aboutsummaryrefslogtreecommitdiff
path: root/mesonbuild/interpreterbase/interpreterbase.py
diff options
context:
space:
mode:
authorDaniel Mensinger <daniel@mensinger-ka.de>2021-09-26 11:09:23 +0200
committerDaniel Mensinger <daniel@mensinger-ka.de>2021-10-06 22:37:18 +0200
commitaf0587cb490dfa2c2a00c2426c10d1de11d34fdd (patch)
treeea6cbdf3c861bebc3df145d4950211d45401dceb /mesonbuild/interpreterbase/interpreterbase.py
parentb19530bd7dc99e0b5d71acd5cdf85af915b9ddcc (diff)
downloadmeson-af0587cb490dfa2c2a00c2426c10d1de11d34fdd.zip
meson-af0587cb490dfa2c2a00c2426c10d1de11d34fdd.tar.gz
meson-af0587cb490dfa2c2a00c2426c10d1de11d34fdd.tar.bz2
interpreter: Holderify arrays and dicts
This is the final refactoring for extracting the bultin object logic out of Interpreterbase. I decided to do both arrays and dicts in one go since splitting it would have been a lot more confusing.
Diffstat (limited to 'mesonbuild/interpreterbase/interpreterbase.py')
-rw-r--r--mesonbuild/interpreterbase/interpreterbase.py507
1 files changed, 103 insertions, 404 deletions
diff --git a/mesonbuild/interpreterbase/interpreterbase.py b/mesonbuild/interpreterbase/interpreterbase.py
index 4b4b3c0..bc21951 100644
--- a/mesonbuild/interpreterbase/interpreterbase.py
+++ b/mesonbuild/interpreterbase/interpreterbase.py
@@ -24,9 +24,8 @@ from .baseobjects import (
MutableInterpreterObject,
InterpreterObjectTypeVar,
ObjectHolder,
- RangeHolder,
+ IterableObject,
- TYPE_elementary,
TYPE_var,
TYPE_kwargs,
@@ -42,7 +41,7 @@ from .exceptions import (
BreakRequest
)
-from .decorators import FeatureNew, noKwargs
+from .decorators import FeatureNew
from .disabler import Disabler, is_disabled
from .helpers import default_resolve_key, flatten, resolve_second_level_holders
from .operator import MesonOperator
@@ -51,7 +50,6 @@ from ._unholder import _unholder
import os, copy, re, pathlib
import typing as T
import textwrap
-from functools import wraps
if T.TYPE_CHECKING:
# T.cast is not handled by flake8 to detect quoted annotation use
@@ -64,6 +62,8 @@ HolderMapType = T.Dict[
T.Type[int],
T.Type[bool],
T.Type[str],
+ T.Type[list],
+ T.Type[dict],
],
# For some reason, this has to be a callable and can't just be ObjectHolder[InterpreterObjectTypeVar]
T.Callable[[InterpreterObjectTypeVar, 'Interpreter'], ObjectHolder[InterpreterObjectTypeVar]]
@@ -74,21 +74,7 @@ FunctionType = T.Dict[
T.Callable[[mparser.BaseNode, T.List[TYPE_var], T.Dict[str, TYPE_var]], TYPE_var]
]
-__FN = T.TypeVar('__FN', bound=T.Callable[['InterpreterBase', T.Any], T.Union[TYPE_var, InterpreterObject]])
-def _holderify_result(types: T.Union[None, T.Type, T.Tuple[T.Type, ...]] = None) -> T.Callable[[__FN], __FN]:
- def inner(f: __FN) -> __FN:
- @wraps(f)
- def wrapper(self: 'InterpreterBase', node: mparser.BaseNode) -> T.Union[TYPE_var, InterpreterObject]:
- res = f(self, node)
- if types is not None and not isinstance(res, types):
- raise mesonlib.MesonBugException(f'Expected {types} but got object `{res}` of type {type(res).__name__}')
- return self._holderify(res)
- return T.cast(__FN, wrapper)
- return inner
-
class InterpreterBase:
- elementary_types = (list, )
-
def __init__(self, source_root: str, subdir: str, subproject: str):
self.source_root = source_root
self.funcs: FunctionType = {}
@@ -99,8 +85,7 @@ class InterpreterBase:
self.subdir = subdir
self.root_subdir = subdir
self.subproject = subproject
- # TODO: This should actually be more strict: T.Union[TYPE_elementary, InterpreterObject]
- self.variables: T.Dict[str, T.Union[TYPE_var, InterpreterObject]] = {}
+ self.variables: T.Dict[str, InterpreterObject] = {}
self.argument_depth = 0
self.current_lineno = -1
# Current node set during a function call. This can be used as location
@@ -190,7 +175,7 @@ class InterpreterBase:
raise e
i += 1 # In THE FUTURE jump over blocks and stuff.
