aboutsummaryrefslogtreecommitdiff
path: root/mesonbuild/modules
diff options
context:
space:
mode:
authorOlexa Bilaniuk <obilaniu@gmail.com>2019-01-28 05:29:04 -0500
committerOlexa Bilaniuk <obilaniu@gmail.com>2019-02-02 22:49:02 -0500
commit592af0b1afa03b10beffee481c00c60a7b7db907 (patch)
treee2e2f27733b1357f1078b675ed6cfb19f6ae5181 /mesonbuild/modules
parentad442b352083a48f97f3f47834b770da1ef1248b (diff)
downloadmeson-592af0b1afa03b10beffee481c00c60a7b7db907.zip
meson-592af0b1afa03b10beffee481c00c60a7b7db907.tar.gz
meson-592af0b1afa03b10beffee481c00c60a7b7db907.tar.bz2
Add unstable CUDA module.
Includes three general utility functions connected to CUDA, in particular the crafting of -gencode flags as done in CMake: https://github.com/Kitware/CMake/blob/master/Modules/FindCUDA/ select_compute_arch.cmake
Diffstat (limited to 'mesonbuild/modules')
-rw-r--r--mesonbuild/modules/unstable_cuda.py259
1 files changed, 259 insertions, 0 deletions
diff --git a/mesonbuild/modules/unstable_cuda.py b/mesonbuild/modules/unstable_cuda.py
new file mode 100644
index 0000000..941b15a
--- /dev/null
+++ b/mesonbuild/modules/unstable_cuda.py
@@ -0,0 +1,259 @@
+# Copyright 2017 The Meson development team
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import re
+
+from ..mesonlib import version_compare
+from ..interpreter import CompilerHolder
+from ..compilers import CudaCompiler
+
+from . import ExtensionModule, ModuleReturnValue
+
+from ..interpreterbase import (
+ flatten, permittedKwargs, noKwargs,
+ InvalidArguments, FeatureNew
+)
+
+class CudaModule(ExtensionModule):
+
+ @FeatureNew('CUDA module', '0.50.0')
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ @noKwargs
+ def min_driver_version(self, state, args, kwargs):
+ argerror = InvalidArguments('min_driver_version must have exactly one positional argument: ' +
+ 'an NVCC compiler object, or its version string.')
+
+ if len(args) != 1:
+ raise argerror
+ else:
+ cuda_version = self._version_from_compiler(args[0])
+ if cuda_version == 'unknown':
+ raise argerror
+
+ driver_version_table = [
+ {'cuda_version': '>=10.0.130', 'windows': '411.31', 'linux': '410.48'},
+ {'cuda_version': '>=9.2.148', 'windows': '398.26', 'linux': '396.37'},
+ {'cuda_version': '>=9.2.88', 'windows': '397.44', 'linux': '396.26'},
+ {'cuda_version': '>=9.1.85', 'windows': '391.29', 'linux': '390.46'},
+ {'cuda_version': '>=9.0.76', 'windows': '385.54', 'linux': '384.81'},
+ {'cuda_version': '>=8.0.61', 'windows': '376.51', 'linux': '375.26'},
+ {'cuda_version': '>=8.0.44', 'windows': '369.30', 'linux': '367.48'},
+ {'cuda_version': '>=7.5.16', 'windows': '353.66', 'linux': '352.31'},
+ {'cuda_version': '>=7.0.28', 'windows': '347.62', 'linux': '346.46'},
+ ]
+
+ driver_version = 'unknown'
+ for d in driver_version_table:
+ if version_compare(cuda_version, d['cuda_version']):
+ driver_version = d.get(state.host_machine.system, d['linux'])
+ break
+
+ return ModuleReturnValue(driver_version, [driver_version])
+
+ @permittedKwargs(['detected'])
+ def nvcc_arch_flags(self, state, args, kwargs):
+ nvcc_arch_args = self._validate_nvcc_arch_args(state, args, kwargs)
+ ret = self._nvcc_arch_flags(*nvcc_arch_args)[0]
+ return ModuleReturnValue(ret, [ret])
+
+ @permittedKwargs(['detected'])
+ def nvcc_arch_readable(self, state, args, kwargs):
+ nvcc_arch_args = self._validate_nvcc_arch_args(state, args, kwargs)
+ ret = self._nvcc_arch_flags(*nvcc_arch_args)[1]
+ return ModuleReturnValue(ret, [ret])
+
+ @staticmethod
+ def _break_arch_string(s):
+ s = re.sub('[ \t,;]+', ';', s)
+ s = s.strip(';').split(';')
+ return s
+
+ @staticmethod
+ def _version_from_compiler(c):
+ if isinstance(c, CompilerHolder):
+ c = c.compiler
+ if isinstance(c, CudaCompiler):
+ return c.version
+ if isinstance(c, str):
+ return c
+ return 'unknown'
+
+ def _validate_nvcc_arch_args(self, state, args, kwargs):
+ argerror = InvalidArguments('The first argument must be an NVCC compiler object, or its version string!')
