# Copyright 2012-2022 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations """Mixin classes to be shared between C and C++ compilers. Without this we'll end up with awful diamond inheritance problems. The goal of this is to have mixin's, which are classes that are designed *not* to be standalone, they only work through inheritance. """ import collections import functools import glob import itertools import os import re import subprocess import copy import typing as T from pathlib import Path from ... import arglist from ... import mesonlib from ... import mlog from ...linkers.linkers import GnuLikeDynamicLinkerMixin, SolarisDynamicLinker, CompCertDynamicLinker from ...mesonlib import LibType, OptionKey from .. import compilers from ..compilers import CompileCheckMode from .visualstudio import VisualStudioLikeCompiler if T.TYPE_CHECKING: from ...dependencies import Dependency from ..._typing import ImmutableListProtocol from ...environment import Environment from ...compilers.compilers import Compiler from ...programs import ExternalProgram else: # This is a bit clever, for mypy we pretend that these mixins descend from # Compiler, so we get all of the methods and attributes defined for us, but # for runtime we make them descend from object (which all classes normally # do). This gives up DRYer type checking, with no runtime impact Compiler = object GROUP_FLAGS = re.compile(r'''\.so (?:\.[0-9]+)? (?:\.[0-9]+)? (?:\.[0-9]+)?$ | ^(?:-Wl,)?-l | \.a$''', re.X) class CLikeCompilerArgs(arglist.CompilerArgs): prepend_prefixes = ('-I', '-L') dedup2_prefixes = ('-I', '-isystem', '-L', '-D', '-U') # NOTE: not thorough. A list of potential corner cases can be found in # https://github.com/mesonbuild/meson/pull/4593#pullrequestreview-182016038 dedup1_prefixes = ('-l', '-Wl,-l', '-Wl,--export-dynamic') dedup1_suffixes = ('.lib', '.dll', '.so', '.dylib', '.a') dedup1_args = ('-c', '-S', '-E', '-pipe', '-pthread') def to_native(self, copy: bool = False) -> T.List[str]: # This seems to be allowed, but could never work? assert isinstance(self.compiler, compilers.Compiler), 'How did you get here' # Check if we need to add --start/end-group for circular dependencies # between static libraries, and for recursively searching for symbols # needed by static libraries that are provided by object files or # shared libraries. self.flush_pre_post() if copy: new = self.copy() else: new = self # This covers all ld.bfd, ld.gold, ld.gold, and xild on Linux, which # all act like (or are) gnu ld # TODO: this could probably be added to the DynamicLinker instead if isinstance(self.compiler.linker, (GnuLikeDynamicLinkerMixin, SolarisDynamicLinker, CompCertDynamicLinker)): group_start = -1 group_end = -1 for i, each in enumerate(new): if not GROUP_FLAGS.search(each): continue group_end = i if group_start < 0: # First occurrence of a library group_start = i if group_start >= 0: # Last occurrence of a library new.insert(group_end + 1, '-Wl,--end-group') new.insert(group_start, '-Wl,--start-group') # Remove system/default include paths added with -isystem default_dirs = self.compiler.get_default_include_dirs() if default_dirs: real_default_dirs = [self._cached_realpath(i) for i in default_dirs] bad_idx_list: T.List[int] = [] for i, each in enumerate(new): if not each.startswith('-isystem'): continue # Remove the -isystem and the path if the path is a default path if (each == '-isystem' and i < (len(new) - 1) and self._cached_realpath(new[i + 1]) in real_default_dirs): bad_idx_list += [i, i + 1] elif each.startswith('-isystem=') and self._cached_realpath(each[9:]) in real_default_dirs: bad_idx_list += [i] elif self._cached_realpath(each[8:]) in real_default_dirs: bad_idx_list += [i] for i in reversed(bad_idx_list): new.pop(i) return self.compiler.unix_args_to_native(new._container) @staticmethod @functools.lru_cache(maxsize=None) def _cached_realpath(arg: str) -> str: return os.path.realpath(arg) def __repr__(self) -> str: self.flush_pre_post() return f'CLikeCompilerArgs({self.compiler!r}, {self._container!r})' class CLikeCompiler(Compiler): """Shared bits for the C and CPP Compilers.""" if T.TYPE_CHECKING: warn_args: T.Dict[str, T.List[str]] = {} # TODO: Replace this manual cache with functools.lru_cache find_library_cache: T.Dict[T.Tuple[T.Tuple[str, ...], str, T.Tuple[str, ...], str, LibType], T.Optional[T.List[str]]] = {} find_framework_cache: T.Dict[T.Tuple[T.Tuple[str, ...], str, T.Tuple[str, ...], bool], T.Optional[T.List[str]]] = {} internal_libs = arglist.UNIXY_COMPILER_INTERNAL_LIBS def __init__(self, exe_wrapper: T.Optional['ExternalProgram'] = None): # If a child ObjC or CPP class has already set it, don't set it ourselves self.can_compile_suffixes.add('h') # If the exe wrapper was not found, pretend it wasn't set so that the # sanity check is skipped and compiler checks use fallbacks. if not exe_wrapper or not exe_wrapper.found() or not exe_wrapper.get_command(): self.exe_wrapper = None else: self.exe_wrapper = exe_wrapper # Lazy initialized in get_preprocessor() self.preprocessor: T.Optional[Compiler] = None def compiler_args(self, args: T.Optional[T.Iterable[str]] = None) -> CLikeCompilerArgs: # This is correct, mypy just doesn't understand co-operative inheritance return CLikeCompilerArgs(self, args) def needs_static_linker(self) -> bool: return True # When compiling static libraries, so yes. def get_always_args(self) -> T.List[str]: ''' Args that are always-on for all C compilers other than MSVC ''' return self.get_largefile_args() def get_no_stdinc_args(self) -> T.List[str]: return ['-nostdinc'] def get_no_stdlib_link_args(self) -> T.List[str]: return ['-nostdlib'] def get_warn_args(self, level: str) -> T.List[str]: # TODO: this should be an enum return self.warn_args[level] def get_no_warn_args(self) -> T.List[str]: # Almost every compiler uses this for disabling warnings return ['-w'] def get_depfile_suffix(self) -> str: return 'd' def get_preprocess_only_args(self) -> T.List[str]: return ['-E', '-P'] def get_compile_only_args(self) -> T.List[str]: return ['-c'] def get_no_optimization_args(self) -> T.List[str]: return ['-O0'] def get_output_args(self, outputname: str) -> T.List[str]: return ['-o', outputname] def get_werror_args(self) -> T.List[str]: return ['-Werror'] def get_include_args(self, path: