/*++ Copyright (c) 2006, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. Module Name: DxeLoad.c Abstract: Last PEIM. Responsibility of this module is to load the DXE Core from a Firmware Volume. --*/ #include "DxeIpl.h" #include // porting note remove later #include "FrameworkPei.h" // end of remove later EFI_STATUS CustomDecompressExtractSection ( IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This, IN CONST VOID *InputSection, OUT VOID **OutputBuffer, OUT UINTN *OutputSize, OUT UINT32 *AuthenticationStatus ); BOOLEAN gInMemory = FALSE; // // Module Globals used in the DXE to PEI handoff // These must be module globals, so the stack can be switched // static EFI_DXE_IPL_PPI mDxeIplPpi = { DxeLoadCore }; static EFI_PEI_FV_FILE_LOADER_PPI mLoadFilePpi = { DxeIplLoadFile }; static EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI mCustomDecompressExtractiongPpi = { CustomDecompressExtractSection }; static EFI_PEI_PPI_DESCRIPTOR mPpiList[] = { { EFI_PEI_PPI_DESCRIPTOR_PPI, &gEfiPeiFvFileLoaderPpiGuid, &mLoadFilePpi }, { (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiDxeIplPpiGuid, &mDxeIplPpi } }; static EFI_PEI_PPI_DESCRIPTOR mPpiSignal = { (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiEndOfPeiSignalPpiGuid, NULL }; EFI_STATUS EFIAPI PeimInitializeDxeIpl ( IN EFI_FFS_FILE_HEADER *FfsHeader, IN EFI_PEI_SERVICES **PeiServices ) /*++ Routine Description: Initializes the Dxe Ipl PPI Arguments: FfsHeader - Pointer to FFS file header PeiServices - General purpose services available to every PEIM. Returns: EFI_SUCCESS --*/ { EFI_STATUS Status; EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader; EFI_BOOT_MODE BootMode; EFI_GUID **DecompressGuidList; UINT32 DecompressMethodNumber; EFI_PEI_PPI_DESCRIPTOR *GuidPpi; Status = PeiServicesGetBootMode (&BootMode); ASSERT_EFI_ERROR (Status); if (!gInMemory && (BootMode != BOOT_ON_S3_RESUME)) { // // The DxeIpl has not yet been shadowed // PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol (); // // Shadow DxeIpl and then re-run its entry point // Status = ShadowDxeIpl (FfsHeader, PeiEfiPeiPeCoffLoader); } else { // // Get custom decompress method guid list // DecompressGuidList = NULL; DecompressMethodNumber = 0; Status = CustomDecompressGetAlgorithms (DecompressGuidList, &DecompressMethodNumber); if (Status == EFI_OUT_OF_RESOURCES) { DecompressGuidList = (EFI_GUID **) AllocatePages (EFI_SIZE_TO_PAGES (DecompressMethodNumber * sizeof (EFI_GUID *))); ASSERT (DecompressGuidList != NULL); Status = CustomDecompressGetAlgorithms (DecompressGuidList, &DecompressMethodNumber); } ASSERT_EFI_ERROR(Status); // // Install custom decompress extraction guid ppi // if (DecompressMethodNumber > 0) { GuidPpi = NULL; GuidPpi = (EFI_PEI_PPI_DESCRIPTOR *) AllocatePages (EFI_SIZE_TO_PAGES (DecompressMethodNumber * sizeof (EFI_PEI_PPI_DESCRIPTOR))); ASSERT (GuidPpi != NULL); while (DecompressMethodNumber-- > 0) { GuidPpi->Flags = EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST; GuidPpi->Ppi = &mCustomDecompressExtractiongPpi; GuidPpi->Guid = DecompressGuidList [DecompressMethodNumber]; Status = PeiServicesInstallPpi (GuidPpi++); ASSERT_EFI_ERROR(Status); } } // // Install FvFileLoader and DxeIpl PPIs. // Status = PeiServicesInstallPpi (mPpiList); ASSERT_EFI_ERROR(Status); } return Status; } EFI_STATUS EFIAPI DxeLoadCore ( IN EFI_DXE_IPL_PPI *This, IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_HOB_POINTERS HobList ) /*++ Routine Description: Main entry point to last PEIM Arguments: This - Entry point for DXE IPL PPI PeiServices - General purpose services available to every PEIM. HobList - Address to the Pei HOB list Returns: EFI_SUCCESS - DEX core was successfully loaded. EFI_OUT_OF_RESOURCES - There are not enough resources to load DXE core. --*/ { EFI_STATUS Status; EFI_GUID DxeCoreFileName; EFI_GUID FirmwareFileName; VOID *Pe32Data; VOID *FvImageData; EFI_PHYSICAL_ADDRESS DxeCoreAddress; UINT64 