/** @file Main file for compression routine. Compression routine. The compression algorithm is a mixture of LZ77 and Huffman coding. LZ77 transforms the source data into a sequence of Original Characters and Pointers to repeated strings. This sequence is further divided into Blocks and Huffman codings are applied to each Block. Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include #include #include #include #include #include "Compress.h" // // Macro Definitions // typedef INT16 NODE; #define UINT8_MAX 0xff #define UINT8_BIT 8 #define THRESHOLD 3 #define INIT_CRC 0 #define WNDBIT 13 #define WNDSIZ (1U << WNDBIT) #define MAXMATCH 256 #define BLKSIZ (1U << 14) // 16 * 1024U #define PERC_FLAG 0x8000U #define CODE_BIT 16 #define NIL 0 #define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX) #define HASH(LoopVar7, LoopVar5) ((LoopVar7) + ((LoopVar5) << (WNDBIT - 9)) + WNDSIZ * 2) #define CRCPOLY 0xA001 #define UPDATE_CRC(LoopVar5) mCrc = mCrcTable[(mCrc ^ (LoopVar5)) & 0xFF] ^ (mCrc >> UINT8_BIT) // // C: the Char&Len Set; P: the Position Set; T: the exTra Set // #define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD) #define CBIT 9 #define NP (WNDBIT + 1) #define PBIT 4 #define NT (CODE_BIT + 3) #define TBIT 5 #if NT > NP #define NPT NT #else #define NPT NP #endif // // Function Prototypes // /** Put a dword to output stream @param[in] Data The dword to put. **/ VOID PutDword( IN UINT32 Data ); // // Global Variables // STATIC UINT8 *mSrc; STATIC UINT8 *mDst; STATIC UINT8 *mSrcUpperLimit; STATIC UINT8 *mDstUpperLimit; STATIC UINT8 *mLevel; STATIC UINT8 *mText; STATIC UINT8 *mChildCount; STATIC UINT8 *mBuf; STATIC UINT8 mCLen[NC]; STATIC UINT8 mPTLen[NPT]; STATIC UINT8 *mLen; STATIC INT16 mHeap[NC + 1]; STATIC INT32 mRemainder; STATIC INT32 mMatchLen; STATIC INT32 mBitCount; STATIC INT32 mHeapSize; STATIC INT32 mTempInt32; STATIC UINT32 mBufSiz = 0; STATIC UINT32 mOutputPos; STATIC UINT32 mOutputMask; STATIC UINT32 mSubBitBuf; STATIC UINT32 mCrc; STATIC UINT32 mCompSize; STATIC UINT32 mOrigSize; STATIC UINT16 *mFreq; STATIC UINT16 *mSortPtr; STATIC UINT16 mLenCnt[17]; STATIC UINT16 mLeft[2 * NC - 1]; STATIC UINT16 mRight[2 * NC - 1]; STATIC UINT16 mCrcTable[UINT8_MAX + 1]; STATIC UINT16 mCFreq[2 * NC - 1]; STATIC UINT16 mCCode[NC]; STATIC UINT16 mPFreq[2 * NP - 1]; STATIC UINT16 mPTCode[NPT]; STATIC UINT16 mTFreq[2 * NT - 1]; STATIC NODE mPos; STATIC NODE mMatchPos; STATIC NODE mAvail; STATIC NODE *mPosition; STATIC NODE *mParent; STATIC NODE *mPrev; STATIC NODE *mNext = NULL; INT32 mHuffmanDepth = 0; /** Make a CRC table. **/ VOID MakeCrcTable ( VOID ) { UINT32 LoopVar1; UINT32 LoopVar2; UINT32 LoopVar4; for (LoopVar1 = 0; LoopVar1 <= UINT8_MAX; LoopVar1++) { LoopVar4 = LoopVar1; for (LoopVar2 = 0; LoopVar2 < UINT8_BIT; LoopVar2++) { if ((LoopVar4 & 1) != 0) { LoopVar4 = (LoopVar4 >> 1) ^ CRCPOLY; } else { LoopVar4 >>= 1; } } mCrcTable[LoopVar1] = (UINT16) LoopVar4; } } /** Put a dword to output stream @param[in] Data