str, is_system: bool) -> T.List[str]: if path == '': path = '.' if is_system: return ['-isystem', path] return ['-I' + path] def get_compiler_dirs(self, env: 'Environment', name: str) -> T.List[str]: ''' Get dirs from the compiler, either `libraries:` or `programs:` ''' return [] @functools.lru_cache() def _get_library_dirs(self, env: 'Environment', elf_class: T.Optional[int] = None) -> 'ImmutableListProtocol[str]': # TODO: replace elf_class with enum dirs = self.get_compiler_dirs(env, 'libraries') if elf_class is None or elf_class == 0: return dirs # if we do have an elf class for 32-bit or 64-bit, we want to check that # the directory in question contains libraries of the appropriate class. Since # system directories aren't mixed, we only need to check one file for each # directory and go by that. If we can't check the file for some reason, assume # the compiler knows what it's doing, and accept the directory anyway. retval: T.List[str] = [] for d in dirs: files = [f for f in os.listdir(d) if f.endswith('.so') and os.path.isfile(os.path.join(d, f))] # if no files, accept directory and move on if not files: retval.append(d) continue for f in files: file_to_check = os.path.join(d, f) try: with open(file_to_check, 'rb') as fd: header = fd.read(5) # if file is not an ELF file, it's weird, but accept dir # if it is elf, and the class matches, accept dir if header[1:4] != b'ELF' or int(header[4]) == elf_class: retval.append(d) # at this point, it's an ELF file which doesn't match the # appropriate elf_class, so skip this one # stop scanning after the first successful read break except OSError: # Skip the file if we can't read it pass return retval def get_library_dirs(self, env: 'Environment', elf_class: T.Optional[int] = None) -> T.List[str]: """Wrap the lru_cache so that we return a new copy and don't allow mutation of the cached value. """ return self._get_library_dirs(env, elf_class).copy() @functools.lru_cache() def _get_program_dirs(self, env: 'Environment') -> 'ImmutableListProtocol[str]': ''' Programs used by the compiler. Also where toolchain DLLs such as libstdc++-6.dll are found with MinGW. ''' return self.get_compiler_dirs(env, 'programs') def get_program_dirs(self, env: 'Environment') -> T.List[str]: return self._get_program_dirs(env).copy() def get_pic_args(self) -> T.List[str]: return ['-fPIC'] def get_pch_use_args(self, pch_dir: str, header: str) -> T.List[str]: return ['-include', os.path.basename(header)] def get_pch_name(self, name: str) -> str: return os.path.basename(name) + '.' + self.get_pch_suffix() def get_default_include_dirs(self) -> T.List[str]: return [] def gen_export_dynamic_link_args(self, env: 'Environment') -> T.List[str]: return self.linker.export_dynamic_args(env) def gen_import_library_args(self, implibname: str) -> T.List[str]: return self.linker.import_library_args(implibname) def _sanity_check_impl(self, work_dir: str, environment: 'Environment', sname: str, code: str) -> None: mlog.debug('Sanity testing ' + self.get_display_language() + ' compiler:', mesonlib.join_args(self.exelist)) mlog.debug(f'Is cross compiler: {self.is_cross!s}.') source_name = os.path.join(work_dir, sname) binname = sname.rsplit('.', 1)[0] mode = CompileCheckMode.LINK if self.is_cross: binname += '_cross' if self.exe_wrapper is None: # Linking cross built C/C++ apps is painful. You can't really # tell if you should use -nostdlib or not and for example # on OSX the compiler binary is the same but you need # a ton of compiler flags to differentiate between # arm and x86_64. So just compile. mode = CompileCheckMode.COMPILE cargs, largs = self._get_basic_compiler_args(environment, mode) extra_flags = cargs + self.linker_to_compiler_args(largs) # Is a valid executable output for all toolchains and platforms binname += '.exe' # Write binary check source binary_name = os.path.join(work_dir, binname) with open(source_name, 'w', encoding='utf-8') as ofile: ofile.write(code) # Compile sanity check # NOTE: extra_flags must be added at the end. On MSVC, it might contain a '/link' argument # after which all further arguments will be passed directly to the linker cmdlist = self.exelist + [sname] + self.get_output_args(binname) + extra_flags pc, stdo, stde = mesonlib.Popen_safe(cmdlist, cwd=work_dir) mlog.debug('Sanity check compiler command line:', mesonlib.join_args(cmdlist)) mlog.debug('Sanity check compile stdout:') mlog.debug(stdo) mlog.debug('-----\nSanity check compile stderr:') mlog.debug(stde) mlog.debug('-----') if pc.returncode != 0: raise mesonlib.EnvironmentException(f'Compiler {self.name_string()} cannot compile programs.') # Run sanity check if self.is_cross: if self.exe_wrapper is None: # Can't check if the binaries run so we have to assume they do return cmdlist = self.exe_wrapper.get_command() + [binary_name] else: cmdlist = [binary_name] mlog.debug('Running test binary command: ', mesonlib.join_args(cmdlist)) try: # fortran code writes to stdout pe = subprocess.run(cmdlist, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) except Exception as e: raise mesonlib.EnvironmentException(f'Could not invoke sanity test executable: {e!s}.') if pe.returncode != 0: raise mesonlib.EnvironmentException(f'Executables created by {self.language} compiler {self.name_string()} are not runnable.') def sanity_check(self, work_dir: str, environment: 'Environment') -> None: code = 'int main(void) { int class=0; return class; }\n' return self._sanity_check_impl(work_dir, environment, 'sanitycheckc.c', code) def check_header(self, hname: str, prefix: str, env: 'Environment', *, extra_args: T.Union[None, T.List[str], T.Callable[['CompileCheckMode'], T.List[str]]] = None, dependencies: T.Optional[T.List['Dependency']] = None) -> T.Tuple[bool, bool]: code = f'''{prefix} #include <{hname}>''' return self.compiles(code, env, extra_args=extra_args, dependencies=dependencies) def has_header(self, hname: str, prefix: str, env: 'Environment', *, extra_args: T.Union[None, T.List[str], T.Callable[['CompileCheckMode'], T.List[str]]] = None, dependencies: T.Optional[T.List['Dependency']] = None, disable_cache: bool = False) -> T.Tuple[bool, bool]: code = f'''{prefix} #ifdef __has_include #if !