1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
|
/*
* New-style decoder for i386 instructions
*
* Copyright (c) 2022 Red Hat, Inc.
*
* Author: Paolo Bonzini <pbonzini@redhat.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* The decoder is mostly based on tables copied from the Intel SDM. As
* a result, most operand load and writeback is done entirely in common
* table-driven code using the same operand type (X86_TYPE_*) and
* size (X86_SIZE_*) codes used in the manual.
*
* The main difference is that the V, U and W types are extended to
* cover MMX as well; if an instruction is like
*
* por Pq, Qq
* 66 por Vx, Hx, Wx
*
* only the second row is included and the instruction is marked as a
* valid MMX instruction. The MMX flag directs the decoder to rewrite
* the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing
* "x" to "q" if there is no prefix.
*
* In addition, the ss/ps/sd/pd types are sometimes mushed together as "x"
* if the difference is expressed via prefixes. Individual instructions
* are separated by prefix in the generator functions.
*
* There are a couple cases in which instructions (e.g. MOVD) write the
* whole XMM or MM register but are established incorrectly in the manual
* as "d" or "q". These have to be fixed for the decoder to work correctly.
*/
#define X86_OP_NONE { 0 },
#define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
.decode = glue(decode_, op), \
.op0 = glue(X86_TYPE_, op0_), \
.s0 = glue(X86_SIZE_, s0_), \
.op1 = glue(X86_TYPE_, op1_), \
.s1 = glue(X86_SIZE_, s1_), \
.op2 = glue(X86_TYPE_, op2_), \
.s2 = glue(X86_SIZE_, s2_), \
.is_decode = true, \
## __VA_ARGS__ \
}
#define X86_OP_GROUP2(op, op0, s0, op1, s1, ...) \
X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
#define X86_OP_GROUP0(op, ...) \
X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__)
#define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
.gen = glue(gen_, op), \
.op0 = glue(X86_TYPE_, op0_), \
.s0 = glue(X86_SIZE_, s0_), \
.op1 = glue(X86_TYPE_, op1_), \
.s1 = glue(X86_SIZE_, s1_), \
.op2 = glue(X86_TYPE_, op2_), \
.s2 = glue(X86_SIZE_, s2_), \
## __VA_ARGS__ \
}
#define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) \
X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, \
.op3 = X86_TYPE_I, .s3 = X86_SIZE_b, \
## __VA_ARGS__)
#define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...) \
X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
#define X86_OP_ENTRY0(op, ...) \
X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__)
#define cpuid(feat) .cpuid = X86_FEAT_##feat,
#define i64 .special = X86_SPECIAL_i64,
#define o64 .special = X86_SPECIAL_o64,
#define xchg .special = X86_SPECIAL_Locked,
#define mmx .special = X86_SPECIAL_MMX,
#define zext0 .special = X86_SPECIAL_ZExtOp0,
#define zext2 .special = X86_SPECIAL_ZExtOp2,
static uint8_t get_modrm(DisasContext *s, CPUX86State *env)
{
if (!s->has_modrm) {
s->modrm = x86_ldub_code(env, s);
s->has_modrm = true;
}
return s->modrm;
}
static const X86OpEntry opcodes_0F38_00toEF[240] = {
};
/* five rows for no prefix, 66, F3, F2, 66+F2 */
static const X86OpEntry opcodes_0F38_F0toFF[16][5] = {
};
static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
*b = x86_ldub_code(env, s);
if (*b < 0xf0) {
*entry = opcodes_0F38_00toEF[*b];
} else {
int row = 0;
if (s->prefix & PREFIX_REPZ) {
/* The REPZ (F3) prefix has priority over 66 */
row = 2;
} else {
row += s->prefix & PREFIX_REPNZ ? 3 : 0;
row += s->prefix & PREFIX_DATA ? 1 : 0;
}
*entry = opcodes_0F38_F0toFF[*b & 15][row];
}
}
static const X86OpEntry opcodes_0F3A[256] = {
};
static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
*b = x86_ldub_code(env, s);
*entry = opcodes_0F3A[*b];
}
static const X86OpEntry opcodes_0F[256] = {
[0x38] = X86_OP_GROUP0(0F38),
[0x3a] = X86_OP_GROUP0(0F3A),
};
static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
*entry = opcodes_0F[*b];
}
static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
*b = x86_ldub_code(env, s);
do_decode_0F(s, env, entry, b);
}
static const X86OpEntry opcodes_root[256] = {
[0x0F] = X86_OP_GROUP0(0F),
};
#undef mmx
/*
* Decode the fixed part of the opcode and place the last
* in b.
