/* * Test GOST 34.11 Digest operation * * Copyright (C) 2019-2020 Vitaly Chikunov . All Rights Reserved. * * Contents licensed under the terms of the OpenSSL license * See https://www.openssl.org/source/license.html for details */ #include #include #include #include #include #include #include # include #if OPENSSL_VERSION_MAJOR >= 3 # include #endif #include #include #include #if MIPSEL # include #endif #ifndef EVP_MD_CTRL_SET_KEY # include "gost_lcl.h" #endif /* Helpers to test OpenSSL API calls. */ #define T(e) \ if (!(e)) { \ ERR_print_errors_fp(stderr); \ OpenSSLDie(__FILE__, __LINE__, #e); \ } #define TE(e) \ if (!(e)) { \ ERR_print_errors_fp(stderr); \ fprintf(stderr, "Error at %s:%d %s\n", __FILE__, __LINE__, #e); \ return -1; \ } #define cRED "\033[1;31m" #define cDRED "\033[0;31m" #define cGREEN "\033[1;32m" #define cDGREEN "\033[0;32m" #define cBLUE "\033[1;34m" #define cDBLUE "\033[0;34m" #define cMAGENT "\033[1;35m" #define cNORM "\033[m" #define TEST_ASSERT(e) {if ((test = (e))) \ printf(cRED " Test FAILED" cNORM "\n"); \ else \ printf(cGREEN " Test passed" cNORM "\n");} #ifdef __GNUC__ /* To test older APIs. */ # pragma GCC diagnostic ignored "-Wdeprecated-declarations" #endif /* * Test keys from both GOST R 34.12-2015 and GOST R 34.13-2015, * for 128-bit cipher (A.1). */ static const char K[32] = { 0x88,0x99,0xaa,0xbb,0xcc,0xdd,0xee,0xff,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77, 0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10,0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, }; /* * Key for 64-bit cipher (A.2). */ static const char Km[32] = { 0xff,0xee,0xdd,0xcc,0xbb,0xaa,0x99,0x88,0x77,0x66,0x55,0x44,0x33,0x22,0x11,0x00, 0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfe,0xff, }; /* * Plaintext from GOST R 34.13-2015 A.1. * First 16 bytes is vector (a) from GOST R 34.12-2015 A.1. */ static const char P[] = { 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x00,0xff,0xee,0xdd,0xcc,0xbb,0xaa,0x99,0x88, 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xee,0xff,0x0a, 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xee,0xff,0x0a,0x00, 0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xee,0xff,0x0a,0x00,0x11, }; /* Plaintext for 64-bit cipher (A.2) */ static const char Pm[] = { 0x92,0xde,0xf0,0x6b,0x3c,0x13,0x0a,0x59,0xdb,0x54,0xc7,0x04,0xf8,0x18,0x9d,0x20, 0x4a,0x98,0xfb,0x2e,0x67,0xa8,0x02,0x4c,0x89,0x12,0x40,0x9b,0x17,0xb5,0x7e,0x41, }; /* * Kuznyechik OMAC1/CMAC test vector from GOST R 34.13-2015 А.1.6 */ static const char MAC_omac[] = { 0x33,0x6f,0x4d,0x29,0x60,0x59,0xfb,0xe3 }; /* * Magma OMAC1/CMAC test vector from GOST R 34.13-2015 А.2.6 */ static const char MAC_magma_omac[] = { 0x15,0x4e,0x72,0x10 }; /* * OMAC-ACPKM test vector from R 1323565.1.017-2018 A.4.1 */ static const char P_omac_acpkm1[] = { 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x00,0xFF,0xEE,0xDD,0xCC,0xBB,0xAA,0x99,0x88, 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77, }; static const char MAC_omac_acpkm1[] = { 0xB5,0x36,0x7F,0x47,0xB6,0x2B,0x99,0x5E,0xEB,0x2A,0x64,0x8C,0x58,0x43,0x14,0x5E, }; /* * OMAC-ACPKM test vector from R 1323565.1.017-2018 A.4.2 */ static const char P_omac_acpkm2[] = { 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x00,0xFF,0xEE,0xDD,0xCC,0xBB,0xAA,0x99,0x88, 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xEE,0xFF,0x0A, 