__has_include("{hname}") #error "Header '{hname}' could not be found" #endif #else #include <{hname}> #endif''' return self.compiles(code, env, extra_args=extra_args, dependencies=dependencies, mode=CompileCheckMode.PREPROCESS, disable_cache=disable_cache) def has_header_symbol(self, hname: str, symbol: str, prefix: str, env: 'Environment', *, extra_args: T.Union[None, T.List[str], T.Callable[[CompileCheckMode], T.List[str]]] = None, dependencies: T.Optional[T.List['Dependency']] = None) -> T.Tuple[bool, bool]: t = f'''{prefix} #include <{hname}> int main(void) {{ /* If it's not defined as a macro, try to use as a symbol */ #ifndef {symbol} {symbol}; #endif return 0; }}''' return self.compiles(t, env, extra_args=extra_args, dependencies=dependencies) def _get_basic_compiler_args(self, env: 'Environment', mode: CompileCheckMode) -> T.Tuple[T.List[str], T.List[str]]: cargs: T.List[str] = [] largs: T.List[str] = [] if mode is CompileCheckMode.LINK: # Sometimes we need to manually select the CRT to use with MSVC. # One example is when trying to do a compiler check that involves # linking with static libraries since MSVC won't select a CRT for # us in that case and will error out asking us to pick one. try: crt_val = env.coredata.options[OptionKey('b_vscrt')].value buildtype = env.coredata.options[OptionKey('buildtype')].value cargs += self.get_crt_compile_args(crt_val, buildtype) except (KeyError, AttributeError): pass # Add CFLAGS/CXXFLAGS/OBJCFLAGS/OBJCXXFLAGS and CPPFLAGS from the env sys_args = env.coredata.get_external_args(self.for_machine, self.language) if isinstance(sys_args, str): sys_args = [sys_args] # Apparently it is a thing to inject linker flags both # via CFLAGS _and_ LDFLAGS, even though the former are # also used during linking. These flags can break # argument checks. Thanks, Autotools. cleaned_sys_args = self.remove_linkerlike_args(sys_args) cargs += cleaned_sys_args if mode is CompileCheckMode.LINK: ld_value = env.lookup_binary_entry(self.for_machine, self.language + '_ld') if ld_value is not None: largs += self.use_linker_args(ld_value[0], self.version) # Add LDFLAGS from the env sys_ld_args = env.coredata.get_external_link_args(self.for_machine, self.language) # CFLAGS and CXXFLAGS go to both linking and compiling, but we want them # to only appear on the command line once. Remove dupes. largs += [x for x in sys_ld_args if x not in sys_args] cargs += self.get_compiler_args_for_mode(mode) return cargs, largs def build_wrapper_args(self, env: 'Environment', extra_args: T.Union[None, arglist.CompilerArgs, T.List[str], T.Callable[[CompileCheckMode], T.List[str]]], dependencies: T.Optional[T.List['Dependency']], mode: CompileCheckMode = CompileCheckMode.COMPILE) -> arglist.CompilerArgs: # TODO: the caller should handle the listing of these arguments if extra_args is None: extra_args = [] else: # TODO: we want to do this in the caller extra_args = mesonlib.listify(extra_args) extra_args = mesonlib.listify([e(mode.value) if callable(e) else e for e in extra_args]) if dependencies is None: dependencies = [] elif not isinstance(dependencies, collections.abc.Iterable): # TODO: we want to ensure the front end does the listifing here dependencies = [dependencies] # Collect compiler arguments cargs: arglist.CompilerArgs = self.compiler_args() largs: T.List[str] = [] for d in dependencies: # Add compile flags needed by dependencies cargs += d.get_compile_args() system_incdir = d.get_include_type() == 'system' for i in d.get_include_dirs(): for idir in i.to_string_list(env.get_source_dir(), env.get_build_dir()): cargs.extend(self.get_include_args(idir, system_incdir)) if mode is CompileCheckMode.LINK: # Add link flags needed to find dependencies largs += d.get_link_args() ca, la = self._get_basic_compiler_args(env, mode) cargs += ca largs += la cargs += self.get_compiler_check_args(mode) # on MSVC compiler and linker flags must be separated by the "/link" argument # at this point, the '/link' argument may already be part of extra_args, otherwise, it is added here if self.linker_to_compiler_args([]) == ['/link'] and largs != [] and '/link' not in extra_args: extra_args += ['/link'] args = cargs + extra_args + largs return args def run(self, code: 'mesonlib.FileOrString', env: 'Environment', *, extra_args: T.Union[T.List[str], T.Callable[[CompileCheckMode], T.List[str]], None] = None, dependencies: T.Optional[T.List['Dependency']] = None) -> compilers.RunResult: need_exe_wrapper = env.need_exe_wrapper(self.for_machine) if need_exe_wrapper and self.exe_wrapper is None: raise compilers.CrossNoRunException('Can not run test applications in this cross environment.') with self._build_wrapper(code, env, extra_args, dependencies, mode=CompileCheckMode.LINK, want_output=True) as p: if p.returncode != 0: mlog.debug(f'Could not compile test file {p.input_name}: {p.returncode}\n') return compilers.RunResult(False) if need_exe_wrapper: cmdlist = self.exe_wrapper.get_command() + [p.output_name] else: cmdlist = [p.output_name] try: pe, so, se = mesonlib.Popen_safe(cmdlist) except Exception as e: mlog.debug(f'Could not run: {cmdlist} (error: {e})\n') return compilers.RunResult(False) mlog.debug('Program stdout:\n') mlog.debug(so) mlog.debug('Program stderr:\n') mlog.debug(se) return compilers.RunResult(True, pe.returncode, so, se) def _compile_int(self, expression: str, prefix: str, env: 'Environment', extra_args: T.Union[None, T.List[str], T.Callable[[CompileCheckMode], T.List[str]]], dependencies: T.Optional[T.List['Dependency']]) -> bool: t = f'''{prefix} #include int main(void) {{ static int a[1-2*!