The dword to put. **/ VOID PutDword ( IN UINT32 Data ) { if (mDst < mDstUpperLimit) { *mDst++ = (UINT8) (((UINT8) (Data)) & 0xff); } if (mDst < mDstUpperLimit) { *mDst++ = (UINT8) (((UINT8) (Data >> 0x08)) & 0xff); } if (mDst < mDstUpperLimit) { *mDst++ = (UINT8) (((UINT8) (Data >> 0x10)) & 0xff); } if (mDst < mDstUpperLimit) { *mDst++ = (UINT8) (((UINT8) (Data >> 0x18)) & 0xff); } } /** Allocate memory spaces for data structures used in compression process. @retval EFI_SUCCESS Memory was allocated successfully. @retval EFI_OUT_OF_RESOURCES A memory allocation failed. **/ EFI_STATUS AllocateMemory ( VOID ) { mText = AllocateZeroPool (WNDSIZ * 2 + MAXMATCH); mLevel = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mLevel)); mChildCount = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mChildCount)); mPosition = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mPosition)); mParent = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mParent)); mPrev = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mPrev)); mNext = AllocateZeroPool ((MAX_HASH_VAL + 1) * sizeof (*mNext)); mBufSiz = BLKSIZ; mBuf = AllocateZeroPool (mBufSiz); while (mBuf == NULL) { mBufSiz = (mBufSiz / 10U) * 9U; if (mBufSiz < 4 * 1024U) { return EFI_OUT_OF_RESOURCES; } mBuf = AllocateZeroPool (mBufSiz); } mBuf[0] = 0; return EFI_SUCCESS; } /** Called when compression is completed to free memory previously allocated. **/ VOID FreeMemory ( VOID ) { SHELL_FREE_NON_NULL (mText); SHELL_FREE_NON_NULL (mLevel); SHELL_FREE_NON_NULL (mChildCount); SHELL_FREE_NON_NULL (mPosition); SHELL_FREE_NON_NULL (mParent); SHELL_FREE_NON_NULL (mPrev); SHELL_FREE_NON_NULL (mNext); SHELL_FREE_NON_NULL (mBuf); } /** Initialize String Info Log data structures. **/ VOID InitSlide ( VOID ) { NODE LoopVar1; SetMem (mLevel + WNDSIZ, (UINT8_MAX + 1) * sizeof (UINT8), 1); SetMem (mPosition + WNDSIZ, (UINT8_MAX + 1) * sizeof (NODE), 0); SetMem (mParent + WNDSIZ, WNDSIZ * sizeof (NODE), 0); mAvail = 1; for (LoopVar1 = 1; LoopVar1 < WNDSIZ - 1; LoopVar1++) { mNext[LoopVar1] = (NODE) (LoopVar1 + 1); } mNext[WNDSIZ - 1] = NIL; SetMem (mNext + WNDSIZ * 2, (MAX_HASH_VAL - WNDSIZ * 2 + 1) * sizeof (NODE), 0); } /** Find child node given the parent node and the edge character @param[in] LoopVar6 The parent node. @param[in] LoopVar5 The edge character. @return The child node. @retval NIL(Zero) No child could be found. **/ NODE Child ( IN NODE LoopVar6, IN UINT8 LoopVar5 ) { NODE LoopVar4; LoopVar4 = mNext[HASH (LoopVar6, LoopVar5)]; mParent[NIL] = LoopVar6; /* sentinel */ while (mParent[LoopVar4] != LoopVar6) { LoopVar4 = mNext[LoopVar4]; } return LoopVar4; } /** Create a new child for a given parent node. @param[in] LoopVar6 The parent node. @param[in] LoopVar5 The edge character. @param[in] LoopVar4 The child node. **/ VOID MakeChild ( IN NODE LoopVar6, IN UINT8 LoopVar5, IN NODE LoopVar4 ) { NODE LoopVar12; NODE LoopVar10; LoopVar12 = (NODE) HASH (LoopVar6, LoopVar5); LoopVar10 = mNext[LoopVar12]; mNext[LoopVar12] = LoopVar4; mNext[LoopVar4] = LoopVar10; mPrev[LoopVar10] = LoopVar4; mPrev[LoopVar4] = LoopVar12; mParent[LoopVar4] = LoopVar6; mChildCount[LoopVar6]++; } /** Split a node. @param[in] Old The node to split. **/ VOID Split ( IN NODE Old ) { NODE New; NODE LoopVar10; New = mAvail; mAvail = mNext[New]; mChildCount[New] = 0; LoopVar10 = mPrev[Old]; mPrev[New] = LoopVar10; mNext[LoopVar10] = New; LoopVar10 = mNext[Old]; mNext[New] = LoopVar10; mPrev[LoopVar10] = New; mParent[New] = mParent[Old]; mLevel[New] = (UINT8) mMatchLen; mPosition[New] = mPos; MakeChild (New, mText[mMatchPos + mMatchLen], Old); MakeChild (New, mText[mPos + mMatchLen], mPos); } /** Insert string info for current position into the String Info Log. **/ VOID InsertNode ( VOID ) { NODE LoopVar6; NODE LoopVar4; NODE LoopVar2; NODE LoopVar10; UINT8 LoopVar5; UINT8 *TempString3; UINT8 *TempString2; if (mMatchLen >= 4) { // // We have just got a long match, the target tree // can be located by MatchPos + 1. Travese the tree // from bottom up to get to a proper starting point. // The usage of PERC_FLAG ensures proper node deletion // in DeleteNode() later. // mMatchLen--; LoopVar4 = (NODE) ((mMatchPos + 1) | WNDSIZ); LoopVar6 = mParent[LoopVar4]; while (LoopVar6 == NIL) { LoopVar4 = mNext[LoopVar4]; LoopVar6 = mParent[LoopVar4]; } while (mLevel[LoopVar6] >= mMatchLen) { LoopVar4 = LoopVar6; LoopVar6 = mParent[LoopVar6]; } LoopVar10 = LoopVar6; while (mPosition[LoopVar10] < 0) { mPosition[LoopVar10] = mPos; LoopVar10 = mParent[LoopVar10]; } if (LoopVar10 < WNDSIZ) { mPosition[LoopVar10] = (NODE) (mPos | PERC_FLAG); } } else { // // Locate the target tree // LoopVar6 = (NODE) (mText[mPos] + WNDSIZ); LoopVar5 = mText[mPos + 1]; LoopVar4 = Child (LoopVar6, LoopVar5); if (LoopVar4 == NIL) { MakeChild (LoopVar6, LoopVar5, mPos); mMatchLen = 1; return ; } mMatchLen = 2; } // // Traverse down the tree to find a match. // Update Position value along the route. // Node split or creation is involved. // for (;;) { if (LoopVar4 >= WNDSIZ) { LoopVar2 = MAXMATCH; mMatchPos = LoopVar4; } else { LoopVar2 = mLevel[LoopVar4]; mMatchPos = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG); } if (mMatchPos >= mPos) { mMatchPos -= WNDSIZ; } TempString3 = &mText[mPos + mMatchLen]; TempString2 = &mText[mMatchPos + mMatchLen]; while (mMatchLen < LoopVar2) { if (*TempString3 != *TempString2) { Split (LoopVar4); return ; } mMatchLen++; TempString3++; TempString2++; } if (mMatchLen >= MAXMATCH) { break; } mPosition[LoopVar4] = mPos; LoopVar6 = LoopVar4; LoopVar4 = Child (LoopVar6, *TempString3); if (LoopVar4 == NIL) { MakeChild (LoopVar6, *TempString3, mPos); return ; } mMatchLen++; } LoopVar10 = mPrev[LoopVar4]; mPrev[mPos] = LoopVar10; mNext[LoopVar10] = mPos; LoopVar10 = mNext[LoopVar4]; mNext[mPos] = LoopVar10; mPrev[LoopVar10] = mPos; mParent[mPos] = LoopVar6; mParent[LoopVar4] = NIL; // // Special usage of 'next' // mNext[LoopVar4] = mPos; } /** Delete outdated string