aboutsummaryrefslogtreecommitdiff
path: root/target/s390x/translate_vx.inc.c
blob: 28edd9b0c4cc35c41b96c70a8a17edec7e6cf630 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/*
 * QEMU TCG support -- s390x vector instruction translation functions
 *
 * Copyright (C) 2019 Red Hat Inc
 *
 * Authors:
 *   David Hildenbrand <david@redhat.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 */

/*
 * For most instructions that use the same element size for reads and
 * writes, we can use real gvec vector expansion, which potantially uses
 * real host vector instructions. As they only work up to 64 bit elements,
 * 128 bit elements (vector is a single element) have to be handled
 * differently. Operations that are too complicated to encode via TCG ops
 * are handled via gvec ool (out-of-line) handlers.
 *
 * As soon as instructions use different element sizes for reads and writes
 * or access elements "out of their element scope" we expand them manually
 * in fancy loops, as gvec expansion does not deal with actual element
 * numbers and does also not support access to other elements.
 *
 * 128 bit elements:
 *  As we only have i32/i64, such elements have to be loaded into two
 *  i64 values and can then be processed e.g. by tcg_gen_add2_i64.
 *
 * Sizes:
 *  On s390x, the operand size (oprsz) and the maximum size (maxsz) are
 *  always 16 (128 bit). What gvec code calls "vece", s390x calls "es",
 *  a.k.a. "element size". These values nicely map to MO_8 ... MO_64. Only
 *  128 bit element size has to be treated in a special way (MO_64 + 1).
 *  We will use ES_* instead of MO_* for this reason in this file.
 *
 * CC handling:
 *  As gvec ool-helpers can currently not return values (besides via
 *  pointers like vectors or cpu_env), whenever we have to set the CC and
 *  can't conclude the value from the result vector, we will directly
 *  set it in "env->cc_op" and mark it as static via set_cc_static()".
 *  Whenever this is done, the helper writes globals (cc_op).
 */

#define NUM_VEC_ELEMENT_BYTES(es) (1 << (es))
#define NUM_VEC_ELEMENTS(es) (16 / NUM_VEC_ELEMENT_BYTES(es))
#define NUM_VEC_ELEMENT_BITS(es) (NUM_VEC_ELEMENT_BYTES(es) * BITS_PER_BYTE)

#define ES_8    MO_8
#define ES_16   MO_16
#define ES_32   MO_32
#define ES_64   MO_64
#define ES_128  4

static inline bool valid_vec_element(uint8_t enr, TCGMemOp es)
{
    return !(enr & ~(NUM_VEC_ELEMENTS(es) - 1));
}

static void read_vec_element_i64(TCGv_i64 dst, uint8_t reg, uint8_t enr,
                                 TCGMemOp memop)
{
    const int offs = vec_reg_offset(reg, enr, memop & MO_SIZE);

    switch (memop) {
    case ES_8:
        tcg_gen_ld8u_i64(dst, cpu_env, offs);
        break;
    case ES_16:
        tcg_gen_ld16u_i64(dst, cpu_env, offs);
        break;
    case ES_32:
        tcg_gen_ld32u_i64(dst, cpu_env, offs);
        break;
    case ES_8 | MO_SIGN:
        tcg_gen_ld8s_i64(dst, cpu_env, offs);
        break;
    case ES_16 | MO_SIGN:
        tcg_gen_ld16s_i64(dst, cpu_env, offs);
        break;
    case ES_32 | MO_SIGN:
        tcg_gen_ld32s_i64(dst, cpu_env, offs);
        break;
    case ES_64:
    case ES_64 | MO_SIGN:
        tcg_gen_ld_i64(dst, cpu_env, offs);
        break;
    default:
        g_assert_not_reached();
    }
}

static void write_vec_element_i64(TCGv_i64 src, int reg, uint8_t enr,
                                  TCGMemOp memop)
{
    const int offs = vec_reg_offset(reg, enr, memop & MO_SIZE);

    switch (memop) {
    case ES_8:
        tcg_gen_st8_i64(src, cpu_env, offs);
        break;
    case ES_16:
        tcg_gen_st16_i64(src, cpu_env, offs);
        break;
    case ES_32:
        tcg_gen_st32_i64(src, cpu_env, offs);
        break;
    case ES_64:
        tcg_gen_st_i64(src, cpu_env, offs);
        break;
    default:
        g_assert_not_reached();
    }
}