({expression})]; a[0]=0; return 0; }}''' return self.compiles(t, env, extra_args=extra_args, dependencies=dependencies)[0] def cross_compute_int(self, expression: str, low: T.Optional[int], high: T.Optional[int], guess: T.Optional[int], prefix: str, env: 'Environment', extra_args: T.Union[None, T.List[str], T.Callable[[CompileCheckMode], T.List[str]]] = None, dependencies: T.Optional[T.List['Dependency']] = None) -> int: # Try user's guess first if isinstance(guess, int): if self._compile_int(f'{expression} == {guess}', prefix, env, extra_args, dependencies): return guess # If no bounds are given, compute them in the limit of int32 maxint = 0x7fffffff minint = -0x80000000 if not isinstance(low, int) or not isinstance(high, int): if self._compile_int(f'{expression} >= 0', prefix, env, extra_args, dependencies): low = cur = 0 while self._compile_int(f'{expression} > {cur}', prefix, env, extra_args, dependencies): low = cur + 1 if low > maxint: raise mesonlib.EnvironmentException('Cross-compile check overflowed') cur = min(cur * 2 + 1, maxint) high = cur else: high = cur = -1 while self._compile_int(f'{expression} < {cur}', prefix, env, extra_args, dependencies): high = cur - 1 if high < minint: raise mesonlib.EnvironmentException('Cross-compile check overflowed') cur = max(cur * 2, minint) low = cur else: # Sanity check limits given by user if high < low: raise mesonlib.EnvironmentException('high limit smaller than low limit') condition = f'{expression} <= {high} && {expression} >= {low}' if not self._compile_int(condition, prefix, env, extra_args, dependencies): raise mesonlib.EnvironmentException('Value out of given range') # Binary search while low != high: cur = low + int((high - low) / 2) if self._compile_int(f'{expression} <= {cur}', prefix, env, extra_args, dependencies): high = cur else: low = cur + 1 return low def compute_int(self, expression: str, low: T.Optional[int], high: T.Optional[int], guess: T.Optional[int], prefix: str, env: 'Environment', *, extra_args: T.Union[None, T.List[str], T.Callable[[CompileCheckMode], T.List[str]]], dependencies: T.Optional[T.List['Dependency']] = None) -> int: if extra_args is None: extra_args = [] if self.is_cross: return self.cross_compute_int(expression, low, high, guess, prefix, env, extra_args, dependencies) t = f'''{prefix} #include #include int main(void) {{ printf("%ld\\n", (long)({expression})); return 0; }}''' res = self.run(t, env, extra_args=extra_args, dependencies=dependencies) if not res.compiled: return -1 if res.returncode != 0: raise mesonlib.EnvironmentException('Could not run compute_int test binary.') return int(res.stdout) def cross_sizeof(self, typename: str, prefix: str, env: 'Environment', *, extra_args: T.Union[None, T.List[str], T.Callable[[CompileCheckMode], T.List[str]]] = None, dependencies: T.Optional[T.List['Dependency']] = None) -> int: if extra_args is None: extra_args = [] t = f'''{prefix} #include int main(void) {{ {typename} something; return 0; }}''' if not self.compiles(t, env, extra_args=extra_args, dependencies=dependencies)[0]: return -1 return self.cross_compute_int(f'sizeof({typename})', None, None, None, prefix, env, extra_args, dependencies) def sizeof(self, typename: str, prefix: str, env: 'Environment', *, extra_args: T.Union[None, T.List[str], T.Callable[[CompileCheckMode], T.List[str]]] = None, dependencies: T.Optional[T.List['Dependency']] = None) -> T.Tuple[int, bool]: if extra_args is None: extra_args = [] if self.is_cross: r = self.cross_sizeof(typename, prefix, env, extra_args=extra_args, dependencies=dependencies) return r, False t = f'''{prefix} #include #include int main(void) {{ printf("%ld\\n", (long)(sizeof({typename}))); return 0; }}''' res = self.cached_run(t, env, extra_args=extra_args, dependencies=dependencies) if not res.compiled: return -1, False if res.returncode != 0: raise mesonlib.EnvironmentException('Could not run sizeof test binary.') return int(res.stdout), res.cached def cross_alignment(self, typename: str, prefix: str, env: 'Environment', *, extra_args: T.Optional[T.List[str]] = None, dependencies: T.Optional[T.List['Dependency']] = None) -> int: if extra_args is None: extra_args = [] t = f'''{prefix} #include int main(void) {{ {typename} something; return 0; }}''' if not self.compiles(t, env, extra_args=extra_args, dependencies=dependencies)[0]: return -1 t = f'''{prefix} #include struct tmp {{ char c; {typename} target; }};''' return self.cross_compute_int('offsetof(struct tmp, target)', None, None, None, t, env, extra_args, dependencies) def alignment(self, typename: str, prefix: str, env: 'Environment', *, extra_args: T.Optional[T.List[str]] = None, dependencies: T.Optional[T.List['Dependency']] = None) -> T.Tuple[int, bool]: if extra_args is None: extra_args = [] if self.is_cross: r = self.cross_alignment(typename, prefix, env, extra_args=extra_args, dependencies=dependencies) return r, False t = f'''{prefix} #include #include struct tmp {{ char c; {typename} target; }}; int main(void) {{ printf("%d", (int)offsetof(struct tmp, target)); return 0; }}''' res = self.cached_run(t, env, extra_args=extra_args, dependencies=dependencies) if not res.compiled: raise mesonlib.EnvironmentException('Could not compile alignment test.') if res.returncode != 0: raise mesonlib.EnvironmentException('Could not run alignment test binary.') align = int(res.stdout) if align == 0: raise mesonlib.EnvironmentException(f'Could not determine alignment of {typename}. Sorry. You might want to file a bug.') return align, res.cached def get_define(self, dname: str, prefix: str, env: 'Environment', extra_args: T.Union[T.List[str], T.Callable[[CompileCheckMode], T.List[str]]], dependencies: T.Optional[T.List['Dependency']], disable_cache: bool = False) -> T.Tuple[str, bool]: delim_start = '"MESON_GET_DEFINE_DELIMITER_START"\n' delim_end = '\n"MESON_GET_DEFINE_DELIMITER_END"' sentinel_undef = '"MESON_GET_DEFINE_UNDEFINED_SENTINEL"' code = f''' {prefix} #ifndef {dname} # define {dname} {sentinel_undef} #endif {delim_start}{dname}{delim_end}''' args = self.build_wrapper_args(env, extra_args, dependencies, mode=CompileCheckMode.PREPROCESS).to_native() func = functools.partial(self.cached_compile, code, env.coredata, extra_args=args, mode=CompileCheckMode.PREPROCESS) if disable_cache: func = functools.partial(self.compile, code, extra_args=args, mode=CompileCheckMode.PREPROCESS) with func() as p: cached = p.cached if p.returncode != 0: raise mesonlib.EnvironmentException(f'Could not get define {dname!r}') # Get the preprocessed value between the delimiters star_idx = p.stdout.find(delim_start) end_idx = p.stdout.rfind(delim_end) if (star_idx == -1) or (end_idx == -1) or (star_idx == end_idx): raise AssertionError('BUG: Delimiters not found in preprocessor output!') define_value = p.stdout[star_idx + len(delim_start):end_idx] if define_value == sentinel_undef: define_value = None else: # Merge string literals define_value = self._concatenate_string_literals(define_value).strip() return define_value, cached def get_return_value(self, fname: str, rtype: str, prefix: str, env: 