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xEE,0xFF,0x0A,0x00, 0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xEE,0xFF,0x0A,0x00,0x11, 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xEE,0xFF,0x0A,0x00,0x11,0x22, }; static const char MAC_omac_acpkm2[] = { 0xFB,0xB8,0xDC,0xEE,0x45,0xBE,0xA6,0x7C,0x35,0xF5,0x8C,0x57,0x00,0x89,0x8E,0x5D, }; /* Some other test vectors. */ static const char etalon_M4[64] = { 0 }; static const char etalon_M5[] = { 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36, 0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x20,0x0a, 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36, 0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x20,0x0a, }; static const char etalon_M6[] = { 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36, 0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x20,0x0a, 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36, 0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x20,0x0a, 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36, 0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x20,0x0a, 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36, 0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x20,0x0a, 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36, 0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x20,0x0a, 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36, 0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x20,0x0a, }; static const char etalon_carry[] = { 0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee, 0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee, 0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee, 0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee,0xee, 0x16,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11, 0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11, 0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11, 0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x16, }; /* This is another carry test. */ static const char ff[] = { 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff }; struct hash_testvec { const char *algname; /* Algorithm name */ const char *name; /* Test name and source. */ const char *plaintext; /* Input (of psize), NULL for synthetic test. */ const char *digest; /* Expected output (of EVP_MD_size or truncate). */ const char *hmac; /* Expected output for HMAC tests. */ const char *key; /* MAC key.*/ int psize; /* Input (plaintext) size. */ size_t outsize; /* Compare to EVP_MD_size() / EVP_MAC_size() if non-zero. */ int truncate; /* Truncated output (digest) size. */ int key_size; /* MAC key size. */ int block_size; /* Internal block size. */ int acpkm; /* The section size N (the number of bits that are processed with one section key before this key is transformed) (bytes) */ int acpkm_t; /* Master key (change) frequency T* (bytes) */ }; static const struct hash_testvec testvecs[] = { { /* Test vectors from standards. */ .algname = SN_id_GostR3411_2012_512, .name = "M1 from RFC 6986 (10.1.1) and GOST R 34.11-2012 (А.1.1)", .plaintext = "012345678901234567890123456789012345678901234567890123456789012", .psize = 63, .digest = "\x1b\x54\xd0\x1a\x4a\xf5\xb9\xd5\xcc\x3d\x86\xd6\x8d\x28\x54\x62" "\xb1\x9a\xbc\x24\x75\x22\x2f\x35\xc0\x85\x12\x2b\xe4\xba\x1f\xfa" "\x00\xad\x30\xf8\x76\x7b\x3a\x82\x38\x4c\x65\x74\xf0\x24\xc3\x11" "\xe2\xa4\x81\x33\x2b\x08\xef\x7f\x41\x79\x78\x91\xc1\x64\x6f\x48", .outsize = 512 / 8, .block_size = 512 / 8, }, { .algname = SN_id_GostR3411_2012_256, .name = "M1 from RFC 6986 (10.1.2) and GOST R 34.11-2012 (А.1.2)", .plaintext = "012345678901234567890123456789012345678901234567890123456789012", .psize = 63, .digest = "\x9d\x15\x1e\xef\xd8\x59\x0b\x89\xda\xa6\xba\x6c\xb7\x4a\xf9\x27" "\x5d\xd0\x51\x02\x6b\xb1\x49\xa4\x52\xfd\x84\xe5\xe5\x7b\x55\x00", .outsize = 256 / 8, .block_size = 512 / 8, }, { .algname = SN_id_GostR3411_2012_512, .name = "M2 from RFC 6986 (10.2.1) and GOST R 34.11-2012 (А.2.1)", .plaintext = "\xd1\xe5\x20\xe2\xe5\xf2\xf0\xe8\x2c\x20\xd1\xf2\xf0\xe8\xe1\xee" "\xe6\xe8\x20\xe2\xed\xf3\xf6\xe8\x2c\x20\xe2\xe5\xfe\xf2\xfa\x20" "\xf1\x20\xec\xee\xf0\xff\x20\xf1\xf2\xf0\xe5\xeb\xe0\xec\xe8\x20" "\xed\xe0\x20\xf5\xf0\xe0\xe1\xf0\xfb\xff\x20\xef\xeb\xfa\xea\xfb" "\x20\xc8\xe3\xee\xf0\xe5\xe2\xfb", .psize = 72, .digest = "\x1e\x88\xe6\x22\x26\xbf\xca\x6f\x99\x94\xf1\xf2\xd5\x15\x69\xe0" "\xda\xf8\x47\x5a\x3b\x0f\xe6\x1a\x53\x00\xee\xe4\x6d\x96\x13\x76" "\x03\x5f\xe8\x35\x49\xad\xa2\xb8\x62\x0f\xcd\x7c\x49\x6c\xe5\xb3" "\x3f\x0c\xb9\xdd\xdc\x2b\x64\x60\x14\x3b\x03\xda\xba\xc9\xfb\x28", }, { .algname = SN_id_GostR3411_2012_256, .name = "M2 from RFC 6986 (10.2.2) and GOST R 34.11-2012 (А.2.2)", .plaintext = "\xd1\xe5\x20\xe2\xe5\xf2\xf0\xe8\x2c\x20\xd1\xf2\xf0\xe8\xe1\xee" "\xe6\xe8\x20\xe2\xed\xf3\xf6\xe8\x2c\x20\xe2\xe5\xfe\xf2\xfa\x20" "\xf1\x20\xec\xee\xf0\xff\x20\xf1\xf2\xf0\xe5\xeb\xe0\xec\xe8\x20" "\xed\xe0\x20\xf5\xf0\xe0\xe1\xf0\xfb\xff\x20\xef\xeb\xfa\xea\xfb" "\x20\xc8\xe3\xee\xf0\xe5\xe2\xfb", .psize = 72, .digest = "\x9d\xd2\xfe\x4e\x90\x40\x9e\x5d\xa8\x7f\x53\x97\x6d\x74\x05\xb0" "\xc0\xca\xc6\x28\xfc\x66\x9a\x74\x1d\x50\x06\x3c\x55\x7e\x8f\x50", }, /* OMAC tests */ { .algname = SN_grasshopper_mac, .name = "P from GOST R 34.13-2015 (А.1.6)", .plaintext = P, .psize = sizeof(P), .key = K, .key_size = sizeof(K), .digest = MAC_omac, .outsize = 128 / 8, .truncate = sizeof(MAC_omac), }, { .algname = SN_magma_mac, .name = "P from GOST R 34.13-2015 (А.2.6)", .plaintext = Pm, .psize = sizeof(Pm), .key = Km, .key_size = sizeof(Km), .digest = MAC_magma_omac, .outsize = 64 / 8, .truncate = sizeof(MAC_magma_omac), }, { .algname = SN_id_tc26_cipher_gostr3412_2015_kuznyechik_ctracpkm_omac, .name = "M from R 1323565.1.017-2018 (A.4.1)", .plaintext = P_omac_acpkm1, .psize = sizeof(P_omac_acpkm1), .key = K, .key_size = sizeof(K), .acpkm = 32, .acpkm_t = 768 / 8, .digest = MAC_omac_acpkm1, .outsize = sizeof(MAC_omac_acpkm1), }, { .algname = SN_id_tc26_cipher_gostr3412_2015_kuznyechik_ctracpkm_omac, .name = "M from R 1323565.1.017-2018 (A.4.2)", .plaintext = P_omac_acpkm2, .psize = sizeof(P_omac_acpkm2), .key = K, .key_size = sizeof(K), .acpkm = 32, .acpkm_t = 768 / 8, .digest = MAC_omac_acpkm2, .outsize = sizeof(MAC_omac_acpkm2), }, { /* HMAC tests. */ .algname = SN_id_GostR3411_2012_512, .name = "HMAC_GOSTR3411_2012_512 from RFC 7836 (B) and R 50.1.113-2016 (A)", .plaintext = "\x01\x26\xbd\xb8\x78\x00\xaf\x21\x43\x41\x45\x65\x63\x78\x01\x00", .psize = 16, .key = "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f", .key_size = 32, .hmac = "\xa5\x9b\xab\x22\xec\xae\x19\xc6\x5f\xbd\xe6\xe5\xf4\xe9\xf5\xd8" "\x54\x9d\x31\xf0\x37\xf9\xdf\x9b\x90\x55\x00\xe1\x71\x92\x3a\x77" "\x3d\x5f\x15\x30\xf2\xed\x7e\x96\x4c\xb2\xee\xdc\x29\xe9\xad\x2f" "\x3a\xfe\x93\xb2\x81\x4f\x79\xf5\x00\x0f\xfc\x03\x66\xc2\x51\xe6", }, { .algname = SN_id_GostR3411_2012_256, .name = "HMAC_GOSTR3411_2012_256 from RFC 7836 (B) and R 50.1.113-2016 (A)", .plaintext = "\x01\x26\xbd\xb8\x78\x00\xaf\x21\x43\x41\x45\x65\x63\x78\x01\x00", .psize = 16, .key = "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f", .key_size = 32, .hmac = "\xa1\xaa\x5f\x7d\xe4\x02\xd7\xb3\xd3\x23\xf2\x99\x1c\x8d\x45\x34" "\x01\x31\x37\x01\x0a\x83\x75\x4f\xd0\xaf\x6d\x7c\xd4\x92\x2e\xd9", }, /* Other KATs. */ { .algname = SN_id_GostR3411_2012_512, .name = "Zero length string (M3)", .plaintext = "", .psize = 0, .digest = "\x8e\x94\x5d\xa2\x09\xaa\x86\x9f\x04\x55\x92\x85\x29\xbc\xae\x46" "\x79\xe9\x87\x3a\xb7\x07\xb5\x53\x15\xf5\x6c\xeb\x98\xbe\xf0\xa7" "\x36\x2f\x71\x55\x28\x35\x6e\xe8\x3c\xda\x5f\x2a\xac\x4c\x6a\xd2" "\xba\x3a\x71\x5c\x1b\xcd\x81\xcb\x8e\x9f\x90\xbf\x4c\x1c\x1a\x8a", .outsize = 512 / 8, }, { .algname = SN_id_GostR3411_2012_256, .name = "Zero length string (M3)", .plaintext = "", .psize = 0, .digest = "\x3f\x53\x9a\x21\x3e\x97\xc8\x02\xcc\x22\x9d\x47\x4c\x6a\xa3\x2a" "\x82\x5a\x36\x0b\x2a\x93\x3a\x94\x9f\xd9\x25\x20\x8d\x9c\xe1\xbb", .outsize = 256 / 8, }, { /* M4 */ .algname = SN_id_GostR3411_2012_512, .name = "64 bytes of zero (M4)", .plaintext = etalon_M4, .psize = sizeof(etalon_M4), .digest = "\xb0\xfd\x29\xac\x1b\x0d\xf4\x41\x76\x9f\xf3\xfd\xb8\xdc\x56\x4d" "\xf6\x77\x21\xd6\xac\x06\xfb\x28\xce\xff\xb7\xbb\xaa\x79\x48\xc6" "\xc0\x14\xac\x99\x92\x35\xb5\x8c\xb2\x6f\xb6\x0f\xb1\x12\xa1\x45" "\xd7\xb4\xad\xe9\xae\x56\x6b\xf2\x61\x14\x02\xc5\x52\xd2\x0d\xb7" }, { .algname = SN_id_GostR3411_2012_256, .name = "64 bytes of zero (M4)", .plaintext = etalon_M4, .psize = sizeof(etalon_M4), .digest = "\xdf\x1f\xda\x9c\xe8\x31\x91\x39\x05\x37\x35\x80\x31\xdb\x2e\xca" "\xa6\xaa\x54\xcd\x0e\xda\x24\x1d\xc1\x07\x10\x5e\x13\x63\x6b\x95" }, { /* M5 */ .algname = SN_id_GostR3411_2012_512, .name = "64 bytes of (M5)", .plaintext = etalon_M5, .psize = sizeof(etalon_M5), .digest = "\x36\x3b\x44\x9e\xc8\x1a\xe4\x0b\x3a\x40\x7b\x12\x5c\x3b\x1c\x2b" "\x76\x8b\x50\x49\x6b\xcb\x5f\x69\x0b\x89\xe9\x00\x7b\x06\xe4\x08" "\x41\x82\xed\x45\xd4\x07\x2a\x67\xfe\xc9\xd3\x42\x1d\xab\x01\x3d" "\xa2\xaa\xbc\x1d\x65\x28\xe8\xe7\x75\xae\xc7\xb3\x45\x7a\xc6\x75" }, { .algname = SN_id_GostR3411_2012_256, .name = "64 bytes of (M5)", .plaintext = etalon_M5, .psize = sizeof(etalon_M5), .digest = "\xf0\xa5\x57\xf6\xa0\x4a\x90\xab\x18\x11\xc1\xb6\xe9\xb0\x78\xe4" "\x16\x3b\x74\x03\x7c\x6c\xf5\x9f\x52\x44\x4a\x37\xf4\x8e\x11\xd8" }, { /* M6 */ .algname = SN_id_GostR3411_2012_512, .name = "(M6)", .plaintext = etalon_M6, .psize = sizeof(etalon_M6), .digest = "\x87\x81\xdf\xc8\x1d\x2d\xb6\xa4\x1d\x18\x57\xf3\x23\x0b\x3f\xfe" "\x2b\xda\x57\x42\x73\xea\x19\x47\x18\x9a\xaa\x54\x68\x47\x0d\xf1" "\xc4\xb3\x74\xb1\xa2\xb5\x6e\x59\xd1\x1d\x21\x3f\xea\x57\xe3\x51" "\x45\x43\xb0\xce\xd9\xb2\x0e\x55\x3a\xe6\x64\x25\xec\x90\x9c\xfd" }, { .algname = SN_id_GostR3411_2012_256, .name = "(M6)", .plaintext = etalon_M6, .psize = sizeof(etalon_M6), .digest = "\x2f\x4f\x65\x1f\xe8\x8f\xea\x46\xec\x6f\x22\x23\x72\x8d\x8d\xff" "\x39\x68\x89\x35\x58\xef\x00\xa3\x10\xc2\x3e\x7d\x19\x23\xba\x0c" }, { /* Carry */ .algname = SN_id_GostR3411_2012_512, .name = "(carry)", .plaintext = etalon_carry, .psize = sizeof(etalon_carry), .digest = "\x8b\x06\xf4\x1e\x59\x90\x7d\x96\x36\xe8\x92\xca\xf5\x94\x2f\xcd" "\xfb\x71\xfa\x31\x16\x9a\x5e\x70\xf0\xed\xb8\x73\x66\x4d\xf4\x1c" "\x2c\xce\x6e\x06\xdc\x67\x55\xd1\x5a\x61\xcd\xeb\x92\xbd\x60\x7c" "\xc4\xaa\xca\x67\x32\xbf\x35\x68\xa2\x3a\x21\x0d\xd5\x20\xfd\x41" }, { .algname = SN_id_GostR3411_2012_256, .name = "(carry)", .plaintext = etalon_carry, .psize = sizeof(etalon_carry), .digest = "\x81\xbb\x63\x2f\xa3\x1f\xcc\x38\xb4\xc3\x79\xa6\x62\xdb\xc5\x8b" "\x9b\xed\x83\xf5\x0d\x3a\x1b\x2c\xe7\x27\x1a\xb0\x2d\x25\xba\xbb" }, { /* ff (Better carry test). */ .algname = SN_id_GostR3411_2012_512, .name = "64 bytes of FF", .plaintext = ff, .psize = sizeof(ff), .digest = "\x41\x62\x9d\xe6\x77\xd7\xe8\x09\x0c\x3c\xd7\x0a\xff\xe3\x30\x0d" "\x1e\x1c\xfb\xa2\xdb\x97\x94\x5e\xc3\x7f\xeb\x4e\x13\x75\xbc\x02" "\xa5\x3f\x00\x37\x0b\x7d\x71\x5b\x07\xf3\x7f\x93\xca\xc8\x44\xef" "\xad\xbf\xd1\xb8\x5f\x9d\xda\xe3\xde\x96\x56\xc0\xe9\x5a\xff\xc7" }, { .algname = SN_id_GostR3411_2012_256, .name = "64 bytes of FF", .plaintext = ff, .psize = sizeof(ff), .digest = "\x96\x4a\x5a\xb6\x02\x86\xf1\x06\x28\x87\x43\xe2\xfe\x1a\x42\x2d" "\x16\x08\x98\xca\x1b\xd5\x35\xe8\x31\xaa\x50\x0c\xfe\x34\xd7\xe8" }, { .algname = SN_id_GostR3411_94, .name = "64 bytes of FF", .plaintext = ff, .psize = sizeof(ff), .digest = "\x58\x50\x4d\x26\xb3\x67\x7e\x75\x6b\xa3\xf4\xa9\xfd\x2f\x14\xb3" "\xba\x54\x57\x06\x6a\x4a\xa1\xd7\x00\x65\x9b\x90\xdc\xdd\xd3\xc6" }, /* Synthetic tests. */ { .algname = SN_id_GostR3411_2012_256, .name = "streebog256 synthetic test", .outsize = 32, .block_size = 64, .digest = "\xa2\xf3\x6d\x9c\x42\xa1\x1e\xad\xe3\xc1\xfe\x99\xf9\x99\xc3\x84" "\xe7\x98\xae\x24\x50\x75\x73\xd7\xfc\x99\x81\xa0\x45\x85\x41\xf6" }, { .algname = SN_id_GostR3411_2012_512, .name = "streebog512 synthetic test", .outsize = 64, .block_size = 64, .digest = "\x1d\x14\x4d\xd8\xb8\x27\xfb\x55\x1a\x5a\x7d\x03\xbb\xdb\xfa\xcb" "\x43\x6b\x5b\xc5\x77\x59\xfd\x5f\xf2\x3b\x8e\xf9\xc4\xdd\x6f\x79" "\x45\xd8\x16\x59\x9e\xaa\xbc\xf2\xb1\x4f\xd0\xe4\xf6\xad\x46\x60" "\x90\x89\xf7\x2f\x93\xd8\x85\x0c\xb0\x43\xff\x5a\xb6\xe3\x69\xbd" }, { 0 } }; static void hexdump(const void *ptr, size_t len) { const unsigned char *p = ptr; size_t i, j; for (i = 0; i < len; i += j) { for (j = 0; j < 16 && i + j < len; j++) printf("%s%02x", j? "" : " ", p[i + j]); } printf("\n"); } static int do_hmac_old(int iter, const EVP_MD *type, const char *plaintext, const struct hash_testvec *t) { unsigned int len; unsigned char md[EVP_MAX_MD_SIZE]; if (!iter) printf("[HMAC] "); HMAC_CTX *ctx; T(ctx = HMAC_CTX_new()); T(HMAC_Init_ex(ctx, t->key, t->key_size, type, NULL)); T(HMAC_Update(ctx, (const unsigned char *)plaintext, t->psize)); T(HMAC_Final(ctx, md, &len)); HMAC_CTX_free(ctx); if (t->outsize) T(len == t->outsize); if (memcmp(md, t->hmac, len) != 0) { printf(cRED "hmac mismatch (iter %d)" cNORM "\n", iter); hexdump(t->hmac, len); hexdump(md, len); return 1; } return 0; } #if OPENSSL_VERSION_MAJOR >= 3 static int do_hmac_prov(int iter, const EVP_MD *md, const char *plaintext, const struct hash_testvec *t) { size_t len; unsigned char out[EVP_MAX_MD_SIZE]; if (!iter) printf("[HMAC by EVP_MAC] "); EVP_MAC *hmac; T(hmac = EVP_MAC_fetch(NULL, "HMAC", NULL)); EVP_MAC_CTX *ctx; T(ctx = EVP_MAC_CTX_new(hmac)); OSSL_PARAM params[] = { OSSL_PARAM_utf8_string(OSSL_MAC_PARAM_DIGEST, (char *)EVP_MD_name(md), 0), OSSL_PARAM_END }; T(EVP_MAC_init(ctx, (const unsigned char *)t->key, t->key_size, params)); T(EVP_MAC_update(ctx, (unsigned char *)plaintext, t->psize)); T(EVP_MAC_final(ctx, out, &len, sizeof(out))); EVP_MAC_CTX_free(ctx); EVP_MAC_free(hmac); if (t->outsize) T(len == t->outsize); if (memcmp(out, t->hmac, len) != 0) { printf(cRED "hmac mismatch (iter %d)" cNORM "\n", iter); hexdump(t->hmac, len); hexdump(out, len); return 1; } return 0; } #endif static int do_hmac(int iter, const EVP_MD *type, const char *plaintext, const struct hash_testvec *t) { int ret; /* Test old (deprecated) and (too) new APIs. */ ret = do_hmac_old(iter, type, plaintext, t); #if OPENSSL_VERSION_MAJOR >= 3 ret |= do_hmac_prov(iter, type, plaintext, t); #endif return ret; } /* * If we have OMAC1/CMAC test vector, * use CMAC provider to test it. */ static int do_cmac_prov(int iter, const char *plaintext, const struct hash_testvec *t) { #if OPENSSL_VERSION_MAJOR >= 3 char *ciphername = NULL; /* * CMAC needs CBC. * Convert 'mac' digest to the underlying CBC cipher. */ switch (OBJ_sn2nid(t->algname)) { case NID_grasshopper_mac: ciphername = "kuznyechik-cbc"; break; case NID_magma_mac: ciphername = "magma-cbc"; break; default: return 0; } if (!iter) printf("[CMAC(%s)] ", ciphername); size_t len; unsigned char out[EVP_MAX_MD_SIZE]; size_t outsize = t->outsize; if (t->truncate) outsize = t->truncate; EVP_MAC *cmac; T(cmac = EVP_MAC_fetch(NULL, "CMAC", NULL)); EVP_MAC_CTX *ctx; T(ctx = EVP_MAC_CTX_new(cmac)); OSSL_PARAM params[] = { OSSL_PARAM_utf8_string(OSSL_MAC_PARAM_CIPHER, ciphername, 0), OSSL_PARAM_END }; T(EVP_MAC_CTX_set_params(ctx, params)); T(EVP_MAC_init(ctx, (const unsigned char *)t->key, t->key_size, params)); T(EVP_MAC_update(ctx, (unsigned char *)plaintext, t->psize)); T(EVP_MAC_final(ctx, out, &len, sizeof(out))); EVP_MAC_CTX_free(ctx); EVP_MAC_free(cmac); /* CMAC provider will not respect outsize, and will output full block. * So, just compare until what we need. */ T(outsize <= len); if (memcmp(out, t->digest, outsize) != 0) { printf(cRED "cmac mismatch (iter %d)" cNORM "\n", iter); hexdump(t->digest, outsize); hexdump(out, len); return 1; } #endif return 0; } static int do_mac(int iter, EVP_MAC *mac, const char *plaintext, const struct hash_testvec *t) { if (!iter) printf("[MAC %zu] ", t->outsize); size_t acpkm = (size_t)t->acpkm; size_t acpkm_t = (size_t)t->acpkm_t; OSSL_PARAM params[] = { OSSL_PARAM_END, OSSL_PARAM_END, OSSL_PARAM_END, OSSL_PARAM_END }; OSSL_PARAM *p = params; if (acpkm) { *p++ = OSSL_PARAM_construct_size_t("key-mesh", &acpkm); if (acpkm_t) *p++ = OSSL_PARAM_construct_size_t("cipher-key-mesh", &acpkm_t); } EVP_MAC_CTX *ctx; T(ctx = EVP_MAC_CTX_new(mac)); if (t->outsize) T(EVP_MAC_CTX_get_mac_size(ctx) == t->outsize); size_t outsize; if (t->truncate) { outsize = t->truncate; *p++ = OSSL_PARAM_construct_size_t("size", &outsize); } else outsize = EVP_MAC_CTX_get_mac_size(ctx); T(EVP_MAC_init(ctx, (const unsigned char *)t->key, t->key_size, NULL)); T(EVP_MAC_CTX_set_params(ctx, params)); T(EVP_MAC_update(ctx, (unsigned char *)plaintext, t->psize)); size_t len = 0; unsigned char out[256]; if (t->truncate) { T(outsize <= sizeof(out)); T(EVP_MAC_finalXOF(ctx, out, outsize)); len = outsize; } else { T(EVP_MAC_CTX_get_mac_size(ctx) == outsize); T(EVP_MAC_final(ctx, out, &len, sizeof(out))); } EVP_MAC_CTX_free(ctx); T(len == outsize); if (memcmp(out, t->digest, outsize) != 0) { printf(cRED "mac mismatch (iter %d, outsize %d)" cNORM "\n", iter, (int)outsize); hexdump(t->digest, outsize); hexdump(out, outsize); return 1; } return 0; } static int do_digest(int iter, const EVP_MD *type, const char *plaintext, const struct hash_testvec *t) { if (!iter) printf("[MD %zu] ", t->outsize); if (t->outsize) T(EVP_MD_size(type) == t->outsize); size_t outsize; if (t->truncate) outsize = t->truncate; else outsize = EVP_MD_size(type); if (t->block_size) T(EVP_MD_block_size(type) == t->block_size); EVP_MD_CTX *ctx; T(ctx = EVP_MD_CTX_new()); T(EVP_MD_CTX_init(ctx)); T(EVP_DigestInit_ex(ctx, type, NULL)); if (t->key) T(EVP_MD_CTX_ctrl(ctx, EVP_MD_CTRL_SET_KEY, t->key_size, (void *)t->key)); if (t->acpkm) T(EVP_MD_CTX_ctrl(ctx, EVP_CTRL_KEY_MESH, t->acpkm, t->acpkm_t? (void *)&t->acpkm_t : NULL)); T(EVP_DigestUpdate(ctx, plaintext, t->psize)); unsigned int len; unsigned char out[EVP_MAX_MD_SIZE]; if (EVP_MD_flags(EVP_MD_CTX_md(ctx)) & EVP_MD_FLAG_XOF) { T(EVP_DigestFinalXOF(ctx, out, outsize)); len = outsize; } else { T(EVP_MD_CTX_size(ctx) == outsize); T(EVP_DigestFinal_ex(ctx, out, &len)); } EVP_MD_CTX_free(ctx); T(len == outsize); if (memcmp(out, t->digest, outsize) != 0) { printf(cRED "digest mismatch (iter %d, outsize %d)" cNORM "\n", iter, (int)outsize); hexdump(t->digest, outsize); hexdump(out, outsize); return 1; } return 0; } static int do_test(const struct hash_testvec *tv) { int ret = 0; EVP_MD *md = NULL; EVP_MAC *mac = NULL; ERR_set_mark(); T((md = (EVP_MD *)EVP_get_digestbyname(tv->algname)) || (md = EVP_MD_fetch(NULL, tv->algname, NULL)) || (mac = EVP_MAC_fetch(NULL, tv->algname, NULL))); ERR_pop_to_mark(); printf(cBLUE "Test %s: %s: " cNORM, tv->algname, tv->name); /* Test alignment problems. */ int shifts = 32; int i; char *buf; T(buf = OPENSSL_malloc(tv->psize + shifts)); for (i = 0; i < shifts; i++) { memcpy(buf + i, tv->plaintext, tv->psize); if (mac) { ret |= do_mac(i, mac, buf + i, tv); } if (md) { if (tv->hmac) ret |= do_hmac(i, md, buf + i, tv); else ret |= do_digest(i, md, buf + i, tv); } /* Test CMAC provider for applicable entries. */ ret |= do_cmac_prov(i, buf + i, tv); /* No need to continue loop on failure. */ if (ret) break; } OPENSSL_free(buf); EVP_MAC_free(mac); EVP_MD_free(md); if (!ret) printf(cGREEN "success" cNORM "\n"); else printf(cRED "fail" cNORM "\n"); return ret; } #define SUPER_SIZE 256 /* * For 256-byte buffer filled with 256 bytes from 0 to 255; * Digest them 256 times from the buffer end with lengths from 0 to 256, * and from beginning of the buffer with lengths from 0 to 256; * Each produced digest is digested again into final sum. */ static int do_synthetic_once(const struct hash_testvec *tv, unsigned int shifts) { unsigned char *ibuf, *md; T(ibuf = OPENSSL_zalloc(SUPER_SIZE + shifts)); /* fill with pattern */ unsigned int len; for (len = 0; len < SUPER_SIZE; len++) ibuf[shifts + len] = len & 0xff; EVP_MD *dgst; T((dgst = (EVP_MD *)EVP_get_digestbyname(tv->algname)) || (dgst = EVP_MD_fetch(NULL, tv->algname, NULL))); OPENSSL_assert(EVP_MD_is_a(dgst, tv->algname)); EVP_MD_CTX *ctx, *ctx2; T(ctx = EVP_MD_CTX_new()); T(ctx2 = EVP_MD_CTX_new()); T(EVP_DigestInit(ctx2, dgst)); OPENSSL_assert(EVP_MD_is_a(EVP_MD_CTX_md(ctx2), tv->algname)); OPENSSL_assert(EVP_MD_block_size(dgst) == tv->block_size); OPENSSL_assert(EVP_MD_CTX_size(ctx2) == tv->outsize); OPENSSL_assert(EVP_MD_CTX_block_size(ctx2) == tv->block_size); const