/*++ Copyright (c) 2006, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. Module Name: DxeLoad.c Abstract: Last PEIM. Responsibility of this module is to load the DXE Core from a Firmware Volume. --*/ #include "DxeIpl.h" BOOLEAN gInMemory = FALSE; // // Module Globals used in the DXE to PEI handoff // These must be module globals, so the stack can be switched // static EFI_DXE_IPL_PPI mDxeIplPpi = { DxeLoadCore }; static EFI_PEI_FV_FILE_LOADER_PPI mLoadFilePpi = { DxeIplLoadFile }; static EFI_PEI_PPI_DESCRIPTOR mPpiList[] = { { EFI_PEI_PPI_DESCRIPTOR_PPI, &gEfiPeiFvFileLoaderPpiGuid, &mLoadFilePpi }, { (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiDxeIplPpiGuid, &mDxeIplPpi } }; static EFI_PEI_PPI_DESCRIPTOR mPpiSignal = { (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiEndOfPeiSignalPpiGuid, NULL }; GLOBAL_REMOVE_IF_UNREFERENCED DECOMPRESS_LIBRARY gEfiDecompress = { UefiDecompressGetInfo, UefiDecompress }; GLOBAL_REMOVE_IF_UNREFERENCED DECOMPRESS_LIBRARY gTianoDecompress = { TianoDecompressGetInfo, TianoDecompress }; GLOBAL_REMOVE_IF_UNREFERENCED DECOMPRESS_LIBRARY gCustomDecompress = { CustomDecompressGetInfo, CustomDecompress }; EFI_STATUS EFIAPI PeimInitializeDxeIpl ( IN EFI_FFS_FILE_HEADER *FfsHeader, IN EFI_PEI_SERVICES **PeiServices ) /*++ Routine Description: Initializes the Dxe Ipl PPI Arguments: FfsHeader - Pointer to FFS file header PeiServices - General purpose services available to every PEIM. Returns: EFI_SUCCESS --*/ { EFI_STATUS Status; EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader; EFI_BOOT_MODE BootMode; Status = PeiServicesGetBootMode (&BootMode); ASSERT_EFI_ERROR (Status); if (!gInMemory && (BootMode != BOOT_ON_S3_RESUME)) { // // The DxeIpl has not yet been shadowed // PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol (); // // Shadow DxeIpl and then re-run its entry point // Status = ShadowDxeIpl (FfsHeader, PeiEfiPeiPeCoffLoader); } else { // // Install FvFileLoader and DxeIpl PPIs. // Status = PeiServicesInstallPpi (mPpiList); ASSERT_EFI_ERROR(Status); } return Status; } EFI_STATUS EFIAPI DxeLoadCore ( IN EFI_DXE_IPL_PPI *This, IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_HOB_POINTERS HobList ) /*++ Routine Description: Main entry point to last PEIM Arguments: This - Entry point for DXE IPL PPI PeiServices - General purpose services available to every PEIM. HobList - Address to the Pei HOB list Returns: EFI_SUCCESS - DEX core was successfully loaded. EFI_OUT_OF_RESOURCES - There are not enough resources to load DXE core. --*/ { EFI_STATUS Status; EFI_GUID DxeCoreFileName; EFI_GUID FirmwareFileName; VOID *Pe32Data; VOID *FvImageData; EFI_PHYSICAL_ADDRESS DxeCoreAddress; UINT64 DxeCoreSize; EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint; EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader; EFI_BOOT_MODE BootMode; EFI_PEI_RECOVERY_MODULE_PPI *PeiRecovery; EFI_PEI_S3_RESUME_PPI *S3Resume; // PERF_START (PeiServices, L"DxeIpl", NULL, 0); // // if in S3 Resume, restore configure // Status = PeiServicesGetBootMode (&BootMode); ASSERT_EFI_ERROR(Status); if (BootMode == BOOT_ON_S3_RESUME) { Status = PeiServicesLocatePpi ( &gEfiPeiS3ResumePpiGuid, 0, NULL, (VOID **)&S3Resume ); ASSERT_EFI_ERROR (Status); Status = S3Resume->S3RestoreConfig (PeiServices); ASSERT_EFI_ERROR (Status); } else if (BootMode == BOOT_IN_RECOVERY_MODE) { Status = PeiServicesLocatePpi ( &gEfiPeiRecoveryModulePpiGuid, 0, NULL, (VOID **)&PeiRecovery ); ASSERT_EFI_ERROR (Status); Status = PeiRecovery->LoadRecoveryCapsule (PeiServices, PeiRecovery); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Load Recovery Capsule Failed.