*/
static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
*entry = opcodes_root[*b];
}
static int decode_modrm(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
X86DecodedOp *op, X86OpType type)
{
int modrm = get_modrm(s, env);
if ((modrm >> 6) == 3) {
if (s->prefix & PREFIX_LOCK) {
decode->e.gen = gen_illegal;
return 0xff;
}
op->n = (modrm & 7);
if (type != X86_TYPE_Q && type != X86_TYPE_N) {
op->n |= REX_B(s);
}
} else {
op->has_ea = true;
op->n = -1;
decode->mem = gen_lea_modrm_0(env, s, get_modrm(s, env));
}
return modrm;
}
static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot)
{
switch (size) {
case X86_SIZE_b: /* byte */
*ot = MO_8;
return true;
case X86_SIZE_d: /* 32-bit */
case X86_SIZE_ss: /* SSE/AVX scalar single precision */
*ot = MO_32;
return true;
case X86_SIZE_p: /* Far pointer, return offset size */
case X86_SIZE_s: /* Descriptor, return offset size */
case X86_SIZE_v: /* 16/32/64-bit, based on operand size */
*ot = s->dflag;
return true;
case X86_SIZE_pi: /* MMX */
case X86_SIZE_q: /* 64-bit */
case X86_SIZE_sd: /* SSE/AVX scalar double precision */
*ot = MO_64;
return true;
case X86_SIZE_w: /* 16-bit */
*ot = MO_16;
return true;
case X86_SIZE_y: /* 32/64-bit, based on operand size */
*ot = s->dflag == MO_16 ? MO_32 : s->dflag;
return true;
case X86_SIZE_z: /* 16-bit for 16-bit operand size, else 32-bit */
*ot = s->dflag == MO_16 ? MO_16 : MO_32;
return true;
case X86_SIZE_dq: /* SSE/AVX 128-bit */
if (e->special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
*ot = MO_64;
return true;
}
if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) {
return false;
}
*ot = MO_128;
return true;
case X86_SIZE_qq: /* AVX 256-bit */
if (!s->vex_l) {
return false;
}
*ot = MO_256;
return true;
case X86_SIZE_x: /* 128/256-bit, based on operand size */
if (e->special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
*ot = MO_64;
return true;
}
/* fall through */
case X86_SIZE_ps: /* SSE/AVX packed single precision */
case X86_SIZE_pd: /* SSE/AVX packed double precision */
*ot = s->vex_l ? MO_256 : MO_128;
return true;
case X86_SIZE_d64: /* Default to 64-bit in 64-bit mode */
*ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag;
return true;
case X86_SIZE_f64: /* Ignore size override prefix in 64-bit mode */
*ot = CODE64(s) ? MO_64 : s->dflag;
return true;
default:
*ot = -1;
return true;
}
}
static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
X86DecodedOp *op, X86OpType type, int b)
{
int modrm;
switch (type) {
case X86_TYPE_None: /* Implicit or absent */
case X86_TYPE_A: /* Implicit */
case X86_TYPE_F: /* EFLAGS/RFLAGS */
break;
case X86_TYPE_B: /* VEX.vvvv selects a GPR */
op->unit = X86_OP_INT;
op->n = s->vex_v;
break;
case X86_TYPE_C: /* REG in the modrm byte selects a control register */
op->unit = X86_OP_CR;
goto get_reg;
case X86_TYPE_D: /* REG in the modrm byte selects a debug register */
op->unit = X86_OP_DR;
goto get_reg;
case X86_TYPE_G: /* REG in the modrm byte selects a GPR */
op->unit = X86_OP_INT;
goto get_reg;
case X86_TYPE_S: /* reg selects a segment register */
op->unit = X86_OP_SEG;
goto get_reg;
case X86_TYPE_P:
op->unit = X86_OP_MMX;
goto get_reg;
case X86_TYPE_V: /* reg in the modrm byte selects an XMM/YMM register */
if (decode->e.special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
op->unit = X86_OP_MMX;
} else {
op->unit = X86_OP_SSE;
}
get_reg:
op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s);
break;
case X86_TYPE_E: /* ALU modrm operand */
op->unit = X86_OP_INT;
goto get_modrm;
case X86_TYPE_Q: /* MMX modrm operand */
op->unit = X86_OP_MMX;
goto get_modrm;
case X86_TYPE_W: /* XMM/YMM modrm operand */
if (decode->e.special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
