1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
/*
* QTest testcase for e1000e NIC
*
* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
* Developed by Daynix Computing LTD (http://www.daynix.com)
*
* Authors:
* Dmitry Fleytman <dmitry@daynix.com>
* Leonid Bloch <leonid@daynix.com>
* Yan Vugenfirer <yan@daynix.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "libqtest.h"
#include "qemu-common.h"
#include "libqos/pci-pc.h"
#include "qemu/sockets.h"
#include "qemu/iov.h"
#include "qemu/bitops.h"
#include "libqos/malloc.h"
#include "libqos/malloc-pc.h"
#include "libqos/malloc-generic.h"
#define E1000E_IMS (0x00d0)
#define E1000E_STATUS (0x0008)
#define E1000E_STATUS_LU BIT(1)
#define E1000E_STATUS_ASDV1000 BIT(9)
#define E1000E_CTRL (0x0000)
#define E1000E_CTRL_RESET BIT(26)
#define E1000E_RCTL (0x0100)
#define E1000E_RCTL_EN BIT(1)
#define E1000E_RCTL_UPE BIT(3)
#define E1000E_RCTL_MPE BIT(4)
#define E1000E_RFCTL (0x5008)
#define E1000E_RFCTL_EXTEN BIT(15)
#define E1000E_TCTL (0x0400)
#define E1000E_TCTL_EN BIT(1)
#define E1000E_CTRL_EXT (0x0018)
#define E1000E_CTRL_EXT_DRV_LOAD BIT(28)
#define E1000E_CTRL_EXT_TXLSFLOW BIT(22)
#define E1000E_RX0_MSG_ID (0)
#define E1000E_TX0_MSG_ID (1)
#define E1000E_OTHER_MSG_ID (2)
#define E1000E_IVAR (0x00E4)
#define E1000E_IVAR_TEST_CFG ((E1000E_RX0_MSG_ID << 0) | BIT(3) | \
(E1000E_TX0_MSG_ID << 8) | BIT(11) | \
(E1000E_OTHER_MSG_ID << 16) | BIT(19) | \
BIT(31))
#define E1000E_RING_LEN (0x1000)
#define E1000E_TXD_LEN (16)
#define E1000E_RXD_LEN (16)
#define E1000E_TDBAL (0x3800)
#define E1000E_TDBAH (0x3804)
#define E1000E_TDLEN (0x3808)
#define E1000E_TDH (0x3810)
#define E1000E_TDT (0x3818)
#define E1000E_RDBAL (0x2800)
#define E1000E_RDBAH (0x2804)
#define E1000E_RDLEN (0x2808)
#define E1000E_RDH (0x2810)
#define E1000E_RDT (0x2818)
typedef struct e1000e_device {
QPCIDevice *pci_dev;
QPCIBar mac_regs;
uint64_t tx_ring;
uint64_t rx_ring;
} e1000e_device;
static int test_sockets[2];
static QGuestAllocator *test_alloc;
static QPCIBus *test_bus;
static void e1000e_pci_foreach_callback(QPCIDevice *dev, int devfn, void *data)
{
QPCIDevice **res = data;
g_assert_null(*res);
*res = dev;
}
static QPCIDevice *e1000e_device_find(QPCIBus *bus)
{
static const int e1000e_vendor_id = 0x8086;
static const int e1000e_dev_id = 0x10D3;
QPCIDevice *e1000e_dev = NULL;
qpci_device_foreach(bus, e1000e_vendor_id, e1000e_dev_id,
e1000e_pci_foreach_callback, &e1000e_dev);
g_assert_nonnull(e1000e_dev);
return e1000e_dev;
}
static void e1000e_macreg_write(e1000e_device *d, uint32_t reg, uint32_t val)
{
qpci_io_writel(d->pci_dev, d->mac_regs, reg, val);
}
static uint32_t e1000e_macreg_read(e1000e_device *d, uint32_t reg)
{
return qpci_io_readl(d->pci_dev, d->mac_regs, reg);
}
static void e1000e_device_init(QPCIBus *bus, e1000e_device *d)
{
uint32_t val;
d->pci_dev = e1000e_device_find(bus);
/* Enable the device */
qpci_device_enable(d->pci_dev);
/* Map BAR0 (mac registers) */
d->mac_regs = qpci_iomap(d->pci_dev, 0, NULL);
/* Reset the device */
val = e1000e_macreg_read(d, E1000E_CTRL);
e1000e_macreg_write(d, E1000E_CTRL, val | E1000E_CTRL_RESET);
/* Enable and configure MSI-X */
qpci_msix_enable(d->pci_dev);
e1000e_macreg_write(d, E1000E_IVAR, E1000E_IVAR_TEST_CFG);
/* Check the device status - link and speed */
val = e1000e_macreg_read(d, E1000E_STATUS);
g_assert_cmphex(val & (E1000E_STATUS_LU | E1000E_STATUS_ASDV1000),
==, E1000E_STATUS_LU | E1000E_STATUS_ASDV1000);
/* Initialize TX/RX logic */
e1000e_macreg_write(d, E1000E_RCTL, 0);
e1000e_macreg_write(d, E1000E_TCTL, 0);
/* Notify the device that the driver is ready */