DxeCoreSize; EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint; EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader; EFI_BOOT_MODE BootMode; EFI_PEI_RECOVERY_MODULE_PPI *PeiRecovery; EFI_PEI_S3_RESUME_PPI *S3Resume; // PERF_START (PeiServices, L"DxeIpl", NULL, 0); // // if in S3 Resume, restore configure // Status = PeiServicesGetBootMode (&BootMode); ASSERT_EFI_ERROR(Status); if (BootMode == BOOT_ON_S3_RESUME) { Status = PeiServicesLocatePpi ( &gEfiPeiS3ResumePpiGuid, 0, NULL, (VOID **)&S3Resume ); ASSERT_EFI_ERROR (Status); Status = S3Resume->S3RestoreConfig (PeiServices); ASSERT_EFI_ERROR (Status); } else if (BootMode == BOOT_IN_RECOVERY_MODE) { Status = PeiServicesLocatePpi ( &gEfiPeiRecoveryModulePpiGuid, 0, NULL, (VOID **)&PeiRecovery ); ASSERT_EFI_ERROR (Status); Status = PeiRecovery->LoadRecoveryCapsule (PeiServices, PeiRecovery); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Load Recovery Capsule Failed.(Status = %r)\n", Status)); CpuDeadLoop (); } // // Now should have a HOB with the DXE core w/ the old HOB destroyed // } // // Install the PEI Protocols that are shared between PEI and DXE // PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol (); ASSERT (PeiEfiPeiPeCoffLoader != NULL); // // Find the EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE type compressed Firmware Volume file // The file found will be processed by PeiProcessFile: It will first be decompressed to // a normal FV, then a corresponding FV type hob will be built. // Status = PeiFindFile ( EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE, EFI_SECTION_FIRMWARE_VOLUME_IMAGE, &FirmwareFileName, &FvImageData ); // // Find the DXE Core in a Firmware Volume // Status = PeiFindFile ( EFI_FV_FILETYPE_DXE_CORE, EFI_SECTION_PE32, &DxeCoreFileName, &Pe32Data ); ASSERT_EFI_ERROR (Status); // // Load the DXE Core from a Firmware Volume // Status = PeiLoadFile ( PeiEfiPeiPeCoffLoader, Pe32Data, &DxeCoreAddress, &DxeCoreSize, &DxeCoreEntryPoint ); ASSERT_EFI_ERROR (Status); // // Add HOB for the DXE Core // BuildModuleHob ( &DxeCoreFileName, DxeCoreAddress, DxeCoreSize, DxeCoreEntryPoint ); // // Add HOB for the PE/COFF Loader Protocol // BuildGuidDataHob ( &gEfiPeiPeCoffLoaderGuid, (VOID *)&PeiEfiPeiPeCoffLoader, sizeof (VOID *) ); // // Report Status Code EFI_SW_PEI_PC_HANDOFF_TO_NEXT // REPORT_STATUS_CODE ( EFI_PROGRESS_CODE, EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT ); // // Transfer control to the DXE Core // The handoff state is simply a pointer to the HOB list // DEBUG ((EFI_D_INFO, "DXE Core Entry Point 0x%08x\n", (UINTN) DxeCoreEntryPoint)); HandOffToDxeCore (DxeCoreEntryPoint, HobList, &mPpiSignal); // // If we get here, then the DXE Core returned. This is an error // Dxe Core should not return. // ASSERT (FALSE); CpuDeadLoop (); return EFI_OUT_OF_RESOURCES; } EFI_STATUS PeiFindFile ( IN UINT8 Type, IN EFI_SECTION_TYPE SectionType, OUT EFI_GUID *FileName, OUT VOID **Pe32Data ) /*++ Routine Description: Finds a PE/COFF of a specific Type and SectionType in the Firmware Volumes described in the HOB list. Able to search in a compression set in a FFS file. But only one level of compression is supported, that is, not able to search in a compression set that is within another compression set. Arguments: Type - The Type of file to retrieve SectionType - The type of section to retrieve from a file FileName - The name of the file found in the Firmware Volume Pe32Data - Pointer to the beginning of the PE/COFF file found in the Firmware Volume Returns: EFI_SUCCESS - The file was found, and the name is returned in FileName, and a pointer to the PE/COFF image is returned in Pe32Data EFI_NOT_FOUND - The file was not found in the Firmware Volumes present in the HOB List --*/ { EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; EFI_FFS_FILE_HEADER *FfsFileHeader; EFI_STATUS Status; EFI_PEI_HOB_POINTERS Hob; FwVolHeader = NULL; FfsFileHeader = NULL; Status = EFI_SUCCESS; // // For each Firmware Volume, look for a specified type // of file and break