP network traffic are flushed.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] CloseToken Pointer to the close token to return when operation finishes.
+
+ @retval EFI_SUCCESS The Close() is called successfully.
+ @retval EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.
+ @retval EFI_ACCESS_DENIED One or more of the following are TRUE:
+ - CloseToken or CloseToken->CompletionToken.Event is already in use.
+ - Previous Close() call on this instance has not finished.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - CloseToken is NULL.
+ - CloseToken->CompletionToken.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.
+ @retval EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_CLOSE)(
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_CLOSE_TOKEN *CloseToken
+ );
+
+/**
+ Abort an asynchronous connection, listen, transmission or receive request.
+
+ The Cancel() function aborts a pending connection, listen, transmit or
+ receive request.
+
+ If Token is not NULL and the token is in the connection, listen, transmission
+ or receive queue when it is being cancelled, its Token->Status will be set
+ to EFI_ABORTED and then Token->Event will be signaled.
+
+ If the token is not in one of the queues, which usually means that the
+ asynchronous operation has completed, EFI_NOT_FOUND is returned.
+
+ If Token is NULL all asynchronous token issued by Connect(), Accept(),
+ Transmit() and Receive() will be aborted.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] Token Pointer to a token that has been issued by
+ EFI_TCP6_PROTOCOL.Connect(),
+ EFI_TCP6_PROTOCOL.Accept(),
+ EFI_TCP6_PROTOCOL.Transmit() or
+ EFI_TCP6_PROTOCOL.Receive(). If NULL, all pending
+ tokens issued by above four functions will be aborted. Type
+ EFI_TCP6_COMPLETION_TOKEN is defined in
+ EFI_TCP_PROTOCOL.Connect().
+
+ @retval EFI_SUCCESS The asynchronous I/O request is aborted and Token->Event
+ is signaled.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_STARTED This instance hasn't been configured.
+ @retval EFI_NOT_FOUND The asynchronous I/O request isn't found in the transmission or
+ receive queue. It has either completed or wasn't issued by
+ Transmit() and Receive().
+ @retval EFI_UNSUPPORTED The implementation does not support this function.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_CANCEL)(
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_COMPLETION_TOKEN *Token OPTIONAL
+ );
+
+/**
+ Poll to receive incoming data and transmit outgoing segments.
+
+ The Poll() function increases the rate that data is moved between the network
+ and application and can be called when the TCP instance is created successfully.
+ Its use is optional.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+
+ @retval EFI_SUCCESS Incoming or outgoing data was processed.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_NOT_READY No incoming or outgoing data is processed.
+ @retval EFI_TIMEOUT Data was dropped out of the transmission or receive queue.
+ Consider increasing the polling rate.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_POLL)(
+ IN EFI_TCP6_PROTOCOL *This
+ );
+
+///
+/// EFI_TCP6_PROTOCOL
+/// defines the EFI TCPv6 Protocol child to be used by any network drivers or
+/// applications to send or receive data stream. It can either listen on a
+/// specified port as a service or actively connect to remote peer as a client.
+/// Each instance has its own independent settings.
+///
+struct _EFI_TCP6_PROTOCOL {
+ EFI_TCP6_GET_MODE_DATA GetModeData;
+ EFI_TCP6_CONFIGURE Configure;
+ EFI_TCP6_CONNECT Connect;
+ EFI_TCP6_ACCEPT Accept;
+ EFI_TCP6_TRANSMIT Transmit;
+ EFI_TCP6_RECEIVE Receive;
+ EFI_TCP6_CLOSE Close;
+ EFI_TCP6_CANCEL Cancel;
+ EFI_TCP6_POLL Poll;
+};
+
+extern EFI_GUID gEfiTcp6ServiceBindingProtocolGuid;
+extern EFI_GUID gEfiTcp6ProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/Udp6.h b/src/include/ipxe/efi/Protocol/Udp6.h
new file mode 100644
index 0000000..5a62a3e
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Udp6.h
@@ -0,0 +1,576 @@
+/** @file
+ The EFI UDPv6 (User Datagram Protocol version 6) Protocol Definition, which is built upon
+ the EFI IPv6 Protocol and provides simple packet-oriented services to transmit and receive
+ UDP packets.
+
+ Copyright (c) 2008 - 2018, Intel Corporation. All rights reserved.<BR>
+ SPDX-License-Identifier: BSD-2-Clause-Patent
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.2
+
+**/
+
+#ifndef __EFI_UDP6_PROTOCOL_H__
+#define __EFI_UDP6_PROTOCOL_H__
+
+FILE_LICENCE ( BSD2_PATENT );
+
+#include <ipxe/efi/Protocol/Ip6.h>
+
+#define EFI_UDP6_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0x66ed4721, 0x3c98, 0x4d3e, {0x81, 0xe3, 0xd0, 0x3d, 0xd3, 0x9a, 0x72, 0x54 } \
+ }
+
+#define EFI_UDP6_PROTOCOL_GUID \
+ { \
+ 0x4f948815, 0xb4b9, 0x43cb, {0x8a, 0x33, 0x90, 0xe0, 0x60, 0xb3, 0x49, 0x55 } \
+ }
+
+///
+/// EFI_UDP6_SERVICE_POINT is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ ///
+ /// The EFI UDPv6 Protocol instance handle that is using this address/port pair.