info. (The Usage of PERC_FLAG ensures a clean deletion). **/ VOID DeleteNode ( VOID ) { NODE LoopVar6; NODE LoopVar4; NODE LoopVar11; NODE LoopVar10; NODE LoopVar9; if (mParent[mPos] == NIL) { return ; } LoopVar4 = mPrev[mPos]; LoopVar11 = mNext[mPos]; mNext[LoopVar4] = LoopVar11; mPrev[LoopVar11] = LoopVar4; LoopVar4 = mParent[mPos]; mParent[mPos] = NIL; if (LoopVar4 >= WNDSIZ) { return ; } mChildCount[LoopVar4]--; if (mChildCount[LoopVar4] > 1) { return ; } LoopVar10 = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG); if (LoopVar10 >= mPos) { LoopVar10 -= WNDSIZ; } LoopVar11 = LoopVar10; LoopVar6 = mParent[LoopVar4]; LoopVar9 = mPosition[LoopVar6]; while ((LoopVar9 & PERC_FLAG) != 0){ LoopVar9 &= ~PERC_FLAG; if (LoopVar9 >= mPos) { LoopVar9 -= WNDSIZ; } if (LoopVar9 > LoopVar11) { LoopVar11 = LoopVar9; } mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ); LoopVar6 = mParent[LoopVar6]; LoopVar9 = mPosition[LoopVar6]; } if (LoopVar6 < WNDSIZ) { if (LoopVar9 >= mPos) { LoopVar9 -= WNDSIZ; } if (LoopVar9 > LoopVar11) { LoopVar11 = LoopVar9; } mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ | PERC_FLAG); } LoopVar11 = Child (LoopVar4, mText[LoopVar10 + mLevel[LoopVar4]]); LoopVar10 = mPrev[LoopVar11]; LoopVar9 = mNext[LoopVar11]; mNext[LoopVar10] = LoopVar9; mPrev[LoopVar9] = LoopVar10; LoopVar10 = mPrev[LoopVar4]; mNext[LoopVar10] = LoopVar11; mPrev[LoopVar11] = LoopVar10; LoopVar10 = mNext[LoopVar4]; mPrev[LoopVar10] = LoopVar11; mNext[LoopVar11] = LoopVar10; mParent[LoopVar11] = mParent[LoopVar4]; mParent[LoopVar4] = NIL; mNext[LoopVar4] = mAvail; mAvail = LoopVar4; } /** Read in source data @param[out] LoopVar7 The buffer to hold the data. @param[in] LoopVar8 The number of bytes to read. @return The number of bytes actually read. **/ INT32 FreadCrc ( OUT UINT8 *LoopVar7, IN INT32 LoopVar8 ) { INT32 LoopVar1; for (LoopVar1 = 0; mSrc < mSrcUpperLimit && LoopVar1 < LoopVar8; LoopVar1++) { *LoopVar7++ = *mSrc++; } LoopVar8 = LoopVar1; LoopVar7 -= LoopVar8; mOrigSize += LoopVar8; LoopVar1--; while (LoopVar1 >= 0) { UPDATE_CRC (*LoopVar7++); LoopVar1--; } return LoopVar8; } /** Advance the current position (read in new data if needed). Delete outdated string info. Find a match string for current position. @retval TRUE The operation was successful. @retval FALSE The operation failed due to insufficient memory. **/ BOOLEAN GetNextMatch ( VOID ) { INT32 LoopVar8; VOID *Temp; mRemainder--; mPos++; if (mPos == WNDSIZ * 2) { Temp = AllocateZeroPool (WNDSIZ + MAXMATCH); if (Temp == NULL) { return (FALSE); } CopyMem (Temp, &mText[WNDSIZ], WNDSIZ + MAXMATCH); CopyMem (&mText[0], Temp, WNDSIZ + MAXMATCH); FreePool (Temp); LoopVar8 = FreadCrc (&mText[WNDSIZ + MAXMATCH], WNDSIZ); mRemainder += LoopVar8; mPos = WNDSIZ; } DeleteNode (); InsertNode (); return (TRUE); } /** Send entry LoopVar1 down the queue. @param[in] LoopVar1 The index of the item to move. **/ VOID DownHeap ( IN INT32 i ) { INT32 LoopVar1; INT32 LoopVar2; // // priority