/**@file Firmware Volume Block Protocol Runtime Abstraction mFvbEntry is an array of Handle Fvb pairs. The Fvb Lib Instance matches the index in the mFvbEntry array. This should be the same sequence as the FVB's were described in the HOB. We have to remember the handle so we can tell if the protocol has been reinstalled and it needs updateing. If you are using any of these lib functions.you must first call FvbInitialize (). Copyright (c) 2006, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "Fvb.h" // // Lib will ASSERT if more FVB devices than this are added to the system. // STATIC FVB_ENTRY *mFvbEntry; STATIC EFI_EVENT mFvbRegistration; STATIC BOOLEAN mEfiFvbInitialized = FALSE; STATIC UINTN mFvbCount; /** Check whether an address is runtime memory or not. @param Address The Address being checked. @retval TRUE The address is runtime memory. @retval FALSE The address is not runtime memory. **/ BOOLEAN IsRuntimeMemory ( IN VOID *Address ) { EFI_STATUS Status; UINT8 TmpMemoryMap[1]; UINTN MapKey; UINTN DescriptorSize; UINT32 DescriptorVersion; UINTN MemoryMapSize; EFI_MEMORY_DESCRIPTOR *MemoryMap; EFI_MEMORY_DESCRIPTOR *MemoryMapPtr; BOOLEAN IsRuntime; UINTN Index; IsRuntime = FALSE; // // Get System MemoryMapSize // MemoryMapSize = 1; Status = gBS->GetMemoryMap ( &MemoryMapSize, (EFI_MEMORY_DESCRIPTOR *)TmpMemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion ); ASSERT (Status == EFI_BUFFER_TOO_SMALL); // // Enlarge space here, because we will allocate pool now. // MemoryMapSize += EFI_PAGE_SIZE; Status = gBS->AllocatePool ( EfiBootServicesData, MemoryMapSize, (VOID**)&MemoryMap ); ASSERT_EFI_ERROR (Status); // // Get System MemoryMap // Status = gBS->GetMemoryMap ( &MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion ); ASSERT_EFI_ERROR (Status); MemoryMapPtr = MemoryMap; // // Search the request Address // for (Index = 0; Index < (MemoryMapSize / DescriptorSize); Index++) { if (((EFI_PHYSICAL_ADDRESS)(UINTN)Address >= MemoryMap->PhysicalStart) && ((EFI_PHYSICAL_ADDRESS)(UINTN)Address < MemoryMap->PhysicalStart + LShiftU64 (MemoryMap->NumberOfPages, EFI_PAGE_SHIFT))) { // // Found it // if (MemoryMap->Attribute & EFI_MEMORY_RUNTIME) { IsRuntime = TRUE; } break; } // // Get next item // MemoryMap = (EFI_MEMORY_DESCRIPTOR *)((UINTN)MemoryMap + DescriptorSize); } // // Done // gBS->FreePool (MemoryMapPtr); return IsRuntime; } /** Update mFvbEntry. Add new entry, or update existing entry if Fvb protocol is reinstalled. @param Event The Event that is being processed @param Context Event Context **/ STATIC VOID EFIAPI FvbNotificationEvent ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_STATUS Status; UINTN BufferSize; EFI_HANDLE Handle; UINTN Index; UINTN UpdateIndex; while (TRUE) { BufferSize = sizeof (Handle); Status = gBS->LocateHandle ( ByRegisterNotify, &gEfiFirmwareVolumeBlockProtocolGuid, mFvbRegistration, &BufferSize, &Handle ); if (EFI_ERROR (Status)) { // // Exit Path of While Loop.... // break; } UpdateIndex = MAX_FVB_COUNT; for (Index = 0; Index < mFvbCount; Index++) { if (mFvbEntry[Index].Handle == Handle) { // // If the handle is already in the table just update the protocol // UpdateIndex = Index; break; } } if (UpdateIndex == MAX_FVB_COUNT) { // // Use the next free slot for a new entry // UpdateIndex = mFvbCount++; // // Check the UpdateIndex whether exceed the maximum value. // ASSERT (UpdateIndex < MAX_FVB_COUNT); mFvbEntry[UpdateIndex].Handle = Handle; } // // The array does not have enough entries // ASSERT (UpdateIndex < MAX_FVB_COUNT); // // Get the interface pointer and if it's ours, skip it // Status = gBS->HandleProtocol ( Handle, &gEfiFirmwareVolumeBlockProtocolGuid, (VOID **) &mFvbEntry[UpdateIndex].Fvb ); ASSERT_EFI_ERROR (Status); Status = gBS->HandleProtocol ( Handle, &gEfiFvbExtensionProtocolGuid, (VOID **) &mFvbEntry[UpdateIndex].FvbExtension ); if (Status != EFI_SUCCESS) { mFvbEntry[UpdateIndex].FvbExtension = NULL; } // // Check the FVB can be accessed in RUNTIME, The FVBs in FVB handle list comes // from two way: // 1) Dxe Core. (FVB information is transferred from FV HOB). // 2) FVB driver. // The FVB produced Dxe core is used for discoverying DXE driver and dispatch. These // FVBs can only be accessed in boot time. // FVB driver will discovery all FV in FLASH and these FVBs can be accessed in runtime. // The FVB itself produced by FVB driver is allocated in runtime memory. So we can // determine the what FVB can be accessed in RUNTIME