- def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[T.Union[TYPE_var, InterpreterObject]]:
+ def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[InterpreterObject]:
self.current_node = cur
if isinstance(cur, mparser.FunctionNode):
return self.function_call(cur)
@@ -238,20 +223,18 @@ class InterpreterBase:
raise ContinueRequest()
elif isinstance(cur, mparser.BreakNode):
raise BreakRequest()
- elif isinstance(cur, self.elementary_types):
- return cur
else:
raise InvalidCode("Unknown statement.")
return None
- def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> T.List[T.Union[TYPE_var, InterpreterObject]]:
+ def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> InterpreterObject:
(arguments, kwargs) = self.reduce_arguments(cur.args)
if len(kwargs) > 0:
raise InvalidCode('Keyword arguments are invalid in array construction.')
- return arguments
+ return self._holderify([_unholder(x) for x in arguments])
@FeatureNew('dict', '0.47.0')
- def evaluate_dictstatement(self, cur: mparser.DictNode) -> T.Union[TYPE_var, InterpreterObject]:
+ def evaluate_dictstatement(self, cur: mparser.DictNode) -> InterpreterObject:
def resolve_key(key: mparser.BaseNode) -> str:
if not isinstance(key, mparser.StringNode):
FeatureNew.single_use('Dictionary entry using non literal key', '0.53.0', self.subproject)
@@ -261,17 +244,13 @@ class InterpreterBase:
return str_key
arguments, kwargs = self.reduce_arguments(cur.args, key_resolver=resolve_key, duplicate_key_error='Duplicate dictionary key: {}')
assert not arguments
- return kwargs
+ return self._holderify({k: _unholder(v) for k, v in kwargs.items()})
- @_holderify_result((bool, Disabler))
- def evaluate_notstatement(self, cur: mparser.NotNode) -> T.Union[TYPE_var, InterpreterObject]:
+ def evaluate_notstatement(self, cur: mparser.NotNode) -> InterpreterObject:
v = self.evaluate_statement(cur.value)
if isinstance(v, Disabler):
return v
- # TYPING TODO: Remove this check once `evaluate_statement` only returns InterpreterObjects
- if not isinstance(v, InterpreterObject):
- raise mesonlib.MesonBugException(f'Argument to not ({v}) is not an InterpreterObject but {type(v).__name__}.')
- return v.operator_call(MesonOperator.NOT, None)
+ return self._holderify(v.operator_call(MesonOperator.NOT, None))
def evaluate_if(self, node: mparser.IfClauseNode) -> T.Optional[Disabler]:
assert isinstance(node, mparser.IfClauseNode)
@@ -284,10 +263,10 @@ class InterpreterBase:
return result
if not isinstance(result, InterpreterObject):
raise mesonlib.MesonBugException(f'Argument to not ({result}) is not an InterpreterObject but {type(result).__name__}.')
- result = result.operator_call(MesonOperator.BOOL, None)
- if not isinstance(result, bool):
+ res = result.operator_call(MesonOperator.BOOL, None)
+ if not isinstance(res, bool):
raise InvalidCode(f'If clause {result!r} does not evaluate to true or false.')
- if result:
+ if res:
prev_meson_version = mesonlib.project_meson_versions[self.subproject]
if self.tmp_meson_version:
mesonlib.project_meson_versions[self.subproject] = self.tmp_meson_version
@@ -300,20 +279,7 @@ class InterpreterBase:
self.evaluate_codeblock(node.elseblock)
return None
- def validate_comparison_types(self, val1: T.Any, val2: T.Any) -> bool:
- if type(val1) != type(val2):
- return False
- return True
-
- def _evaluate_in(self, val1: T.Any, val2: T.Any) -> bool:
- if not isinstance(val1, (str, int, float, mesonlib.HoldableObject)):
- raise InvalidArguments('lvalue of "in" operator must be a string, integer, float, or object')
- if not isinstance(val2, (list, dict)):
- raise InvalidArguments('rvalue of "in" operator must be an array or a dict')
- return val1 in val2
-
- @_holderify_result((bool, Disabler))
- def evaluate_comparison(self, node: mparser.ComparisonNode) -> T.Union[TYPE_var, InterpreterObject]:
+ def evaluate_comparison(self, node: mparser.ComparisonNode) -> InterpreterObject:
val1 = self.evaluate_statement(node.left)
if isinstance(val1, Disabler):
return val1
@@ -334,105 +300,42 @@ class InterpreterBase:
}[node.ctype]
# Check if the arguments should be reversed for simplicity (this essentially converts `in` to `contains`)
- if operator in (MesonOperator.IN, MesonOperator.NOT_IN) and isinstance(val2, InterpreterObject):
- return val2.operator_call(operator, _unholder(val1))
-
- # Normal evaluation, with the same semantics
- elif operator not in (MesonOperator.IN, MesonOperator.NOT_IN) and isinstance(val1, InterpreterObject):
- return val1.operator_call(operator, _unholder(val2))
-
- # OLD CODE, based on the builtin types -- remove once we have switched
- # over to all ObjectHolders.
