# Copyright 2012-2016 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, platform, re, sys, shutil, subprocess import tempfile import shlex import typing as T from . import coredata from .linkers import ArLinker, ArmarLinker, VisualStudioLinker, DLinker, CcrxLinker, Xc16Linker, C2000Linker, IntelVisualStudioLinker from . import mesonlib from .mesonlib import ( MesonException, EnvironmentException, MachineChoice, Popen_safe, PerMachineDefaultable, PerThreeMachineDefaultable, split_args, quote_arg ) from . import mlog from .envconfig import ( BinaryTable, Directories, MachineInfo, MesonConfigFile, Properties, known_cpu_families, ) from . import compilers from .compilers import ( Compiler, is_assembly, is_header, is_library, is_llvm_ir, is_object, is_source, ) from .linkers import ( AppleDynamicLinker, ArmClangDynamicLinker, ArmDynamicLinker, CcrxDynamicLinker, Xc16DynamicLinker, C2000DynamicLinker, ClangClDynamicLinker, DynamicLinker, GnuBFDDynamicLinker, GnuGoldDynamicLinker, LLVMDynamicLinker, MSVCDynamicLinker, OptlinkDynamicLinker, PGIDynamicLinker, PGIStaticLinker, SolarisDynamicLinker, XilinkDynamicLinker, CudaLinker, VisualStudioLikeLinkerMixin, WASMDynamicLinker, ) from functools import lru_cache from .compilers import ( ArmCCompiler, ArmCPPCompiler, ArmclangCCompiler, ArmclangCPPCompiler, AppleClangCCompiler, AppleClangCPPCompiler, ClangCCompiler, ClangCPPCompiler, ClangObjCCompiler, ClangObjCPPCompiler, ClangClCCompiler, ClangClCPPCompiler, FlangFortranCompiler, G95FortranCompiler, GnuCCompiler, GnuCPPCompiler, GnuFortranCompiler, GnuObjCCompiler, GnuObjCPPCompiler, ElbrusCCompiler, ElbrusCPPCompiler, ElbrusFortranCompiler, EmscriptenCCompiler, EmscriptenCPPCompiler, IntelCCompiler, IntelClCCompiler, IntelCPPCompiler, IntelClCPPCompiler, IntelFortranCompiler, IntelClFortranCompiler, JavaCompiler, MonoCompiler, CudaCompiler, VisualStudioCsCompiler, NAGFortranCompiler, Open64FortranCompiler, PathScaleFortranCompiler, PGICCompiler, PGICPPCompiler, PGIFortranCompiler, RustCompiler, CcrxCCompiler, CcrxCPPCompiler, Xc16CCompiler, C2000CCompiler, C2000CPPCompiler, SunFortranCompiler, ValaCompiler, VisualStudioCCompiler, VisualStudioCPPCompiler, ) build_filename = 'meson.build' CompilersDict = T.Dict[str, Compiler] def detect_gcovr(min_version='3.3', new_rootdir_version='4.2', log=False): gcovr_exe = 'gcovr' try: p, found = Popen_safe([gcovr_exe, '--version'])[0:2] except (FileNotFoundError, PermissionError): # Doesn't exist in PATH or isn't executable return None, None found = search_version(found) if p.returncode == 0 and mesonlib.version_compare(found, '>=' + min_version): if log: mlog.log('Found gcovr-{} at {}'.format(found, quote_arg(shutil.which(gcovr_exe)))) return gcovr_exe, mesonlib.version_compare(found, '>=' + new_rootdir_version) return None, None def find_coverage_tools(): gcovr_exe, gcovr_new_rootdir = detect_gcovr() lcov_exe = 'lcov' genhtml_exe = 'genhtml' if not mesonlib.exe_exists([lcov_exe, '--version']): lcov_exe = None if not mesonlib.exe_exists([genhtml_exe, '--version']): genhtml_exe = None return gcovr_exe, gcovr_new_rootdir, lcov_exe, genhtml_exe def detect_ninja(version: str = '1.7', log: bool = False) -> str: r = detect_ninja_command_and_version(version, log) return r[0] if r else None def detect_ninja_command_and_version(version: str = '1.7', log: bool = False) -> (str, str): env_ninja = os.environ.get('NINJA', None) for n in [env_ninja] if env_ninja else ['ninja', 'ninja-build', 'samu']: try: p, found = Popen_safe([n, '--version'])[0:2] except (FileNotFoundError, PermissionError): # Doesn't exist in PATH or isn't executable continue found = found.strip() # Perhaps we should add a way for the caller to know the failure mode # (not found or too old) if p.returncode == 0 and mesonlib.version_compare(found, '>=' + version): n = shutil.which(n) if log: name = os.path.basename(n) if name.endswith('-' + found): name = name[0:-1 - len(found)] if name == 'ninja-build': name = 'ninja' if name == 'samu': name = 'samurai' mlog.log('Found {}-{} at {}'.format(name, found, quote_arg(n))) return (n, found) def get_llvm_tool_names(tool: str) -> T.List[str]: # Ordered list of possible suffixes of LLVM executables to try. Start with # base, then try newest back to oldest (3.5 is arbitrary), and finally the # devel version. Please note that the development snapshot in Debian does # not have a distinct name. Do not move it to the beginning of the list # unless it becomes a stable release. suffixes = [ '', # base (no suffix) '-9', '90', '-8', '80', '-7', '70', '-6.0', '60', '-5.0', '50', '-4.0', '40', '-3.9', '39', '-3.8', '38', '-3.7', '37', '-3.6', '36', '-3.5', '35', '-10', # Debian development snapshot '-devel', # FreeBSD development snapshot ] names = [] for suffix in suffixes: names.append(tool + suffix) return names def detect_scanbuild() -> T.List[str]: """ Look for scan-build binary on build platform First, if a SCANBUILD env variable has been provided, give it precedence on all platforms. For most platforms, scan-build is found is the PATH contains a binary named "scan-build". However, some distribution's package manager (FreeBSD) don't. For those, loop through a list of candidates to see if one is available. Return: a single-element list of the found scan-build binary ready to be passed to Popen() """ exelist = [] if 'SCANBUILD' in os.environ: exelist = split_args(os.environ['SCANBUILD']) else: tools = get_llvm_tool_names('scan-build') for tool in tools: if shutil.which(tool) is not None: exelist = [shutil.which(tool)] break if exelist: tool = exelist[0] if os.path.isfile(tool) and os.access(tool, os.X_OK): return [tool] return [] def detect_clangformat() -> T.List[str]: """ Look for clang-format binary on build platform Do the same thing as detect_scanbuild to find clang-format except it currently does not check the environment variable. Return: a single-element list of the found clang-format binary ready to be passed to Popen() """ tools = get_llvm_tool_names('clang-format') for tool in tools: path = shutil.which(tool) if path is not None: return [path] return [] def detect_native_windows_arch(): """ The architecture of Windows itself: x86, amd64 or arm64 """ # These env variables are always available. See: # https://msdn.microsoft.com/en-us/library/aa384274(VS.85).aspx # https://blogs.msdn.microsoft.com/david.wang/2006/03/27/howto-detect-process-bitness/ arch = os.environ.get('PROCESSOR_ARCHITEW6432', '').lower() if not arch: try: # If this doesn't exist, something is messing with the environment arch = os.environ['PROCESSOR_ARCHITECTURE'].lower() except KeyError: raise EnvironmentException('Unable to detect native OS architecture') return arch def detect_windows_arch(compilers: CompilersDict) -> str: """ Detecting the 'native' architecture of Windows is not a trivial task. We cannot trust that the architecture that Python is built for is the 'native' one because you can run 32-bit apps on 64-bit Windows using WOW64 and people sometimes install 32-bit Python on 64-bit Windows. We also can't rely on the architecture of the OS itself, since it's perfectly normal to compile and run 32-bit applications on Windows as if they were native applications. It's a terrible experience to require the user to supply a cross-info file to compile 32-bit applications on 64-bit Windows. Thankfully, the only way to compile things with Visual Studio on Windows is by entering the 'msvc toolchain' environment, which can be easily detected. In the end, the sanest method is as follows: 1. Check environment variables that are set by Windows and WOW64 to find out if this is x86 (possibly in WOW64), if so use that as our 'native' architecture. 