op->unit = X86_OP_MMX;
} else {
op->unit = X86_OP_SSE;
}
goto get_modrm;
case X86_TYPE_N: /* R/M in the modrm byte selects an MMX register */
op->unit = X86_OP_MMX;
goto get_modrm_reg;
case X86_TYPE_U: /* R/M in the modrm byte selects an XMM/YMM register */
if (decode->e.special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
op->unit = X86_OP_MMX;
} else {
op->unit = X86_OP_SSE;
}
goto get_modrm_reg;
case X86_TYPE_R: /* R/M in the modrm byte selects a register */
op->unit = X86_OP_INT;
get_modrm_reg:
modrm = get_modrm(s, env);
if ((modrm >> 6) != 3) {
return false;
}
goto get_modrm;
case X86_TYPE_M: /* modrm byte selects a memory operand */
modrm = get_modrm(s, env);
if ((modrm >> 6) == 3) {
return false;
}
get_modrm:
decode_modrm(s, env, decode, op, type);
break;
case X86_TYPE_O: /* Absolute address encoded in the instruction */
op->unit = X86_OP_INT;
op->has_ea = true;
op->n = -1;
decode->mem = (AddressParts) {
.def_seg = R_DS,
.base = -1,
.index = -1,
.disp = insn_get_addr(env, s, s->aflag)
};
break;
case X86_TYPE_H: /* For AVX, VEX.vvvv selects an XMM/YMM register */
if ((s->prefix & PREFIX_VEX)) {
op->unit = X86_OP_SSE;
op->n = s->vex_v;
break;
}
if (op == &decode->op[0]) {
/* shifts place the destination in VEX.vvvv, use modrm */
return decode_op(s, env, decode, op, decode->e.op1, b);
} else {
return decode_op(s, env, decode, op, decode->e.op0, b);
}
case X86_TYPE_I: /* Immediate */
op->unit = X86_OP_IMM;
decode->immediate = insn_get_signed(env, s, op->ot);
break;
case X86_TYPE_J: /* Relative offset for a jump */
op->unit = X86_OP_IMM;
decode->immediate = insn_get_signed(env, s, op->ot);
decode->immediate += s->pc - s->cs_base;
if (s->dflag == MO_16) {
decode->immediate &= 0xffff;
} else if (!CODE64(s)) {
decode->immediate &= 0xffffffffu;
}
break;
case X86_TYPE_L: /* The upper 4 bits of the immediate select a 128-bit register */
op->n = insn_get(env, s, op->ot) >> 4;
break;
case X86_TYPE_X: /* string source */
op->n = -1;
decode->mem = (AddressParts) {
.def_seg = R_DS,
.base = R_ESI,
.index = -1,
};
break;
case X86_TYPE_Y: /* string destination */
op->n = -1;
decode->mem = (AddressParts) {
.def_seg = R_ES,
.base = R_EDI,
.index = -1,
};
break;
case X86_TYPE_2op:
*op = decode->op[0];
break;
case X86_TYPE_LoBits:
op->n = (b & 7) | REX_B(s);
op->unit = X86_OP_INT;
break;
case X86_TYPE_0 ... X86_TYPE_7:
op->n = type - X86_TYPE_0;
op->unit = X86_OP_INT;
break;
case X86_TYPE_ES ... X86_TYPE_GS:
op->n = type - X86_TYPE_ES;
op->unit = X86_OP_SEG;
break;
}
return true;
}
static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func,
X86DecodedInsn *decode)
{
X86OpEntry *e = &decode->e;
decode_func(s, env, e, &decode->b);
while (e->is_decode) {
e->is_decode = false;
e->decode(s, env, e, &decode->b);
}
/* First compute size of operands in order to initialize s->rip_offset. */
if (e->op0 != X86_TYPE_None) {
if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) {
return false;
}
if (e->op0 == X86_TYPE_I) {
s->rip_offset += 1 << decode->op[0].ot;
}
}
if (e->op1 != X86_TYPE_None) {
if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) {
return false;
}
if (e->op1 == X86_TYPE_I) {
s->rip_offset += 1 << decode->op[1].ot;
}
}
if (e->op2 != X86_TYPE_None) {
if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) {
return false;
}
if (e->op2 == X86_TYPE_I) {
s->rip_offset += 1 << decode->op[2].ot;
}
}
if (e->op3 != X86_TYPE_None) {
assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b);
s->rip_offset += 1;
}
if (e->op0 != X86_TYPE_None &&
!decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) {
return false;
}
if (e->op1 != X86_TYPE_None &&
!decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) {
return false;
}