-
- # Do not compare the ObjectHolders but the actual held objects
- val1 = _unholder(val1)
- val2 = _unholder(val2)
- if node.ctype == 'in':
- return self._evaluate_in(val1, val2)
- elif node.ctype == 'notin':
- return not self._evaluate_in(val1, val2)
- valid = self.validate_comparison_types(val1, val2)
- # Ordering comparisons of different types isn't allowed since PR #1810
- # (0.41.0). Since PR #2884 we also warn about equality comparisons of
- # different types, which is now an error.
- if not valid and (node.ctype == '==' or node.ctype == '!='):
- raise InvalidArguments(textwrap.dedent(
- f'''
- Trying to compare values of different types ({type(val1).__name__}, {type(val2).__name__}) using {node.ctype}.
- This was deprecated and undefined behavior previously and is as of 0.60.0 a hard error.
- '''
- ))
- if node.ctype == '==':
- return val1 == val2
- elif node.ctype == '!=':
- return val1 != val2
- elif not valid:
- raise InterpreterException(
- 'Values of different types ({}, {}) cannot be compared using {}.'.format(type(val1).__name__,
- type(val2).__name__,
- node.ctype))
- elif not isinstance(val1, self.elementary_types):
- raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.left, 'value', '<ERROR>')))
- elif not isinstance(val2, self.elementary_types):
- raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.right, 'value', '<ERROR>')))
- # Use type: ignore because mypy will complain that we are comparing two Unions,
- # but we actually guarantee earlier that both types are the same
- elif node.ctype == '<':
- return val1 < val2
- elif node.ctype == '<=':
- return val1 <= val2
- elif node.ctype == '>':
- return val1 > val2
- elif node.ctype == '>=':
- return val1 >= val2
- else:
- raise InvalidCode('You broke my compare eval.')
+ if operator in (MesonOperator.IN, MesonOperator.NOT_IN):
+ val1, val2 = val2, val1
- @_holderify_result((bool, Disabler))
- def evaluate_andstatement(self, cur: mparser.AndNode) -> T.Union[TYPE_var, InterpreterObject]:
+ return self._holderify(val1.operator_call(operator, _unholder(val2)))
+
+ def evaluate_andstatement(self, cur: mparser.AndNode) -> InterpreterObject:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
- if not isinstance(l, InterpreterObject):
- raise mesonlib.MesonBugException(f'Firtst argument to and ({l}) is not an InterpreterObject but {type(l).__name__}.')
l_bool = l.operator_call(MesonOperator.BOOL, None)
if not l_bool:
- return l_bool
+ return self._holderify(l_bool)
r = self.evaluate_statement(cur.right)
if isinstance(r, Disabler):
return r
- if not isinstance(r, InterpreterObject):
- raise mesonlib.MesonBugException(f'Second argument to and ({r}) is not an InterpreterObject but {type(r).__name__}.')
- return r.operator_call(MesonOperator.BOOL, None)
+ return self._holderify(r.operator_call(MesonOperator.BOOL, None))
- @_holderify_result((bool, Disabler))
- def evaluate_orstatement(self, cur: mparser.OrNode) -> T.Union[TYPE_var, InterpreterObject]:
+ def evaluate_orstatement(self, cur: mparser.OrNode) -> InterpreterObject:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
- if not isinstance(l, InterpreterObject):
- raise mesonlib.MesonBugException(f'Firtst argument to or ({l}) is not an InterpreterObject but {type(l).__name__}.')
l_bool = l.operator_call(MesonOperator.BOOL, None)
if l_bool:
- return l_bool
+ return self._holderify(l_bool)
r = self.evaluate_statement(cur.right)
if isinstance(r, Disabler):
return r
- if not isinstance(r, InterpreterObject):
- raise mesonlib.MesonBugException(f'Second argument to ot ({r}) is not an InterpreterObject but {type(r).__name__}.')
- return r.operator_call(MesonOperator.BOOL, None)
+ return self._holderify(r.operator_call(MesonOperator.BOOL, None))
- @_holderify_result()
- def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> T.Union[TYPE_var, InterpreterObject]:
+ def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> InterpreterObject:
v = self.evaluate_statement(cur.value)
if isinstance(v, Disabler):
return v
- # TYPING TODO: Remove this check once `evaluate_statement` only returns InterpreterObjects
- if not isinstance(v, InterpreterObject):
- raise InterpreterException(f'Argument to negation ({v}) is not an InterpreterObject but {type(v).__name__}.')