2. If the compiler toolchain target architecture is x86, use that as our 'native' architecture. 3. Otherwise, use the actual Windows architecture """ os_arch = detect_native_windows_arch() if os_arch == 'x86': return os_arch # If we're on 64-bit Windows, 32-bit apps can be compiled without # cross-compilation. So if we're doing that, just set the native arch as # 32-bit and pretend like we're running under WOW64. Else, return the # actual Windows architecture that we deduced above. for compiler in compilers.values(): if compiler.id == 'msvc' and (compiler.target == 'x86' or compiler.target == '80x86'): return 'x86' if compiler.id == 'clang-cl' and compiler.target == 'x86': return 'x86' if compiler.id == 'gcc' and compiler.has_builtin_define('__i386__'): return 'x86' return os_arch def any_compiler_has_define(compilers: CompilersDict, define): for c in compilers.values(): try: if c.has_builtin_define(define): return True except mesonlib.MesonException: # Ignore compilers that do not support has_builtin_define. pass return False def detect_cpu_family(compilers: CompilersDict) -> str: """ Python is inconsistent in its platform module. It returns different values for the same cpu. For x86 it might return 'x86', 'i686' or somesuch. Do some canonicalization. """ if mesonlib.is_windows(): trial = detect_windows_arch(compilers) elif mesonlib.is_freebsd() or mesonlib.is_netbsd() or mesonlib.is_openbsd(): trial = platform.processor().lower() else: trial = platform.machine().lower() if trial.startswith('i') and trial.endswith('86'): trial = 'x86' elif trial == 'bepc': trial = 'x86' elif trial.startswith('arm') or trial.startswith('earm'): trial = 'arm' elif trial.startswith(('powerpc64', 'ppc64')): trial = 'ppc64' elif trial.startswith(('powerpc', 'ppc')) or trial in {'macppc', 'power machintosh'}: trial = 'ppc' elif trial in ('amd64', 'x64', 'i86pc'): trial = 'x86_64' elif trial in {'sun4u', 'sun4v'}: trial = 'sparc64' elif trial in {'mipsel', 'mips64el'}: trial = trial.rstrip('el') # On Linux (and maybe others) there can be any mixture of 32/64 bit code in # the kernel, Python, system, 32-bit chroot on 64-bit host, etc. The only # reliable way to know is to check the compiler defines. if trial == 'x86_64': if any_compiler_has_define(compilers, '__i386__'): trial = 'x86' elif trial == 'aarch64': if any_compiler_has_define(compilers, '__arm__'): trial = 'arm' # Add more quirks here as bugs are reported. Keep in sync with detect_cpu() # below. elif trial == 'parisc64': # ATM there is no 64 bit userland for PA-RISC. Thus always # report it as 32 bit for simplicity. trial = 'parisc' if trial not in known_cpu_families: mlog.warning('Unknown CPU family {!r}, please report this at ' 'https://github.com/mesonbuild/meson/issues/new with the ' 'output of `uname -a` and `cat /proc/cpuinfo`'.format(trial)) return trial def detect_cpu(compilers: CompilersDict): if mesonlib.is_windows(): trial = detect_windows_arch(compilers) elif mesonlib.is_freebsd() or mesonlib.is_netbsd() or mesonlib.is_openbsd(): trial = platform.processor().lower() else: trial = platform.machine().lower() if trial in ('amd64', 'x64', 'i86pc'): trial = 'x86_64' if trial == 'x86_64': # Same check as above for cpu_family if any_compiler_has_define(compilers, '__i386__'): trial = 'i686' # All 64 bit cpus have at least this level of x86 support. elif trial == 'aarch64': # Same check as above for cpu_family if any_compiler_has_define(compilers, '__arm__'): trial = 'arm' elif trial.startswith('earm'): trial = 'arm' elif trial == 'e2k': # Make more precise CPU detection for Elbrus platform. trial = platform.processor().lower() elif trial.startswith('mips'): trial = trial.rstrip('el') # Add more quirks here as bugs are reported. Keep in sync with # detect_cpu_family() above. return trial def detect_system(): system = platform.system().lower() if system.startswith('cygwin'): return 'cygwin' return system def detect_msys2_arch(): if 'MSYSTEM_CARCH' in os.environ: return os.environ['MSYSTEM_CARCH'] return None def detect_machine_info(compilers: T.Optional[CompilersDict] = None) -> MachineInfo: """Detect the machine we're running on If compilers are not provided, we cannot know as much. None out those fields to avoid accidentally depending on partial knowledge. The underlying ''detect_*'' method can be called to explicitly use the partial information. """ return MachineInfo( detect_system(), detect_cpu_family(compilers) if compilers is not None else None, detect_cpu(compilers) if compilers is not None else None, sys.byteorder) # TODO make this compare two `MachineInfo`s purely. How important is the # `detect_cpu_family({})` distinction? It is the one impediment to that. def machine_info_can_run(machine_info: MachineInfo): """Whether we can run binaries for this machine on the current machine. Can almost always run 32-bit binaries on 64-bit natively if the host and build systems are the same. We don't pass any compilers to detect_cpu_family() here because we always want to know the OS architecture, not what the compiler environment tells us. """ if machine_info.system != detect_system(): return False true_build_cpu_family = detect_cpu_family({}) return \ (machine_info.cpu_family == true_build_cpu_family) or \ ((true_build_cpu_family == 'x86_64') and (machine_info.cpu_family == 'x86')) def search_version(text): # Usually of the type 4.1.4 but compiler output may contain # stuff like this: # (Sourcery CodeBench Lite 2014.05-29) 4.8.3 20140320 (prerelease) # Limiting major version number to two digits seems to work # thus far. When we get to GCC 100, this will break, but # if we are still relevant when that happens, it can be # considered an achievement in itself. # # This regex is reaching magic levels. If it ever needs # to be updated, do not complexify but convert to something # saner instead. # We'll demystify it a bit with a verbose definition. version_regex = re.compile(r""" (? bool: return self.coredata.is_cross_build() def dump_coredata(self): return coredata.save(self.coredata, self.get_build_dir()) def get_script_dir(self): import mesonbuild.scripts return os.path.dirname(mesonbuild.scripts.