aboutsummaryrefslogtreecommitdiff
path: root/target/hexagon/translate.c
blob: 2329177537decb06ac34197b3081e199246fbccc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
/*
 *  Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#define QEMU_GENERATE
#include "qemu/osdep.h"
#include "cpu.h"
#include "tcg/tcg-op.h"
#include "tcg/tcg-op-gvec.h"
#include "exec/cpu_ldst.h"
#include "exec/log.h"
#include "internal.h"
#include "attribs.h"
#include "insn.h"
#include "decode.h"
#include "translate.h"
#include "printinsn.h"

TCGv hex_gpr[TOTAL_PER_THREAD_REGS];
TCGv hex_pred[NUM_PREGS];
TCGv hex_next_PC;
TCGv hex_this_PC;
TCGv hex_slot_cancelled;
TCGv hex_branch_taken;
TCGv hex_new_value[TOTAL_PER_THREAD_REGS];
TCGv hex_reg_written[TOTAL_PER_THREAD_REGS];
TCGv hex_new_pred_value[NUM_PREGS];
TCGv hex_pred_written;
TCGv hex_store_addr[STORES_MAX];
TCGv hex_store_width[STORES_MAX];
TCGv hex_store_val32[STORES_MAX];
TCGv_i64 hex_store_val64[STORES_MAX];
TCGv hex_pkt_has_store_s1;
TCGv hex_dczero_addr;
TCGv hex_llsc_addr;
TCGv hex_llsc_val;
TCGv_i64 hex_llsc_val_i64;
TCGv hex_VRegs_updated;
TCGv hex_QRegs_updated;
TCGv hex_vstore_addr[VSTORES_MAX];
TCGv hex_vstore_size[VSTORES_MAX];
TCGv hex_vstore_pending[VSTORES_MAX];

static const char * const hexagon_prednames[] = {
  "p0", "p1", "p2", "p3"
};

intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum,
                          int num, bool alloc_ok)
{
    intptr_t offset;

    /* See if it is already allocated */
    for (int i = 0; i < ctx->future_vregs_idx; i++) {
        if (ctx->future_vregs_num[i] == regnum) {
            return offsetof(CPUHexagonState, future_VRegs[i]);
        }
    }

    g_assert(alloc_ok);
    offset = offsetof(CPUHexagonState, future_VRegs[ctx->future_vregs_idx]);
    for (int i = 0; i < num; i++) {
        ctx->future_vregs_num[ctx->future_vregs_idx + i] = regnum++;
    }
    ctx->future_vregs_idx += num;
    g_assert(ctx->future_vregs_idx <= VECTOR_TEMPS_MAX);
    return offset;
}

intptr_t ctx_tmp_vreg_off(DisasContext *ctx, int regnum,
                          int num, bool alloc_ok)
{
    intptr_t offset;

    /* See if it is already allocated */
    for (int i = 0; i < ctx->tmp_vregs_idx; i++) {
        if (ctx->tmp_vregs_num[i] == regnum) {
            return offsetof(CPUHexagonState, tmp_VRegs[i]);
        }
    }

    g_assert(alloc_ok);
    offset = offsetof(CPUHexagonState, tmp_VRegs[ctx->tmp_vregs_idx]);
    for (int i = 0; i < num; i++) {
        ctx->tmp_vregs_num[ctx->tmp_vregs_idx + i] = regnum++;
    }
    ctx->tmp_vregs_idx += num;
    g_assert(ctx->tmp_vregs_idx <= VECTOR_TEMPS_MAX);
    return offset;
}

static void gen_exception_raw(int excp)
{
    gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp));
}

static void gen_exec_counters(DisasContext *ctx)
{
    tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT],
                    hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets);
    tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT],
                    hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns);
    tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_HVX_CNT],
                    hex_gpr[HEX_REG_QEMU_HVX_CNT], ctx->num_hvx_insns);
}

static void gen_end_tb(DisasContext *ctx)
{
    gen_exec_counters(ctx);
    tcg_gen_mov_tl(hex_gpr[HEX_REG_PC], hex_next_PC);
    tcg_gen_exit_tb(NULL, 0);
    ctx->base.is_jmp = DISAS_NORETURN;
}

static void gen_exception_end_tb(DisasContext *ctx, int excp)
{
    gen_exec_counters(ctx);
    tcg_gen_mov_tl(hex_gpr[HEX_REG_PC], hex_next_PC);
    gen_exception_raw(excp);
    ctx->base.is_jmp = DISAS_NORETURN;