+
+ if len(args) < 1:
+ raise argerror
+ else:
+ cuda_version = self._version_from_compiler(args[0])
+ if cuda_version == 'unknown':
+ raise argerror
+
+ arch_list = [] if len(args) <= 1 else flatten(args[1:])
+ arch_list = [self._break_arch_string(a) for a in arch_list]
+ arch_list = flatten(arch_list)
+ if len(arch_list) > 1 and not set(arch_list).isdisjoint({'All', 'Common', 'Auto'}):
+ raise InvalidArguments('''The special architectures 'All', 'Common' and 'Auto' must appear alone, as a positional argument!''')
+ arch_list = arch_list[0] if len(arch_list) == 1 else arch_list
+
+ detected = flatten([kwargs.get('detected', [])])
+ detected = [self._break_arch_string(a) for a in detected]
+ detected = flatten(detected)
+ if not set(detected).isdisjoint({'All', 'Common', 'Auto'}):
+ raise InvalidArguments('''The special architectures 'All', 'Common' and 'Auto' must appear alone, as a positional argument!''')
+
+ return cuda_version, arch_list, detected
+
+ def _nvcc_arch_flags(self, cuda_version, cuda_arch_list='Auto', detected=''):
+ """
+ Using the CUDA Toolkit version (the NVCC version) and the target
+ architectures, compute the NVCC architecture flags.
+ """
+
+ cuda_known_gpu_architectures = ['Fermi', 'Kepler', 'Maxwell'] # noqa: E221
+ cuda_common_gpu_architectures = ['3.0', '3.5', '5.0'] # noqa: E221
+ cuda_limit_gpu_architecture = None # noqa: E221
+ cuda_all_gpu_architectures = ['3.0', '3.2', '3.5', '5.0'] # noqa: E221
+
+ if version_compare(cuda_version, '<7.0'):
+ cuda_limit_gpu_architecture = '5.2'
+
+ if version_compare(cuda_version, '>=7.0'):
+ cuda_known_gpu_architectures += ['Kepler+Tegra', 'Kepler+Tesla', 'Maxwell+Tegra'] # noqa: E221
+ cuda_common_gpu_architectures += ['5.2'] # noqa: E221
+
+ if version_compare(cuda_version, '<8.0'):
+ cuda_common_gpu_architectures += ['5.2+PTX'] # noqa: E221
+ cuda_limit_gpu_architecture = '6.0' # noqa: E221
+
+ if version_compare(cuda_version, '>=8.0'):
+ cuda_known_gpu_architectures += ['Pascal', 'Pascal+Tegra'] # noqa: E221
+ cuda_common_gpu_architectures += ['6.0', '6.1'] # noqa: E221
+ cuda_all_gpu_architectures += ['6.0', '6.1', '6.2'] # noqa: E221
+
+ if version_compare(cuda_version, '<9.0'):
+ cuda_common_gpu_architectures += ['6.1+PTX'] # noqa: E221
+ cuda_limit_gpu_architecture = '7.0' # noqa: E221
+
+ if version_compare(cuda_version, '>=9.0'):
+ cuda_known_gpu_architectures += ['Volta', 'Volta+Tegra'] # noqa: E221
+ cuda_common_gpu_architectures += ['7.0', '7.0+PTX'] # noqa: E221
+ cuda_all_gpu_architectures += ['7.0', '7.0+PTX', '7.2', '7.2+PTX'] # noqa: E221
+
+ if version_compare(cuda_version, '<10.0'):
+ cuda_limit_gpu_architecture = '7.5'
+
+ if version_compare(cuda_version, '>=10.0'):
+ cuda_known_gpu_architectures += ['Turing'] # noqa: E221
+ cuda_common_gpu_architectures += ['7.5', '7.5+PTX'] # noqa: E221
+ cuda_all_gpu_architectures += ['7.5', '7.5+PTX'] # noqa: E221
+
+ if version_compare(cuda_version, '<11.0'):
+ cuda_limit_gpu_architecture = '8.0'