by judging whether FVB itself is allocated // in RUNTIME memory. // mFvbEntry[UpdateIndex].IsRuntimeAccess = IsRuntimeMemory (mFvbEntry[UpdateIndex].Fvb); } } /** Convert all pointers in mFvbEntry after ExitBootServices. @param Event The Event that is being processed @param Context Event Context **/ VOID EFIAPI FvbVirtualAddressChangeNotifyEvent ( IN EFI_EVENT Event, IN VOID *Context ) { UINTN Index; if (mFvbEntry != NULL) { for (Index = 0; Index < MAX_FVB_COUNT; Index++) { if (!mFvbEntry[Index].IsRuntimeAccess) { continue; } if (NULL != mFvbEntry[Index].Fvb) { EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->GetBlockSize); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->GetPhysicalAddress); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->GetVolumeAttributes); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->SetVolumeAttributes); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->Read); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->Write); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->EraseBlocks); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb); } if (NULL != mFvbEntry[Index].FvbExtension) { EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].FvbExtension->EraseFvbCustomBlock); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].FvbExtension); } } EfiConvertPointer (0x0, (VOID **) &mFvbEntry); } } /** Library constructor function entry. @param ImageHandle The handle of image who call this libary. @param SystemTable The point of System Table. @retval EFI_SUCESS Sucess construct this library. @retval Others Fail to contruct this libary. **/ EFI_STATUS EFIAPI FvbLibInitialize ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { UINTN Status; mFvbCount = 0; Status = gBS->AllocatePool ( EfiRuntimeServicesData, (UINTN) sizeof (FVB_ENTRY) * MAX_FVB_COUNT, (VOID *) &mFvbEntry ); if (EFI_ERROR (Status)) { return Status; } ZeroMem (mFvbEntry, sizeof (FVB_ENTRY) * MAX_FVB_COUNT); EfiCreateProtocolNotifyEvent ( &gEfiFirmwareVolumeBlockProtocolGuid, EFI_TPL_CALLBACK, FvbNotificationEvent, NULL, &mFvbRegistration ); // // Register SetVirtualAddressMap () notify function // // Status = gBS->CreateEvent ( // EFI_EVENT_SIGNAL_VIRTUAL_ADDRESS_CHANGE, // EFI_TPL_NOTIFY, // EfiRuntimeLibFvbVirtualNotifyEvent, // NULL, // &mEfiFvbVirtualNotifyEvent // ); // ASSERT_EFI_ERROR (Status); // // // Register SetVirtualAddressMap () notify function // ASSERT_EFI_ERROR (Status); mEfiFvbInitialized = TRUE; return EFI_SUCCESS; } // // ============================================================================= // The following functions wrap Fvb protocol in the Runtime Lib functions. // The Instance translates into Fvb instance. The Fvb order defined by HOBs and // thus the sequence of FVB protocol addition define Instance. // // EfiFvbInitialize () must be called before any of the following functions // must be called. // ============================================================================= // /** Reads specified number of bytes into a buffer from the specified block @param Instance The FV instance to be read from. @param Lba The logical block address to be read from @param Offset Offset into the block at which to begin reading @param NumBytes Pointer that on input contains the total size of the buffer. On output, it contains the total number of bytes read @param Buffer Pointer to a caller allocated buffer that will be used to hold the data read @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_SUCESS Sucess to Read block @retval Others Fail to read block **/ EFI_STATUS EfiFvbReadBlock ( IN UINTN Instance, IN EFI_LBA Lba, IN UINTN Offset, IN OUT UINTN *NumBytes, IN UINT8 *Buffer ) { if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->Read (mFvbEntry[Instance].Fvb, Lba, Offset, NumBytes, Buffer); } /** Writes specified number of bytes from the input buffer to the block @param Instance The FV instance to be written to @param Lba The starting logical block index to write to @param Offset Offset into the block at which to begin writing @param NumBytes Pointer that on input contains the total size of the buffer. On output, it contains the total number of bytes actually written @param Buffer Pointer to a caller allocated buffer that contains the source for the write @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_SUCESS Sucess to write block @retval Others Fail to write block **/ EFI_STATUS EfiFvbWriteBlock ( IN UINTN Instance, IN EFI_LBA Lba, IN