}

#define PACKET_BUFFER_LEN              1028
static void print_pkt(Packet *pkt)
{
    GString *buf = g_string_sized_new(PACKET_BUFFER_LEN);
    snprint_a_pkt_debug(buf, pkt);
    HEX_DEBUG_LOG("%s", buf->str);
    g_string_free(buf, true);
}
#define HEX_DEBUG_PRINT_PKT(pkt) \
    do { \
        if (HEX_DEBUG) { \
            print_pkt(pkt); \
        } \
    } while (0)

static int read_packet_words(CPUHexagonState *env, DisasContext *ctx,
                             uint32_t words[])
{
    bool found_end = false;
    int nwords, max_words;

    memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t));
    for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
        words[nwords] =
            translator_ldl(env, &ctx->base,
                           ctx->base.pc_next + nwords * sizeof(uint32_t));
        found_end = is_packet_end(words[nwords]);
    }
    if (!found_end) {
        /* Read too many words without finding the end */
        return 0;
    }

    /* Check for page boundary crossing */
    max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t);
    if (nwords > max_words) {
        /* We can only cross a page boundary at the beginning of a TB */
        g_assert(ctx->base.num_insns == 1);
    }

    HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next);
    HEX_DEBUG_LOG("    words = { ");
    for (int i = 0; i < nwords; i++) {
        HEX_DEBUG_LOG("0x%x, ", words[i]);
    }
    HEX_DEBUG_LOG("}\n");

    return nwords;
}

static bool check_for_attrib(Packet *pkt, int attrib)
{
    for (int i = 0; i < pkt->num_insns; i++) {
        if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) {
            return true;
        }
    }
    return false;
}

static bool need_pc(Packet *pkt)
{
    return check_for_attrib(pkt, A_IMPLICIT_READS_PC);
}

static bool need_slot_cancelled(Packet *pkt)
{
    return check_for_attrib(pkt, A_CONDEXEC);
}

static bool need_pred_written(Packet *pkt)
{
    return check_for_attrib(pkt, A_WRITES_PRED_REG);
}

static void gen_start_packet(DisasContext *ctx, Packet *pkt)
{
    target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes;
    int i;

    /* Clear out the disassembly context */
    ctx->reg_log_idx = 0;
    bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS);
    ctx->preg_log_idx = 0;
    bitmap_zero(ctx->pregs_written, NUM_PREGS);
    ctx->future_vregs_idx = 0;
    ctx->tmp_vregs_idx = 0;
    ctx->vreg_log_idx = 0;
    bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS);
    bitmap_zero(ctx->vregs_updated, NUM_VREGS);
    bitmap_zero(ctx->vregs_select, NUM_VREGS);
    ctx->qreg_log_idx = 0;
    for (i = 0; i < STORES_MAX; i++) {
        ctx->store_width[i] = 0;
    }
    tcg_gen_movi_tl(hex_pkt_has_store_s1, pkt->pkt_has_store_s1);
    ctx->s1_store_processed = false;
    ctx->pre_commit = true;

    if (HEX_DEBUG) {
        /* Handy place to set a breakpoint before the packet executes */
        gen_helper_debug_start_packet(cpu_env);
        tcg_gen_movi_tl(hex_this_PC, ctx->base.pc_next);
    }

    /* Initialize the runtime state for packet semantics */
    if (need_pc(pkt)) {
        tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next);
    }
    if (need_slot_cancelled(pkt)) {
        tcg_gen_movi_tl(hex_slot_cancelled, 0);
    }
    if (pkt->pkt_has_cof) {
        tcg_gen_movi_tl(hex_branch_taken, 0);
        tcg_gen_movi_tl(hex_next_PC, next_PC);
    }
    if (need_pred_written(pkt)) {
        tcg_gen_movi_tl(hex_pred_written, 0);
    }

    if (pkt->pkt_has_hvx) {
        tcg_gen_movi_tl(hex_VRegs_updated, 0);
        tcg_gen_movi_tl(hex_QRegs_updated, 0);
    }
}

bool is_gather_store_insn(Insn *insn, Packet *pkt)
{
    if (GET_ATTRIB(insn->opcode, A_CVI_NEW) &&
        insn->new_value_producer_slot == 1) {
        /* Look for gather instruction */
        for (int i = 0; i < pkt->num_insns; i++) {
            Insn *in = &pkt->insn[i];
            if (GET_ATTRIB(in->opcode, A_CVI_GATHER) && in->slot == 1) {
                return true;
            }
        }
    }
    return false;
}