val = e1000e_macreg_read(d, E1000E_CTRL_EXT);
e1000e_macreg_write(d, E1000E_CTRL_EXT,
val | E1000E_CTRL_EXT_DRV_LOAD | E1000E_CTRL_EXT_TXLSFLOW);
/* Allocate and setup TX ring */
d->tx_ring = guest_alloc(test_alloc, E1000E_RING_LEN);
g_assert(d->tx_ring != 0);
e1000e_macreg_write(d, E1000E_TDBAL, (uint32_t) d->tx_ring);
e1000e_macreg_write(d, E1000E_TDBAH, (uint32_t) (d->tx_ring >> 32));
e1000e_macreg_write(d, E1000E_TDLEN, E1000E_RING_LEN);
e1000e_macreg_write(d, E1000E_TDT, 0);
e1000e_macreg_write(d, E1000E_TDH, 0);
/* Enable transmit */
e1000e_macreg_write(d, E1000E_TCTL, E1000E_TCTL_EN);
/* Allocate and setup RX ring */
d->rx_ring = guest_alloc(test_alloc, E1000E_RING_LEN);
g_assert(d->rx_ring != 0);
e1000e_macreg_write(d, E1000E_RDBAL, (uint32_t)d->rx_ring);
e1000e_macreg_write(d, E1000E_RDBAH, (uint32_t)(d->rx_ring >> 32));
e1000e_macreg_write(d, E1000E_RDLEN, E1000E_RING_LEN);
e1000e_macreg_write(d, E1000E_RDT, 0);
e1000e_macreg_write(d, E1000E_RDH, 0);
/* Enable receive */
e1000e_macreg_write(d, E1000E_RFCTL, E1000E_RFCTL_EXTEN);
e1000e_macreg_write(d, E1000E_RCTL, E1000E_RCTL_EN |
E1000E_RCTL_UPE |
E1000E_RCTL_MPE);
/* Enable all interrupts */
e1000e_macreg_write(d, E1000E_IMS, 0xFFFFFFFF);
}
static void e1000e_tx_ring_push(e1000e_device *d, void *descr)
{
uint32_t tail = e1000e_macreg_read(d, E1000E_TDT);
uint32_t len = e1000e_macreg_read(d, E1000E_TDLEN) / E1000E_TXD_LEN;
memwrite(d->tx_ring + tail * E1000E_TXD_LEN, descr, E1000E_TXD_LEN);
e1000e_macreg_write(d, E1000E_TDT, (tail + 1) % len);
/* Read WB data for the packet transmitted */
memread(d->tx_ring + tail * E1000E_TXD_LEN, descr, E1000E_TXD_LEN);
}
static void e1000e_rx_ring_push(e1000e_device *d, void *descr)
{
uint32_t tail = e1000e_macreg_read(d, E1000E_RDT);
uint32_t len = e1000e_macreg_read(d, E1000E_RDLEN) / E1000E_RXD_LEN;
memwrite(d->rx_ring + tail * E1000E_RXD_LEN, descr, E1000E_RXD_LEN);
e1000e_macreg_write(d, E1000E_RDT, (tail + 1) % len);
/* Read WB data for the packet received */
memread(d->rx_ring + tail * E1000E_RXD_LEN, descr, E1000E_RXD_LEN);
}
static void e1000e_wait_isr(e1000e_device *d, uint16_t msg_id)
{
guint64 end_time = g_get_monotonic_time() + 5 * G_TIME_SPAN_SECOND;
do {
if (qpci_msix_pending(d->pci_dev, msg_id)) {
return;
}
clock_step(10000);
} while (g_get_monotonic_time() < end_time);
g_error("Timeout expired");
}
static void e1000e_send_verify(e1000e_device *d)
{
struct {
uint64_t buffer_addr;
union {
uint32_t data;
struct {
uint16_t length;
uint8_t cso;
uint8_t cmd;
} flags;
} lower;
union {
uint32_t data;
struct {
uint8_t status;
uint8_t css;
uint16_t special;
} fields;
} upper;
} descr;
static const uint32_t dtyp_data = BIT(20);
static const uint32_t dtyp_ext = BIT(29);
static const uint32_t dcmd_rs = BIT(27);
static const uint32_t dcmd_eop = BIT(24);
static const uint32_t dsta_dd = BIT(0);
static const int data_len = 64;
char buffer[64];
int ret;
uint32_t recv_len;
/* Prepare test data buffer */
uint64_t data = guest_alloc(test_alloc, data_len);
memwrite(data, "TEST", 5);
/* Prepare TX descriptor */
memset(&descr, 0, sizeof(descr));
descr.buffer_addr = cpu_to_le64(data);
descr.lower.data = cpu_to_le32(dcmd_rs |
dcmd_eop |
dtyp_ext |
dtyp_data |
data_len);
/* Put descriptor to the ring */
e1000e_tx_ring_push(d, &descr);
/* Wait for TX WB interrupt */
e1000e_wait_isr(d, E1000E_TX0_MSG_ID);
/* Check DD bit */
g_assert_cmphex(le32_to_cpu(descr.upper.data) & dsta_dd, ==, dsta_dd);
/* Check data sent to the backend */
ret = qemu_recv(test_sockets[0], &recv_len, sizeof(recv_len), 0);
g_assert_cmpint(ret, == , sizeof(recv_len));