+ ///
+ EFI_HANDLE InstanceHandle;
+ ///
+ /// The IPv6 address to which this instance of the EFI UDPv6 Protocol is bound.
+ /// Set to 0::/128, if this instance is used to listen all packets from any
+ /// source address.
+ ///
+ EFI_IPv6_ADDRESS LocalAddress;
+ ///
+ /// The port number in host byte order on which the service is listening.
+ ///
+ UINT16 LocalPort;
+ ///
+ /// The IPv6 address of the remote host. May be 0::/128 if it is not connected
+ /// to any remote host or connected with more than one remote host.
+ ///
+ EFI_IPv6_ADDRESS RemoteAddress;
+ ///
+ /// The port number in host byte order on which the remote host is
+ /// listening. Maybe zero if it is not connected to any remote host.
+ ///
+ UINT16 RemotePort;
+} EFI_UDP6_SERVICE_POINT;
+
+///
+/// EFI_UDP6_VARIABLE_DATA is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ ///
+ /// The handle of the driver that creates this entry.
+ ///
+ EFI_HANDLE DriverHandle;
+ ///
+ /// The number of address/port pairs that follow this data structure.
+ ///
+ UINT32 ServiceCount;
+ ///
+ /// List of address/port pairs that are currently in use.
+ ///
+ EFI_UDP6_SERVICE_POINT Services[1];
+} EFI_UDP6_VARIABLE_DATA;
+
+typedef struct _EFI_UDP6_PROTOCOL EFI_UDP6_PROTOCOL;
+
+///
+/// EFI_UDP6_FRAGMENT_DATA allows multiple receive or transmit buffers to be specified.
+/// The purpose of this structure is to avoid copying the same packet multiple times.
+///
+typedef struct {
+ UINT32 FragmentLength; ///< Length of the fragment data buffer.
+ VOID *FragmentBuffer; ///< Pointer to the fragment data buffer.
+} EFI_UDP6_FRAGMENT_DATA;
+
+///
+/// The EFI_UDP6_SESSION_DATA is used to retrieve the settings when receiving packets or
+/// to override the existing settings (only DestinationAddress and DestinationPort can
+/// be overridden) of this EFI UDPv6 Protocol instance when sending packets.
+///
+typedef struct {
+ ///
+ /// Address from which this packet is sent. This field should not be used when
+ /// sending packets.
+ ///
+ EFI_IPv6_ADDRESS SourceAddress;
+ ///
+ /// Port from which this packet is sent. It is in host byte order. This field should
+ /// not be used when sending packets.
+ ///
+ UINT16 SourcePort;
+ ///
+ /// Address to which this packet is sent. When sending packet, it'll be ignored
+ /// if it is zero.
+ ///
+ EFI_IPv6_ADDRESS DestinationAddress;
+ ///
+ /// Port to which this packet is sent. When sending packet, it'll be
+ /// ignored if it is zero.
+ ///
+ UINT16 DestinationPort;
+} EFI_UDP6_SESSION_DATA;
+
+typedef struct {
+ ///
+ /// Set to TRUE to accept UDP packets that are sent to any address.
+ ///
+ BOOLEAN AcceptPromiscuous;
+ ///
+ /// Set to TRUE to accept UDP packets that are sent to any port.
+ ///
+ BOOLEAN AcceptAnyPort;
+ ///
+ /// Set to TRUE to allow this EFI UDPv6 Protocol child instance to open a port number
+ /// that is already being used by another EFI UDPv6 Protocol child instance.
+ ///
+ BOOLEAN AllowDuplicatePort;
+ ///
+ /// TrafficClass field in transmitted IPv6 packets.
+ ///
+ UINT8 TrafficClass;
+ ///
+ /// HopLimit field in transmitted IPv6 packets.
+ ///
+ UINT8 HopLimit;
+ ///
+ /// The receive timeout value (number of microseconds) to be associated with each
+ /// incoming packet. Zero means do not drop incoming packets.
+ ///
+ UINT32 ReceiveTimeout;
+ ///
+ /// The transmit timeout value (number of microseconds) to be associated with each
+ /// outgoing packet. Zero means do not drop outgoing packets.
+ ///
+ UINT32 TransmitTimeout;
+ ///
+ /// The station IP address that will be assigned to this EFI UDPv6 Protocol instance.
+ /// The EFI UDPv6 and EFI IPv6 Protocol drivers will only deliver incoming packets
+ /// whose destination matches this IP address exactly. Address 0::/128 is also accepted
+ /// as a special case. Under this situation, underlying IPv6 driver is responsible for
+ /// binding a source address to this EFI IPv6 protocol instance according to source
+ /// address selection algorithm. Only incoming packet from the selected source address
+ /// is delivered. This field can be set and changed only when the EFI IPv6 driver is
+ /// transitioning from the stopped to the started states. If no address is available
+ /// for selecting, the EFI IPv6 Protocol driver will use EFI_IP6_CONFIG_PROTOCOL to
+ /// retrieve the IPv6 address.