__file__) def get_log_dir(self): return self.log_dir def get_coredata(self): return self.coredata def get_build_command(self, unbuffered=False): cmd = mesonlib.meson_command[:] if unbuffered and 'python' in os.path.basename(cmd[0]): cmd.insert(1, '-u') return cmd def is_header(self, fname): return is_header(fname) def is_source(self, fname): return is_source(fname) def is_assembly(self, fname): return is_assembly(fname) def is_llvm_ir(self, fname): return is_llvm_ir(fname) def is_object(self, fname): return is_object(fname) @lru_cache(maxsize=None) def is_library(self, fname): return is_library(fname) def lookup_binary_entry(self, for_machine: MachineChoice, name: str): return self.binaries[for_machine].lookup_entry( for_machine, self.is_cross_build(), name) @staticmethod def get_gnu_compiler_defines(compiler): """ Detect GNU compiler platform type (Apple, MinGW, Unix) """ # Arguments to output compiler pre-processor defines to stdout # gcc, g++, and gfortran all support these arguments args = compiler + ['-E', '-dM', '-'] p, output, error = Popen_safe(args, write='', stdin=subprocess.PIPE) if p.returncode != 0: raise EnvironmentException('Unable to detect GNU compiler type:\n' + output + error) # Parse several lines of the type: # `#define ___SOME_DEF some_value` # and extract `___SOME_DEF` defines = {} for line in output.split('\n'): if not line: continue d, *rest = line.split(' ', 2) if d != '#define': continue if len(rest) == 1: defines[rest] = True if len(rest) == 2: defines[rest[0]] = rest[1] return defines @staticmethod def get_gnu_version_from_defines(defines): dot = '.' major = defines.get('__GNUC__', '0') minor = defines.get('__GNUC_MINOR__', '0') patch = defines.get('__GNUC_PATCHLEVEL__', '0') return dot.join((major, minor, patch)) @staticmethod def get_lcc_version_from_defines(defines): dot = '.' generation_and_major = defines.get('__LCC__', '100') generation = generation_and_major[:1] major = generation_and_major[1:] minor = defines.get('__LCC_MINOR__', '0') return dot.join((generation, major, minor)) def _get_compilers(self, lang, for_machine): ''' The list of compilers is detected in the exact same way for C, C++, ObjC, ObjC++, Fortran, CS so consolidate it here. ''' value = self.lookup_binary_entry(for_machine, lang) if value is not None: compilers, ccache = BinaryTable.parse_entry(value) # Return value has to be a list of compiler 'choices' compilers = [compilers] else: if not self.machines.matches_build_machine(for_machine): raise EnvironmentException('{!r} compiler binary not defined in cross or native file'.format(lang)) compilers = getattr(self, 'default_' + lang) ccache = BinaryTable.detect_ccache() if self.machines.matches_build_machine(for_machine): exe_wrap = None else: exe_wrap = self.get_exe_wrapper() return compilers, ccache, exe_wrap def _handle_exceptions(self, exceptions, binaries, bintype='compiler'): errmsg = 'Unknown {}(s): {}'.format(bintype, binaries) if exceptions: errmsg += '\nThe follow exceptions were encountered:' for (c, e) in exceptions.items(): errmsg += '\nRunning "{0}" gave "{1}"'.format(c, e) raise EnvironmentException(errmsg) def _guess_win_linker(self, compiler: T.List[str], comp_class: Compiler, for_machine: MachineChoice, *, use_linker_prefix: bool = True, invoked_directly: bool = True, extra_args: T.Optional[T.List[str]] = None) -> 'DynamicLinker': self.coredata.add_lang_args(comp_class.language, comp_class, for_machine, self) # Explicitly pass logo here so that we can get the version of link.exe if not use_linker_prefix or comp_class.LINKER_PREFIX is None: check_args = ['/logo', '--version'] elif isinstance(comp_class.LINKER_PREFIX, str): check_args = [comp_class.LINKER_PREFIX + '/logo', comp_class.LINKER_PREFIX + '--version'] elif isinstance(comp_class.LINKER_PREFIX, list): check_args = comp_class.LINKER_PREFIX + ['/logo'] + comp_class.LINKER_PREFIX + ['--version'] check_args += self.coredata.compiler_options[for_machine][comp_class.language + '_args'].value override = [] # type: T.List[str] value = self.lookup_binary_entry(for_machine, comp_class.language + '_ld') if value is not None: override = comp_class.use_linker_args(value[0]) check_args += override if extra_args is not None: check_args.extend(extra_args) p, o, _ = Popen_safe(compiler + check_args) if o.startswith('LLD'): if '(compatible with GNU linkers)' in o: return LLVMDynamicLinker( compiler, for_machine, comp_class.LINKER_PREFIX, override, version=search_version(o)) if value is not None and invoked_directly: compiler = value # We've already hanedled the non-direct case above p, o, e = Popen_safe(compiler + check_args) if o.startswith('LLD'): return ClangClDynamicLinker( for_machine, [], prefix=comp_class.LINKER_PREFIX if use_linker_prefix else [], exelist=compiler, version=search_version(o), direct=invoked_directly) elif 'OPTLINK' in o: # Opltink's stdout *may* beging with a \r character. return OptlinkDynamicLinker(compiler, for_machine, version=search_version(o)) elif o.startswith('Microsoft') or e.startswith('Microsoft'): out = o or e match = re.search(r'.*(X86|X64|ARM|ARM64).*', out) if match: target = str(match.group(1)) else: target = 'x86' return MSVCDynamicLinker( for_machine, [], machine=target, exelist=compiler, prefix=comp_class.LINKER_PREFIX if use_linker_prefix else [], version=search_version(out), direct=invoked_directly) elif 'GNU coreutils' in o: raise EnvironmentException( "Found GNU link.exe instead of MSVC link.exe. This link.exe " "is not a linker. You may need to reorder entries to your " "%PATH% variable to resolve this.") raise EnvironmentException('Unable to determine dynamic linker') def _guess_nix_linker(self, compiler: T.List[str], comp_class: T.Type[Compiler], for_machine: MachineChoice, *, extra_args: T.Optional[T.List[str]] = None) -> 'DynamicLinker': """Helper for guessing what linker to use on Unix-Like OSes. :compiler: Invocation to use to get linker :comp_class: The Compiler Type (uninstantiated) :for_machine: which machine this linker targets :extra_args: Any additional arguments required (such as a source file) """ self.coredata.add_lang_args(comp_class.language, comp_class, for_machine, self) extra_args = T.cast(T.List[str], extra_args or []) extra_args += self.coredata.compiler_options[for_machine][comp_class.language + '_args'].value if isinstance(comp_class.LINKER_PREFIX, str): check_args = [comp_class.LINKER_PREFIX + '--version'] + extra_args else: check_args = comp_class.LINKER_PREFIX + ['--version'] + extra_args override = [] # type: T.List[str] value = self.lookup_binary_entry(for_machine, comp_class.language + '_ld') if value is not None: override = comp_class.use_linker_args(value[0]) check_args += override _, o, e = Popen_safe(compiler + check_args) v = search_version(o) if o.startswith('LLD'): linker = LLVMDynamicLinker( compiler, for_machine, comp_class.LINKER_PREFIX, override, version=v) # type: DynamicLinker elif e.startswith('lld-link: '): # The LLD MinGW frontend didn't respond to --version before version 9.0.0, # and produced an error message about failing to link (when no object # files were specified), instead of printing the version number. # Let's try to extract the linker invocation command to grab the version. _, o, e = Popen_safe(compiler + check_args + ['-v']) try: linker_cmd = re.match(r'.