UINTN Offset, IN OUT UINTN *NumBytes, IN UINT8 *Buffer ) { if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->Write (mFvbEntry[Instance].Fvb, Lba, Offset, NumBytes, Buffer); } /** Erases and initializes a firmware volume block @param Instance The FV instance to be erased @param Lba The logical block index to be erased @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_SUCESS Sucess to erase block @retval Others Fail to erase block **/ EFI_STATUS EfiFvbEraseBlock ( IN UINTN Instance, IN EFI_LBA Lba ) { if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->EraseBlocks (mFvbEntry[Instance].Fvb, Lba, -1); } /** Retrieves attributes, insures positive polarity of attribute bits, returns resulting attributes in output parameter @param Instance The FV instance whose attributes is going to be returned @param Attributes Output buffer which contains attributes @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_SUCESS Sucess to get Fv attribute @retval Others Fail to get Fv attribute **/ EFI_STATUS EfiFvbGetVolumeAttributes ( IN UINTN Instance, OUT EFI_FVB_ATTRIBUTES *Attributes ) { if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->GetVolumeAttributes (mFvbEntry[Instance].Fvb, Attributes); } /** Modifies the current settings of the firmware volume according to the input parameter, and returns the new setting of the volume @param Instance The FV instance whose attributes is going to be modified @param Attributes On input, it is a pointer to EFI_FVB_ATTRIBUTES containing the desired firmware volume settings. On successful return, it contains the new settings of the firmware volume @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_SUCESS Sucess to set Fv attribute @retval Others Fail to set Fv attribute **/ EFI_STATUS EfiFvbSetVolumeAttributes ( IN UINTN Instance, IN EFI_FVB_ATTRIBUTES Attributes ) { if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->SetVolumeAttributes (mFvbEntry[Instance].Fvb, &Attributes); } /** Retrieves the physical address of a memory mapped FV @param Instance The FV instance whose base address is going to be returned @param BaseAddress Pointer to a caller allocated EFI_PHYSICAL_ADDRESS that on successful return, contains the base address of the firmware volume. @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_SUCESS Sucess to get physical address @retval Others Fail to get physical address **/ EFI_STATUS EfiFvbGetPhysicalAddress ( IN UINTN Instance, OUT EFI_PHYSICAL_ADDRESS *BaseAddress ) { if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->GetPhysicalAddress (mFvbEntry[Instance].Fvb, BaseAddress); } /** Retrieve the size of a logical block @param Instance The FV instance whose block size is going to be returned @param Lba Indicates which block to return the size for. @param BlockSize A pointer to a caller allocated UINTN in which the size of the block is returned @param NumOfBlocks a pointer to a caller allocated UINTN in which the number of consecutive blocks starting with Lba is returned. All blocks in this range have a size of BlockSize @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_SUCESS Sucess to get block size @retval Others Fail to get block size **/ EFI_STATUS EfiFvbGetBlockSize ( IN UINTN Instance, IN EFI_LBA Lba, OUT UINTN *BlockSize, OUT UINTN *NumOfBlocks ) { if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->GetBlockSize (mFvbEntry[Instance].Fvb, Lba, BlockSize, NumOfBlocks); } /** Erases and initializes a specified range of a firmware volume @param Instance The FV instance to be erased @param StartLba The starting logical block index to be erased @param OffsetStartLba Offset into the starting block at which to begin erasing @param LastLba The last logical block index to be erased @param OffsetLastLba Offset into the last block at which to end erasing @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_SUCESS Sucess to erase custom block range @retval Others Fail to erase custom block range **/ EFI_STATUS EfiFvbEraseCustomBlockRange ( IN UINTN Instance, IN EFI_LBA StartLba, IN UINTN OffsetStartLba, IN EFI_LBA LastLba, IN UINTN OffsetLastLba ) { if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } if (!(mFvbEntry[Instance].FvbExtension)) { return EFI_UNSUPPORTED; } if (!(mFvbEntry[Instance].FvbExtension->EraseFvbCustomBlock)) { return EFI_UNSUPPORTED; } return mFvbEntry[Instance].FvbExtension->EraseFvbCustomBlock ( mFvbEntry[Instance].FvbExtension, StartLba, OffsetStartLba, LastLba, OffsetLastLba ); }