- return v.operator_call(MesonOperator.UMINUS, None)
+ return self._holderify(v.operator_call(MesonOperator.UMINUS, None))
- def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> T.Union[TYPE_var, InterpreterObject]:
+ def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> InterpreterObject:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
@@ -440,53 +343,21 @@ class InterpreterBase:
if isinstance(r, Disabler):
return r
- # New code based on InterpreterObjects
- if isinstance(l, InterpreterObject):
- mapping: T.Dict[str, MesonOperator] = {
- 'add': MesonOperator.PLUS,
- 'sub': MesonOperator.MINUS,
- 'mul': MesonOperator.TIMES,
- 'div': MesonOperator.DIV,
- 'mod': MesonOperator.MOD,
- }
- res = l.operator_call(mapping[cur.operation], _unholder(r))
- return self._holderify(res)
-
- # OLD CODE, based on the builtin types -- remove once we have switched
- # over to all ObjectHolders.
-
- if cur.operation == 'add':
- if isinstance(l, dict) and isinstance(r, dict):
- return {**l, **r}
- try:
- # MyPy error due to handling two Unions (we are catching all exceptions anyway)
- return l + r # type: ignore
- except Exception as e:
- raise InvalidCode('Invalid use of addition: ' + str(e))
- elif cur.operation == 'sub':
- if not isinstance(l, int) or not isinstance(r, int):
- raise InvalidCode('Subtraction works only with integers.')
- raise mesonlib.MesonBugException('The integer was not held by an ObjectHolder!')
- elif cur.operation == 'mul':
- if not isinstance(l, int) or not isinstance(r, int):
- raise InvalidCode('Multiplication works only with integers.')
- raise mesonlib.MesonBugException('The integer was not held by an ObjectHolder!')
- elif cur.operation == 'div':
- raise mesonlib.MesonBugException('The integer or string was not held by an ObjectHolder!')
- elif cur.operation == 'mod':
- if not isinstance(l, int) or not isinstance(r, int):
- raise InvalidCode('Modulo works only with integers.')
- raise mesonlib.MesonBugException('The integer was not held by an ObjectHolder!')
- else:
- raise InvalidCode('You broke me.')
-
- def evaluate_ternary(self, node: mparser.TernaryNode) -> T.Union[TYPE_var, InterpreterObject]:
+ mapping: T.Dict[str, MesonOperator] = {
+ 'add': MesonOperator.PLUS,
+ 'sub': MesonOperator.MINUS,
+ 'mul': MesonOperator.TIMES,
+ 'div': MesonOperator.DIV,
+ 'mod': MesonOperator.MOD,
+ }
+ res = l.operator_call(mapping[cur.operation], _unholder(r))
+ return self._holderify(res)
+
+ def evaluate_ternary(self, node: mparser.TernaryNode) -> T.Optional[InterpreterObject]:
assert isinstance(node, mparser.TernaryNode)
result = self.evaluate_statement(node.condition)
if isinstance(result, Disabler):
return result
- if not isinstance(result, InterpreterObject):
- raise mesonlib.MesonBugException(f'Ternary condition ({result}) is not an InterpreterObject but {type(result).__name__}.')
result_bool = result.operator_call(MesonOperator.BOOL, None)
if result_bool:
return self.evaluate_statement(node.trueblock)
@@ -494,8 +365,7 @@ class InterpreterBase:
return self.evaluate_statement(node.falseblock)
@FeatureNew('format strings', '0.58.0')
- @_holderify_result(str)
- def evaluate_fstring(self, node: mparser.FormatStringNode) -> str:
+ def evaluate_fstring(self, node: mparser.FormatStringNode) -> InterpreterObject:
assert isinstance(node, mparser.FormatStringNode)
def replace(match: T.Match[str]) -> str:
@@ -510,38 +380,37 @@ class InterpreterBase:
except KeyError:
raise InvalidCode(f'Identifier "{var}" does not name a variable.')