*\n(.*?)\nlld-link: ', e, re.DOTALL).group(1) linker_cmd = shlex.split(linker_cmd)[0] except (AttributeError, IndexError, ValueError): pass else: _, o, e = Popen_safe([linker_cmd, '--version']) v = search_version(o) linker = LLVMDynamicLinker(compiler, for_machine, comp_class.LINKER_PREFIX, override, version=v) # first is for apple clang, second is for real gcc, the third is icc elif e.endswith('(use -v to see invocation)\n') or 'macosx_version' in e or 'ld: unknown option:' in e: if isinstance(comp_class.LINKER_PREFIX, str): _, _, e = Popen_safe(compiler + [comp_class.LINKER_PREFIX + '-v'] + extra_args) else: _, _, e = Popen_safe(compiler + comp_class.LINKER_PREFIX + ['-v'] + extra_args) for line in e.split('\n'): if 'PROJECT:ld' in line: v = line.split('-')[1] break else: v = 'unknown version' linker = AppleDynamicLinker(compiler, for_machine, comp_class.LINKER_PREFIX, override, version=v) elif 'GNU' in o: if 'gold' in o: cls = GnuGoldDynamicLinker else: cls = GnuBFDDynamicLinker linker = cls(compiler, for_machine, comp_class.LINKER_PREFIX, override, version=v) elif 'Solaris' in e or 'Solaris' in o: linker = SolarisDynamicLinker( compiler, for_machine, comp_class.LINKER_PREFIX, override, version=search_version(e)) else: raise EnvironmentException('Unable to determine dynamic linker') return linker def _detect_c_or_cpp_compiler(self, lang: str, for_machine: MachineChoice) -> Compiler: popen_exceptions = {} compilers, ccache, exe_wrap = self._get_compilers(lang, for_machine) is_cross = not self.machines.matches_build_machine(for_machine) info = self.machines[for_machine] for compiler in compilers: if isinstance(compiler, str): compiler = [compiler] compiler_name = os.path.basename(compiler[0]) if not set(['cl', 'cl.exe', 'clang-cl', 'clang-cl.exe']).isdisjoint(compiler): # Watcom C provides it's own cl.exe clone that mimics an older # version of Microsoft's compiler. Since Watcom's cl.exe is # just a wrapper, we skip using it if we detect its presence # so as not to confuse Meson when configuring for MSVC. # # Additionally the help text of Watcom's cl.exe is paged, and # the binary will not exit without human intervention. In # practice, Meson will block waiting for Watcom's cl.exe to # exit, which requires user input and thus will never exit. if 'WATCOM' in os.environ: def sanitize(p): return os.path.normcase(os.path.abspath(p)) watcom_cls = [sanitize(os.path.join(os.environ['WATCOM'], 'BINNT', 'cl')), sanitize(os.path.join(os.environ['WATCOM'], 'BINNT', 'cl.exe'))] found_cl = sanitize(shutil.which('cl')) if found_cl in watcom_cls: continue arg = '/?' elif 'armcc' in compiler_name: arg = '--vsn' elif 'ccrx' in compiler_name: arg = '-v' elif 'xc16' in compiler_name: arg = '--version' elif 'cl2000' in compiler_name: arg = '-version' elif compiler_name in {'icl', 'icl.exe'}: # if you pass anything to icl you get stuck in a pager arg = '' else: arg = '--version' try: p, out, err = Popen_safe(compiler + [arg]) except OSError as e: popen_exceptions[' '.join(compiler + [arg])] = e continue if 'ccrx' in compiler_name: out = err full_version = out.split('\n', 1)[0] version = search_version(out) guess_gcc_or_lcc = False if 'Free Software Foundation' in out or 'xt-' in out: guess_gcc_or_lcc = 'gcc' if 'e2k' in out and 'lcc' in out: guess_gcc_or_lcc = 'lcc' if 'Microchip Technology' in out: # this output has "Free Software Foundation" in its version guess_gcc_or_lcc = False if guess_gcc_or_lcc: defines = self.get_gnu_compiler_defines(compiler) if not defines: popen_exceptions[' '.join(compiler)] = 'no pre-processor defines' continue if guess_gcc_or_lcc == 'lcc': version = self.get_lcc_version_from_defines(defines) cls = ElbrusCCompiler if lang == 'c' else ElbrusCPPCompiler else: version = self.get_gnu_version_from_defines(defines) cls = GnuCCompiler if lang == 'c' else GnuCPPCompiler linker = self._guess_nix_linker(compiler, cls, for_machine) return cls( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, defines, full_version=full_version, linker=linker) if 'Emscripten' in out: cls = EmscriptenCCompiler if lang == 'c' else EmscriptenCPPCompiler self.coredata.add_lang_args(cls.language, cls, for_machine, self) # emcc cannot be queried to get the version out of it (it # ignores -Wl,--version and doesn't have an alternative). # Further, wasm-id *is* lld and will return `LLD X.Y.Z` if you # call `wasm-ld --version`, but a special version of lld that # takes different options. p, o, _ = Popen_safe(['wasm-ld', '--version']) linker = WASMDynamicLinker( compiler, for_machine, cls.LINKER_PREFIX, [], version=search_version(o)) return cls( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, linker=linker, full_version=full_version) if 'armclang' in out: # The compiler version is not present in the first line of output, # instead it is present in second line, startswith 'Component:'. # So, searching for the 'Component' in out although we know it is # present in second line, as we are not sure about the # output format in future versions arm_ver_str = re.search('.*Component.*', out) if arm_ver_str is None: popen_exceptions[' '.join(compiler)] = 'version string not found' continue arm_ver_str = arm_ver_str.group(0) # Override previous values version = search_version(arm_ver_str) full_version = arm_ver_str cls = ArmclangCCompiler if lang == 'c' else ArmclangCPPCompiler linker = ArmClangDynamicLinker(for_machine, version=version) self.coredata.add_lang_args(cls.language, cls, for_machine, self) return cls( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) if 'CL.EXE COMPATIBILITY' in out: # if this is clang-cl masquerading as cl, detect it as cl, not # clang arg = '--version' try: p, out, err = Popen_safe(compiler + [arg]) except OSError as e: popen_exceptions[' '.join(compiler + [arg])] = e version = search_version(out) match = re.search('^Target: (.*?)