out until no one is found // Hob.Raw = GetHobList (); while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_FV, Hob.Raw)) != NULL) { FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) (Hob.FirmwareVolume->BaseAddress); // // Make sure the FV HOB does not get corrupted. // ASSERT (FwVolHeader->Signature == EFI_FVH_SIGNATURE); Status = PeiServicesFfsFindNextFile ( Type, FwVolHeader, &FfsFileHeader ); if (!EFI_ERROR (Status)) { Status = PeiProcessFile ( SectionType, FfsFileHeader, Pe32Data, &Hob ); CopyMem (FileName, &FfsFileHeader->Name, sizeof (EFI_GUID)); // // Find all Fv type ffs to get all FvImage and add them into FvHob // if (!EFI_ERROR (Status) && (Type != EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE)) { return EFI_SUCCESS; } } Hob.Raw = GET_NEXT_HOB (Hob); } return EFI_NOT_FOUND; } EFI_STATUS PeiLoadFile ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader, IN VOID *Pe32Data, OUT EFI_PHYSICAL_ADDRESS *ImageAddress, OUT UINT64 *ImageSize, OUT EFI_PHYSICAL_ADDRESS *EntryPoint ) /*++ Routine Description: Loads and relocates a PE/COFF image into memory. Arguments: PeiEfiPeiPeCoffLoader - Pointer to a PE COFF loader protocol Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated ImageAddress - The base address of the relocated PE/COFF image ImageSize - The size of the relocated PE/COFF image EntryPoint - The entry point of the relocated PE/COFF image Returns: EFI_SUCCESS - The file was loaded and relocated EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file --*/ { EFI_STATUS Status; PE_COFF_LOADER_IMAGE_CONTEXT ImageContext; ZeroMem (&ImageContext, sizeof (ImageContext)); ImageContext.Handle = Pe32Data; Status = GetImageReadFunction (&ImageContext); ASSERT_EFI_ERROR (Status); Status = PeiEfiPeiPeCoffLoader->GetImageInfo (PeiEfiPeiPeCoffLoader, &ImageContext); if (EFI_ERROR (Status)) { return Status; } // // Allocate Memory for the image // ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) AllocatePages (EFI_SIZE_TO_PAGES ((UINT32) ImageContext.ImageSize)); ASSERT (ImageContext.ImageAddress != 0); // // Load the image to our new buffer // Status = PeiEfiPeiPeCoffLoader->LoadImage (PeiEfiPeiPeCoffLoader, &ImageContext); if (EFI_ERROR (Status)) { return Status; } // // Relocate the image in our new buffer // Status = PeiEfiPeiPeCoffLoader->RelocateImage (PeiEfiPeiPeCoffLoader, &ImageContext); if (EFI_ERROR (Status)) { return Status; } // // Flush the instruction cache so the image data is written before we execute it // InvalidateInstructionCacheRange ((VOID *)(UINTN)ImageContext.ImageAddress, (UINTN)ImageContext.ImageSize); *ImageAddress = ImageContext.ImageAddress; *ImageSize = ImageContext.ImageSize; *EntryPoint = ImageContext.EntryPoint; return EFI_SUCCESS; } EFI_STATUS ShadowDxeIpl ( IN EFI_FFS_FILE_HEADER *DxeIplFileHeader, IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader ) /*++ Routine Description: Shadow the DXE IPL to a different memory location. This occurs after permanent memory has been discovered. Arguments: DxeIplFileHeader - Pointer to the FFS file header of the DXE IPL driver PeiEfiPeiPeCoffLoader - Pointer to a PE COFF loader protocol Returns: EFI_SUCCESS - DXE IPL was successfully shadowed to a different memory location. EFI_ ERROR - The shadow was unsuccessful. --*/ { UINTN SectionLength; UINTN OccupiedSectionLength; EFI_PHYSICAL_ADDRESS DxeIplAddress; UINT64 DxeIplSize; EFI_PHYSICAL_ADDRESS DxeIplEntryPoint; EFI_STATUS Status; EFI_COMMON_SECTION_HEADER *Section; Section = (EFI_COMMON_SECTION_HEADER *) (DxeIplFileHeader + 1); while ((Section->Type != EFI_SECTION_PE32) && (Section->Type != EFI_SECTION_TE)) { SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff; OccupiedSectionLength = GET_OCCUPIED_SIZE (SectionLength, 4); Section = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) Section + OccupiedSectionLength); } // // Relocate DxeIpl into memory by using loadfile service // Status = PeiLoadFile ( PeiEfiPeiPeCoffLoader, (VOID *) (Section + 