qemu_recv(test_sockets[0], buffer, 64, 0);
g_assert_cmpstr(buffer, == , "TEST");
/* Free test data buffer */
guest_free(test_alloc, data);
}
static void e1000e_receive_verify(e1000e_device *d)
{
union {
struct {
uint64_t buffer_addr;
uint64_t reserved;
} read;
struct {
struct {
uint32_t mrq;
union {
uint32_t rss;
struct {
uint16_t ip_id;
uint16_t csum;
} csum_ip;
} hi_dword;
} lower;
struct {
uint32_t status_error;
uint16_t length;
uint16_t vlan;
} upper;
} wb;
} descr;
static const uint32_t esta_dd = BIT(0);
char test[] = "TEST";
int len = htonl(sizeof(test));
struct iovec iov[] = {
{
.iov_base = &len,
.iov_len = sizeof(len),
},{
.iov_base = test,
.iov_len = sizeof(test),
},
};
static const int data_len = 64;
char buffer[64];
int ret;
/* Send a dummy packet to device's socket*/
ret = iov_send(test_sockets[0], iov, 2, 0, sizeof(len) + sizeof(test));
g_assert_cmpint(ret, == , sizeof(test) + sizeof(len));
/* Prepare test data buffer */
uint64_t data = guest_alloc(test_alloc, data_len);
/* Prepare RX descriptor */
memset(&descr, 0, sizeof(descr));
descr.read.buffer_addr = cpu_to_le64(data);
/* Put descriptor to the ring */
e1000e_rx_ring_push(d, &descr);
/* Wait for TX WB interrupt */
e1000e_wait_isr(d, E1000E_RX0_MSG_ID);
/* Check DD bit */
g_assert_cmphex(le32_to_cpu(descr.wb.upper.status_error) &
esta_dd, ==, esta_dd);
/* Check data sent to the backend */
memread(data, buffer, sizeof(buffer));
g_assert_cmpstr(buffer, == , "TEST");
/* Free test data buffer */
guest_free(test_alloc, data);
}
static void e1000e_device_clear(QPCIBus *bus, e1000e_device *d)
{
qpci_iounmap(d->pci_dev, d->mac_regs);
qpci_msix_disable(d->pci_dev);
}
static void data_test_init(e1000e_device *d)
{
char *cmdline;
int ret = socketpair(PF_UNIX, SOCK_STREAM, 0, test_sockets);
g_assert_cmpint(ret, != , -1);
cmdline = g_strdup_printf("-netdev socket,fd=%d,id=hs0 "
"-device e1000e,netdev=hs0", test_sockets[1]);
g_assert_nonnull(cmdline);
qtest_start(cmdline);
g_free(cmdline);
test_alloc = pc_alloc_init(global_qtest);
g_assert_nonnull(test_alloc);
test_bus = qpci_new_pc(global_qtest, test_alloc);
g_assert_nonnull(test_bus);
e1000e_device_init(test_bus, d);
}
static void data_test_clear(e1000e_device *d)
{
e1000e_device_clear(test_bus, d);
close(test_sockets[0]);
pc_alloc_uninit(test_alloc);
g_free(d->pci_dev);
qpci_free_pc(test_bus);
qtest_end();
}
static void test_e1000e_init(gconstpointer data)
{
e1000e_device d;
data_test_init(&d);
data_test_clear(&d);
}
static void test_e1000e_tx(gconstpointer data)
{
e1000e_device d;
data_test_init(&d);
e1000e_send_verify(&d);
data_test_clear(&d);
}
static void test_e1000e_rx(gconstpointer data)
{
e1000e_device d;
data_test_init(&d);
e1000e_receive_verify(&d);
data_test_clear(&d);
}
static void test_e1000e_multiple_transfers(gconstpointer data)
{
static const long iterations = 4 * 1024;
long i;
e1000e_device d;
data_test_init(&d);
for (i = 0; i < iterations; i++) {
e1000e_send_verify(&d);
e1000e_receive_verify(&d);
}
data_test_clear(&d);
}
static void test_e1000e_hotplug(gconstpointer data)
{
qtest_start("-device e1000e");
qtest_qmp_device_add("e1000e", "e1000e_net", "{'addr': '0x06'}");
qpci_unplug_acpi_device_test("e1000e_net", 0x06);
qtest_end();
}
int main(int argc, char **argv)
{
g_test_init(&argc, &argv, NULL);
qtest_add_data_func("e1000e/init", NULL, test_e1000e_init);
qtest_add_data_func("e1000e/tx", NULL, test_e1000e_tx);
qtest_add_data_func("e1000e/rx", NULL, test_e1000e_rx);
qtest_add_data_func("e1000e/multiple_transfers", NULL,
test_e1000e_multiple_transfers);
qtest_add_data_func("e1000e/hotplug", NULL, test_e1000e_hotplug);
return g_test_run();
}
|