queue: send i-th entry down heap // LoopVar2 = mHeap[i]; LoopVar1 = 2 * i; while (LoopVar1 <= mHeapSize) { if (LoopVar1 < mHeapSize && mFreq[mHeap[LoopVar1]] > mFreq[mHeap[LoopVar1 + 1]]) { LoopVar1++; } if (mFreq[LoopVar2] <= mFreq[mHeap[LoopVar1]]) { break; } mHeap[i] = mHeap[LoopVar1]; i = LoopVar1; LoopVar1 = 2 * i; } mHeap[i] = (INT16) LoopVar2; } /** Count the number of each code length for a Huffman tree. @param[in] LoopVar1 The top node. **/ VOID CountLen ( IN INT32 LoopVar1 ) { if (LoopVar1 < mTempInt32) { mLenCnt[(mHuffmanDepth < 16) ? mHuffmanDepth : 16]++; } else { mHuffmanDepth++; CountLen (mLeft[LoopVar1]); CountLen (mRight[LoopVar1]); mHuffmanDepth--; } } /** Create code length array for a Huffman tree. @param[in] Root The root of the tree. **/ VOID MakeLen ( IN INT32 Root ) { INT32 LoopVar1; INT32 LoopVar2; UINT32 Cum; for (LoopVar1 = 0; LoopVar1 <= 16; LoopVar1++) { mLenCnt[LoopVar1] = 0; } CountLen (Root); // // Adjust the length count array so that // no code will be generated longer than its designated length // Cum = 0; for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) { Cum += mLenCnt[LoopVar1] << (16 - LoopVar1); } while (Cum != (1U << 16)) { mLenCnt[16]--; for (LoopVar1 = 15; LoopVar1 > 0; LoopVar1--) { if (mLenCnt[LoopVar1] != 0) { mLenCnt[LoopVar1]--; mLenCnt[LoopVar1 + 1] += 2; break; } } Cum--; } for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) { LoopVar2 = mLenCnt[LoopVar1]; LoopVar2--; while (LoopVar2 >= 0) { mLen[*mSortPtr++] = (UINT8) LoopVar1; LoopVar2--; } } } /** Assign code to each symbol based on the code length array. @param[in] LoopVar8 The number of symbols. @param[in] Len The code length array. @param[out] Code The stores codes for each symbol. **/ VOID MakeCode ( IN INT32 LoopVar8, IN UINT8 Len[ ], OUT UINT16 Code[ ] ) { INT32 LoopVar1; UINT16 Start[18]; Start[1] = 0; for (LoopVar1 = 1; LoopVar1 <= 16; LoopVar1++) { Start[LoopVar1 + 1] = (UINT16) ((Start[LoopVar1] + mLenCnt[LoopVar1]) << 1); } for (LoopVar1 = 0; LoopVar1 < LoopVar8; LoopVar1++) { Code[LoopVar1] = Start[Len[LoopVar1]]++; } } /** Generates Huffman codes given a frequency distribution of symbols. @param[in] NParm The number of symbols. @param[in] FreqParm The frequency of each symbol. @param[out] LenParm The code length for each symbol. @param[out] CodeParm The code for each symbol. @return The root of the Huffman tree. **/ INT32 MakeTree ( IN INT32 NParm, IN UINT16 FreqParm[ ], OUT UINT8 LenParm[ ], OUT UINT16 CodeParm[ ] ) { INT32 LoopVar1; INT32 LoopVar2; INT32 LoopVar3; INT32 Avail; // // make tree, calculate len[], return root // mTempInt32 = NParm; mFreq = FreqParm; mLen = LenParm; Avail = mTempInt32; mHeapSize = 0; mHeap[1] = 0; for (LoopVar1 = 0; LoopVar1 < mTempInt32; LoopVar1++) { mLen[LoopVar1] = 0; if ((mFreq[LoopVar1]) != 0) { mHeapSize++; mHeap[mHeapSize] = (INT16) LoopVar1; } } if (mHeapSize < 2) { CodeParm[mHeap[1]] = 0; return mHeap[1]; } for (LoopVar1 = mHeapSize / 2; LoopVar1 >= 