- return re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value)
+ res = re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value)
+ return self._holderify(res)
def evaluate_foreach(self, node: mparser.ForeachClauseNode) -> None:
assert isinstance(node, mparser.ForeachClauseNode)
items = self.evaluate_statement(node.items)
-
- if isinstance(items, (list, RangeHolder)):
- if len(node.varnames) != 1:
- raise InvalidArguments('Foreach on array does not unpack')
- varname = node.varnames[0]
- for item in items:
- self.set_variable(varname, self._holderify(item, permissive=True))
- try:
- self.evaluate_codeblock(node.block)
- except ContinueRequest:
- continue
- except BreakRequest:
- break
- elif isinstance(items, dict):
- if len(node.varnames) != 2:
- raise InvalidArguments('Foreach on dict unpacks key and value')
- for key, value in sorted(items.items()):
- self.set_variable(node.varnames[0], self._holderify(key))
- self.set_variable(node.varnames[1], self._holderify(value, permissive=True))
- try:
- self.evaluate_codeblock(node.block)
- except ContinueRequest:
- continue
- except BreakRequest:
- break
- else:
- raise InvalidArguments('Items of foreach loop must be an array or a dict')
+ if not isinstance(items, IterableObject):
+ raise InvalidArguments('Items of foreach loop do not support iterating')
+
+ tsize = items.iter_tuple_size()
+ if len(node.varnames) != (tsize or 1):
+ raise InvalidArguments(f'Foreach expects exactly {tsize or 1} variables for iterating over objects of type {items.display_name()}')
+
+ for i in items.iter_self():
+ if tsize is None:
+ if isinstance(i, tuple):
+ raise mesonlib.MesonBugException(f'Iteration of {items} returned a tuple even though iter_tuple_size() is None')
+ self.set_variable(node.varnames[0], self._holderify(i))
+ else:
+ if not isinstance(i, tuple):
+ raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}')
+ if len(i) != tsize:
+ raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}')
+ for j in range(tsize):
+ self.set_variable(node.varnames[j], self._holderify(i[j]))
+ try:
+ self.evaluate_codeblock(node.block)
+ except ContinueRequest:
+ continue
+ except BreakRequest:
+ break
def evaluate_plusassign(self, node: mparser.PlusAssignmentNode) -> None:
assert isinstance(node, mparser.PlusAssignmentNode)
@@ -551,69 +420,21 @@ class InterpreterBase:
# Remember that all variables are immutable. We must always create a
# full new variable and then assign it.
old_variable = self.get_variable(varname)
- # TYPING TODO: This should only be InterpreterObject in the future
- new_value: T.Union[None, TYPE_var, InterpreterObject] = None
- if isinstance(old_variable, str):
- if not isinstance(addition, str):
- raise InvalidArguments('The += operator requires a string on the right hand side if the variable on the left is a string')
- new_value = old_variable + addition
- elif isinstance(old_variable, list):
- if isinstance(addition, list):
- new_value = old_variable + addition
- else:
- new_value = old_variable + [addition]
- elif isinstance(old_variable, dict):
- if not isinstance(addition, dict):
- raise InvalidArguments('The += operator requires a dict on the right hand side if the variable on the left is a dict')
- new_value = {**old_variable, **addition}
- elif isinstance(old_variable, InterpreterObject):
- # TODO: don't make _unholder permissive
- new_value = self._holderify(old_variable.operator_call(MesonOperator.PLUS, _unholder(addition)))
- # Add other data types here.
- else:
- raise InvalidArguments('The += operator currently only works with arrays, dicts, strings or ints')
+ new_value = self._holderify(old_variable.operator_call(MesonOperator.PLUS, _unholder(addition)))
self.set_variable(varname, new_value)
- def evaluate_indexing(self, node: mparser.IndexNode) -> T.Union[TYPE_elementary, InterpreterObject]:
+ def evaluate_indexing(self, node: mparser.IndexNode) -> InterpreterObject:
assert isinstance(node, mparser.IndexNode)
iobject = self.evaluate_statement(node.iobject)
if isinstance(iobject, Disabler):
return iobject
index = _unholder(self.evaluate_statement(node.index))
- if isinstance(iobject, InterpreterObject):
- return self._holderify(iobject.operator_call(MesonOperator.INDEX, index))
- if not hasattr(iobject, '__getitem__'):
- raise InterpreterException(
- 'Tried to index an object that doesn\'t support indexing.')
- if isinstance(iobject, dict):
- if not isinstance(index, str):
- raise InterpreterException('Key is not a string')
- try:
- # The cast is required because we don't have recursive types...
- return T.cast(T.Union[TYPE_elementary, InterpreterObject], iobject[index])
- except KeyError:
- raise InterpreterException('Key %s is not in dict' % index)
- else:
- if not isinstance(index, int):
- raise InterpreterException('Index value is not an integer.')