+ EFI_IPv6_ADDRESS StationAddress;
+ ///
+ /// The port number to which this EFI UDPv6 Protocol instance is bound. If a client
+ /// of the EFI UDPv6 Protocol does not care about the port number, set StationPort
+ /// to zero. The EFI UDPv6 Protocol driver will assign a random port number to transmitted
+ /// UDP packets. Ignored it if AcceptAnyPort is TRUE.
+ ///
+ UINT16 StationPort;
+ ///
+ /// The IP address of remote host to which this EFI UDPv6 Protocol instance is connecting.
+ /// If RemoteAddress is not 0::/128, this EFI UDPv6 Protocol instance will be connected to
+ /// RemoteAddress; i.e., outgoing packets of this EFI UDPv6 Protocol instance will be sent
+ /// to this address by default and only incoming packets from this address will be delivered
+ /// to client. Ignored for incoming filtering if AcceptPromiscuous is TRUE.
+ EFI_IPv6_ADDRESS RemoteAddress;
+ ///
+ /// The port number of the remote host to which this EFI UDPv6 Protocol instance is connecting.
+ /// If it is not zero, outgoing packets of this EFI UDPv6 Protocol instance will be sent to
+ /// this port number by default and only incoming packets from this port will be delivered
+ /// to client. Ignored if RemoteAddress is 0::/128 and ignored for incoming filtering if
+ /// AcceptPromiscuous is TRUE.
+ UINT16 RemotePort;
+} EFI_UDP6_CONFIG_DATA;
+
+///
+/// The EFI UDPv6 Protocol client must fill this data structure before sending a packet.
+/// The packet may contain multiple buffers that may be not in a continuous memory location.
+///
+typedef struct {
+ ///
+ /// If not NULL, the data that is used to override the transmitting settings.Only the two
+ /// filed UdpSessionData.DestinationAddress and UdpSessionData.DestionPort can be used as
+ /// the transmitting setting filed.
+ ///
+ EFI_UDP6_SESSION_DATA *UdpSessionData;
+ ///
+ /// Sum of the fragment data length. Must not exceed the maximum UDP packet size.
+ ///
+ UINT32 DataLength;
+ ///
+ /// Number of fragments.
+ ///
+ UINT32 FragmentCount;
+ ///
+ /// Array of fragment descriptors.
+ ///
+ EFI_UDP6_FRAGMENT_DATA FragmentTable[1];
+} EFI_UDP6_TRANSMIT_DATA;
+
+///
+/// EFI_UDP6_RECEIVE_DATA is filled by the EFI UDPv6 Protocol driver when this EFI UDPv6
+/// Protocol instance receives an incoming packet. If there is a waiting token for incoming
+/// packets, the CompletionToken.Packet.RxData field is updated to this incoming packet and
+/// the CompletionToken.Event is signaled. The EFI UDPv6 Protocol client must signal the
+/// RecycleSignal after processing the packet.
+/// FragmentTable could contain multiple buffers that are not in the continuous memory locations.
+/// The EFI UDPv6 Protocol client might need to combine two or more buffers in FragmentTable to
+/// form their own protocol header.
+///
+typedef struct {
+ ///
+ /// Time when the EFI UDPv6 Protocol accepted the packet.
+ ///
+ EFI_TIME TimeStamp;
+ ///
+ /// Indicates the event to signal when the received data has been processed.
+ ///
+ EFI_EVENT RecycleSignal;
+ ///
+ /// The UDP session data including SourceAddress, SourcePort, DestinationAddress,
+ /// and DestinationPort.
+ ///
+ EFI_UDP6_SESSION_DATA UdpSession;
+ ///
+ /// The sum of the fragment data length.
+ ///
+ UINT32 DataLength;
+ ///
+ /// Number of fragments. Maybe zero.
+ ///
+ UINT32 FragmentCount;
+ ///
+ /// Array of fragment descriptors. Maybe zero.
+ ///
+ EFI_UDP6_FRAGMENT_DATA FragmentTable[1];
+} EFI_UDP6_RECEIVE_DATA;
+
+///
+/// The EFI_UDP6_COMPLETION_TOKEN structures are used for both transmit and receive operations.
+/// When used for transmitting, the Event and TxData fields must be filled in by the EFI UDPv6
+/// Protocol client. After the transmit operation completes, the Status field is updated by the
+/// EFI UDPv6 Protocol and the Event is signaled.
+/// When used for receiving, only the Event field must be filled in by the EFI UDPv6 Protocol
+/// client. After a packet is received, RxData and Status are filled in by the EFI UDPv6 Protocol
+/// and the Event is signaled.
+///
+typedef struct {
+ ///
+ /// This Event will be signaled after the Status field is updated by the EFI UDPv6 Protocol
+ /// driver. The type of Event must be EVT_NOTIFY_SIGNAL.
+ ///
+ EFI_EVENT Event;
+ ///
+ /// Will be set to one of the following values:
+ /// - EFI_SUCCESS: The receive or transmit operation completed successfully.
+ /// - EFI_ABORTED: The receive or transmit was aborted.
+ /// - EFI_TIMEOUT: The transmit timeout expired.