if (e->op2 != X86_TYPE_None &&
!decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) {
return false;
}
if (e->op3 != X86_TYPE_None) {
decode->immediate = insn_get_signed(env, s, MO_8);
}
return true;
}
static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid)
{
switch (cpuid) {
case X86_FEAT_None:
return true;
case X86_FEAT_MOVBE:
return (s->cpuid_ext_features & CPUID_EXT_MOVBE);
case X86_FEAT_PCLMULQDQ:
return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ);
case X86_FEAT_SSE:
return (s->cpuid_ext_features & CPUID_SSE);
case X86_FEAT_SSE2:
return (s->cpuid_ext_features & CPUID_SSE2);
case X86_FEAT_SSE3:
return (s->cpuid_ext_features & CPUID_EXT_SSE3);
case X86_FEAT_SSSE3:
return (s->cpuid_ext_features & CPUID_EXT_SSSE3);
case X86_FEAT_SSE41:
return (s->cpuid_ext_features & CPUID_EXT_SSE41);
case X86_FEAT_SSE42:
return (s->cpuid_ext_features & CPUID_EXT_SSE42);
case X86_FEAT_AES:
if (!(s->cpuid_ext_features & CPUID_EXT_AES)) {
return false;
} else if (!(s->prefix & PREFIX_VEX)) {
return true;
} else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) {
return false;
} else {
return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES);
}
case X86_FEAT_AVX:
return (s->cpuid_ext_features & CPUID_EXT_AVX);
case X86_FEAT_SSE4A:
return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A);
case X86_FEAT_ADX:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX);
case X86_FEAT_BMI1:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1);
case X86_FEAT_BMI2:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2);
case X86_FEAT_AVX2:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2);
}
g_assert_not_reached();
}
static void decode_temp_free(X86DecodedOp *op)
{
if (op->v_ptr) {
tcg_temp_free_ptr(op->v_ptr);
}
}
static void decode_temps_free(X86DecodedInsn *decode)
{
decode_temp_free(&decode->op[0]);
decode_temp_free(&decode->op[1]);
decode_temp_free(&decode->op[2]);
}
/*
* Convert one instruction. s->base.is_jmp is set if the translation must
* be stopped.
*/
static void disas_insn_new(DisasContext *s, CPUState *cpu, int b)
{
CPUX86State *env = cpu->env_ptr;
bool first = true;
X86DecodedInsn decode;
X86DecodeFunc decode_func = decode_root;
#ifdef CONFIG_USER_ONLY
if (limit) { --limit; }
#endif
s->has_modrm = false;
next_byte:
if (first) {
first = false;
} else {
b = x86_ldub_code(env, s);
}
/* Collect prefixes. */
switch (b) {
case 0xf3:
s->prefix |= PREFIX_REPZ;
s->prefix &= ~PREFIX_REPNZ;
goto next_byte;
case 0xf2:
s->prefix |= PREFIX_REPNZ;
s->prefix &= ~PREFIX_REPZ;
goto next_byte;
case 0xf0:
s->prefix |= PREFIX_LOCK;
goto next_byte;
case 0x2e:
s->override = R_CS;
goto next_byte;
case 0x36:
s->override = R_SS;
goto next_byte;
case 0x3e:
s->override = R_DS;
goto next_byte;
case 0x26:
s->override = R_ES;
goto next_byte;
case 0x64:
s->override = R_FS;
goto next_byte;
case 0x65:
s->override = R_GS;
goto next_byte;
case 0x66:
s->prefix |= PREFIX_DATA;
goto next_byte;
case 0x67:
s->prefix |= PREFIX_ADR;
goto next_byte;
#ifdef TARGET_X86_64
case 0x40 ... 0x4f:
if (CODE64(s)) {
/* REX prefix */
s->prefix |= PREFIX_REX;
s->vex_w = (b >> 3) & 1;
s->rex_r = (b & 0x4) << 1;
s->rex_x = (b & 0x2) << 2;
s->rex_b = (b & 0x1) << 3;
goto next_byte;
}
break;
#endif
case 0xc5: /* 2-byte VEX */
case 0xc4: /* 3-byte VEX */
/*
* VEX prefixes cannot be used except in 32-bit mode.
* Otherwise the instruction is LES or LDS.
*/
if (CODE32(s) && !VM86(s)) {
static const int pp_prefix[4] = {
0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ
};
int vex3, vex2 = x86_ldub_code(env, s);
if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) {
/*
* 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b,
* otherwise the instruction is LES or LDS.