- try:
- # Ignore the MyPy error, since we don't know all indexable types here
- # and we handle non indexable types with an exception
- # TODO maybe find a better solution
- res = iobject[index] # type: ignore
- # Only holderify if we are dealing with `InterpreterObject`, since raw
- # lists already store ObjectHolders
- if isinstance(iobject, InterpreterObject):
- return self._holderify(res)
- else:
- return res
- except IndexError:
- # We are already checking for the existence of __getitem__, so this should be save
- raise InterpreterException('Index %d out of bounds of array of size %d.' % (index, len(iobject))) # type: ignore
+ if iobject is None:
+ raise InterpreterException('Tried to evaluate indexing on None')
+ return self._holderify(iobject.operator_call(MesonOperator.INDEX, index))
- @_holderify_result()
- def function_call(self, node: mparser.FunctionNode) -> T.Optional[T.Union[TYPE_var, InterpreterObject]]:
+ def function_call(self, node: mparser.FunctionNode) -> T.Optional[InterpreterObject]:
func_name = node.func_name
(h_posargs, h_kwargs) = self.reduce_arguments(node.args)
(posargs, kwargs) = self._unholder_args(h_posargs, h_kwargs)
@@ -626,14 +447,15 @@ class InterpreterBase:
func_args = flatten(posargs)
if not getattr(func, 'no-second-level-holder-flattening', False):
func_args, kwargs = resolve_second_level_holders(func_args, kwargs)
- return func(node, func_args, kwargs)
+ res = func(node, func_args, kwargs)
+ return self._holderify(res) if res is not None else None
else:
self.unknown_function_called(func_name)
return None
- def method_call(self, node: mparser.MethodNode) -> T.Optional[T.Union[TYPE_var, InterpreterObject]]:
+ def method_call(self, node: mparser.MethodNode) -> T.Optional[InterpreterObject]:
invokable = node.source_object
- obj: T.Union[TYPE_var, InterpreterObject]
+ obj: T.Optional[InterpreterObject]
if isinstance(invokable, mparser.IdNode):
object_name = invokable.value
obj = self.get_variable(object_name)
@@ -644,16 +466,6 @@ class InterpreterBase:
(args, kwargs) = self._unholder_args(h_args, h_kwargs)
if is_disabled(args, kwargs):
return Disabler()
- if isinstance(obj, str):
- raise mesonlib.MesonBugException('Strings are now wrapped in object holders!')
- if isinstance(obj, bool):
- raise mesonlib.MesonBugException('Booleans are now wrapped in object holders!')
- if isinstance(obj, int):
- raise mesonlib.MesonBugException('Integers are now wrapped in object holders!')
- if isinstance(obj, list):
- return self.array_method_call(obj, method_name, args, kwargs)
- if isinstance(obj, dict):
- return self.dict_method_call(obj, method_name, args, kwargs)
if not isinstance(obj, InterpreterObject):
raise InvalidArguments('Variable "%s" is not callable.' % object_name)
# TODO: InterpreterBase **really** shouldn't be in charge of checking this
@@ -663,17 +475,11 @@ class InterpreterBase:
elif not isinstance(obj, Disabler):
raise InvalidArguments(f'Invalid operation "extract_objects" on variable "{object_name}" of type {type(obj).__name__}')
obj.current_node = node
- return self._holderify(obj.method_call(method_name, args, kwargs))
+ res = obj.method_call(method_name, args, kwargs)
+ return self._holderify(res) if res is not None else None
- def _holderify(self, res: T.Union[TYPE_var, InterpreterObject, None], *, permissive: bool = False) -> T.Union[TYPE_elementary, InterpreterObject]:
- # TODO: remove `permissive` once all primitives are ObjectHolders
- if res is None:
- return None
- elif isinstance(res, list):
- return [self._holderify(x, permissive=permissive) for x in res]
- elif isinstance(res, dict):
- return {k: self._holderify(v, permissive=permissive) for k, v in res.items()}
- elif isinstance(res, HoldableTypes):
+ def _holderify(self, res: T.Union[TYPE_var, InterpreterObject]) -> InterpreterObject:
+ if isinstance(res, HoldableTypes):
# Always check for an exact match first.
cls = self.holder_map.get(type(res), None)
if cls is not None:
@@ -686,136 +492,42 @@ class InterpreterBase:
return cls(res, T.cast('Interpreter', self))
raise mesonlib.MesonBugException(f'Object {res} of type {type(res).__name__} is neither in self.holder_map nor self.bound_holder_map.')
elif isinstance(res, ObjectHolder):
- if permissive:
- return res
raise mesonlib.MesonBugException(f'Returned object {res} of type {type(res).__name__} is an object holder.')
elif isinstance(res, MesonInterpreterObject):
return res
raise mesonlib.MesonBugException(f'Unknown returned object {res} of type {type(res).__name__} in the parameters.')