+ /// - EFI_NETWORK_UNREACHABLE: The destination network is unreachable. RxData is set to
+ /// NULL in this situation.
+ /// - EFI_HOST_UNREACHABLE: The destination host is unreachable. RxData is set to NULL in
+ /// this situation.
+ /// - EFI_PROTOCOL_UNREACHABLE: The UDP protocol is unsupported in the remote system.
+ /// RxData is set to NULL in this situation.
+ /// - EFI_PORT_UNREACHABLE: No service is listening on the remote port. RxData is set to
+ /// NULL in this situation.
+ /// - EFI_ICMP_ERROR: Some other Internet Control Message Protocol (ICMP) error report was
+ /// received. For example, packets are being sent too fast for the destination to receive them
+ /// and the destination sent an ICMP source quench report. RxData is set to NULL in this situation.
+ /// - EFI_DEVICE_ERROR: An unexpected system or network error occurred.
+ /// - EFI_SECURITY_VIOLATION: The transmit or receive was failed because of IPsec policy check.
+ /// - EFI_NO_MEDIA: There was a media error.
+ ///
+ EFI_STATUS Status;
+ union {
+ ///
+ /// When this token is used for receiving, RxData is a pointer to EFI_UDP6_RECEIVE_DATA.
+ ///
+ EFI_UDP6_RECEIVE_DATA *RxData;
+ ///
+ /// When this token is used for transmitting, TxData is a pointer to EFI_UDP6_TRANSMIT_DATA.
+ ///
+ EFI_UDP6_TRANSMIT_DATA *TxData;
+ } Packet;
+} EFI_UDP6_COMPLETION_TOKEN;
+
+/**
+ Read the current operational settings.
+
+ The GetModeData() function copies the current operational settings of this EFI UDPv6 Protocol
+ instance into user-supplied buffers. This function is used optionally to retrieve the operational
+ mode data of underlying networks or drivers.
+
+ @param[in] This Pointer to the EFI_UDP6_PROTOCOL instance.
+ @param[out] Udp6ConfigData The buffer in which the current UDP configuration data is returned.
+ @param[out] Ip6ModeData The buffer in which the current EFI IPv6 Protocol mode data is returned.
+ @param[out] MnpConfigData The buffer in which the current managed network configuration data is
+ returned.
+ @param[out] SnpModeData The buffer in which the simple network mode data is returned.
+
+ @retval EFI_SUCCESS The mode data was read.
+ @retval EFI_NOT_STARTED When Udp6ConfigData is queried, no configuration data is available
+ because this instance has not been started.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP6_GET_MODE_DATA)(
+ IN EFI_UDP6_PROTOCOL *This,
+ OUT EFI_UDP6_CONFIG_DATA *Udp6ConfigData OPTIONAL,
+ OUT EFI_IP6_MODE_DATA *Ip6ModeData OPTIONAL,
+ OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
+ OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
+ );
+
+/**
+ Initializes, changes, or resets the operational parameters for this instance of the EFI UDPv6
+ Protocol.
+
+ The Configure() function is used to do the following:
+ - Initialize and start this instance of the EFI UDPv6 Protocol.
+ - Change the filtering rules and operational parameters.
+ - Reset this instance of the EFI UDPv6 Protocol.
+
+ Until these parameters are initialized, no network traffic can be sent or received by this instance.
+ This instance can be also reset by calling Configure() with UdpConfigData set to NULL.
+ Once reset, the receiving queue and transmitting queue are flushed and no traffic is allowed through
+ this instance.
+
+ With different parameters in UdpConfigData, Configure() can be used to bind this instance to specified
+ port.
+
+ @param[in] This Pointer to the EFI_UDP6_PROTOCOL instance.
+ @param[in] UdpConfigData Pointer to the buffer contained the configuration data.
+
+ @retval EFI_SUCCESS The configuration settings were set, changed, or reset successfully.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
+ address for this instance, but no source address was available for use.
+ @retval EFI_INVALID_PARAMETER One or more following conditions are TRUE:
+ - This is NULL.
+ - UdpConfigData.StationAddress neither zero nor one of the configured IP
+ addresses in the underlying IPv6 driver.
+ - UdpConfigData.RemoteAddress is not a valid unicast IPv6 address if it
+ is not zero.
+ @retval EFI_ALREADY_STARTED The EFI UDPv6 Protocol instance is already started/configured and must be
+ stopped/reset before it can be reconfigured. Only TrafficClass, HopLimit,
+ ReceiveTimeout, and TransmitTimeout can be reconfigured without stopping
+ the current instance of the EFI UDPv6 Protocol.
+ @retval EFI_ACCESS_DENIED UdpConfigData.AllowDuplicatePort is FALSE and UdpConfigData.StationPort
+ is already used by other instance.
+ @retval EFI_OUT_OF_RESOURCES The EFI UDPv6 Protocol driver cannot allocate memory for this EFI UDPv6
+ Protocol instance.
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred and this instance was not
+ opened.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP6_CONFIGURE)(
+ IN EFI_UDP6_PROTOCOL *This,
+ IN EFI_UDP6_CONFIG_DATA *UdpConfigData OPTIONAL
+ );
+
+/**
+ Joins and leaves multicast groups.