(Status = %r)\n", Status)); CpuDeadLoop (); } // // Now should have a HOB with the DXE core w/ the old HOB destroyed // } // // Install the PEI Protocols that are shared between PEI and DXE // PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol (); ASSERT (PeiEfiPeiPeCoffLoader != NULL); // // Find the EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE type compressed Firmware Volume file // The file found will be processed by PeiProcessFile: It will first be decompressed to // a normal FV, then a corresponding FV type hob will be built. // Status = PeiFindFile ( EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE, EFI_SECTION_FIRMWARE_VOLUME_IMAGE, &FirmwareFileName, &FvImageData ); // // Find the DXE Core in a Firmware Volume // Status = PeiFindFile ( EFI_FV_FILETYPE_DXE_CORE, EFI_SECTION_PE32, &DxeCoreFileName, &Pe32Data ); ASSERT_EFI_ERROR (Status); // // Load the DXE Core from a Firmware Volume // Status = PeiLoadFile ( PeiEfiPeiPeCoffLoader, Pe32Data, &DxeCoreAddress, &DxeCoreSize, &DxeCoreEntryPoint ); ASSERT_EFI_ERROR (Status); // // Add HOB for the DXE Core // BuildModuleHob ( &DxeCoreFileName, DxeCoreAddress, DxeCoreSize, DxeCoreEntryPoint ); // // Report Status Code EFI_SW_PEI_PC_HANDOFF_TO_NEXT // REPORT_STATUS_CODE ( EFI_PROGRESS_CODE, EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT ); if (FeaturePcdGet (PcdDxeIplBuildShareCodeHobs)) { if (FeaturePcdGet (PcdDxeIplSupportEfiDecompress)) { // // Add HOB for the EFI Decompress Protocol // BuildGuidDataHob ( &gEfiDecompressProtocolGuid, (VOID *)&gEfiDecompress, sizeof (gEfiDecompress) ); } if (FeaturePcdGet (PcdDxeIplSupportTianoDecompress)) { // // Add HOB for the Tiano Decompress Protocol // BuildGuidDataHob ( &gEfiTianoDecompressProtocolGuid, (VOID *)&gTianoDecompress, sizeof (gTianoDecompress) ); } if (FeaturePcdGet (PcdDxeIplSupportCustomDecompress)) { // // Add HOB for the user customized Decompress Protocol // BuildGuidDataHob ( &gEfiCustomizedDecompressProtocolGuid, (VOID *)&gCustomDecompress, sizeof (gCustomDecompress) ); } // // Add HOB for the PE/COFF Loader Protocol // BuildGuidDataHob ( &gEfiPeiPeCoffLoaderGuid, (VOID *)&PeiEfiPeiPeCoffLoader, sizeof (VOID *) ); } // // Transfer control to the DXE Core // The handoff state is simply a pointer to the HOB list // DEBUG ((EFI_D_INFO, "DXE Core Entry Point 0x%08x\n", (UINTN) DxeCoreEntryPoint)); HandOffToDxeCore (DxeCoreEntryPoint, HobList, &mPpiSignal); // // If we get here, then the DXE Core returned. This is an error // Dxe Core should not return. // ASSERT (FALSE); CpuDeadLoop (); return EFI_OUT_OF_RESOURCES; } EFI_STATUS PeiFindFile ( IN UINT8 Type, IN UINT16 SectionType, OUT EFI_GUID *FileName, OUT VOID **Pe32Data ) /*++ Routine Description: Finds a PE/COFF of a specific Type and SectionType in the Firmware Volumes described in the HOB list. Able to search in a compression set in a FFS file. But only one level of compression is supported, that is, not able to search in a compression set that is within another compression set. Arguments: Type - The Type of file to retrieve SectionType - The type of section to retrieve from a file FileName - The name of the file found in the Firmware Volume Pe32Data - Pointer to the beginning of the PE/COFF file found in the Firmware Volume Returns: EFI_SUCCESS - The file was found, and the name is returned in FileName, and a pointer to the PE/COFF image is returned in Pe32Data EFI_NOT_FOUND - The file was not found in the Firmware Volumes present in the HOB List --*/ { EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; EFI_FFS_FILE_HEADER *FfsFileHeader; EFI_STATUS Status; EFI_PEI_HOB_POINTERS Hob; FwVolHeader = NULL; FfsFileHeader = NULL; Status = EFI_SUCCESS; // // For each Firmware Volume, look for a specified type // of file and break out until no one is found // Hob.Raw = GetHobList (); while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_FV, Hob.Raw)) != NULL) { FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) (Hob.FirmwareVolume->BaseAddress); Status = PeiServicesFfsFindNextFile ( Type, FwVolHeader, &FfsFileHeader ); if (!EFI_ERROR (Status)) { Status = PeiProcessFile ( SectionType, FfsFileHeader, Pe32Data, &Hob ); CopyMem (FileName, &FfsFileHeader->Name, sizeof (EFI_GUID)); if (!EFI_ERROR (Status)) { return EFI_SUCCESS; } } Hob.Raw = GET_NEXT_HOB (Hob); } return EFI_NOT_FOUND; } EFI_STATUS PeiLoadFile ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader, IN VOID *Pe32Data, OUT EFI_PHYSICAL_ADDRESS *ImageAddress, OUT UINT64 *ImageSize, OUT EFI_PHYSICAL_ADDRESS *EntryPoint ) /*++ Routine Description: Loads and relocates a PE/COFF image into memory. Arguments: PeiEfiPeiPeCoffLoader - Pointer to a PE COFF loader protocol Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated ImageAddress - The base address of the relocated PE/COFF image ImageSize - The size of the relocated PE/COFF image EntryPoint - The entry point of the relocated PE/COFF image Returns: EFI_SUCCESS - The file was loaded and relocated EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file --*/ { EFI_STATUS Status; PE_COFF_LOADER_IMAGE_CONTEXT ImageContext; ZeroMem (&ImageContext, sizeof (ImageContext)); ImageContext.Handle = Pe32Data; Status = GetImageReadFunction (&ImageContext); ASSERT_EFI_ERROR (Status); Status = PeiEfiPeiPeCoffLoader->GetImageInfo (PeiEfiPeiPeCoffLoader, &ImageContext); if (EFI_ERROR (Status)) { return Status; } // // Allocate Memory for the image // ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) AllocatePages (EFI_SIZE_TO_PAGES ((UINT32) ImageContext.ImageSize)); ASSERT (ImageContext.ImageAddress != 0); // // Load the image to our new buffer // Status = PeiEfiPeiPeCoffLoader->LoadImage (PeiEfiPeiPeCoffLoader, &ImageContext); if (EFI_ERROR (Status)) { return Status; } // // Relocate the image in our new buffer // Status = PeiEfiPeiPeCoffLoader->RelocateImage (PeiEfiPeiPeCoffLoader, &ImageContext); if (EFI_ERROR (Status)) { return Status; } // // Flush the instruction cache so the image data is written before we execute it // InvalidateInstructionCacheRange ((VOID *)(UINTN)ImageContext.ImageAddress, (UINTN)ImageContext.ImageSize); *ImageAddress = ImageContext.ImageAddress; *ImageSize = ImageContext.ImageSize; *EntryPoint = ImageContext.EntryPoint; return EFI_SUCCESS; } EFI_STATUS ShadowDxeIpl ( IN EFI_FFS_FILE_HEADER *DxeIplFileHeader, IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader ) /*++ Routine Description: Shadow the DXE IPL to a different memory location. This occurs after permanent memory has been discovered. Arguments: DxeIplFileHeader - Pointer to the FFS file header of the DXE IPL driver PeiEfiPeiPeCoffLoader - Pointer to a PE COFF loader protocol Returns: EFI_SUCCESS - DXE IPL was successfully shadowed to a different memory location. EFI_ ERROR - The shadow was unsuccessful. --*/ { UINTN SectionLength; UINTN OccupiedSectionLength; EFI_PHYSICAL_ADDRESS DxeIplAddress; UINT64 DxeIplSize; EFI_PHYSICAL_ADDRESS DxeIplEntryPoint; EFI_STATUS Status; EFI_COMMON_SECTION_HEADER *Section; Section = (EFI_COMMON_SECTION_HEADER *) (DxeIplFileHeader + 1); while ((Section->Type != EFI_SECTION_PE32) && (Section->Type != EFI_SECTION_TE)) { SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff; OccupiedSectionLength = GET_OCCUPIED_SIZE (SectionLength, 4); Section = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) Section + OccupiedSectionLength); } // // Relocate DxeIpl into memory by using loadfile service // Status = PeiLoadFile ( PeiEfiPeiPeCoffLoader, (VOID *) (Section + 1), &DxeIplAddress, &DxeIplSize, &DxeIplEntryPoint ); if (Status == EFI_SUCCESS) { // // Set gInMemory global variable to TRUE to indicate the dxeipl is shadowed. // *(BOOLEAN *) ((UINTN) &gInMemory + (UINTN) DxeIplEntryPoint - (UINTN) _ModuleEntryPoint) = TRUE; Status = ((EFI_PEIM_ENTRY_POINT) (UINTN) DxeIplEntryPoint) (DxeIplFileHeader, GetPeiServicesTablePointer()); } return Status; } EFI_STATUS EFIAPI DxeIplLoadFile ( IN EFI_PEI_FV_FILE_LOADER_PPI *This, IN EFI_FFS_FILE_HEADER *FfsHeader, OUT EFI_PHYSICAL_ADDRESS *ImageAddress, OUT UINT64 *ImageSize, OUT EFI_PHYSICAL_ADDRESS *EntryPoint ) /*++ Routine Description: Given a pointer to an FFS file containing a PE32 image, get the information on the PE32 image, and then "load" it so that it can be executed. Arguments: This - pointer to our file loader protocol FfsHeader - pointer to the FFS file header of the FFS file that contains the PE32 image we want to load ImageAddress - returned address where the PE32 image is loaded ImageSize - returned size of the loaded PE32 image EntryPoint - entry point to the loaded PE32 image Returns: EFI_SUCCESS - The FFS file was successfully loaded. EFI_ERROR - Unable to load the FFS file. --*/ { EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader; EFI_STATUS Status; VOID *Pe32Data; Pe32Data = NULL; PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol (); // // Preprocess the FFS file to get a pointer to the PE32 information // in the enclosed PE32 image. // Status = PeiProcessFile ( EFI_SECTION_PE32, FfsHeader, &Pe32Data, NULL ); if (EFI_ERROR (Status)) { return Status; } // // Load the PE image from the FFS file // Status = PeiLoadFile ( PeiEfiPeiPeCoffLoader, Pe32Data, ImageAddress, ImageSize, EntryPoint ); return Status; } EFI_STATUS PeiProcessFile ( IN UINT16 SectionType, IN EFI_FFS_FILE_HEADER *FfsFileHeader, OUT VOID **Pe32Data, IN EFI_PEI_HOB_POINTERS *OrigHob ) /*++ Routine Description: Arguments: SectionType - The type of section in the FFS file to process. FfsFileHeader - Pointer to the FFS file to process, looking for the specified SectionType Pe32Data - returned pointer to the start of the PE32 image found in the FFS file. Returns: EFI_SUCCESS - found the PE32 section in the FFS file --*/ { EFI_STATUS Status; VOID *SectionData; DECOMPRESS_LIBRARY *DecompressLibrary; UINT8 *DstBuffer; UINT8 *ScratchBuffer; UINT32 DstBufferSize; UINT32 ScratchBufferSize; EFI_COMMON_SECTION_HEADER *CmpSection; UINTN CmpSectionLength; UINTN OccupiedCmpSectionLength; VOID *CmpFileData; UINTN CmpFileSize; EFI_COMMON_SECTION_HEADER *Section; UINTN SectionLength; UINTN OccupiedSectionLength; UINT64 FileSize; UINT32 AuthenticationStatus; EFI_PEI_SECTION_EXTRACTION_PPI *SectionExtract; UINT32 BufferSize; UINT8 *Buffer; EFI_PEI_SECURITY_PPI *Security; BOOLEAN StartCrisisRecovery; EFI_GUID TempGuid; EFI_FIRMWARE_VOLUME_HEADER *FvHeader; EFI_COMPRESSION_SECTION *CompressionSection; UINT32 FvAlignment; // // Initialize local variables. // DecompressLibrary = NULL; DstBuffer = NULL; DstBufferSize = 0; Status = PeiServicesFfsFindSectionData ( EFI_SECTION_COMPRESSION, FfsFileHeader, &SectionData ); // // First process the compression section // if (!EFI_ERROR (Status)) { // // Yes, there is a compression section, so