1), &DxeIplAddress, &DxeIplSize, &DxeIplEntryPoint ); if (Status == EFI_SUCCESS) { // // Set gInMemory global variable to TRUE to indicate the dxeipl is shadowed. // *(BOOLEAN *) ((UINTN) &gInMemory + (UINTN) DxeIplEntryPoint - (UINTN) _ModuleEntryPoint) = TRUE; Status = ((EFI_PEIM_ENTRY_POINT2) (UINTN) DxeIplEntryPoint) ((EFI_PEI_FILE_HANDLE *) DxeIplFileHeader, GetPeiServicesTablePointer()); } return Status; } EFI_STATUS EFIAPI DxeIplLoadFile ( IN EFI_PEI_FV_FILE_LOADER_PPI *This, IN EFI_FFS_FILE_HEADER *FfsHeader, OUT EFI_PHYSICAL_ADDRESS *ImageAddress, OUT UINT64 *ImageSize, OUT EFI_PHYSICAL_ADDRESS *EntryPoint ) /*++ Routine Description: Given a pointer to an FFS file containing a PE32 image, get the information on the PE32 image, and then "load" it so that it can be executed. Arguments: This - pointer to our file loader protocol FfsHeader - pointer to the FFS file header of the FFS file that contains the PE32 image we want to load ImageAddress - returned address where the PE32 image is loaded ImageSize - returned size of the loaded PE32 image EntryPoint - entry point to the loaded PE32 image Returns: EFI_SUCCESS - The FFS file was successfully loaded. EFI_ERROR - Unable to load the FFS file. --*/ { EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader; EFI_STATUS Status; VOID *Pe32Data; Pe32Data = NULL; PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol (); // // Preprocess the FFS file to get a pointer to the PE32 information // in the enclosed PE32 image. // Status = PeiProcessFile ( EFI_SECTION_TE, FfsHeader, &Pe32Data, NULL ); if (EFI_ERROR (Status)) { Status = PeiProcessFile ( EFI_SECTION_PE32, FfsHeader, &Pe32Data, NULL ); if (EFI_ERROR (Status)) { return Status; } } // // Load the PE image from the FFS file // Status = PeiLoadFile ( PeiEfiPeiPeCoffLoader, Pe32Data, ImageAddress, ImageSize, EntryPoint ); return Status; } EFI_STATUS PeiProcessFile ( IN EFI_SECTION_TYPE SectionType, IN EFI_FFS_FILE_HEADER *FfsFileHeader, OUT VOID **Pe32Data, IN EFI_PEI_HOB_POINTERS *OrigHob ) /*++ Routine Description: Arguments: SectionType - The type of section in the FFS file to process. FfsFileHeader - Pointer to the FFS file to process, looking for the specified SectionType Pe32Data - returned pointer to the start of the PE32 image found in the FFS file. Returns: EFI_SUCCESS - found the PE32 section in the FFS file --*/ { EFI_STATUS Status; UINT8 *DstBuffer; UINT8 *ScratchBuffer; UINTN DstBufferSize; UINT32 ScratchBufferSize; EFI_COMMON_SECTION_HEADER *CmpSection; UINTN CmpSectionLength; UINTN OccupiedCmpSectionLength; VOID *CmpFileData; UINTN CmpFileSize; EFI_COMMON_SECTION_HEADER *Section; UINTN SectionLength; UINTN OccupiedSectionLength; UINTN FileSize; EFI_FIRMWARE_VOLUME_HEADER *FvHeader; EFI_COMPRESSION_SECTION *CompressionSection; EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *SectionExtract; UINT32 AuthenticationStatus; // // First try to find the required section in this ffs file. // Status = PeiServicesFfsFindSectionData ( SectionType, FfsFileHeader, Pe32Data ); if (!EFI_ERROR (Status)) { return Status; } // // If not found, the required section may be in guided or compressed section. // So, search guided or compressed section to process // Section = (EFI_COMMON_SECTION_HEADER *) (UINTN) (VOID *) ((UINT8 *) (FfsFileHeader) + (UINTN) sizeof (EFI_FFS_FILE_HEADER)); FileSize = FfsFileHeader->Size[0] & 0xFF; FileSize += (FfsFileHeader->Size[1] << 8) & 0xFF00; FileSize += (FfsFileHeader->Size[2] << 16) & 0xFF0000; FileSize &= 0x00FFFFFF; OccupiedSectionLength = 0; do { // // Initialize local variables. // DstBuffer = NULL; DstBufferSize = 0; Section = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) Section + OccupiedSectionLength); SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff; OccupiedSectionLength = GET_OCCUPIED_SIZE (SectionLength, 4); // // Was the DXE Core file encapsulated in a GUID'd section? // if (Section->Type == EFI_SECTION_GUID_DEFINED) { // // Set a default authenticatino