1; LoopVar1--) { // // make priority queue // DownHeap (LoopVar1); } mSortPtr = CodeParm; do { LoopVar1 = mHeap[1]; if (LoopVar1 < mTempInt32) { *mSortPtr++ = (UINT16) LoopVar1; } mHeap[1] = mHeap[mHeapSize--]; DownHeap (1); LoopVar2 = mHeap[1]; if (LoopVar2 < mTempInt32) { *mSortPtr++ = (UINT16) LoopVar2; } LoopVar3 = Avail++; mFreq[LoopVar3] = (UINT16) (mFreq[LoopVar1] + mFreq[LoopVar2]); mHeap[1] = (INT16) LoopVar3; DownHeap (1); mLeft[LoopVar3] = (UINT16) LoopVar1; mRight[LoopVar3] = (UINT16) LoopVar2; } while (mHeapSize > 1); mSortPtr = CodeParm; MakeLen (LoopVar3); MakeCode (NParm, LenParm, CodeParm); // // return root // return LoopVar3; } /** Outputs rightmost LoopVar8 bits of x @param[in] LoopVar8 The rightmost LoopVar8 bits of the data is used. @param[in] x The data. **/ VOID PutBits ( IN INT32 LoopVar8, IN UINT32 x ) { UINT8 Temp; if (LoopVar8 < mBitCount) { mSubBitBuf |= x << (mBitCount -= LoopVar8); } else { Temp = (UINT8)(mSubBitBuf | (x >> (LoopVar8 -= mBitCount))); if (mDst < mDstUpperLimit) { *mDst++ = Temp; } mCompSize++; if (LoopVar8 < UINT8_BIT) { mSubBitBuf = x << (mBitCount = UINT8_BIT - LoopVar8); } else { Temp = (UINT8)(x >> (LoopVar8 - UINT8_BIT)); if (mDst < mDstUpperLimit) { *mDst++ = Temp; } mCompSize++; mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - LoopVar8); } } } /** Encode a signed 32 bit number. @param[in] LoopVar5 The number to encode. **/ VOID EncodeC ( IN INT32 LoopVar5 ) { PutBits (mCLen[LoopVar5], mCCode[LoopVar5]); } /** Encode a unsigned 32 bit number. @param[in] LoopVar7 The number to encode. **/ VOID EncodeP ( IN UINT32 LoopVar7 ) { UINT32 LoopVar5; UINT32 LoopVar6; LoopVar5 = 0; LoopVar6 = LoopVar7; while (LoopVar6 != 0) { LoopVar6 >>= 1; LoopVar5++; } PutBits (mPTLen[LoopVar5], mPTCode[LoopVar5]); if (LoopVar5 > 1) { PutBits(LoopVar5 - 1, LoopVar7 & (0xFFFFU >> (17 - LoopVar5))); } } /** Count the frequencies for the Extra Set. **/ VOID CountTFreq ( VOID ) { INT32 LoopVar1; INT32 LoopVar3; INT32 LoopVar8; INT32 Count; for (LoopVar1 = 0; LoopVar1 < NT; LoopVar1++) { mTFreq[LoopVar1] = 0; } LoopVar8 = NC; while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) { LoopVar8--; } LoopVar1 = 0; while (LoopVar1 < LoopVar8) { LoopVar3 = mCLen[LoopVar1++]; if (LoopVar3 == 0) { Count = 1; while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) { LoopVar1++; Count++; } if (Count <= 2) { mTFreq[0] = (UINT16) (mTFreq[0] + Count); } else if (Count <= 18) { mTFreq[1]++; } else if (Count == 19) { mTFreq[0]++; mTFreq[1]++; } else { mTFreq[2]++; } } else { ASSERT((LoopVar3+2)<(2 * NT - 1)); mTFreq[LoopVar3 + 2]++; } } } /** Outputs the code length array for the Extra Set or the Position Set. @param[in] LoopVar8 The number of symbols. @param[in] nbit The number of bits needed to represent 'LoopVar8'. @param[in] Special The special symbol that needs to be take care of. **/ VOID WritePTLen ( IN INT32 LoopVar8, IN INT32 nbit, IN INT32 Special ) { INT32 LoopVar1; INT32 LoopVar3; while (LoopVar8 > 0 && mPTLen[LoopVar8 - 1] == 0) { LoopVar8--; } PutBits (nbit, LoopVar8); LoopVar1 = 0; while (LoopVar1 < LoopVar8) { LoopVar3 = mPTLen[LoopVar1++]; if (LoopVar3 <= 6) { PutBits (3, LoopVar3); } else { PutBits (LoopVar3 - 3, (1U << (LoopVar3 - 3)) - 2); } if (LoopVar1 == Special) { while (LoopVar1 < 6 && mPTLen[LoopVar1] == 0) { LoopVar1++; } PutBits (2, (LoopVar1 - 3) & 3); } } } /** Outputs the code length array for Char&Length Set. **/ VOID WriteCLen ( VOID ) { INT32 LoopVar1; INT32 LoopVar3; INT32 LoopVar8; INT32 Count; LoopVar8 = NC; while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) { LoopVar8--; } PutBits (CBIT, LoopVar8); LoopVar1 = 0; while (LoopVar1 < LoopVar8) { LoopVar3 = mCLen[LoopVar1++]; if (LoopVar3 == 0) { Count = 1; while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) { LoopVar1++; Count++; } if (Count <= 2) { for (LoopVar3 = 0; LoopVar3 < Count; LoopVar3++) { PutBits (mPTLen[0], mPTCode[0]); } } else if (Count <= 18) { PutBits (mPTLen[1], mPTCode[1]); PutBits (4, Count - 3); } else if (Count == 19) { PutBits (mPTLen[0], mPTCode[0]); PutBits (mPTLen[1], mPTCode[1]); PutBits (4, 15); } else { PutBits (mPTLen[2], mPTCode[2]); PutBits (CBIT, Count - 20); } } else { ASSERT((LoopVar3+2)= NC) { CountTFreq (); Root = MakeTree (NT, mTFreq, mPTLen, mPTCode); if (Root >= NT) { WritePTLen (NT, TBIT, 3); } else { PutBits (TBIT, 0); PutBits (TBIT, Root); } WriteCLen (); } else { PutBits (TBIT, 0); PutBits (TBIT, 0); PutBits (CBIT, 0); PutBits (CBIT, Root); } Root = MakeTree (NP, mPFreq, mPTLen, mPTCode); if (Root >= NP) { WritePTLen (NP, PBIT, -1); } else { PutBits (PBIT, 0); PutBits (PBIT, Root); } Pos = 0; for (LoopVar1 = 0; LoopVar1 < Size; LoopVar1++) { if (LoopVar1 % UINT8_BIT == 0) { Flags = mBuf[Pos++]; } else { Flags <<= 1; } if ((Flags & (1U << (UINT8_BIT - 1))) != 0){ EncodeC(mBuf[Pos++] + (1U << UINT8_BIT)); LoopVar3 = mBuf[Pos++] << UINT8_BIT; LoopVar3 += mBuf[Pos++]; EncodeP (LoopVar3); } else { EncodeC (mBuf[Pos++]); } } SetMem (mCFreq, NC * sizeof (UINT16), 0); SetMem (mPFreq, NP * sizeof (UINT16), 0); } /** Start the huffman encoding. **/ VOID HufEncodeStart ( VOID ) { SetMem (mCFreq, NC * sizeof (UINT16), 0); SetMem (mPFreq, NP * sizeof (UINT16), 0); mOutputPos = mOutputMask = 0; mBitCount = UINT8_BIT; mSubBitBuf = 0; } /** Outputs an Original Character or a Pointer. @param[in] LoopVar5 The original character or the 'String Length' element of a Pointer. @param[in] LoopVar7 The 'Position' field of a Pointer. **/ VOID CompressOutput ( IN UINT32 LoopVar5, IN UINT32 LoopVar7 ) { STATIC UINT32 CPos; if ((mOutputMask >>= 1) == 0) { mOutputMask = 1U << (UINT8_BIT - 1); if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) { SendBlock (); mOutputPos = 0; } CPos = mOutputPos++; mBuf[CPos] = 0; } mBuf[mOutputPos++] = (UINT8) LoopVar5; mCFreq[LoopVar5]++; if (LoopVar5 >= (1U << UINT8_BIT)) { mBuf[CPos] = (UINT8)(mBuf[CPos]|mOutputMask); mBuf[mOutputPos++] = (UINT8)(LoopVar7 >> UINT8_BIT); mBuf[mOutputPos++] = (UINT8) LoopVar7; LoopVar5 = 0; while (LoopVar7!