extract the contents // Decompress the image here // Section = (EFI_COMMON_SECTION_HEADER *) (UINTN) (VOID *) ((UINT8 *) (FfsFileHeader) + (UINTN) sizeof (EFI_FFS_FILE_HEADER)); do { SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff; OccupiedSectionLength = GET_OCCUPIED_SIZE (SectionLength, 4); // // Was the DXE Core file encapsulated in a GUID'd section? // if (Section->Type == EFI_SECTION_GUID_DEFINED) { // // This following code constitutes the addition of the security model // to the DXE IPL. // // // Set a default authenticatino state // AuthenticationStatus = 0; Status = PeiServicesLocatePpi ( &gEfiPeiSectionExtractionPpiGuid, 0, NULL, (VOID **)&SectionExtract ); if (EFI_ERROR (Status)) { return Status; } // // Verify Authentication State // CopyMem (&TempGuid, Section + 1, sizeof (EFI_GUID)); Status = SectionExtract->PeiGetSection ( GetPeiServicesTablePointer(), SectionExtract, (EFI_SECTION_TYPE *) &SectionType, &TempGuid, 0, (VOID **) &Buffer, &BufferSize, &AuthenticationStatus ); if (EFI_ERROR (Status)) { return Status; } // // If not ask the Security PPI, if exists, for disposition // // Status = PeiServicesLocatePpi ( &gEfiPeiSecurityPpiGuid, 0, NULL, (VOID **)&Security ); if (EFI_ERROR (Status)) { return Status; } Status = Security->AuthenticationState ( GetPeiServicesTablePointer(), (struct _EFI_PEI_SECURITY_PPI *) Security, AuthenticationStatus, FfsFileHeader, &StartCrisisRecovery ); if (EFI_ERROR (Status)) { return Status; } // // If there is a security violation, report to caller and have // the upper-level logic possible engender a crisis recovery // if (StartCrisisRecovery) { return EFI_SECURITY_VIOLATION; } } if (Section->Type == EFI_SECTION_PE32) { // // This is what we want // *Pe32Data = (VOID *) (Section + 1); return EFI_SUCCESS; } else if (Section->Type == EFI_SECTION_COMPRESSION) { // // This is a compression set, expand it // CompressionSection = (EFI_COMPRESSION_SECTION *) Section; switch (CompressionSection->CompressionType) { case EFI_STANDARD_COMPRESSION: // // Load EFI standard compression. // if (FeaturePcdGet (PcdDxeIplSupportTianoDecompress)) { DecompressLibrary = &gEfiDecompress; } else { ASSERT (FALSE); return EFI_NOT_FOUND; } break; case EFI_CUSTOMIZED_COMPRESSION: // // Load user customized compression. // if (FeaturePcdGet (PcdDxeIplSupportCustomDecompress)) { DecompressLibrary = &gCustomDecompress; } else { ASSERT (FALSE); return EFI_NOT_FOUND; } break; case EFI_NOT_COMPRESSED: // // Allocate destination buffer // DstBufferSize = CompressionSection->UncompressedLength; DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize)); if (DstBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // stream is not actually compressed, just encapsulated. So just copy it. // CopyMem (DstBuffer, CompressionSection + 1, DstBufferSize); break; default: // // Don't support other unknown compression type. // ASSERT_EFI_ERROR (Status); return EFI_NOT_FOUND; } if (CompressionSection->CompressionType != EFI_NOT_COMPRESSED) { // // For compressed data, decompress them to dstbuffer. // Status = DecompressLibrary->GetInfo ( (UINT8 *) ((EFI_COMPRESSION_SECTION *) Section + 1), (UINT32) SectionLength - sizeof (EFI_COMPRESSION_SECTION), &DstBufferSize, &ScratchBufferSize ); if (EFI_ERROR (Status)) { // // GetInfo failed // DEBUG ((EFI_D_ERROR, "Decompress GetInfo Failed - %r\n", Status)); return EFI_NOT_FOUND; } // // Allocate scratch buffer // ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize)); if (ScratchBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // Allocate destination buffer // DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize)); if (DstBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // Call decompress function // Status = DecompressLibrary->Decompress ( (CHAR8 *) ((EFI_COMPRESSION_SECTION *) Section + 1), DstBuffer, ScratchBuffer ); if (EFI_ERROR (Status)) { // // Decompress failed // DEBUG ((EFI_D_ERROR, "Decompress Failed - %r\n", Status)); return EFI_NOT_FOUND; } } CmpSection = (EFI_COMMON_SECTION_HEADER *) DstBuffer; if (CmpSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE) { // // Firmware Volume Image in this Section // Skip the section header to get FvHeader // FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (CmpSection + 1); if (FvHeader->Signature == EFI_FVH_SIGNATURE) { // // Adjust Fv Base Address Alignment based on Align Attributes in Fv Header // // // When FvImage support Alignment, we need to check whether // its alignment is correct. // if (FvHeader->Attributes | EFI_FVB_ALIGNMENT_CAP) { // // Calculate the mini alignment for this FvImage // FvAlignment = 1 << (LowBitSet32 (FvHeader->Attributes >> 16) + 1); // // If current FvImage base address doesn't meet the its alignment, // we need to reload this FvImage to another correct memory address. // if (((UINTN) FvHeader % FvAlignment) != 0) { DstBuffer = AllocateAlignedPages (EFI_SIZE_TO_PAGES ((UINTN) FvHeader->FvLength), FvAlignment); if (DstBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } CopyMem (DstBuffer, FvHeader, (UINTN) FvHeader->FvLength); FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) DstBuffer; } } // // Build new FvHob for new decompressed Fv image. // BuildFvHob ((EFI_PHYSICAL_ADDRESS) (UINTN) FvHeader, FvHeader->FvLength); // // Set the original FvHob to unused. // if (OrigHob != NULL) { OrigHob->Header->HobType = EFI_HOB_TYPE_UNUSED; } // // when search FvImage Section return true. // if (SectionType == EFI_SECTION_FIRMWARE_VOLUME_IMAGE) { *Pe32Data = (VOID *) FvHeader; return EFI_SUCCESS; } else { return EFI_NOT_FOUND; } } } // // Decompress successfully. // Loop the decompressed data searching for expected section. // CmpFileData = (VOID *) DstBuffer; CmpFileSize = DstBufferSize; do { CmpSectionLength = *(UINT32 *) (CmpSection->Size) & 0x00ffffff; if (CmpSection->Type == EFI_SECTION_PE32) { // // This is what we want // *Pe32Data = (VOID *) (CmpSection + 1); return EFI_SUCCESS; } OccupiedCmpSectionLength = GET_OCCUPIED_SIZE (CmpSectionLength, 4); CmpSection = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) CmpSection + OccupiedCmpSectionLength); } while (CmpSection->Type != 0 && (UINTN) ((UINT8 *) CmpSection - (UINT8 *) CmpFileData) < CmpFileSize); } // // End of the decompression activity // Section = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) Section + OccupiedSectionLength); FileSize = FfsFileHeader->Size[0] & 0xFF; FileSize += (FfsFileHeader->Size[1] << 8) & 0xFF00; FileSize += (FfsFileHeader->Size[2] << 16) & 0xFF0000; FileSize &= 0x00FFFFFF; } while (Section->Type != 0 && (UINTN) ((UINT8 *) Section - (UINT8 *) FfsFileHeader) < FileSize); // // search all sections (compression and non compression) in this FFS, don't // find expected section. // return EFI_NOT_FOUND; } else { // // For those FFS that doesn't contain compression section, directly search // PE or TE section in this FFS. // Status = PeiServicesFfsFindSectionData ( EFI_SECTION_PE32, FfsFileHeader, &SectionData ); if (EFI_ERROR (Status)) { Status = PeiServicesFfsFindSectionData ( EFI_SECTION_TE, FfsFileHeader, &SectionData ); if (EFI_ERROR (Status)) { return Status; } } } *Pe32Data = SectionData; return EFI_SUCCESS; }