'Environment', extra_args: T.Optional[T.List[str]], dependencies: T.Optional[T.List['Dependency']]) -> T.Union[str, int]: # TODO: rtype should be an enum. # TODO: maybe we can use overload to tell mypy when this will return int vs str? if rtype == 'string': fmt = '%s' cast = '(char*)' elif rtype == 'int': fmt = '%lli' cast = '(long long int)' else: raise AssertionError(f'BUG: Unknown return type {rtype!r}') code = f'''{prefix} #include int main(void) {{ printf ("{fmt}", {cast} {fname}()); return 0; }}''' res = self.run(code, env, extra_args=extra_args, dependencies=dependencies) if not res.compiled: raise mesonlib.EnvironmentException(f'Could not get return value of {fname}()') if rtype == 'string': return res.stdout elif rtype == 'int': try: return int(res.stdout.strip()) except ValueError: raise mesonlib.EnvironmentException(f'Return value of {fname}() is not an int') assert False, 'Unreachable' @staticmethod def _no_prototype_templ() -> T.Tuple[str, str]: """ Try to find the function without a prototype from a header by defining our own dummy prototype and trying to link with the C library (and whatever else the compiler links in by default). This is very similar to the check performed by Autoconf for AC_CHECK_FUNCS. """ # Define the symbol to something else since it is defined by the # includes or defines listed by the user or by the compiler. This may # include, for instance _GNU_SOURCE which must be defined before # limits.h, which includes features.h # Then, undef the symbol to get rid of it completely. head = ''' #define {func} meson_disable_define_of_{func} {prefix} #include #undef {func} ''' # Override any GCC internal prototype and declare our own definition for # the symbol. Use char because that's unlikely to be an actual return # value for a function which ensures that we override the definition. head += ''' #ifdef __cplusplus extern "C" #endif char {func} (void); ''' # The actual function call main = ''' int main(void) {{ return {func} (); }}''' return head, main @staticmethod def _have_prototype_templ() -> T.Tuple[str, str]: """ Returns a head-er and main() call that uses the headers listed by the user for the function prototype while checking if a function exists. """ # Add the 'prefix', aka defines, includes, etc that the user provides # This may include, for instance _GNU_SOURCE which must be defined # before limits.h, which includes features.h head = '{prefix}\n#include \n' # We don't know what the function takes or returns, so return it as an int. # Just taking the address or comparing it to void is not enough because # compilers are smart enough to optimize it away. The resulting binary # is not run so we don't care what the return value is. main = '''\nint main(void) {{ void *a = (void*) &{func}; long long b = (long long) a; return (int) b; }}''' return head, main def has_function(self, funcname: str, prefix: str, env: 'Environment', *, extra_args: T.Optional[T.List[str]] = None, dependencies: T.Optional[T.List['Dependency']] = None) -> T.Tuple[bool, bool]: """Determine if a function exists. First, this function looks for the symbol in the default libraries provided by the compiler (stdlib + a few others usually). If that fails, it checks if any of the headers specified in the prefix provide an implementation of the function, and if that fails, it checks if it's implemented as a compiler-builtin. """ if extra_args is None: extra_args = [] # Short-circuit if the check is already provided by the cross-info file varname = 'has function ' + funcname varname = varname.replace(' ', '_') if self.is_cross: val = env.properties.host.get(varname, None) if val is not None: if isinstance(val, bool): return val, False raise mesonlib.EnvironmentException(f'Cross variable {varname} is not a boolean.') # TODO: we really need a protocol for this, # # class StrProto(typing.Protocol): # def __str__(self) -> str: ... fargs: T.Dict[str, T.Union[str, bool, int]] = {'prefix': prefix, 'func': funcname} # glibc defines functions that are not available on Linux as stubs that # fail with ENOSYS (such as e.g. lchmod). In this case we want to fail # instead of detecting the stub as a valid symbol. # We already included limits.h earlier to ensure that these are defined # for stub functions. stubs_fail = ''' #if defined __stub_{func} || defined __stub___{func} fail fail fail this function is not going to work #endif ''' # If we have any includes in the prefix supplied by the user, assume # that the user wants us to use the symbol prototype defined in those # includes. If not, then try to do the Autoconf-style check with # a dummy prototype definition of our own. # This is needed when the linker determines symbol availability from an # SDK based on the prototype in the header provided by the SDK. # Ignoring this prototype would result in the symbol always being # marked as available. if '#include' in prefix: head, main = self._have_prototype_templ() else: head, main = self._no_prototype_templ() templ = head + stubs_fail + main res, cached = self.links(templ.format(**fargs), env, extra_args=extra_args, dependencies=dependencies) if res: return True, cached # MSVC does not have compiler __builtin_-s. if self.get_id() in {'msvc', 'intel-cl'}: return False, False # Detect function as a built-in # # Some functions like alloca() are defined as compiler built-ins which # are inlined by the compiler and you can't take their address, so we # need to look for them differently. On nice compilers like clang, we # can just directly use the __has_builtin() macro. fargs['no_includes'] = '#include' not in prefix is_builtin = funcname.startswith('__builtin_') fargs['is_builtin'] = is_builtin fargs['__builtin_'] = '' if is_builtin else '__builtin_' t = '''{prefix} int main(void) {{ /* With some toolchains (MSYS2/mingw for example) the compiler * provides various builtins which are not really implemented and * fall back to the stdlib where they aren't provided and fail at * build/link time. In case the user provides a header, including * the header didn't lead to the function being defined, and the * function we are checking isn't a builtin itself we assume the * builtin is not functional and we just error out. */ #if !{no_includes:d} && !defined({func}) && !