def _unholder_args(self,
- args: T.List[T.Union[TYPE_var, InterpreterObject]],
- kwargs: T.Dict[str, T.Union[TYPE_var, InterpreterObject]]) -> T.Tuple[T.List[TYPE_var], TYPE_kwargs]:
+ args: T.List[InterpreterObject],
+ kwargs: T.Dict[str, InterpreterObject]) -> T.Tuple[T.List[TYPE_var], TYPE_kwargs]:
return [_unholder(x) for x in args], {k: _unholder(v) for k, v in kwargs.items()}
- @staticmethod
- def _get_one_string_posarg(posargs: T.List[TYPE_var], method_name: str) -> str:
- if len(posargs) > 1:
- raise InterpreterException(f'{method_name}() must have zero or one arguments')
- elif len(posargs) == 1:
- s = posargs[0]
- if not isinstance(s, str):
- raise InterpreterException(f'{method_name}() argument must be a string')
- return s
- return None
-
def unknown_function_called(self, func_name: str) -> None:
raise InvalidCode('Unknown function "%s".' % func_name)
- @noKwargs
- def array_method_call(self,
- obj: T.List[T.Union[TYPE_elementary, InterpreterObject]],
- method_name: str,
- posargs: T.List[TYPE_var],
- kwargs: TYPE_kwargs) -> T.Union[TYPE_var, InterpreterObject]:
- if method_name == 'contains':
- def check_contains(el: T.List[TYPE_var]) -> bool:
- if len(posargs) != 1:
- raise InterpreterException('Contains method takes exactly one argument.')
- item = posargs[0]
- for element in el:
- if isinstance(element, list):
- found = check_contains(element)
- if found:
- return True
- if element == item:
- return True
- return False
- return self._holderify(check_contains([_unholder(x) for x in obj]))
- elif method_name == 'length':
- return self._holderify(len(obj))
- elif method_name == 'get':
- index = posargs[0]
- fallback = None
- if len(posargs) == 2:
- fallback = self._holderify(posargs[1])
- elif len(posargs) > 2:
- m = 'Array method \'get()\' only takes two arguments: the ' \
- 'index and an optional fallback value if the index is ' \
- 'out of range.'
- raise InvalidArguments(m)
- if not isinstance(index, int):
- raise InvalidArguments('Array index must be a number.')
- if index < -len(obj) or index >= len(obj):
- if fallback is None:
- m = 'Array index {!r} is out of bounds for array of size {!r}.'
- raise InvalidArguments(m.format(index, len(obj)))
- if isinstance(fallback, mparser.BaseNode):
- return self.evaluate_statement(fallback)
- return fallback
- return obj[index]
- raise InterpreterException(f'Arrays do not have a method called {method_name!r}.')
-
- @noKwargs
- def dict_method_call(self,
- obj: T.Dict[str, T.Union[TYPE_elementary, InterpreterObject]],
- method_name: str,
- posargs: T.List[TYPE_var],
- kwargs: TYPE_kwargs) -> T.Union[TYPE_var, InterpreterObject]:
- if method_name in ('has_key', 'get'):
- if method_name == 'has_key':
- if len(posargs) != 1:
- raise InterpreterException('has_key() takes exactly one argument.')
- else:
- if len(posargs) not in (1, 2):
- raise InterpreterException('get() takes one or two arguments.')
-
- key = posargs[0]
- if not isinstance(key, (str)):
- raise InvalidArguments('Dictionary key must be a string.')
-
- has_key = key in obj
-
- if method_name == 'has_key':
- return self._holderify(has_key)
-
- if has_key:
- return obj[key]
-
- if len(posargs) == 2:
- fallback = self._holderify(posargs[1])
- if isinstance(fallback, mparser.BaseNode):
- return self.evaluate_statement(fallback)
- return fallback
-
- raise InterpreterException(f'Key {key!r} is not in the dictionary.')
-
- if method_name == 'keys':
- if len(posargs) != 0:
- raise InterpreterException('keys() takes no arguments.')
- return sorted(obj.keys())
-
- raise InterpreterException('Dictionaries do not have a method called "%s".' % method_name)
-
def reduce_arguments(
self,
args: mparser.ArgumentNode,
key_resolver: T.Callable[[mparser.BaseNode], str] = default_resolve_key,
duplicate_key_error: T.Optional[str] = None,
) -> T.Tuple[
- T.List[T.Union[TYPE_var, InterpreterObject]],
- T.Dict[str, T.Union[TYPE_var, InterpreterObject]]
+ T.List[InterpreterObject],
+ T.Dict[str, InterpreterObject]
]:
assert isinstance(args, mparser.ArgumentNode)
if args.incorrect_order():
raise InvalidArguments('All keyword arguments must be after positional arguments.')
self.argument_depth += 1
- reduced_pos: T.List[T.Union[TYPE_var, InterpreterObject]] = [self.evaluate_statement(arg) for arg in args.arguments]
- reduced_kw: T.Dict[str, T.Union[TYPE_var, InterpreterObject]] = {}
+ reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments]
+ if any(x is None for x in reduced_pos):
+ raise InvalidArguments(f'At least one value in the arguments is void.')