-', out, re.MULTILINE) if match: target = match.group(1) else: target = 'unknown target' cls = ClangClCCompiler if lang == 'c' else ClangClCPPCompiler linker = self._guess_win_linker(['lld-link'], cls, for_machine) return cls( compiler, version, for_machine, is_cross, info, exe_wrap, target, linker=linker) if 'clang' in out: linker = None # Even if the for_machine is darwin, we could be using vanilla # clang. if 'Apple' in out: cls = AppleClangCCompiler if lang == 'c' else AppleClangCPPCompiler else: cls = ClangCCompiler if lang == 'c' else ClangCPPCompiler if 'windows' in out or self.machines[for_machine].is_windows(): # If we're in a MINGW context this actually will use a gnu # style ld, but for clang on "real" windows we'll use # either link.exe or lld-link.exe try: linker = self._guess_win_linker(compiler, cls, for_machine) except MesonException: pass if linker is None: linker = self._guess_nix_linker(compiler, cls, for_machine) return cls( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) if 'Intel(R) C++ Intel(R)' in err: version = search_version(err) target = 'x86' if 'IA-32' in err else 'x86_64' cls = IntelClCCompiler if lang == 'c' else IntelClCPPCompiler self.coredata.add_lang_args(cls.language, cls, for_machine, self) linker = XilinkDynamicLinker(for_machine, [], version=version) return cls( compiler, version, for_machine, is_cross, info=info, exe_wrap=exe_wrap, target=target, linker=linker) if 'Microsoft' in out or 'Microsoft' in err: # Latest versions of Visual Studio print version # number to stderr but earlier ones print version # on stdout. Why? Lord only knows. # Check both outputs to figure out version. for lookat in [err, out]: version = search_version(lookat) if version != 'unknown version': break else: m = 'Failed to detect MSVC compiler version: stderr was\n{!r}' raise EnvironmentException(m.format(err)) cl_signature = lookat.split('\n')[0] match = re.search('.*(x86|x64|ARM|ARM64)( |$)', cl_signature) if match: target = match.group(1) else: m = 'Failed to detect MSVC compiler target architecture: \'cl /?\' output is\n{}' raise EnvironmentException(m.format(cl_signature)) cls = VisualStudioCCompiler if lang == 'c' else VisualStudioCPPCompiler linker = self._guess_win_linker(['link'], cls, for_machine) return cls( compiler, version, for_machine, is_cross, info, exe_wrap, target, linker=linker) if 'PGI Compilers' in out: cls = PGICCompiler if lang == 'c' else PGICPPCompiler self.coredata.add_lang_args(cls.language, cls, for_machine, self) linker = PGIDynamicLinker(compiler, for_machine, cls.LINKER_PREFIX, [], version=version) return cls( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, linker=linker) if '(ICC)' in out: cls = IntelCCompiler if lang == 'c' else IntelCPPCompiler l = self._guess_nix_linker(compiler, cls, for_machine) return cls( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=l) if 'ARM' in out: cls = ArmCCompiler if lang == 'c' else ArmCPPCompiler self.coredata.add_lang_args(cls.language, cls, for_machine, self) linker = ArmDynamicLinker(for_machine, version=version) return cls( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) if 'RX Family' in out: cls = CcrxCCompiler if lang == 'c' else CcrxCPPCompiler self.coredata.add_lang_args(cls.language, cls, for_machine, self) linker = CcrxDynamicLinker(for_machine, version=version) return cls( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) if 'Microchip Technology' in out: cls = Xc16CCompiler if lang == 'c' else Xc16CCompiler self.coredata.add_lang_args(cls.language, cls, for_machine, self) linker = Xc16DynamicLinker(for_machine, version=version) return cls( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) if 'TMS320C2000 C/C++' in out: cls = C2000CCompiler if lang == 'c' else C2000CPPCompiler self.coredata.add_lang_args(cls.language, cls, for_machine, self) linker = C2000DynamicLinker(for_machine, version=version) return cls( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) self._handle_exceptions(popen_exceptions, compilers) def detect_c_compiler(self, for_machine): return self._detect_c_or_cpp_compiler('c', for_machine) def detect_cpp_compiler(self, for_machine): return self._detect_c_or_cpp_compiler('cpp', for_machine) def detect_cuda_compiler(self, for_machine): popen_exceptions = {} is_cross = not self.machines.matches_build_machine(for_machine) compilers, ccache, exe_wrap = self._get_compilers('cuda', for_machine) info = self.machines[for_machine] for compiler in compilers: if isinstance(compiler, str): compiler = [compiler] else: raise EnvironmentException() arg = '--version' try: p, out, err = Popen_safe(compiler + [arg]) except OSError as e: popen_exceptions[' '.join(compiler + [arg])] = e continue # Example nvcc printout: # # nvcc: NVIDIA (R) Cuda compiler driver # Copyright (c) 2005-2018 NVIDIA Corporation # Built on Sat_Aug_25_21:08:01_CDT_2018 # Cuda compilation tools, release 10.0, V10.0.130 # # search_version() first finds the "10.0" after "release", # rather than the more precise "10.0.130" after "V". # The patch version number is occasionally important; For # instance, on Linux, # - CUDA Toolkit 8.0.44 requires NVIDIA Driver 367.48 # - CUDA Toolkit 8.0.61 requires NVIDIA Driver 375.26 # Luckily, the "V" also makes it very simple to extract # the full version: version = out.strip().split('V')[-1] cpp_compiler = self.detect_cpp_compiler(for_machine) cls = CudaCompiler self.coredata.add_lang_args(cls.language, cls, for_machine, self) linker = CudaLinker(compiler, for_machine, CudaCompiler.LINKER_PREFIX, [], version=CudaLinker.parse_version()) return cls(ccache + compiler, version, for_machine, is_cross, exe_wrap, host_compiler=cpp_compiler, info=info, linker=linker) raise EnvironmentException('Could not find suitable CUDA compiler: "' + ' '.join(compilers) + '"') def detect_fortran_compiler(self, for_machine: MachineChoice): popen_exceptions = {} compilers, ccache, exe_wrap = self._get_compilers('fortran', for_machine) is_cross = not self.machines.matches_build_machine(for_machine) info = self.machines[for_machine] for compiler in compilers: if isinstance(compiler, str): compiler = [compiler] for arg in ['--version', '-V']: try: p, out, err = Popen_safe(compiler + [arg]) except OSError as e: popen_exceptions[' '.join(compiler + [arg])] = e continue version = search_version(out) full_version = out.split('\n', 1)[0] guess_gcc_or_lcc = False if 'GNU Fortran' in out: guess_gcc_or_lcc = 'gcc' if 'e2k' in out and 'lcc' in out: guess_gcc_or_lcc = 'lcc' if guess_gcc_or_lcc: defines = self.get_gnu_compiler_defines(compiler) if not defines: popen_exceptions[' '.join(compiler)] = 'no pre-processor defines' continue if guess_gcc_or_lcc == 'lcc': version = self.get_lcc_version_from_defines(defines) cls = ElbrusFortranCompiler else: version = self.get_gnu_version_from_defines(defines) cls = GnuFortranCompiler linker = self._guess_nix_linker( compiler, cls, for_machine) return cls( compiler, version, for_machine, is_cross, info, exe_wrap, defines, full_version=full_version, linker=linker) if 'G95' in out: linker = self._guess_nix_linker( compiler, cls, for_machine) return G95FortranCompiler( compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) if 'Sun Fortran' in err: version = search_version(err) linker = self._guess_nix_linker( compiler, cls, for_machine) return SunFortranCompiler( compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) if 'Intel(R) Visual Fortran' in err: version = search_version(err) target = 'x86' if 'IA-32' in err else 'x86_64' cls = IntelClFortranCompiler self.coredata.add_lang_args(cls.language, cls, for_machine, self) linker = XilinkDynamicLinker(for_machine, [], version=version) return cls( compiler, version, for_machine, is_cross, target, info, exe_wrap, linker=linker) if 'ifort (IFORT)' in out: linker = self._guess_nix_linker(compiler, IntelFortranCompiler, for_machine) return IntelFortranCompiler( compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) if 'PathScale EKOPath(tm)' in err: return PathScaleFortranCompiler( compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version) if 'PGI Compilers' in out: cls = PGIFortranCompiler self.coredata.add_lang_args(cls.language, cls, for_machine, self) linker = PGIDynamicLinker(compiler, for_machine, cls.LINKER_PREFIX, [], version=version) return cls( compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) if 'flang' in out or 'clang' in out: linker = self._guess_nix_linker( compiler, FlangFortranCompiler, for_machine) return FlangFortranCompiler( compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) if 'Open64 Compiler Suite' in err: linker = self._guess_nix_linker( compiler, Open64FortranCompiler, for_machine) return Open64FortranCompiler( compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) if 'NAG Fortran' in err: linker = self._guess_nix_linker( compiler, NAGFortranCompiler, for_machine) return NAGFortranCompiler( compiler, version, for_machine, is_cross, info, exe_wrap, full_version=full_version, linker=linker) self._handle_exceptions(popen_exceptions, compilers) def get_scratch_dir(self): return self.scratch_dir def detect_objc_compiler(self, for_machine: MachineInfo) -> 'Compiler': return self._detect_objc_or_objcpp_compiler(for_machine, True) def detect_objcpp_compiler(self, for_machine: MachineInfo) -> 'Compiler': return self._detect_objc_or_objcpp_compiler(for_machine, False) def _detect_objc_or_objcpp_compiler(self, for_machine: MachineInfo, objc: bool) -> 'Compiler': popen_exceptions = {} compilers, ccache, exe_wrap = self._get_compilers('objc' if objc else 'objcpp', for_machine) is_cross = not self.machines.matches_build_machine(for_machine) info = self.machines[for_machine] for compiler in compilers: if isinstance(compiler, str): compiler = [compiler] arg = ['--version'] try: p, out, err = Popen_safe(compiler + arg) except OSError as e: popen_exceptions[' '.join(compiler + arg)] = e continue version = search_version(out) if 'Free Software Foundation' in out: defines = self.get_gnu_compiler_defines(compiler) if not defines: popen_exceptions[' '.join(compiler)] = 'no pre-processor defines' continue version = self.get_gnu_version_from_defines(defines) comp = GnuObjCCompiler if objc else GnuObjCPPCompiler linker = self._guess_nix_linker(compiler, comp, for_machine) return comp( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, defines, linker=linker) if 'clang' in out: linker = None comp = ClangObjCCompiler if objc else ClangObjCPPCompiler if 'windows' in out or self.machines[for_machine].is_windows(): # If we're in a MINGW context this actually will use a gnu style ld try: linker = self._guess_win_linker(compiler, comp, for_machine) except MesonException: pass if not linker: linker = self._guess_nix_linker( compiler, comp, for_machine) return comp( ccache + compiler, version, for_machine, is_cross, info, exe_wrap, linker=linker) self._handle_exceptions(popen_exceptions, compilers) def detect_java_compiler(self, for_machine): exelist = self.lookup_binary_entry(for_machine, 'java') info = self.machines[for_machine] if exelist is None: # TODO support fallback exelist = [self.default_java[0]] try: p, out, err = Popen_safe(exelist + ['-version']) except OSError: raise EnvironmentException('Could not execute Java compiler "%s"' % ' '.join(exelist)) if 'javac' in out or 'javac' in err: version = search_version(err if 'javac' in err else out) if not version or version == 'unknown version': parts = (err if 'javac' in err else out).split() if len(parts) > 1: version = parts[1] comp_class = JavaCompiler self.coredata.add_lang_args(comp_class.language, comp_class, for_machine, self) return comp_class(exelist, version, for_machine, info) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') def detect_cs_compiler(self, for_machine): compilers, ccache, exe_wrap = self._get_compilers('cs', for_machine) popen_exceptions = {} info = self.machines[for_machine] for comp in compilers: if not isinstance(comp, list): comp = [comp] try: p, out, err = Popen_safe(comp + ['--version']) except OSError as e: popen_exceptions[' '.join(comp + ['--version'])] = e continue version = search_version(out) if 'Mono' in out: cls = MonoCompiler elif "Visual C#" in out: cls = VisualStudioCsCompiler else: continue self.coredata.add_lang_args(cls.language, cls, for_machine, self) return cls(comp, version, for_machine, info) self._handle_exceptions(popen_exceptions, compilers) def detect_vala_compiler(self, for_machine): exelist = self.lookup_binary_entry(for_machine, 'vala') is_cross = not self.machines.matches_build_machine(for_machine) info = self.machines[for_machine] if exelist is None: # TODO support fallback exelist = [self.default_vala[0]] try: p, out = Popen_safe(exelist + ['--version'])[0:2] except OSError: raise EnvironmentException('Could not execute Vala compiler "%s"' % ' '.join(exelist)) version = search_version(out) if 'Vala' in out: comp_class = ValaCompiler self.coredata.add_lang_args(comp_class.language, comp_class, for_machine, self) return comp_class(exelist, version, for_machine, info, is_cross) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') def detect_rust_compiler(self, for_machine): popen_exceptions = {} compilers, ccache, exe_wrap = self._get_compilers('rust', for_machine) is_cross = not self.machines.matches_build_machine(for_machine) info = self.machines[for_machine] cc = self.detect_c_compiler(for_machine) is_link_exe = isinstance(cc.linker, VisualStudioLikeLinkerMixin) override = self.lookup_binary_entry(for_machine, 'rust_ld') for compiler in compilers: if