unsigned int mdlen = EVP_MD_size(dgst); OPENSSL_assert(mdlen == tv->outsize); T(md = OPENSSL_zalloc(mdlen + shifts)); md += shifts; /* test for output digest alignment problems */ /* digest cycles */ for (len = 0; len < SUPER_SIZE; len++) { /* for each len digest len bytes from the end of buf */ T(EVP_DigestInit(ctx, dgst)); T(EVP_DigestUpdate(ctx, ibuf + shifts + SUPER_SIZE - len, len)); T(EVP_DigestFinal(ctx, md, NULL)); T(EVP_DigestUpdate(ctx2, md, mdlen)); } for (len = 0; len < SUPER_SIZE; len++) { /* for each len digest len bytes from the beginning of buf */ T(EVP_DigestInit(ctx, dgst)); T(EVP_DigestUpdate(ctx, ibuf + shifts, len)); T(EVP_DigestFinal(ctx, md, NULL)); T(EVP_DigestUpdate(ctx2, md, mdlen)); } OPENSSL_free(ibuf); EVP_MD_CTX_free(ctx); T(EVP_DigestFinal(ctx2, md, &len)); EVP_MD_CTX_free(ctx2); EVP_MD_free(dgst); if (len != mdlen) { printf(cRED "digest output len mismatch %u != %u (expected)" cNORM "\n", len, mdlen); goto err; } if (memcmp(md, tv->digest, mdlen) != 0) { printf(cRED "digest mismatch" cNORM "\n"); unsigned int i; printf(" Expected value is: "); for (i = 0; i < mdlen; i++) printf("\\x%02x", md[i]); printf("\n"); goto err; } OPENSSL_free(md - shifts); return 0; err: OPENSSL_free(md - shifts); EVP_MD_free(dgst); return 1; } /* do different block sizes and different memory offsets */ static int do_synthetic_test(const struct hash_testvec *tv) { int ret = 0; printf(cBLUE "Test %s: " cNORM, tv->name); fflush(stdout); unsigned int shifts; for (shifts = 0; shifts < 16 && !ret; shifts++) ret |= do_synthetic_once(tv, shifts); if (!ret) printf(cGREEN "success" cNORM "\n"); else printf(cRED "fail" cNORM "\n"); return 0; } int engine_is_available(const char *name) { ENGINE *e = ENGINE_get_first(); while (e != NULL) { if (strcmp(ENGINE_get_id(e), name) == 0) break; e = ENGINE_get_next(e); } ENGINE_free(e); return e != NULL; } void warn_if_untested(const EVP_MD *dgst, void *provider) { const struct hash_testvec *tv; /* ENGINE provided EVP_MDs have a NULL provider */ if (provider != EVP_MD_get0_provider(dgst)) return; for (tv = testvecs; tv->algname; tv++) if (EVP_MD_is_a(dgst, tv->algname)) break; if (!tv->algname) printf(cMAGENT "Digest %s is untested!" cNORM "\n", EVP_MD_name(dgst)); } void warn_all_untested(void) { if (engine_is_available("gost")) { ENGINE *eng; T(eng = ENGINE_by_id("gost")); T(ENGINE_init(eng)); ENGINE_DIGESTS_PTR fn_c; T(fn_c = ENGINE_get_digests(eng)); const int *nids; int n, k; n = fn_c(eng, NULL, &nids, 0); for (k = 0; k < n; ++k) warn_if_untested(ENGINE_get_digest(eng, nids[k]), NULL); ENGINE_finish(eng); ENGINE_free(eng); } if (OSSL_PROVIDER_available(NULL, "gostprov")) { OSSL_PROVIDER *prov; T(prov = OSSL_PROVIDER_load(NULL, "gostprov")); EVP_MD_do_all_provided(NULL, (void (*)(EVP_MD *, void *))warn_if_untested, prov); OSSL_PROVIDER_unload(prov); } } int main(int argc, char **argv) { int ret = 0; #if MIPSEL /* Trigger SIGBUS for unaligned access. */ sysmips(MIPS_FIXADE, 0); #endif OPENSSL_add_all_algorithms_conf(); const struct hash_testvec *tv; for (tv = testvecs; tv->algname; tv++) { if (tv->plaintext) ret |= do_test(tv); else ret |= do_synthetic_test(tv); } warn_all_untested(); if (ret) printf(cDRED "= Some tests FAILED!" cNORM "\n"); else printf(cDGREEN "= All tests passed!" cNORM "\n"); return ret; }