# Copyright 2014-2017 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import codecs import types from .mesonlib import MesonException from . import mlog # This is the regex for the supported escape sequences of a regular string # literal, like 'abc\x00' ESCAPE_SEQUENCE_SINGLE_RE = re.compile(r''' ( \\U........ # 8-digit hex escapes | \\u.... # 4-digit hex escapes | \\x.. # 2-digit hex escapes | \\[0-7]{1,3} # Octal escapes | \\N\{[^}]+\} # Unicode characters by name | \\[\\'abfnrtv] # Single-character escapes )''', re.UNICODE | re.VERBOSE) class MesonUnicodeDecodeError(MesonException): def __init__(self, match): super().__init__("%s" % match) self.match = match def decode_match(match): try: return codecs.decode(match.group(0), 'unicode_escape') except UnicodeDecodeError as err: raise MesonUnicodeDecodeError(match.group(0)) class ParseException(MesonException): def __init__(self, text, line, lineno, colno): # Format as error message, followed by the line with the error, followed by a caret to show the error column. super().__init__("%s\n%s\n%s" % (text, line, '%s^' % (' ' * colno))) self.lineno = lineno self.colno = colno class BlockParseException(MesonException): def __init__(self, text, line, lineno, colno, start_line, start_lineno, start_colno): # This can be formatted in two ways - one if the block start and end are on the same line, and a different way if they are on different lines. if lineno == start_lineno: # If block start and end are on the same line, it is formatted as: # Error message # Followed by the line with the error # Followed by a caret to show the block start # Followed by underscores # Followed by a caret to show the block end. super().__init__("%s\n%s\n%s" % (text, line, '%s^%s^' % (' ' * start_colno, '_' * (colno - start_colno - 1)))) else: # If block start and end are on different lines, it is formatted as: # Error message # Followed by the line with the error # Followed by a caret to show the error column. # Followed by a message saying where the block started. # Followed by the line of the block start. # Followed by a caret for the block start. super().__init__("%s\n%s\n%s\nFor a block that started at %d,%d\n%s\n%s" % (text, line, '%s^' % (' ' * colno), start_lineno, start_colno, start_line, "%s^" % (' ' * start_colno))) self.lineno = lineno self.colno = colno class Token: def __init__(self, tid, subdir, line_start, lineno, colno, bytespan, value): self.tid = tid self.subdir = subdir self.line_start = line_start self.lineno = lineno self.colno = colno self.bytespan = bytespan self.value = value def __eq__(self, other): if isinstance(other, str): return self.tid == other return self.tid == other.tid class Lexer: def __init__(self, code): self.code = code self.keywords = {'true', 'false', 'if', 'else', 'elif', 'endif', 'and', 'or', 'not', 'foreach', 'endforeach', 'in', 'continue', 'break'} self.future_keywords = {'return'} self.token_specification = [ # Need to be sorted longest to shortest. ('ignore', re.compile(r'[ \t]')), ('id', re.compile('[_a-zA-Z][_0-9a-zA-Z]*')), ('number', re.compile(r'0[bB][01]+|0[oO][0-7]+|0[xX][0-9a-fA-F]+|0|[1-9]\d*')), ('eol_cont', re.compile(r'\\\n')), ('eol', re.compile(r'\n')), ('multiline_string', re.compile(r"'''(.|\n)*?'''", re.M)), ('comment', re.compile(r'#.*')), ('lparen', re.compile(r'\(')), ('rparen', re.compile(r'\)')), ('lbracket', re.compile(r'\[')), ('rbracket', re.compile(r'\]')), ('lcurl', re.compile(r'\{')), ('rcurl', re.compile(r'\}')), ('dblquote', re.compile(r'"')), ('string', re.compile(r"'([^'\\]|(\\.))*'")), ('comma', re.compile(r',')), ('plusassign', re.compile(r'\+=')), ('dot', re.compile(r'\.')), ('plus', re.compile(r'\+')), ('dash', re.compile(r'-')), ('star', re.compile(r'\*')), ('percent', re.compile(r'%')), ('fslash', re.compile(r'/')), ('colon', re.compile(r':')), ('equal', re.compile(r'==')), ('nequal', re.compile(r'!