+
+ The Groups() function is used to join or leave one or more multicast group.
+ If the JoinFlag is FALSE and the MulticastAddress is NULL, then all currently joined groups are left.
+
+ @param[in] This Pointer to the EFI_UDP6_PROTOCOL instance.
+ @param[in] JoinFlag Set to TRUE to join a multicast group. Set to FALSE to leave one
+ or all multicast groups.
+ @param[in] MulticastAddress Pointer to multicast group address to join or leave.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_NOT_STARTED The EFI UDPv6 Protocol instance has not been started.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate resources to join the group.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - JoinFlag is TRUE and MulticastAddress is NULL.
+ - JoinFlag is TRUE and *MulticastAddress is not a valid multicast address.
+ @retval EFI_ALREADY_STARTED The group address is already in the group table (when JoinFlag is TRUE).
+ @retval EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is FALSE).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP6_GROUPS)(
+ IN EFI_UDP6_PROTOCOL *This,
+ IN BOOLEAN JoinFlag,
+ IN EFI_IPv6_ADDRESS *MulticastAddress OPTIONAL
+ );
+
+/**
+ Queues outgoing data packets into the transmit queue.
+
+ The Transmit() function places a sending request to this instance of the EFI UDPv6 Protocol,
+ alongside the transmit data that was filled by the user. Whenever the packet in the token is
+ sent out or some errors occur, the Token.Event will be signaled and Token.Status is updated.
+ Providing a proper notification function and context for the event will enable the user to
+ receive the notification and transmitting status.
+
+ @param[in] This Pointer to the EFI_UDP6_PROTOCOL instance.
+ @param[in] Token Pointer to the completion token that will be placed into the
+ transmit queue.
+
+ @retval EFI_SUCCESS The data has been queued for transmission.
+ @retval EFI_NOT_STARTED This EFI UDPv6 Protocol instance has not been started.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
+ address for this instance, but no source address was available
+ for use.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token.Event is NULL.
+ - Token.Packet.TxData is NULL.
+ - Token.Packet.TxData.FragmentCount is zero.
+ - Token.Packet.TxData.DataLength is not equal to the sum of fragment
+ lengths.
+ - One or more of the Token.Packet.TxData.FragmentTable[].FragmentLength
+ fields is zero.
+ - One or more of the Token.Packet.TxData.FragmentTable[].FragmentBuffer
+ fields is NULL.
+ - Token.Packet.TxData.UdpSessionData.DestinationAddress is not zero
+ and is not valid unicast Ipv6 address if UdpSessionData is not NULL.
+ - Token.Packet.TxData.UdpSessionData is NULL and this instance's
+ UdpConfigData.RemoteAddress is unspecified.
+ - Token.Packet.TxData.UdpSessionData.DestinationAddress is non-zero
+ when DestinationAddress is configured as non-zero when doing Configure()
+ for this EFI Udp6 protocol instance.
+ - Token.Packet.TxData.UdpSesionData.DestinationAddress is zero when
+ DestinationAddress is unspecified when doing Configure() for this
+ EFI Udp6 protocol instance.
+ @retval EFI_ACCESS_DENIED The transmit completion token with the same Token.Event was already
+ in the transmit queue.
+ @retval EFI_NOT_READY The completion token could not be queued because the transmit queue
+ is full.
+ @retval EFI_OUT_OF_RESOURCES Could not queue the transmit data.
+ @retval EFI_NOT_FOUND There is no route to the destination network or address.
+ @retval EFI_BAD_BUFFER_SIZE The data length is greater than the maximum UDP packet size.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP6_TRANSMIT)(
+ IN EFI_UDP6_PROTOCOL *This,
+ IN EFI_UDP6_COMPLETION_TOKEN *Token
+ );
+
+/**
+ Places an asynchronous receive request into the receiving queue.
+
+ The Receive() function places a completion token into the receive packet queue. This function is
+ always asynchronous.
+ The caller must fill in the Token.Event field in the completion token, and this field cannot be
+ NULL. When the receive operation completes, the EFI UDPv6 Protocol driver updates the Token.Status
+ and Token.Packet.RxData fields and the Token.Event is signaled.
+ Providing a proper notification function and context for the event will enable the user to receive
+ the notification and receiving status. That notification function is guaranteed to not be re-entered.
+
+ @param[in] This Pointer to the EFI_UDP6_PROTOCOL instance.
+ @param[in] Token Pointer to a token that is associated with the receive data descriptor.
+
+ @retval EFI_SUCCESS The receive completion token was cached.
+ @retval EFI_NOT_STARTED This EFI UDPv6 Protocol instance has not been started.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
+ address for this instance, but no source address was available
+ for use.
+ @retval EFI_INVALID_PARAMETER One or more of the following is TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system
+ resources (usually memory).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI UDPv6 Protocol
+ instance has been reset to startup defaults.
+ @retval EFI_ACCESS_DENIED A receive completion token with the same Token.Event was already in
+ the receive queue.