state // AuthenticationStatus = 0; // // Locate extract guid section ppi // Status = PeiServicesLocatePpi ( (EFI_GUID *) (Section + 1), 0, NULL, (VOID **)&SectionExtract ); if (EFI_ERROR (Status)) { // // ignore the unknown guid section // continue; } // // Extract the contents from guid section // Status = SectionExtract->ExtractSection ( SectionExtract, (VOID *) Section, (VOID **) &DstBuffer, &DstBufferSize, &AuthenticationStatus ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Extract section content failed - %r\n", Status)); return Status; } // // Todo check AuthenticationStatus and do the verify // } else if (Section->Type == EFI_SECTION_COMPRESSION) { // // This is a compression set, expand it // CompressionSection = (EFI_COMPRESSION_SECTION *) Section; switch (CompressionSection->CompressionType) { case EFI_STANDARD_COMPRESSION: // // Load EFI standard compression. // For compressed data, decompress them to dstbuffer. // Status = UefiDecompressGetInfo ( (UINT8 *) ((EFI_COMPRESSION_SECTION *) Section + 1), (UINT32) SectionLength - sizeof (EFI_COMPRESSION_SECTION), (UINT32 *) &DstBufferSize, &ScratchBufferSize ); if (EFI_ERROR (Status)) { // // GetInfo failed // DEBUG ((EFI_D_ERROR, "Decompress GetInfo Failed - %r\n", Status)); return EFI_NOT_FOUND; } // // Allocate scratch buffer // ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize)); if (ScratchBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // Allocate destination buffer // DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize)); if (DstBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // Call decompress function // Status = UefiDecompress ( (CHAR8 *) ((EFI_COMPRESSION_SECTION *) Section + 1), DstBuffer, ScratchBuffer ); if (EFI_ERROR (Status)) { // // Decompress failed // DEBUG ((EFI_D_ERROR, "Decompress Failed - %r\n", Status)); return EFI_NOT_FOUND; } break; // porting note the original branch for customized compress is removed, it should be change to use GUID compress case EFI_NOT_COMPRESSED: // // Allocate destination buffer // DstBufferSize = CompressionSection->UncompressedLength; DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize)); if (DstBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // stream is not actually compressed, just encapsulated. So just copy it. // CopyMem (DstBuffer, CompressionSection + 1, DstBufferSize); break; default: // // Don't support other unknown compression type. // ASSERT_EFI_ERROR (Status); return EFI_NOT_FOUND; } } else { // // ignore other type sections // continue; } // // Extract contents from guided or compressed sections. // Loop the decompressed data searching for expected section. // CmpSection = (EFI_COMMON_SECTION_HEADER *) DstBuffer; CmpFileData = (VOID *) DstBuffer; CmpFileSize = DstBufferSize; do { CmpSectionLength = *(UINT32 *) (CmpSection->Size) & 0x00ffffff; if (CmpSection->Type == SectionType) { // // This is what we want // if (SectionType == EFI_SECTION_FIRMWARE_VOLUME_IMAGE) { // // Firmware Volume Image in this Section // Skip the section header to get FvHeader // FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (CmpSection + 1); if (FvHeader->Signature == EFI_FVH_SIGNATURE) { // // Because FvLength in FvHeader is UINT64 type, // so FvHeader must meed at least 8 bytes alignment. // If current FvImage base address doesn't meet its alignment, // we need to reload this FvImage to another correct memory address. // if (((UINTN) FvHeader % sizeof (UINT64)) != 0) { CopyMem (DstBuffer, FvHeader, (UINTN) CmpSectionLength - sizeof (EFI_COMMON_SECTION_HEADER)); FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) DstBuffer; } // // Build new FvHob for new decompressed Fv image. // BuildFvHob ((EFI_PHYSICAL_ADDRESS) (UINTN) FvHeader, FvHeader->FvLength); // // Set the original FvHob to unused. // if (OrigHob != NULL) { OrigHob->Header->HobType = EFI_HOB_TYPE_UNUSED; } // // return found FvImage data. // *Pe32Data = (VOID *) FvHeader; return EFI_SUCCESS; } } else { // // direct