=0) { LoopVar7 >>= 1; LoopVar5++; } mPFreq[LoopVar5]++; } } /** End the huffman encoding. **/ VOID HufEncodeEnd ( VOID ) { SendBlock (); // // Flush remaining bits // PutBits (UINT8_BIT - 1, 0); } /** The main controlling routine for compression process. @retval EFI_SUCCESS The compression is successful. @retval EFI_OUT_0F_RESOURCES Not enough memory for compression process. **/ EFI_STATUS Encode ( VOID ) { EFI_STATUS Status; INT32 LastMatchLen; NODE LastMatchPos; Status = AllocateMemory (); if (EFI_ERROR (Status)) { FreeMemory (); return Status; } InitSlide (); HufEncodeStart (); mRemainder = FreadCrc (&mText[WNDSIZ], WNDSIZ + MAXMATCH); mMatchLen = 0; mPos = WNDSIZ; InsertNode (); if (mMatchLen > mRemainder) { mMatchLen = mRemainder; } while (mRemainder > 0) { LastMatchLen = mMatchLen; LastMatchPos = mMatchPos; if (!GetNextMatch ()) { Status = EFI_OUT_OF_RESOURCES; } if (mMatchLen > mRemainder) { mMatchLen = mRemainder; } if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) { // // Not enough benefits are gained by outputting a pointer, // so just output the original character // CompressOutput(mText[mPos - 1], 0); } else { // // Outputting a pointer is beneficial enough, do it. // CompressOutput(LastMatchLen + (UINT8_MAX + 1 - THRESHOLD), (mPos - LastMatchPos - 2) & (WNDSIZ - 1)); LastMatchLen--; while (LastMatchLen > 0) { if (!GetNextMatch ()) { Status = EFI_OUT_OF_RESOURCES; } LastMatchLen--; } if (mMatchLen > mRemainder) { mMatchLen = mRemainder; } } } HufEncodeEnd (); FreeMemory (); return (Status); } /** The compression routine. @param[in] SrcBuffer The buffer containing the source data. @param[in] SrcSize Number of bytes in SrcBuffer. @param[in] DstBuffer The buffer to put the compressed image in. @param[in, out] DstSize On input the size (in bytes) of DstBuffer, on return the number of bytes placed in DstBuffer. @retval EFI_SUCCESS The compression was sucessful. @retval EFI_BUFFER_TOO_SMALL The buffer was too small. DstSize is required. **/ EFI_STATUS Compress ( IN VOID *SrcBuffer, IN UINT64 SrcSize, IN VOID *DstBuffer, IN OUT UINT64 *DstSize ) { EFI_STATUS Status; // // Initializations // mBufSiz = 0; mBuf = NULL; mText = NULL; mLevel = NULL; mChildCount = NULL; mPosition = NULL; mParent = NULL; mPrev = NULL; mNext = NULL; mSrc = SrcBuffer; mSrcUpperLimit = mSrc + SrcSize; mDst = DstBuffer; mDstUpperLimit = mDst +*DstSize; PutDword (0L); PutDword (0L); MakeCrcTable (); mOrigSize = mCompSize = 0; mCrc = INIT_CRC; // // Compress it // Status = Encode (); if (EFI_ERROR (Status)) { return EFI_OUT_OF_RESOURCES; } // // Null terminate the compressed data // if (mDst < mDstUpperLimit) { *mDst++ = 0; } // // Fill in compressed size and original size // mDst = DstBuffer; PutDword (mCompSize + 1); PutDword (mOrigSize); // // Return // if (mCompSize + 1 + 8 > *DstSize) { *DstSize = mCompSize + 1 + 8; return EFI_BUFFER_TOO_SMALL; } else { *DstSize = mCompSize + 1 + 8; return EFI_SUCCESS; } }