+ reduced_kw: T.Dict[str, InterpreterObject] = {}
for key, val in args.kwargs.items():
reduced_key = key_resolver(key)
assert isinstance(val, mparser.BaseNode)
reduced_val = self.evaluate_statement(val)
+ if reduced_val is None:
+ raise InvalidArguments(f'Value of key {reduced_key} is void.')
if duplicate_key_error and reduced_key in reduced_kw:
raise InvalidArguments(duplicate_key_error.format(reduced_key))
reduced_kw[reduced_key] = reduced_val
@@ -823,10 +535,10 @@ class InterpreterBase:
final_kw = self.expand_default_kwargs(reduced_kw)
return reduced_pos, final_kw
- def expand_default_kwargs(self, kwargs: T.Dict[str, T.Union[TYPE_var, InterpreterObject]]) -> T.Dict[str, T.Union[TYPE_var, InterpreterObject]]:
+ def expand_default_kwargs(self, kwargs: T.Dict[str, T.Optional[InterpreterObject]]) -> T.Dict[str, T.Optional[InterpreterObject]]:
if 'kwargs' not in kwargs:
return kwargs
- to_expand = kwargs.pop('kwargs')
+ to_expand = _unholder(kwargs.pop('kwargs'))
if not isinstance(to_expand, dict):
raise InterpreterException('Value of "kwargs" must be dictionary.')
if 'kwargs' in to_expand:
@@ -834,20 +546,20 @@ class InterpreterBase:
for k, v in to_expand.items():
if k in kwargs:
raise InterpreterException(f'Entry "{k}" defined both as a keyword argument and in a "kwarg" entry.')
- kwargs[k] = v
+ kwargs[k] = self._holderify(v)
return kwargs
def assignment(self, node: mparser.AssignmentNode) -> None:
assert isinstance(node, mparser.AssignmentNode)
if self.argument_depth != 0:
- raise InvalidArguments('''Tried to assign values inside an argument list.
-To specify a keyword argument, use : instead of =.''')
+ raise InvalidArguments(textwrap.dedent('''\
+ Tried to assign values inside an argument list.
+ To specify a keyword argument, use : instead of =.
+ '''))
var_name = node.var_name
if not isinstance(var_name, str):
raise InvalidArguments('Tried to assign value to a non-variable.')
value = self.evaluate_statement(node.value)
- if not self.is_assignable(value):
- raise InvalidCode(f'Tried to assign the invalid value "{value}" of type {type(value).__name__} to variable.')
# For mutable objects we need to make a copy on assignment
if isinstance(value, MutableInterpreterObject):
value = copy.deepcopy(value)
@@ -860,36 +572,23 @@ To specify a keyword argument, use : instead of =.''')
if holderify:
variable = self._holderify(variable)
else:
- # Ensure that we are never storing a HoldableObject
- def check(x: T.Union[TYPE_var, InterpreterObject]) -> None:
- if isinstance(x, mesonlib.HoldableObject):
- raise mesonlib.MesonBugException(f'set_variable in InterpreterBase called with a HoldableObject {x} of type {type(x).__name__}')
- elif isinstance(x, list):
- for y in x:
- check(y)
- elif isinstance(x, dict):
- for v in x.values():
- check(v)
- check(variable)
+ # Ensure that we are always storing ObjectHolders
+ if not isinstance(variable, InterpreterObject):
+ raise mesonlib.MesonBugException(f'set_variable in InterpreterBase called with a non InterpreterObject {variable} of type {type(variable).__name__}')
if not isinstance(varname, str):
raise InvalidCode('First argument to set_variable must be a string.')
- if not self.is_assignable(variable):
- raise InvalidCode(f'Assigned value "{variable}" of type {type(variable).__name__} is not an assignable type.')
if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None:
raise InvalidCode('Invalid variable name: ' + varname)
if varname in self.builtin:
raise InvalidCode('Tried to overwrite internal variable "%s"' % varname)
self.variables[varname] = variable
- def get_variable(self, varname: str) -> T.Union[TYPE_var, InterpreterObject]:
+ def get_variable(self, varname: str) -> InterpreterObject:
if varname in self.builtin:
return self.builtin[varname]
if varname in self.variables:
return self.variables[varname]
raise InvalidCode('Unknown variable "%s".' % varname)
- def is_assignable(self, value: T.Any) -> bool:
- return isinstance(value, (InterpreterObject, list, dict))
-
def validate_extraction(self, buildtarget: mesonlib.HoldableObject) -> None:
raise InterpreterException('validate_extraction is not implemented in this context (please file a bug)')