=')), ('assign', re.compile(r'=')), ('le', re.compile(r'<=')), ('lt', re.compile(r'<')), ('ge', re.compile(r'>=')), ('gt', re.compile(r'>')), ('questionmark', re.compile(r'\?')), ] def getline(self, line_start): return self.code[line_start:self.code.find('\n', line_start)] def lex(self, subdir): line_start = 0 lineno = 1 loc = 0 par_count = 0 bracket_count = 0 curl_count = 0 col = 0 while loc < len(self.code): matched = False value = None for (tid, reg) in self.token_specification: mo = reg.match(self.code, loc) if mo: curline = lineno curline_start = line_start col = mo.start() - line_start matched = True span_start = loc loc = mo.end() span_end = loc bytespan = (span_start, span_end) match_text = mo.group() if tid == 'ignore' or tid == 'comment': break elif tid == 'lparen': par_count += 1 elif tid == 'rparen': par_count -= 1 elif tid == 'lbracket': bracket_count += 1 elif tid == 'rbracket': bracket_count -= 1 elif tid == 'lcurl': curl_count += 1 elif tid == 'rcurl': curl_count -= 1 elif tid == 'dblquote': raise ParseException('Double quotes are not supported. Use single quotes.', self.getline(line_start), lineno, col) elif tid == 'string': # Handle here and not on the regexp to give a better error message. if match_text.find("\n") != -1: mlog.warning("""Newline character in a string detected, use ''' (three single quotes) for multiline strings instead. This will become a hard error in a future Meson release.""", self.getline(line_start), lineno, col) value = match_text[1:-1] try: value = ESCAPE_SEQUENCE_SINGLE_RE.sub(decode_match, value) except MesonUnicodeDecodeError as err: raise MesonException("Failed to parse escape sequence: '{}' in string:\n {}".format(err.match, match_text)) elif tid == 'multiline_string': tid = 'string' value = match_text[3:-3] lines = match_text.split('\n') if len(lines) > 1: lineno += len(lines) - 1 line_start = mo.end() - len(lines[-1]) elif tid == 'number': value = int(match_text, base=0) elif tid == 'eol' or tid == 'eol_cont': lineno += 1 line_start = loc if par_count > 0 or bracket_count > 0 or curl_count > 0: break elif tid == 'id': if match_text in self.keywords: tid = match_text else: if match_text in self.future_keywords: mlog.warning("Identifier '{}' will become a reserved keyword in a future release. Please rename it.".format(match_text), location=types.SimpleNamespace(subdir=subdir, lineno=lineno)) value = match_text yield Token(tid, subdir, curline_start, curline, col, bytespan, value) break if not matched: raise ParseException('lexer', self.getline(line_start), lineno, col) class ElementaryNode: def __init__(self, token): self.lineno = token.lineno self.subdir = token.subdir self.colno = token.colno self.value = token.value self.bytespan = token.bytespan class BooleanNode(ElementaryNode): def __init__(self, token, value): super().__init__(token) self.value = value assert(isinstance(self.value, bool)) class IdNode(ElementaryNode): def __init__(self, token): super().__init__(token) assert(isinstance(self.value, str)) def __str__(self): return "Id node: '%s' (%d, %d)." % (self.value, self.lineno, self.colno) class NumberNode(ElementaryNode): def __init__(self, token): super().__init__(token) assert(isinstance(self.value, int)) class StringNode(ElementaryNode): def __init__(self, token): super().__init__(token) assert(isinstance(self.value, str)) def __str__(self): return "String node: '%s' (%d, %d)." % (self.value, self.lineno, self.colno) class ContinueNode(ElementaryNode): pass class BreakNode(ElementaryNode): pass class ArrayNode: def __init__(self, args): self.subdir = args.subdir self.lineno = args.lineno self.colno = args.colno self.args = args class DictNode: def __init__(self, args): self.subdir = args.subdir self.lineno = args.lineno self.colno = args.colno self.args = args class EmptyNode: def __init__(self, lineno, colno): self.subdir = '' self.lineno = lineno self.colno = colno self.value = None class OrNode: def __init__(self, left, right): self.subdir = left.subdir self.lineno = left.lineno self.colno = left.colno self.left = left self.right = right class AndNode: def __init__(self, left, right): self.subdir = left.subdir self.lineno = left.lineno self.colno = left.colno self.left = left self.right = right class ComparisonNode: def __init__(self, ctype, left, right): self.lineno = left.lineno