isinstance(compiler, str): compiler = [compiler] arg = ['--version'] try: p, out = Popen_safe(compiler + arg)[0:2] except OSError as e: popen_exceptions[' '.join(compiler + arg)] = e continue version = search_version(out) if 'rustc' in out: # On Linux and mac rustc will invoke gcc (clang for mac # presumably) and it can do this windows, for dynamic linking. # this means the easiest way to C compiler for dynamic linking. # figure out what linker to use is to just get the value of the # C compiler and use that as the basis of the rust linker. # However, there are two things we need to change, if CC is not # the default use that, and second add the necessary arguments # to rust to use -fuse-ld if override is None: extra_args = {} always_args = [] if is_link_exe: compiler.extend(['-C', 'linker={}'.format(cc.linker.exelist[0])]) extra_args['direct'] = True extra_args['machine'] = cc.linker.machine elif not ((info.is_darwin() and isinstance(cc, AppleClangCCompiler)) or isinstance(cc, GnuCCompiler)): c = cc.exelist[1] if cc.exelist[0].endswith('ccache') else cc.exelist[0] compiler.extend(['-C', 'linker={}'.format(c)]) # This trickery with type() gets us the class of the linker # so we can initialize a new copy for the Rust Compiler if is_link_exe: linker = type(cc.linker)(for_machine, always_args, exelist=cc.linker.exelist, version=cc.linker.version, **extra_args) else: linker = type(cc.linker)(compiler, for_machine, cc.LINKER_PREFIX, always_args=always_args, version=cc.linker.version, **extra_args) elif 'link' in override[0]: linker = self._guess_win_linker( override, RustCompiler, for_machine, use_linker_prefix=False) linker.direct = True else: # We're creating a new type of "C" compiler, that has rust # as it's language. This is gross, but I can't figure out # another way to handle this, because rustc is actually # invoking the c compiler as it's linker. b = type('b', (type(cc), ), {}) b.language = RustCompiler.language linker = self._guess_nix_linker(cc.exelist, b, for_machine) # Of course, we're not going to use any of that, we just # need it to get the proper arguments to pass to rustc c = cc.exelist[1] if cc.exelist[0].endswith('ccache') else cc.exelist[0] compiler.extend(['-C', 'linker={}'.format(c)]) compiler.extend(['-C', 'link-args={}'.format(' '.join(cc.use_linker_args(override[0])))]) self.coredata.add_lang_args(RustCompiler.language, RustCompiler, for_machine, self) return RustCompiler( compiler, version, for_machine, is_cross, info, exe_wrap, linker=linker) self._handle_exceptions(popen_exceptions, compilers) def detect_d_compiler(self, for_machine: MachineChoice): info = self.machines[for_machine] # Detect the target architecture, required for proper architecture handling on Windows. # MSVC compiler is required for correct platform detection. c_compiler = {'c': self.detect_c_compiler(for_machine)} is_msvc = isinstance(c_compiler['c'], VisualStudioCCompiler) if not is_msvc: c_compiler = {} arch = detect_cpu_family(c_compiler) if is_msvc and arch == 'x86': arch = 'x86_mscoff' popen_exceptions = {} is_cross = not self.machines.matches_build_machine(for_machine) results, ccache, exe_wrap = self._get_compilers('d', for_machine) for exelist in results: # Search for a D compiler. # We prefer LDC over GDC unless overridden with the DC # environment variable because LDC has a much more # up to date language version at time (2016). if not isinstance(exelist, list): exelist = [exelist] if os.path.basename(exelist[-1]).startswith(('ldmd', 'gdmd')): raise EnvironmentException( 'Meson does not support {} as it is only a DMD frontend for another compiler.' 'Please provide a valid value for DC or unset it so that Meson can resolve the compiler by itself.'.format(exelist[-1])) try: p, out = Popen_safe(exelist + ['--version'])[0:2] except OSError as e: popen_exceptions[' '.join(exelist + ['--version'])] = e continue version = search_version(out) full_version = out.split('\n', 1)[0] if 'LLVM D compiler' in out: # LDC seems to require a file # We cannot use NamedTemproraryFile on windows, its documented # to not work for our uses. So, just use mkstemp and only have # one path for simplicity. o, f = tempfile.mkstemp('.d') os.close(o) try: if info.is_windows() or info.is_cygwin(): objfile = os.path.basename(f)[:-1] + 'obj' linker = self._guess_win_linker( exelist, compilers.LLVMDCompiler, for_machine, use_linker_prefix=True, invoked_directly=False, extra_args=[f]) else: # LDC writes an object file to the current working directory. # Clean it up. objfile = os.path.basename(f)[:-1] + 'o' linker = self._guess_nix_linker( exelist, compilers.LLVMDCompiler, for_machine, extra_args=[f]) finally: mesonlib.windows_proof_rm(f) mesonlib.windows_proof_rm(objfile) return compilers.LLVMDCompiler( exelist, version, for_machine, info, arch, full_version=full_version, linker=linker) elif 'gdc' in out: linker = self._guess_nix_linker(exelist, compilers.GnuDCompiler, for_machine) return compilers.GnuDCompiler( exelist, version, for_machine, info, arch, is_cross, exe_wrap, full_version=full_version, linker=linker) elif 'The D Language Foundation' in out or 'Digital Mars' in out: # DMD seems to require a file # We cannot use NamedTemproraryFile on windows, its documented # to not work for our uses. So, just use mkstemp and only have # one path for simplicity. o, f = tempfile.mkstemp('.d') os.close(o) # DMD as different detection logic for x86 and x86_64 arch_arg = '-m64' if arch == 'x86_64' else '-m32' try: if info.is_windows() or info.is_cygwin(): objfile = os.path.basename(f)[:-1] + 'obj' linker = self._guess_win_linker( exelist, compilers.DmdDCompiler, for_machine, invoked_directly=False, extra_args=[f, arch_arg]) else: objfile = os.path.basename(f)[:-1] + 'o' linker = self._guess_nix_linker( exelist, compilers.DmdDCompiler, for_machine, extra_args=[f, arch_arg]) finally: mesonlib.windows_proof_rm(f) mesonlib.windows_proof_rm(objfile) return compilers.DmdDCompiler( exelist, version, for_machine, info, arch, full_version=full_version, linker=linker) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') self._handle_exceptions(popen_exceptions, compilers) def detect_swift_compiler(self, for_machine): exelist = self.lookup_binary_entry(for_machine, 'swift') is_cross = not self.machines.matches_build_machine(for_machine) info = self.machines[for_machine] if exelist is None: # TODO support fallback exelist = [self.default_swift[0]] try: p, _, err = Popen_safe(exelist + ['-v']) except OSError: raise EnvironmentException('Could not execute Swift compiler "%s"' % ' '.join(exelist)) version = search_version(err) if 'Swift' in err: # As for 5.0.1 swiftc *requires* a file to check the linker: with tempfile.NamedTemporaryFile(suffix='.swift') as f: linker = self._guess_nix_linker( exelist, compilers.SwiftCompiler, for_machine, extra_args=[f.name]) return compilers.SwiftCompiler( exelist, version, for_machine, info, is_cross, linker=linker) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') def compiler_from_language(self, lang: str, for_machine: MachineChoice): if lang == 'c': comp = self.detect_c_compiler(for_machine) elif lang == 'cpp': comp = self.detect_cpp_compiler(for_machine) elif lang == 'objc': comp = self.detect_objc_compiler(for_machine) elif lang == 'cuda': comp = self.detect_cuda_compiler(for_machine) elif lang == 'objcpp': comp = self.detect_objcpp_compiler(for_machine) elif lang == 'java': comp = self.detect_java_compiler(for_machine) elif lang == 'cs': comp = self.detect_cs_compiler(for_machine) elif lang == 'vala': comp = self.detect_vala_compiler(for_machine) elif lang == 'd': comp = self.detect_d_compiler(for_machine) elif lang == 'rust': comp = self.detect_rust_compiler(for_machine) elif lang == 'fortran': comp = self.detect_fortran_compiler(for_machine) elif lang == 'swift': comp = self.detect_swift_compiler(for_machine) else: comp = None return comp def detect_compiler_for(self, lang: str, for_machine: MachineChoice): comp = self.compiler_from_language(lang, for_machine) if comp is not None: assert comp.for_machine == for_machine self.coredata.process_new_compiler(lang, comp, self) return comp def detect_static_linker(self, compiler): linker = self.lookup_binary_entry(compiler.for_machine, 'ar') if linker is not None: linkers = [linker] else: defaults = [[l] for l in self.default_static_linker] if isinstance(compiler, compilers.CudaCompiler): linkers = [self.cuda_static_linker] + defaults elif isinstance(compiler, compilers.VisualStudioLikeCompiler): linkers = [self.vs_static_linker, self.clang_cl_static_linker] elif isinstance(compiler, compilers.GnuCompiler): # Use gcc-ar if available; needed for LTO linkers = [self.gcc_static_linker] + defaults elif isinstance(compiler, compilers.ClangCompiler): # Use llvm-ar if available; needed for LTO linkers = [self.clang_static_linker] + defaults elif isinstance(compiler, compilers.DCompiler): # Prefer static linkers over linkers used by D compilers if mesonlib.is_windows(): linkers = [self.vs_static_linker, self.clang_cl_static_linker, compiler.get_linker_exelist()] else: linkers = defaults elif isinstance(compiler, IntelClCCompiler): # Intel has it's own linker that acts like microsoft's lib linkers = ['xilib'] elif isinstance(compiler, (PGICCompiler, PGIFortranCompiler)) and mesonlib.is_windows(): linkers = [['ar']] # For PGI on Windows, "ar" is just a wrapper calling link/lib. else: linkers = defaults popen_exceptions = {} for linker in linkers: if not {'lib', 'lib.exe', 'llvm-lib', 'llvm-lib.exe', 'xilib', 'xilib.exe'}.isdisjoint(linker): arg = '/?' elif not {'ar2000', 'ar2000.exe'}.isdisjoint(linker): arg = '?' else: arg = '--version' try: p, out, err = Popen_safe(linker + [arg]) except OSError as e: popen_exceptions[' '.join(linker + [arg])] = e continue if "xilib: executing 'lib'" in err: return IntelVisualStudioLinker(linker, getattr(compiler, 'machine', None)) if '/OUT:' in out.upper() or '/OUT:' in err.upper(): return VisualStudioLinker(linker, getattr(compiler, 'machine', None)) if 'ar-Error-Unknown switch: --version' in err: return PGIStaticLinker(linker) if p.returncode == 0 and ('armar' in linker or 'armar.exe' in linker): return ArmarLinker(linker) if 'DMD32 D Compiler' in out or 'DMD64 D Compiler' in out: return DLinker(linker, compiler.arch) if 'LDC - the LLVM D compiler' in out: return DLinker(linker, compiler.arch) if 'GDC' in out and ' based on D ' in out: return DLinker(linker, compiler.arch) if err.startswith('Renesas') and ('rlink' in linker or 'rlink.exe' in linker): return CcrxLinker(linker) if out.startswith('GNU ar') and ('xc16-ar' in linker or 'xc16-ar.exe' in linker): return Xc16Linker(linker) if out.startswith('TMS320C2000') and ('ar2000' in linker or 'ar2000.exe' in linker): return C2000Linker(linker) if p.returncode == 0: return ArLinker(linker) if p.returncode == 1 and err.startswith('usage'): # OSX return ArLinker(linker) if p.returncode == 1 and err.startswith('Usage'): # AIX return ArLinker(linker) if p.returncode == 1 and err.startswith('ar: bad option: --'): # Solaris return ArLinker(linker) self._handle_exceptions(popen_exceptions, linkers, 'linker') raise EnvironmentException('Unknown static linker "%s"' % ' '.join(linkers)) def get_source_dir(self): return self.source_dir def get_build_dir(self): return self.build_dir def get_import_lib_dir(self) -> str: "Install dir for the import library (library used for linking)" return self.get_libdir() def get_shared_module_dir(self) -> str: "Install dir for shared modules that are loaded at runtime" return self.get_libdir() def get_shared_lib_dir(self) -> str: "Install dir for the shared library" m = self.machines.host # Windows has no RPATH or similar, so DLLs must be next to EXEs. if m.is_windows() or m.is_cygwin(): return self.get_bindir() return self.get_libdir() def get_static_lib_dir(self) -> str: "Install dir for the static library" return self.get_libdir() def get_prefix(self) -> str: return self.coredata.get_builtin_option('prefix') def get_libdir(self) -> str: return self.coredata.get_builtin_option('libdir') def get_libexecdir(self) -> str: return self.coredata.get_builtin_option('libexecdir') def get_bindir(self) -> str: return self.coredata.get_builtin_option('bindir') def get_includedir(self) -> str: return self.coredata.get_builtin_option('includedir') def get_mandir(self) -> str: return self.coredata.get_builtin_option('mandir') def get_datadir(self) -> str: return self.coredata.get_builtin_option('datadir') def get_compiler_system_dirs(self, for_machine: MachineChoice): for comp in self.coredata.compilers[for_machine].values(): if isinstance(comp, compilers.ClangCompiler): index = 1 break elif isinstance(comp, compilers.GnuCompiler): index = 2 break else: # This option is only supported by gcc and clang. If we don't get a # GCC or Clang compiler return and empty list. return [] p, out, _ = Popen_safe(comp.get_exelist() + ['-print-search-dirs']) if p.returncode != 0: raise mesonlib.MesonException('Could not calculate system search dirs') out = out.split('\n')[index].lstrip('libraries: =').split(':') return [os.path.normpath(p) for p in out] def need_exe_wrapper(self, for_machine: MachineChoice = MachineChoice.HOST): value = self.properties[for_machine].get('needs_exe_wrapper', None) if value is not None: return value return not machine_info_can_run(self.machines[for_machine]) def get_exe_wrapper(self): if not self.need_exe_wrapper(): from .dependencies import EmptyExternalProgram return EmptyExternalProgram() return self.exe_wrapper