+ @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP6_RECEIVE)(
+ IN EFI_UDP6_PROTOCOL *This,
+ IN EFI_UDP6_COMPLETION_TOKEN *Token
+ );
+
+/**
+ Aborts an asynchronous transmit or receive request.
+
+ The Cancel() function is used to abort a pending transmit or receive request. If the token is in the
+ transmit or receive request queues, after calling this function, Token.Status will be set to
+ EFI_ABORTED and then Token.Event will be signaled. If the token is not in one of the queues,
+ which usually means that the asynchronous operation has completed, this function will not signal the
+ token and EFI_NOT_FOUND is returned.
+
+ @param[in] This Pointer to the EFI_UDP6_PROTOCOL instance.
+ @param[in] Token Pointer to a token that has been issued by EFI_UDP6_PROTOCOL.Transmit()
+ or EFI_UDP6_PROTOCOL.Receive().If NULL, all pending tokens are aborted.
+
+ @retval EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event was signaled.
+ When Token is NULL, all pending requests are aborted and their events
+ are signaled.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_STARTED This instance has not been started.
+ @retval EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was not found in
+ the transmit or receive queue. It has either completed or was not issued
+ by Transmit() and Receive().
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP6_CANCEL)(
+ IN EFI_UDP6_PROTOCOL *This,
+ IN EFI_UDP6_COMPLETION_TOKEN *Token OPTIONAL
+ );
+
+/**
+ Polls for incoming data packets and processes outgoing data packets.
+
+ The Poll() function can be used by network drivers and applications to increase the rate that data
+ packets are moved between the communications device and the transmit and receive queues.
+ In some systems, the periodic timer event in the managed network driver may not poll the underlying
+ communications device fast enough to transmit and/or receive all data packets without missing incoming
+ packets or dropping outgoing packets. Drivers and applications that are experiencing packet loss should
+ try calling the Poll() function more often.
+
+ @param[in] This Pointer to the EFI_UDP6_PROTOCOL instance.
+
+ @retval EFI_SUCCESS Incoming or outgoing data was processed.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
+ Consider increasing the polling rate.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP6_POLL)(
+ IN EFI_UDP6_PROTOCOL *This
+ );
+
+///
+/// The EFI_UDP6_PROTOCOL defines an EFI UDPv6 Protocol session that can be used by any network drivers,
+/// applications, or daemons to transmit or receive UDP packets. This protocol instance can either be
+/// bound to a specified port as a service or connected to some remote peer as an active client.
+/// Each instance has its own settings, such as group table, that are independent from each other.
+///
+struct _EFI_UDP6_PROTOCOL {
+ EFI_UDP6_GET_MODE_DATA GetModeData;
+ EFI_UDP6_CONFIGURE Configure;
+ EFI_UDP6_GROUPS Groups;
+ EFI_UDP6_TRANSMIT Transmit;
+ EFI_UDP6_RECEIVE Receive;
+ EFI_UDP6_CANCEL Cancel;
+ EFI_UDP6_POLL Poll;
+};
+
+extern EFI_GUID gEfiUdp6ServiceBindingProtocolGuid;
+extern EFI_GUID gEfiUdp6ProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/efi.h b/src/include/ipxe/efi/efi.h
index 29117fa..0d90fbb 100644
--- a/src/include/ipxe/efi/efi.h
+++ b/src/include/ipxe/efi/efi.h
@@ -184,6 +184,8 @@ extern EFI_GUID efi_console_control_protocol_guid;
extern EFI_GUID efi_device_path_protocol_guid;
extern EFI_GUID efi_dhcp4_protocol_guid;
extern EFI_GUID efi_dhcp4_service_binding_protocol_guid;
+extern EFI_GUID efi_dhcp6_protocol_guid;
+extern EFI_GUID efi_dhcp6_service_binding_protocol_guid;
extern EFI_GUID efi_disk_io_protocol_guid;
extern EFI_GUID efi_driver_binding_protocol_guid;