self.colno = left.colno self.subdir = left.subdir self.left = left self.right = right self.ctype = ctype class ArithmeticNode: def __init__(self, operation, left, right): self.subdir = left.subdir self.lineno = left.lineno self.colno = left.colno self.left = left self.right = right self.operation = operation class NotNode: def __init__(self, location_node, value): self.subdir = location_node.subdir self.lineno = location_node.lineno self.colno = location_node.colno self.value = value class CodeBlockNode: def __init__(self, location_node): self.subdir = location_node.subdir self.lineno = location_node.lineno self.colno = location_node.colno self.lines = [] class IndexNode: def __init__(self, iobject, index): self.iobject = iobject self.index = index self.subdir = iobject.subdir self.lineno = iobject.lineno self.colno = iobject.colno class MethodNode: def __init__(self, subdir, lineno, colno, source_object, name, args): self.subdir = subdir self.lineno = lineno self.colno = colno self.source_object = source_object self.name = name assert(isinstance(self.name, str)) self.args = args class FunctionNode: def __init__(self, subdir, lineno, colno, func_name, args): self.subdir = subdir self.lineno = lineno self.colno = colno self.func_name = func_name assert(isinstance(func_name, str)) self.args = args class AssignmentNode: def __init__(self, lineno, colno, var_name, value): self.lineno = lineno self.colno = colno self.var_name = var_name assert(isinstance(var_name, str)) self.value = value class PlusAssignmentNode: def __init__(self, lineno, colno, var_name, value): self.lineno = lineno self.colno = colno self.var_name = var_name assert(isinstance(var_name, str)) self.value = value class ForeachClauseNode: def __init__(self, lineno, colno, varnames, items, block): self.lineno = lineno self.colno = colno self.varnames = varnames self.items = items self.block = block class IfClauseNode: def __init__(self, lineno, colno): self.lineno = lineno self.colno = colno self.ifs = [] self.elseblock = EmptyNode(lineno, colno) class UMinusNode: def __init__(self, current_location, value): self.subdir = current_location.subdir self.lineno = current_location.lineno self.colno = current_location.colno self.value = value class IfNode: def __init__(self, lineno, colno, condition, block): self.lineno = lineno self.colno = colno self.condition = condition self.block = block class TernaryNode: def __init__(self, lineno, colno, condition, trueblock, falseblock): self.lineno = lineno self.colno = colno self.condition = condition self.trueblock = trueblock self.falseblock = falseblock class ArgumentNode: def __init__(self, token): self.lineno = token.lineno self.colno = token.colno self.subdir = token.subdir self.arguments = [] self.commas = [] self.kwargs = {} self.order_error = False def prepend(self, statement): if self.num_kwargs() > 0: self.order_error = True if not isinstance(statement, EmptyNode): self.arguments = [statement] + self.arguments def append(self, statement): if self.num_kwargs() > 0: self.order_error = True if not isinstance(statement, EmptyNode): self.arguments += [statement] def set_kwarg(self, name, value): if name in self.kwargs: mlog.warning('Keyword argument "{}" defined multiple times.'.format(name), location=self) mlog.warning('This will be an error in future Meson releases.') self.kwargs[name] = value def num_args(self): return len(self.arguments) def num_kwargs(self): return len(self.kwargs) def incorrect_order(self): return self.order_error def __len__(self): return self.num_args() # Fixme comparison_map = {'equal': '==', 'nequal': '!