*/
s->pc--; /* rewind the advance_pc() x86_ldub_code() did */
break;
}
/* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */
if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ
| PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) {
goto illegal_op;
}
#ifdef TARGET_X86_64
s->rex_r = (~vex2 >> 4) & 8;
#endif
if (b == 0xc5) {
/* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */
vex3 = vex2;
decode_func = decode_0F;
} else {
/* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */
vex3 = x86_ldub_code(env, s);
#ifdef TARGET_X86_64
s->rex_x = (~vex2 >> 3) & 8;
s->rex_b = (~vex2 >> 2) & 8;
#endif
s->vex_w = (vex3 >> 7) & 1;
switch (vex2 & 0x1f) {
case 0x01: /* Implied 0f leading opcode bytes. */
decode_func = decode_0F;
break;
case 0x02: /* Implied 0f 38 leading opcode bytes. */
decode_func = decode_0F38;
break;
case 0x03: /* Implied 0f 3a leading opcode bytes. */
decode_func = decode_0F3A;
break;
default: /* Reserved for future use. */
goto unknown_op;
}
}
s->vex_v = (~vex3 >> 3) & 0xf;
s->vex_l = (vex3 >> 2) & 1;
s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX;
}
break;
default:
if (b >= 0x100) {
b -= 0x100;
decode_func = do_decode_0F;
}
break;
}
/* Post-process prefixes. */
if (CODE64(s)) {
/*
* In 64-bit mode, the default data size is 32-bit. Select 64-bit
* data with rex_w, and 16-bit data with 0x66; rex_w takes precedence
* over 0x66 if both are present.
*/
s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32);
/* In 64-bit mode, 0x67 selects 32-bit addressing. */
s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64);
} else {
/* In 16/32-bit mode, 0x66 selects the opposite data size. */
if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) {
s->dflag = MO_32;
} else {
s->dflag = MO_16;
}
/* In 16/32-bit mode, 0x67 selects the opposite addressing. */
if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) {
s->aflag = MO_32;
} else {
s->aflag = MO_16;
}
}
memset(&decode, 0, sizeof(decode));
decode.b = b;
if (!decode_insn(s, env, decode_func, &decode)) {
goto illegal_op;
}
if (!decode.e.gen) {
goto unknown_op;
}
if (!has_cpuid_feature(s, decode.e.cpuid)) {
goto illegal_op;
}
switch (decode.e.special) {
case X86_SPECIAL_None:
break;
case X86_SPECIAL_Locked:
if (decode.op[0].has_ea) {
s->prefix |= PREFIX_LOCK;
}
break;
case X86_SPECIAL_ProtMode:
if (!PE(s) || VM86(s)) {
goto illegal_op;
}
break;
case X86_SPECIAL_i64:
if (CODE64(s)) {
goto illegal_op;
}
break;
case X86_SPECIAL_o64:
if (!CODE64(s)) {
goto illegal_op;
}
break;
case X86_SPECIAL_ZExtOp0:
assert(decode.op[0].unit == X86_OP_INT);
if (!decode.op[0].has_ea) {
decode.op[0].ot = MO_32;
}
break;
case X86_SPECIAL_ZExtOp2:
assert(decode.op[2].unit == X86_OP_INT);
if (!decode.op[2].has_ea) {
decode.op[2].ot = MO_32;
}
break;
case X86_SPECIAL_MMX:
if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
gen_helper_enter_mmx(cpu_env);
}
break;
}
if (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea) {
gen_load_ea(s, &decode.mem);
}
if (s->prefix & PREFIX_LOCK) {
if (decode.op[0].unit != X86_OP_INT || !decode.op[0].has_ea) {
goto illegal_op;
}
gen_load(s, &decode, 2, s->T1);
decode.e.gen(s, env, &decode);
} else {
if (decode.op[0].unit == X86_OP_MMX) {
compute_mmx_offset(&decode.op[0]);
} else if (decode.op[0].unit == X86_OP_SSE) {
compute_xmm_offset(&decode.op[0]);
}
gen_load(s, &decode, 1, s->T0);
gen_load(s, &decode, 2, s->T1);
decode.e.gen(s, env, &decode);
gen_writeback(s, &decode, 0, s->T0);
}
decode_temps_free(&decode);
return;
illegal_op:
gen_illegal_opcode(s);
return;
unknown_op:
gen_unknown_opcode(env, s);
}
|