return the found section. // *Pe32Data = (VOID *) (CmpSection + 1); return EFI_SUCCESS; } } OccupiedCmpSectionLength = GET_OCCUPIED_SIZE (CmpSectionLength, 4); CmpSection = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) CmpSection + OccupiedCmpSectionLength); } while (CmpSection->Type != 0 && (UINTN) ((UINT8 *) CmpSection - (UINT8 *) CmpFileData) < CmpFileSize); } while (Section->Type != 0 && (UINTN) ((UINT8 *) Section + OccupiedSectionLength - (UINT8 *) FfsFileHeader) < FileSize); // // search all sections (compression and non compression) in this FFS, don't // find expected section. // return EFI_NOT_FOUND; } /** The ExtractSection() function processes the input section and returns a pointer to the section contents. If the section being extracted does not require processing (if the section GuidedSectionHeader.Attributes has the EFI_GUIDED_SECTION_PROCESSING_REQUIRED field cleared), then OutputBuffer is just updated to point to the start of the section's contents. Otherwise, *Buffer must be allocated from PEI permanent memory. @param This Indicates the EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI instance. Buffer containing the input GUIDed section to be processed. OutputBuffer OutputBuffer is allocated from PEI permanent memory and contains the new section stream. @param OutputSize A pointer to a caller-allocated UINTN in which the size of *OutputBuffer allocation is stored. If the function returns anything other than EFI_SUCCESS, the value of OutputSize is undefined. @param AuthenticationStatus A pointer to a caller-allocated UINT32 that indicates the authentication status of the output buffer. If the input section's GuidedSectionHeader. Attributes field has the EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit as clear, AuthenticationStatus must return zero. These bits reflect the status of the extraction operation. If the function returns anything other than EFI_SUCCESS, the value of AuthenticationStatus is undefined. @retval EFI_SUCCESS The InputSection was successfully processed and the section contents were returned. @retval EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request. @reteval EFI_INVALID_PARAMETER The GUID in InputSection does not match this instance of the GUIDed Section Extraction PPI. **/ EFI_STATUS CustomDecompressExtractSection ( IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This, IN CONST VOID *InputSection, OUT VOID **OutputBuffer, OUT UINTN *OutputSize, OUT UINT32 *AuthenticationStatus ) { EFI_STATUS Status; UINT8 *ScratchBuffer; UINT32 ScratchSize; UINT32 SectionLength; UINT32 DestinationSize; // // Set authentic value to zero. // *AuthenticationStatus = 0; // // Calculate Section data Size // SectionLength = *(UINT32 *) (((EFI_COMMON_SECTION_HEADER *) InputSection)->Size) & 0x00ffffff; // // Get compressed data information // Status = CustomDecompressGetInfo ( (GUID *) ((UINT8 *) InputSection + sizeof (EFI_COMMON_SECTION_HEADER)), (UINT8 *) InputSection + sizeof (EFI_GUID_DEFINED_SECTION), SectionLength - sizeof (EFI_GUID_DEFINED_SECTION), &DestinationSize, &ScratchSize ); if (EFI_ERROR (Status)) { // // GetInfo failed // DEBUG ((EFI_D_ERROR, "Extract guided section Failed - %r\n", Status)); return Status; } // // Allocate scratch buffer // ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchSize)); if (ScratchBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // Allocate destination buffer // *OutputSize = (UINTN) DestinationSize; *OutputBuffer = AllocatePages (EFI_SIZE_TO_PAGES (*OutputSize)); if (*OutputBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // Call decompress function // Status = CustomDecompress ( (GUID *) ((UINT8 *) InputSection + sizeof (EFI_COMMON_SECTION_HEADER)), (UINT8 *) InputSection + sizeof (EFI_GUID_DEFINED_SECTION), *OutputBuffer, ScratchBuffer ); if (EFI_ERROR (Status)) { // // Decompress failed // DEBUG ((EFI_D_ERROR, "Extract guided section Failed - %r\n", Status)); return Status; } return EFI_SUCCESS; }