=', 'lt': '<', 'le': '<=', 'gt': '>', 'ge': '>=', 'in': 'in', 'notin': 'not in', } # Recursive descent parser for Meson's definition language. # Very basic apart from the fact that we have many precedence # levels so there are not enough words to describe them all. # Enter numbering: # # 1 assignment # 2 or # 3 and # 4 comparison # 5 arithmetic # 6 negation # 7 funcall, method call # 8 parentheses # 9 plain token class Parser: def __init__(self, code, subdir): self.lexer = Lexer(code) self.stream = self.lexer.lex(subdir) self.current = Token('eof', '', 0, 0, 0, (0, 0), None) self.getsym() self.in_ternary = False def getsym(self): try: self.current = next(self.stream) except StopIteration: self.current = Token('eof', '', self.current.line_start, self.current.lineno, self.current.colno + self.current.bytespan[1] - self.current.bytespan[0], (0, 0), None) def getline(self): return self.lexer.getline(self.current.line_start) def accept(self, s): if self.current.tid == s: self.getsym() return True return False def expect(self, s): if self.accept(s): return True raise ParseException('Expecting %s got %s.' % (s, self.current.tid), self.getline(), self.current.lineno, self.current.colno) def block_expect(self, s, block_start): if self.accept(s): return True raise BlockParseException('Expecting %s got %s.' % (s, self.current.tid), self.getline(), self.current.lineno, self.current.colno, self.lexer.getline(block_start.line_start), block_start.lineno, block_start.colno) def parse(self): block = self.codeblock() self.expect('eof') return block def statement(self): return self.e1() def e1(self): left = self.e2() if self.accept('plusassign'): value = self.e1() if not isinstance(left, IdNode): raise ParseException('Plusassignment target must be an id.', self.getline(), left.lineno, left.colno) return PlusAssignmentNode(left.lineno, left.colno, left.value, value) elif self.accept('assign'): value = self.e1() if not isinstance(left, IdNode): raise ParseException('Assignment target must be an id.', self.getline(), left.lineno, left.colno) return AssignmentNode(left.lineno, left.colno, left.value, value) elif self.accept('questionmark'): if self.in_ternary: raise ParseException('Nested ternary operators are not allowed.', self.getline(), left.lineno, left.colno) self.in_ternary = True trueblock = self.e1() self.expect('colon') falseblock = self.e1() self.in_ternary = False return TernaryNode(left.lineno, left.colno, left, trueblock, falseblock) return left def e2(self): left = self.e3() while self.accept('or'): if isinstance(left, EmptyNode): raise ParseException('Invalid or clause.', self.getline(), left.lineno, left.colno) left = OrNode(left, self.e3()) return left def e3(self): left = self.e4() while self.accept('and'): if isinstance(left, EmptyNode): raise ParseException('Invalid and clause.', self.getline(), left.lineno, left.colno) left = AndNode(left, self.e4()) return left def e4(self): left = self.e5() for nodename, operator_type in comparison_map.items(): if self.accept(nodename): return ComparisonNode(operator_type, left, self.e5()) if self.accept('not') and self.accept('in'): return ComparisonNode('notin', left, self.e5()) return left def e5(self): return self.e5add() def e5add(self): left = self.e5sub() if self.accept('plus'): return ArithmeticNode('add', left, self.e5add()) return left def e5sub(self): left = self.e5mod() if self.accept('dash'): return ArithmeticNode('sub', left, self.e5sub()) return left def e5mod(self): left = self.e5mul() if self.accept('percent'): return ArithmeticNode('mod', left, self.e5mod()) return left def e5mul(self): left = self.e5div() if self.accept('star'): return ArithmeticNode('mul', left, self.e5mul()) return left def e5div(self): left = self.e6() if self.accept('fslash'): return ArithmeticNode('div', left, self.e5div()) return left def e6(self): if self.accept('not'): return NotNode(self.current, self.e7()) if self.accept('dash'): return UMinusNode(self.current, self.e7()) return self.e7() def e7(self): left = self.e8() block_start = self.current if self.accept('lparen'): args = self.args() self.block_expect('rparen', block_start) if not isinstance(left, IdNode): raise ParseException('Function call must be applied to plain id', self.getline(), left.lineno, left.colno) left = FunctionNode(left.subdir, left.lineno, left.colno, left.value, args) go_again = True while go_again: go_again = False if self.accept('dot'): go_again = True left = self.method_call(left) if self.accept('lbracket'): go_again = True left = self.index_call(left) return left def e8(self): block_start = self.current if