+
+ if not cuda_arch_list:
+ cuda_arch_list = 'Auto'
+
+ if cuda_arch_list == 'All': # noqa: E271
+ cuda_arch_list = cuda_known_gpu_architectures
+ elif cuda_arch_list == 'Common': # noqa: E271
+ cuda_arch_list = cuda_common_gpu_architectures
+ elif cuda_arch_list == 'Auto': # noqa: E271
+ if detected:
+ if isinstance(detected, list):
+ cuda_arch_list = detected
+ else:
+ cuda_arch_list = self._break_arch_string(detected)
+
+ if cuda_limit_gpu_architecture:
+ filtered_cuda_arch_list = []
+ for arch in cuda_arch_list:
+ if arch:
+ if version_compare(arch, '>=' + cuda_limit_gpu_architecture):
+ arch = cuda_common_gpu_architectures[-1]
+ if arch not in filtered_cuda_arch_list:
+ filtered_cuda_arch_list.append(arch)
+ cuda_arch_list = filtered_cuda_arch_list
+ else:
+ cuda_arch_list = cuda_common_gpu_architectures
+ elif isinstance(cuda_arch_list, str):
+ cuda_arch_list = self._break_arch_string(cuda_arch_list)
+
+ cuda_arch_list = sorted([x for x in set(cuda_arch_list) if x])
+
+ cuda_arch_bin = []
+ cuda_arch_ptx = []
+ for arch_name in cuda_arch_list:
+ arch_bin = []
+ arch_ptx = []
+ add_ptx = arch_name.endswith('+PTX')
+ if add_ptx:
+ arch_name = arch_name[:-len('+PTX')]
+
+ if re.fullmatch('[0-9]+\\.[0-9](\\([0-9]+\\.[0-9]\\))?', arch_name):
+ arch_bin, arch_ptx = [arch_name], [arch_name]
+ else:
+ arch_bin, arch_ptx = {
+ 'Fermi': (['2.0', '2.1(2.0)'], []),
+ 'Kepler+Tegra': (['3.2'], []),
+ 'Kepler+Tesla': (['3.7'], []),
+ 'Kepler': (['3.0', '3.5'], ['3.5']),
+ 'Maxwell+Tegra': (['5.3'], []),
+ 'Maxwell': (['5.0', '5.2'], ['5.2']),
+ 'Pascal': (['6.0', '6.1'], ['6.1']),
+ 'Pascal+Tegra': (['6.2'], []),
+ 'Volta': (['7.0'], ['7.0']),
+ 'Volta+Tegra': (['7.2'], []),
+ 'Turing': (['7.5'], ['7.5']),
+ }.get(arch_name, (None, None))
+
+ if arch_bin is None:
+ raise InvalidArguments('Unknown CUDA Architecture Name {}!'
+ .format(arch_name))
+
+ cuda_arch_bin += arch_bin
+
+ if add_ptx:
+ if not arch_ptx:
+ arch_ptx = arch_bin
+ cuda_arch_ptx += arch_ptx
+
+ cuda_arch_bin = re.sub('\\.', '', ' '.join(cuda_arch_bin))
+ cuda_arch_ptx = re.sub('\\.', '', ' '.join(cuda_arch_ptx))
+ cuda_arch_bin = re.findall('[0-9()]+', cuda_arch_bin)
+ cuda_arch_ptx = re.findall('[0-9]+', cuda_arch_ptx)
+ cuda_arch_bin = sorted(list(set(cuda_arch_bin)))
+ cuda_arch_ptx = sorted(list(set(cuda_arch_ptx)))
+
+ nvcc_flags = []
+ nvcc_archs_readable = []
+
+ for arch in cuda_arch_bin:
+ m = re.match('([0-9]+)\\(([0-9]+)\\)', arch)
+ if m:
+ nvcc_flags += ['-gencode', 'arch=compute_' + m[2] + ',code=sm_' + m[1]]
+ nvcc_archs_readable += ['sm_' + m[1]]
+ else:
+ nvcc_flags += ['-gencode', 'arch=compute_' + arch + ',code=sm_' + arch]
+ nvcc_archs_readable += ['sm_' + arch]
+
+ for arch in cuda_arch_ptx:
+ nvcc_flags += ['-gencode', 'arch=compute_' + arch + ',code=compute_' + arch]
+ nvcc_archs_readable += ['compute_' + arch]
+
+ return nvcc_flags, nvcc_archs_readable
+
+def initialize(*args, **kwargs):
+ return CudaModule(*args, **kwargs)