{is_builtin:d} #error "No definition for {__builtin_}{func} found in the prefix" #endif #ifdef __has_builtin #if !__has_builtin({__builtin_}{func}) #error "{__builtin_}{func} not found" #endif #elif ! defined({func}) {__builtin_}{func}; #endif return 0; }}''' return self.links(t.format(**fargs), env, extra_args=extra_args, dependencies=dependencies) def has_members(self, typename: str, membernames: T.List[str], prefix: str, env: 'Environment', *, extra_args: T.Union[None, T.List[str], T.Callable[[CompileCheckMode], T.List[str]]] = None, dependencies: T.Optional[T.List['Dependency']] = None) -> T.Tuple[bool, bool]: if extra_args is None: extra_args = [] # Create code that accesses all members members = ''.join(f'foo.{member};\n' for member in membernames) t = f'''{prefix} void bar(void) {{ {typename} foo; {members} }}''' return self.compiles(t, env, extra_args=extra_args, dependencies=dependencies) def has_type(self, typename: str, prefix: str, env: 'Environment', extra_args: T.Union[T.List[str], T.Callable[[CompileCheckMode], T.List[str]]], *, dependencies: T.Optional[T.List['Dependency']] = None) -> T.Tuple[bool, bool]: t = f'''{prefix} void bar(void) {{ sizeof({typename}); }}''' return self.compiles(t, env, extra_args=extra_args, dependencies=dependencies) def _symbols_have_underscore_prefix_searchbin(self, env: 'Environment') -> bool: ''' Check if symbols have underscore prefix by compiling a small test binary and then searching the binary for the string, ''' symbol_name = b'meson_uscore_prefix' code = '''#ifdef __cplusplus extern "C" { #endif void ''' + symbol_name.decode() + ''' (void) {} #ifdef __cplusplus } #endif ''' args = self.get_compiler_check_args(CompileCheckMode.COMPILE) n = '_symbols_have_underscore_prefix_searchbin' with self._build_wrapper(code, env, extra_args=args, mode=CompileCheckMode.COMPILE, want_output=True) as p: if p.returncode != 0: raise RuntimeError(f'BUG: Unable to compile {n!r} check: {p.stderr}') if not os.path.isfile(p.output_name): raise RuntimeError(f'BUG: Can\'t find compiled test code for {n!r} check') with open(p.output_name, 'rb') as o: for line in o: # Check if the underscore form of the symbol is somewhere # in the output file. if b'_' + symbol_name in line: mlog.debug("Underscore prefix check found prefixed function in binary") return True # Else, check if the non-underscored form is present elif symbol_name in line: mlog.debug("Underscore prefix check found non-prefixed function in binary") return False raise RuntimeError(f'BUG: {n!r} check did not find symbol string in binary') def _symbols_have_underscore_prefix_define(self, env: 'Environment') -> T.Optional[bool]: ''' Check if symbols have underscore prefix by querying the __USER_LABEL_PREFIX__ define that most compilers provide for this. Return if functions have underscore prefix or None if it was not possible to determine, like when the compiler does not set the define or the define has an unexpected value. ''' delim = '"MESON_HAVE_UNDERSCORE_DELIMITER" ' code = f''' #ifndef __USER_LABEL_PREFIX__ #define MESON_UNDERSCORE_PREFIX unsupported #else #define MESON_UNDERSCORE_PREFIX __USER_LABEL_PREFIX__ #endif {delim}MESON_UNDERSCORE_PREFIX ''' with self._build_wrapper(code, env, mode=CompileCheckMode.PREPROCESS, want_output=False) as p: if p.returncode != 0: raise RuntimeError(f'BUG: Unable to preprocess _symbols_have_underscore_prefix_define check: {p.stdout}') symbol_prefix = p.stdout.partition(delim)[-1].rstrip() mlog.debug(f'Queried compiler for function prefix: __USER_LABEL_PREFIX__ is "{symbol_prefix!s}"') if symbol_prefix == '_': return True elif symbol_prefix == '': return False else: return None def _symbols_have_underscore_prefix_list(self, env: 'Environment') -> T.Optional[bool]: ''' Check if symbols have underscore prefix by consulting a hardcoded list of cases where we know the results. Return if functions have underscore prefix or None if unknown. ''' m = env.machines[self.for_machine] # Darwin always uses the underscore prefix, not matter what if m.is_darwin(): return True # Windows uses the underscore prefix on x86 (32bit) only if m.is_windows() or m.is_cygwin(): return m.cpu_family == 'x86' return None def symbols_have_underscore_prefix(self, env: 'Environment') -> bool: ''' Check if the compiler prefixes an underscore to global C symbols ''' # First, try to query the compiler directly result = self._symbols_have_underscore_prefix_define(env) if result is not None: return result # Else, try to consult a hardcoded list of cases we know # absolutely have an underscore prefix result = self._symbols_have_underscore_prefix_list(env) if result is not None: return result # As a last resort, try search in a compiled binary, which is the # most unreliable way of checking this, see #5482 return self._symbols_have_underscore_prefix_searchbin(env) def _get_patterns(self, env: 'Environment', prefixes: T.List[str], suffixes: T.List[str], shared: bool = False) -> T.List[str]: patterns: T.List[str] = [] for p in prefixes: for s in suffixes: patterns.append(p + '{}.' + s) if shared and env.machines[self.for_machine].is_openbsd(): # Shared libraries on OpenBSD can be named libfoo.so.X.Y: # https://www.openbsd.org/faq/ports/specialtopics.html#SharedLibs # # This globbing is probably the best matching we can do since regex # is expensive. It's wrong in many edge cases, but it will match # correctly-named libraries and hopefully no one on OpenBSD names # their files libfoo.so.9a.7b.1.0 for p in prefixes: patterns.append(p + '{}.so.[0-9]*.