self.accept('lparen'): e = self.statement() self.block_expect('rparen', block_start) return e elif self.accept('lbracket'): args = self.args() self.block_expect('rbracket', block_start) return ArrayNode(args) elif self.accept('lcurl'): key_values = self.key_values() self.block_expect('rcurl', block_start) return DictNode(key_values) else: return self.e9() def e9(self): t = self.current if self.accept('true'): return BooleanNode(t, True) if self.accept('false'): return BooleanNode(t, False) if self.accept('id'): return IdNode(t) if self.accept('number'): return NumberNode(t) if self.accept('string'): return StringNode(t) return EmptyNode(self.current.lineno, self.current.colno) def key_values(self): s = self.statement() a = ArgumentNode(s) while not isinstance(s, EmptyNode): potential = self.current if self.accept('colon'): if not isinstance(s, StringNode): raise ParseException('Key must be a string.', self.getline(), s.lineno, s.colno) if s.value in a.kwargs: # + 1 to colno to point to the actual string, not the opening quote raise ParseException('Duplicate dictionary key: {}'.format(s.value), self.getline(), s.lineno, s.colno + 1) a.set_kwarg(s.value, self.statement()) potential = self.current if not self.accept('comma'): return a a.commas.append(potential) else: raise ParseException('Only key:value pairs are valid in dict construction.', self.getline(), s.lineno, s.colno) s = self.statement() return a def args(self): s = self.statement() a = ArgumentNode(s) while not isinstance(s, EmptyNode): potential = self.current if self.accept('comma'): a.commas.append(potential) a.append(s) elif self.accept('colon'): if not isinstance(s, IdNode): raise ParseException('Dictionary key must be a plain identifier.', self.getline(), s.lineno, s.colno) a.set_kwarg(s.value, self.statement()) potential = self.current if not self.accept('comma'): return a a.commas.append(potential) else: a.append(s) return a s = self.statement() return a def method_call(self, source_object): methodname = self.e9() if not(isinstance(methodname, IdNode)): raise ParseException('Method name must be plain id', self.getline(), self.current.lineno, self.current.colno) self.expect('lparen') args = self.args() self.expect('rparen') method = MethodNode(methodname.subdir, methodname.lineno, methodname.colno, source_object, methodname.value, args) if self.accept('dot'): return self.method_call(method) return method def index_call(self, source_object): index_statement = self.statement() self.expect('rbracket') return IndexNode(source_object, index_statement) def foreachblock(self): t = self.current self.expect('id') varname = t varnames = [t] if self.accept('comma'): t = self.current self.expect('id') varnames.append(t) self.expect('colon') items = self.statement() block = self.codeblock() return ForeachClauseNode(varname.lineno, varname.colno, varnames, items, block) def ifblock(self): condition = self.statement() clause = IfClauseNode(condition.lineno, condition.colno) self.expect('eol') block = self.codeblock() clause.ifs.append(IfNode(clause.lineno, clause.colno, condition, block)) self.elseifblock(clause) clause.elseblock = self.elseblock() return clause def elseifblock(self, clause): while self.accept('elif'): s = self.statement() self.expect('eol') b = self.codeblock() clause.ifs.append(IfNode(s.lineno, s.colno, s, b)) def elseblock(self): if self.accept('else'): self.expect('eol') return self.codeblock() def line(self): block_start = self.current if self.current == 'eol': return EmptyNode(self.current.lineno, self.current.colno) if self.accept('if'): block = self.ifblock() self.block_expect('endif', block_start) return block if self.accept('foreach'): block = self.foreachblock() self.block_expect('endforeach', block_start) return block if self.accept('continue'): return ContinueNode(self.current) if self.accept('break'): return BreakNode(self.current) return self.statement() def codeblock(self): block = CodeBlockNode(self.current) cond = True while cond: curline = self.line() if not isinstance(curline, EmptyNode): block.lines.append(curline) cond = self.accept('eol') return block