extern EFI_GUID efi_graphics_output_protocol_guid;
@@ -192,6 +194,9 @@ extern EFI_GUID efi_hii_font_protocol_guid;
extern EFI_GUID efi_ip4_protocol_guid;
extern EFI_GUID efi_ip4_config_protocol_guid;
extern EFI_GUID efi_ip4_service_binding_protocol_guid;
+extern EFI_GUID efi_ip6_protocol_guid;
+extern EFI_GUID efi_ip6_config_protocol_guid;
+extern EFI_GUID efi_ip6_service_binding_protocol_guid;
extern EFI_GUID efi_load_file_protocol_guid;
extern EFI_GUID efi_load_file2_protocol_guid;
extern EFI_GUID efi_loaded_image_protocol_guid;
@@ -200,6 +205,8 @@ extern EFI_GUID efi_managed_network_protocol_guid;
extern EFI_GUID efi_managed_network_service_binding_protocol_guid;
extern EFI_GUID efi_mtftp4_protocol_guid;
extern EFI_GUID efi_mtftp4_service_binding_protocol_guid;
+extern EFI_GUID efi_mtftp6_protocol_guid;
+extern EFI_GUID efi_mtftp6_service_binding_protocol_guid;
extern EFI_GUID efi_nii_protocol_guid;
extern EFI_GUID efi_nii31_protocol_guid;
extern EFI_GUID efi_pci_io_protocol_guid;
@@ -216,9 +223,13 @@ extern EFI_GUID efi_simple_text_output_protocol_guid;
extern EFI_GUID efi_tcg_protocol_guid;
extern EFI_GUID efi_tcp4_protocol_guid;
extern EFI_GUID efi_tcp4_service_binding_protocol_guid;
+extern EFI_GUID efi_tcp6_protocol_guid;
+extern EFI_GUID efi_tcp6_service_binding_protocol_guid;
extern EFI_GUID efi_tree_protocol_guid;
extern EFI_GUID efi_udp4_protocol_guid;
extern EFI_GUID efi_udp4_service_binding_protocol_guid;
+extern EFI_GUID efi_udp6_protocol_guid;
+extern EFI_GUID efi_udp6_service_binding_protocol_guid;
extern EFI_GUID efi_uga_draw_protocol_guid;
extern EFI_GUID efi_unicode_collation_protocol_guid;
extern EFI_GUID efi_usb_hc_protocol_guid;
diff --git a/src/interface/efi/efi_debug.c b/src/interface/efi/efi_debug.c
index 02cbf9f..8922fa2 100644
--- a/src/interface/efi/efi_debug.c
+++ b/src/interface/efi/efi_debug.c
@@ -99,6 +99,10 @@ static struct efi_well_known_guid efi_well_known_guids[] = {
"Dhcp4" },
{ &efi_dhcp4_service_binding_protocol_guid,
"Dhcp4Sb" },
+ { &efi_dhcp6_protocol_guid,
+ "Dhcp6" },
+ { &efi_dhcp6_service_binding_protocol_guid,
+ "Dhcp6Sb" },
{ &efi_disk_io_protocol_guid,
"DiskIo" },
{ &efi_graphics_output_protocol_guid,
@@ -113,6 +117,12 @@ static struct efi_well_known_guid efi_well_known_guids[] = {
"Ip4Config" },
{ &efi_ip4_service_binding_protocol_guid,
"Ip4Sb" },
+ { &efi_ip6_protocol_guid,
+ "Ip6" },
+ { &efi_ip6_config_protocol_guid,
+ "Ip6Config" },
+ { &efi_ip6_service_binding_protocol_guid,
+ "Ip6Sb" },
{ &efi_iscsi4_dxe_guid,
"IScsi4Dxe" },
{ &efi_load_file_protocol_guid,
@@ -131,6 +141,10 @@ static struct efi_well_known_guid efi_well_known_guids[] = {
"Mtftp4" },
{ &efi_mtftp4_service_binding_protocol_guid,
"Mtftp4Sb" },
+ { &efi_mtftp6_protocol_guid,
+ "Mtftp6" },
+ { &efi_mtftp6_service_binding_protocol_guid,
+ "Mtftp6Sb" },
{ &efi_nii_protocol_guid,
"Nii" },
{ &efi_nii31_protocol_guid,
@@ -163,12 +177,20 @@ static struct efi_well_known_guid efi_well_known_guids[] = {
"Tcp4" },
{ &efi_tcp4_service_binding_protocol_guid,
"Tcp4Sb" },
+ { &efi_tcp6_protocol_guid,
+ "Tcp6" },
+ { &efi_tcp6_service_binding_protocol_guid,
+ "Tcp6Sb" },
{ &efi_tree_protocol_guid,
"TrEE" },
{ &efi_udp4_protocol_guid,
"Udp4" },
{ &efi_udp4_service_binding_protocol_guid,
"Udp4Sb" },
+ { &efi_udp6_protocol_guid,
+ "Udp6" },
+ { &efi_udp6_service_binding_protocol_guid,
+ "Udp6Sb" },
{ &efi_uga_draw_protocol_guid,
"UgaDraw" },
{ &efi_unicode_collation_protocol_guid,
diff --git a/src/interface/efi/efi_guid.c b/src/interface/efi/efi_guid.c
index 25c342f..b9f8e15 100644
--- a/src/interface/efi/efi_guid.c
+++ b/src/interface/efi/efi_guid.c
@@ -37,6 +37,7 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <ipxe/efi/Protocol/DevicePath.h>
#include <ipxe/efi/Protocol/DevicePathToText.h>
#include <ipxe/efi/Protocol/Dhcp4.h>