[0-9]*') return patterns def get_library_naming(self, env: 'Environment', libtype: LibType, strict: bool = False) -> T.Tuple[str, ...]: ''' Get library prefixes and suffixes for the target platform ordered by priority ''' stlibext = ['a'] # We've always allowed libname to be both `foo` and `libfoo`, and now # people depend on it. Also, some people use prebuilt `foo.so` instead # of `libfoo.so` for unknown reasons, and may also want to create # `foo.so` by setting name_prefix to '' if strict and not isinstance(self, VisualStudioLikeCompiler): # lib prefix is not usually used with msvc prefixes = ['lib'] else: prefixes = ['lib', ''] # Library suffixes and prefixes if env.machines[self.for_machine].is_darwin(): shlibext = ['dylib', 'so'] elif env.machines[self.for_machine].is_windows(): # FIXME: .lib files can be import or static so we should read the # file, figure out which one it is, and reject the wrong kind. if isinstance(self, VisualStudioLikeCompiler): shlibext = ['lib'] else: shlibext = ['dll.a', 'lib', 'dll'] # Yep, static libraries can also be foo.lib stlibext += ['lib'] elif env.machines[self.for_machine].is_cygwin(): shlibext = ['dll', 'dll.a'] prefixes = ['cyg'] + prefixes else: # Linux/BSDs shlibext = ['so'] # Search priority if libtype is LibType.PREFER_SHARED: patterns = self._get_patterns(env, prefixes, shlibext, True) patterns.extend([x for x in self._get_patterns(env, prefixes, stlibext, False) if x not in patterns]) elif libtype is LibType.PREFER_STATIC: patterns = self._get_patterns(env, prefixes, stlibext, False) patterns.extend([x for x in self._get_patterns(env, prefixes, shlibext, True) if x not in patterns]) elif libtype is LibType.SHARED: patterns = self._get_patterns(env, prefixes, shlibext, True) else: assert libtype is LibType.STATIC patterns = self._get_patterns(env, prefixes, stlibext, False) return tuple(patterns) @staticmethod def _sort_shlibs_openbsd(libs: T.List[str]) -> T.List[str]: filtered: T.List[str] = [] for lib in libs: # Validate file as a shared library of type libfoo.so.X.Y ret = lib.rsplit('.so.', maxsplit=1) if len(ret) != 2: continue try: float(ret[1]) except ValueError: continue filtered.append(lib) float_cmp = lambda x: float(x.rsplit('.so.', maxsplit=1)[1]) return sorted(filtered, key=float_cmp, reverse=True) @classmethod def _get_trials_from_pattern(cls, pattern: str, directory: str, libname: str) -> T.List[Path]: f = Path(directory) / pattern.format(libname) # Globbing for OpenBSD if '*' in pattern: # NOTE: globbing matches directories and broken symlinks # so we have to do an isfile test on it later return [Path(x) for x in cls._sort_shlibs_openbsd(glob.glob(str(f)))] return [f] @staticmethod def _get_file_from_list(env: Environment, paths: T.List[Path]) -> T.Optional[Path]: ''' We just check whether the library exists. We can't do a link check because the library might have unresolved symbols that require other libraries. On macOS we check if the library matches our target architecture. ''' for p in paths: if p.is_file(): if env.machines.host.is_darwin() and env.machines.build.is_darwin(): # Run `lipo` and check if the library supports the arch we want archs = mesonlib.darwin_get_object_archs(str(p)) if not archs or env.machines.host.cpu_family not in archs: mlog.debug(f'Rejected {p}, supports {archs} but need {env.machines.host.cpu_family}') continue return p return None @functools.lru_cache() def output_is_64bit(self, env: 'Environment') -> bool: ''' returns true if the output produced is 64-bit, false if 32-bit ''' return self.sizeof('void *', '', env)[0] == 8 def _find_library_real(self, libname: str, env: 'Environment', extra_dirs: T.List[str], code: str, libtype: LibType, lib_prefix_warning: bool) -> T.Optional[T.List[str]]: # First try if we can just add the library as -l. # Gcc + co seem to prefer builtin lib dirs to -L dirs. # Only try to find std libs if no extra dirs specified. # The built-in search procedure will always favour .so and then always # search for .a. This is only allowed if libtype is LibType.PREFER_SHARED if ((not extra_dirs and libtype is LibType.PREFER_SHARED) or libname in self.internal_libs): cargs = ['-l' + libname] largs = self.get_linker_always_args() + self.get_allow_undefined_link_args() extra_args = cargs + self.linker_to_compiler_args(largs) if self.links(code, env, extra_args=extra_args, disable_cache=True)[0]: return cargs # Don't do a manual search for internal libs if libname in self.internal_libs: return None # Not found or we want to use a specific libtype? Try to find the # library file itself. patterns = self.get_library_naming(env, libtype) # try to detect if we are 64-bit or 32-bit. If we can't # detect, we will just skip path validity checks done in # get_library_dirs() call try: if self.output_is_64bit(env): elf_class = 2 else: elf_class = 1 except (mesonlib.MesonException, KeyError): # TODO evaluate if catching KeyError is wanted here elf_class = 0 # Search in the specified dirs, and then in the system libraries for d in itertools.chain(extra_dirs, self.get_library_dirs(env, elf_class)): for p in patterns: trials = self._get_trials_from_pattern(p, d, libname) if not trials: continue trial = self._get_file_from_list(env, trials) if not trial: continue if libname.startswith('lib') and trial.name.startswith(libname) and lib_prefix_warning: mlog.warning(f'find_library({libname!r}) starting in "lib" only works by accident and is not portable') return [trial.as_posix()] return None def _find_library_impl(self, libname: str, env: 'Environment', extra_dirs: T.List[str], code: str, libtype: LibType, lib_prefix_warning: bool) -> T.Optional[T.List[str]]: # These libraries are either built-in or invalid if libname in self.ignore_libs: return [] if isinstance(extra_dirs, str): extra_dirs = [extra_dirs] key = (tuple(self.exelist), libname, tuple(extra_dirs), code, libtype) if key not in self.find_library_cache: value = self._find_library_real(libname, env, extra_dirs, code, libtype, lib_prefix_warning) self.find_library_cache[key] = value else: value = self.find_library_cache[key] if value is None: return None return value.copy() def find_library(self, libname: str, env: 'Environment', extra_dirs: T.List[str], libtype: LibType = LibType.PREFER_SHARED, lib_prefix_warning: bool = True) -> T.Optional[T.List[str]]: code = 'int main(void) { return 0; }\n' return self._find_library_impl(libname, env, extra_dirs, code, libtype, lib_prefix_warning) def find_framework_paths(self, env: 'Environment') -> T.List[str]: ''' These are usually /Library/Frameworks and /System/Library/Frameworks, unless you select a particular macOS SDK with the -isysroot flag. You can also add to this by setting -F in CFLAGS. ''' # TODO: this really needs to be *AppleClang*, not just any clang. if self.id != 'clang': raise mesonlib.MesonException('Cannot find framework path with non-clang compiler') # Construct the compiler command-line commands = self.get_exelist(ccache=False) + ['-v', '-E', '-'] commands += self.get_always_args() # Add CFLAGS/CXXFLAGS/OBJCFLAGS/OBJCXXFLAGS from the env commands += env.coredata.get_external_args(self.for_machine, self.language) mlog.debug('Finding framework path by running: ', ' '.join(commands), '\n') os_env = os.environ.copy() os_env['LC_ALL'] = 'C' _, _, stde = mesonlib.Popen_safe(commands, env=os_env, stdin=subprocess.PIPE) paths: T.List[str] = [] for line in stde.split('\n'): if '(framework directory)' not in line: continue # line is of the form: # ` /path/to/framework (framework directory)` paths.append(line[:-21].strip()) return paths def _find_framework_real(self, name: str, env: 'Environment', extra_dirs: T.List[str], allow_system: bool) -> T.Optional[T.List[str]]: code = 'int main(void) { return 0; }' link_args: T.List[str] = [] for d in extra_dirs: link_args += ['-F' + d] # We can pass -Z to disable searching in the system frameworks, but # then we must also pass -L/usr/lib to pick up libSystem.dylib extra_args = [] if allow_system else ['-Z', '-L/usr/lib'] link_args += ['-framework', name] if self.links(code, env, extra_args=(extra_args + link_args), disable_cache=True)[0]: return link_args return None def _find_framework_impl(self, name: str, env: 'Environment', extra_dirs: T.List[str], allow_system: bool) -> T.Optional[T.List[str]]: if isinstance(extra_dirs, str): extra_dirs = [extra_dirs] key = (tuple(self.exelist), name, tuple(extra_dirs), allow_system) if key in self.find_framework_cache: value = self.find_framework_cache[key] else: value = self._find_framework_real(name, env, extra_dirs, allow_system) self.find_framework_cache[key] = value if value is None: return None return value.copy() def find_framework(self, name: str, env: 'Environment', extra_dirs: T.List[str], allow_system: bool = True) -> T.Optional[T.List[str]]: ''' Finds the framework with the specified name, and returns link args for the same or returns None when the framework is not found. ''' # TODO: should probably check for macOS? return self._find_framework_impl(name, env, extra_dirs, allow_system) def get_crt_compile_args(self, crt_val: str, buildtype: str) -> T.List[str]: # TODO: does this belong here or in GnuLike or maybe PosixLike? return [] def get_crt_link_args(self, crt_val: str, buildtype: str) -> T.List[str]: # TODO: does this belong here or in GnuLike or maybe PosixLike? return [] def thread_flags(self, env: 'Environment') -> T.List[str]: # TODO: does this belong here or in GnuLike or maybe PosixLike? host_m = env.machines[self.for_machine] if host_m.is_haiku() or host_m.is_darwin(): return [] return ['-pthread'] def linker_to_compiler_args(self, args: T.List[str]) -> T.List[str]: return args.copy() def has_arguments(self, args: T.List[str], env: 'Environment', code: str, mode: CompileCheckMode) -> T.Tuple[bool, bool]: return self.compiles(code, env, extra_args=args, mode=mode) def _has_multi_arguments(self, args: T.List[str], env: 'Environment', code: str) -> T.Tuple[bool, bool]: new_args: T.List[str] = [] for arg in args: # some compilers, e.g. GCC, don't warn for unsupported warning-disable # flags, so when we are testing a flag like "-Wno-forgotten-towel", also # check the equivalent enable flag too "-Wforgotten-towel" if arg.startswith('-Wno-'): new_args.append('-W' + arg[5:]) if arg.startswith('-Wl,'): mlog.warning(f'{arg} looks like a linker argument, ' 'but has_argument and other similar methods only ' 'support checking compiler arguments. Using them ' 'to check linker arguments are never supported, ' 'and results are likely to be wrong regardless of ' 'the compiler you are using. has_link_argument or ' 'other similar method can be used instead.') new_args.append(arg) return self.has_arguments(new_args, env, code, mode=CompileCheckMode.COMPILE) def has_multi_arguments(self, args: T.List[str], env: 'Environment') -> T.Tuple[bool, bool]: return self._has_multi_arguments(args, env, 'extern int i;\nint i;\n') def _has_multi_link_arguments(self, args: T.List[str], env: 'Environment', code: str) -> T.Tuple[bool, bool]: # First time we check for link flags we need to first check if we have # --fatal-warnings, otherwise some linker checks could give some # false positive. args = self.linker.fatal_warnings() + args args = self.linker_to_compiler_args(args) return self.has_arguments(args, env, code, mode=CompileCheckMode.LINK) def has_multi_link_arguments(self, args: T.List[str], env: 'Environment') -> T.Tuple[bool, bool]: return self._has_multi_link_arguments(args, env, 'int main(void) { return 0; }\n') @staticmethod def _concatenate_string_literals(s: str) -> str: pattern = re.compile(r'(?P
.*([^\\]")|^")(?P([^\\"]|\\.)*)"\s+"(?P([^\\"]|\\.)*)(?P".*)')
        ret = s
        m = pattern.match(ret)
        while m:
            ret = ''.join(m.group('pre', 'str1', 'str2', 'post'))
            m = pattern.match(ret)
        return ret

    def get_has_func_attribute_extra_args(self, name: str) -> T.List[str]:
        # Most compilers (such as GCC and Clang) only warn about unknown or
        # ignored attributes, so force an error. Overridden in GCC and Clang
        # mixins.
        return ['-Werror']

    def has_func_attribute(self, name: str, env: 'Environment') -> T.Tuple[bool, bool]:
        # Just assume that if we're not on windows that dllimport and dllexport
        # don't work
        m = env.machines[self.for_machine]
        if not (m.is_windows() or m.is_cygwin()):
            if name in {'dllimport', 'dllexport'}:
                return False, False

        return self.compiles(self.attribute_check_func(name), env,
                             extra_args=self.get_has_func_attribute_extra_args(name))

    def get_assert_args(self, disable: bool) -> T.List[str]:
        if disable:
            return ['-DNDEBUG']
        return []

    @functools.lru_cache(maxsize=None)
    def can_compile(self, src: 'mesonlib.FileOrString') -> bool:
        # Files we preprocess can be anything, e.g. .in
        if self.mode == CompileCheckMode.PREPROCESS:
            return True
        return super().can_compile(src)

    def get_preprocessor(self) -> Compiler:
        if not self.preprocessor:
            self.preprocessor = copy.copy(self)
            self.preprocessor.exelist = self.exelist + self.get_preprocess_to_file_args()
            self.preprocessor.mode = CompileCheckMode.PREPROCESS
            self.modes.append(self.preprocessor)
        return self.preprocessor