#define gen_gvec_dup64i(v1, c) \
    tcg_gen_gvec_dup64i(vec_full_reg_offset(v1), 16, 16, c)

static void gen_gvec_dupi(uint8_t es, uint8_t reg, uint64_t c)
{
    switch (es) {
    case ES_8:
        tcg_gen_gvec_dup8i(vec_full_reg_offset(reg), 16, 16, c);
        break;
    case ES_16:
        tcg_gen_gvec_dup16i(vec_full_reg_offset(reg), 16, 16, c);
        break;
    case ES_32:
        tcg_gen_gvec_dup32i(vec_full_reg_offset(reg), 16, 16, c);
        break;
    case ES_64:
        gen_gvec_dup64i(reg, c);
        break;
    default:
        g_assert_not_reached();
    }
}

static DisasJumpType op_vge(DisasContext *s, DisasOps *o)
{
    const uint8_t es = s->insn->data;
    const uint8_t enr = get_field(s->fields, m3);
    TCGv_i64 tmp;

    if (!valid_vec_element(enr, es)) {
        gen_program_exception(s, PGM_SPECIFICATION);
        return DISAS_NORETURN;
    }

    tmp = tcg_temp_new_i64();
    read_vec_element_i64(tmp, get_field(s->fields, v2), enr, es);
    tcg_gen_add_i64(o->addr1, o->addr1, tmp);
    gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 0);

    tcg_gen_qemu_ld_i64(tmp, o->addr1, get_mem_index(s), MO_TE | es);
    write_vec_element_i64(tmp, get_field(s->fields, v1), enr, es);
    tcg_temp_free_i64(tmp);
    return DISAS_NEXT;
}

static uint64_t generate_byte_mask(uint8_t mask)
{
    uint64_t r = 0;
    int i;

    for (i = 0; i < 8; i++) {
        if ((mask >> i) & 1) {
            r |= 0xffull << (i * 8);
        }
    }
    return r;
}

static DisasJumpType op_vgbm(DisasContext *s, DisasOps *o)
{
    const uint16_t i2 = get_field(s->fields, i2);

    if (i2 == (i2 & 0xff) * 0x0101) {
        /*
         * Masks for both 64 bit elements of the vector are the same.
         * Trust tcg to produce a good constant loading.
         */
        gen_gvec_dup64i(get_field(s->fields, v1),
                        generate_byte_mask(i2 & 0xff));
    } else {
        TCGv_i64 t = tcg_temp_new_i64();

        tcg_gen_movi_i64(t, generate_byte_mask(i2 >> 8));
        write_vec_element_i64(t, get_field(s->fields, v1), 0, ES_64);
        tcg_gen_movi_i64(t, generate_byte_mask(i2));
        write_vec_element_i64(t, get_field(s->fields, v1), 1, ES_64);
        tcg_temp_free_i64(t);
    }
    return DISAS_NEXT;
}

static DisasJumpType op_vgm(DisasContext *s, DisasOps *o)
{
    const uint8_t es = get_field(s->fields, m4);
    const uint8_t bits = NUM_VEC_ELEMENT_BITS(es);
    const uint8_t i2 = get_field(s->fields, i2) & (bits - 1);
    const uint8_t i3 = get_field(s->fields, i3) & (bits - 1);
    uint64_t mask = 0;
    int i;

    if (es > ES_64) {
        gen_program_exception(s, PGM_SPECIFICATION);
        return DISAS_NORETURN;
    }

    /* generate the mask - take care of wrapping */
    for (i = i2; ; i = (i + 1) % bits) {
        mask |= 1ull << (bits - i - 1);
        if (i == i3) {
            break;
        }
    }

    gen_gvec_dupi(es, get_field(s->fields, v1), mask);
    return DISAS_NEXT;
}