+#include <ipxe/efi/Protocol/Dhcp6.h>
#include <ipxe/efi/Protocol/DiskIo.h>
#include <ipxe/efi/Protocol/DriverBinding.h>
#include <ipxe/efi/Protocol/GraphicsOutput.h>
@@ -44,11 +45,14 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <ipxe/efi/Protocol/HiiFont.h>
#include <ipxe/efi/Protocol/Ip4.h>
#include <ipxe/efi/Protocol/Ip4Config.h>
+#include <ipxe/efi/Protocol/Ip6.h>
+#include <ipxe/efi/Protocol/Ip6Config.h>
#include <ipxe/efi/Protocol/LoadFile.h>
#include <ipxe/efi/Protocol/LoadFile2.h>
#include <ipxe/efi/Protocol/LoadedImage.h>
#include <ipxe/efi/Protocol/ManagedNetwork.h>
#include <ipxe/efi/Protocol/Mtftp4.h>
+#include <ipxe/efi/Protocol/Mtftp6.h>
#include <ipxe/efi/Protocol/NetworkInterfaceIdentifier.h>
#include <ipxe/efi/Protocol/PciIo.h>
#include <ipxe/efi/Protocol/PciRootBridgeIo.h>
@@ -63,7 +67,9 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <ipxe/efi/Protocol/SimpleTextOut.h>
#include <ipxe/efi/Protocol/TcgService.h>
#include <ipxe/efi/Protocol/Tcp4.h>
+#include <ipxe/efi/Protocol/Tcp6.h>
#include <ipxe/efi/Protocol/Udp4.h>
+#include <ipxe/efi/Protocol/Udp6.h>
#include <ipxe/efi/Protocol/UgaDraw.h>
#include <ipxe/efi/Protocol/UnicodeCollation.h>
#include <ipxe/efi/Protocol/UsbHostController.h>
@@ -140,6 +146,14 @@ EFI_GUID efi_dhcp4_protocol_guid
EFI_GUID efi_dhcp4_service_binding_protocol_guid
= EFI_DHCP4_SERVICE_BINDING_PROTOCOL_GUID;
+/** DHCPv6 protocol GUID */
+EFI_GUID efi_dhcp6_protocol_guid
+ = EFI_DHCP6_PROTOCOL_GUID;
+
+/** DHCPv6 service binding protocol GUID */
+EFI_GUID efi_dhcp6_service_binding_protocol_guid
+ = EFI_DHCP6_SERVICE_BINDING_PROTOCOL_GUID;
+
/** Disk I/O protocol GUID */
EFI_GUID efi_disk_io_protocol_guid
= EFI_DISK_IO_PROTOCOL_GUID;
@@ -172,6 +186,18 @@ EFI_GUID efi_ip4_config_protocol_guid
EFI_GUID efi_ip4_service_binding_protocol_guid
= EFI_IP4_SERVICE_BINDING_PROTOCOL_GUID;
+/** IPv6 protocol GUID */
+EFI_GUID efi_ip6_protocol_guid
+ = EFI_IP6_PROTOCOL_GUID;
+
+/** IPv6 configuration protocol GUID */
+EFI_GUID efi_ip6_config_protocol_guid
+ = EFI_IP6_CONFIG_PROTOCOL_GUID;
+
+/** IPv6 service binding protocol GUID */
+EFI_GUID efi_ip6_service_binding_protocol_guid
+ = EFI_IP6_SERVICE_BINDING_PROTOCOL_GUID;
+
/** Load file protocol GUID */
EFI_GUID efi_load_file_protocol_guid
= EFI_LOAD_FILE_PROTOCOL_GUID;
@@ -204,6 +230,14 @@ EFI_GUID efi_mtftp4_protocol_guid
EFI_GUID efi_mtftp4_service_binding_protocol_guid
= EFI_MTFTP4_SERVICE_BINDING_PROTOCOL_GUID;
+/** MTFTPv6 protocol GUID */
+EFI_GUID efi_mtftp6_protocol_guid
+ = EFI_MTFTP6_PROTOCOL_GUID;
+
+/** MTFTPv6 service binding protocol GUID */
+EFI_GUID efi_mtftp6_service_binding_protocol_guid
+ = EFI_MTFTP6_SERVICE_BINDING_PROTOCOL_GUID;
+
/** Network interface identifier protocol GUID (old version) */
EFI_GUID efi_nii_protocol_guid
= EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID;
@@ -268,6 +302,14 @@ EFI_GUID efi_tcp4_protocol_guid
EFI_GUID efi_tcp4_service_binding_protocol_guid
= EFI_TCP4_SERVICE_BINDING_PROTOCOL_GUID;
+/** TCPv6 protocol GUID */
+EFI_GUID efi_tcp6_protocol_guid
+ = EFI_TCP6_PROTOCOL_GUID;
+
+/** TCPv6 service binding protocol GUID */
+EFI_GUID efi_tcp6_service_binding_protocol_guid
+ = EFI_TCP6_SERVICE_BINDING_PROTOCOL_GUID;
+
/** TrEE protocol GUID */
EFI_GUID efi_tree_protocol_guid
= EFI_TREE_PROTOCOL_GUID;
@@ -280,6 +322,14 @@ EFI_GUID efi_udp4_protocol_guid
EFI_GUID efi_udp4_service_binding_protocol_guid
= EFI_UDP4_SERVICE_BINDING_PROTOCOL_GUID;
+/** UDPv6 protocol GUID */
+EFI_GUID efi_udp6_protocol_guid
+ = EFI_UDP6_PROTOCOL_GUID;
+
+/** UDPv6 service binding protocol GUID */
+EFI_GUID efi_udp6_service_binding_protocol_guid
+ = EFI_UDP6_SERVICE_BINDING_PROTOCOL_GUID;
+
/** UGA draw protocol GUID */
EFI_GUID efi_uga_draw_protocol_guid
= EFI_UGA_DRAW_PROTOCOL_GUID;