/*
 * The LOG_*_WRITE macros mark most of the writes in a packet
 * However, there are some implicit writes marked as attributes
 * of the applicable instructions.
 */
static void mark_implicit_reg_write(DisasContext *ctx, Insn *insn,
                                    int attrib, int rnum)
{
    if (GET_ATTRIB(insn->opcode, attrib)) {
        /*
         * USR is used to set overflow and FP exceptions,
         * so treat it as conditional
         */
        bool is_predicated = GET_ATTRIB(insn->opcode, A_CONDEXEC) ||
                             rnum == HEX_REG_USR;
        if (is_predicated && !is_preloaded(ctx, rnum)) {
            tcg_gen_mov_tl(hex_new_value[rnum], hex_gpr[rnum]);
        }

        ctx_log_reg_write(ctx, rnum);
    }
}

static void mark_implicit_pred_write(DisasContext *ctx, Insn *insn,
                                     int attrib, int pnum)
{
    if (GET_ATTRIB(insn->opcode, attrib)) {
        ctx_log_pred_write(ctx, pnum);
    }
}

static void mark_implicit_reg_writes(DisasContext *ctx, Insn *insn)
{
    mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_FP,  HEX_REG_FP);
    mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_SP,  HEX_REG_SP);
    mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_LR,  HEX_REG_LR);
    mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0);
    mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0);
    mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1);
    mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1);
    mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_USR, HEX_REG_USR);
    mark_implicit_reg_write(ctx, insn, A_FPOP, HEX_REG_USR);
}

static void mark_implicit_pred_writes(DisasContext *ctx, Insn *insn)
{
    mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P0, 0);
    mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P1, 1);
    mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P2, 2);
    mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P3, 3);
}

static void mark_store_width(DisasContext *ctx, Insn *insn)
{
    uint16_t opcode = insn->opcode;
    uint32_t slot = insn->slot;
    uint8_t width = 0;

    if (GET_ATTRIB(opcode, A_SCALAR_STORE)) {
        if (GET_ATTRIB(opcode, A_MEMSIZE_1B)) {
            width |= 1;
        }
        if (GET_ATTRIB(opcode, A_MEMSIZE_2B)) {
            width |= 2;
        }
        if (GET_ATTRIB(opcode, A_MEMSIZE_4B)) {
            width |= 4;
        }
        if (GET_ATTRIB(opcode, A_MEMSIZE_8B)) {
            width |= 8;
        }
        tcg_debug_assert(is_power_of_2(width));
        ctx->store_width[slot] = width;
    }
}

static void gen_insn(CPUHexagonState *env, DisasContext *ctx,
                     Insn *insn, Packet *pkt)
{
    if (insn->generate) {
        mark_implicit_reg_writes(ctx, insn);
        insn->generate(env, ctx, insn, pkt);
        mark_implicit_pred_writes(ctx, insn);
        mark_store_width(ctx, insn);
    } else {
        gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE);
    }
}

/*
 * Helpers for generating the packet commit
 */
static void gen_reg_writes(DisasContext *ctx)
{
    int i;

    for (i = 0; i < ctx->reg_log_idx; i++) {
        int reg_num = ctx->reg_log[i];

        tcg_gen_mov_tl(hex_gpr[reg_num], hex_new_value[reg_num]);
    }
}

static void gen_pred_writes(DisasContext *ctx, Packet *pkt)
{
    int i;

    /* Early exit if the log is empty */
    if (!ctx->preg_log_idx) {
        return;
    }

    /*
     * Only endloop instructions will conditionally
     * write a predicate.  If there are no endloop
     * instructions, we can use the non-conditional
     * write of the predicates.
     */
    if (pkt->pkt_has_endloop) {
        TCGv zero = tcg_constant_tl(0);
        TCGv pred_written = tcg_temp_new();
        for (i = 0; i < ctx->preg_log_idx; i++) {
            int pred_num = ctx->preg_log[i];

            tcg_gen_andi_tl(pred_written, hex_pred_written, 1 << pred_num);
            tcg_gen_movcond_tl(TCG_COND_NE, hex_pred[pred_num],
                               pred_written, zero,
                               hex_new_pred_value[pred_num],
                               hex_pred[pred_num]);
        }
        tcg_temp_free(pred_written);
    } else {
        for (i = 0; i < ctx->preg_log_idx; i++) {
            int pred_num = ctx->preg_log[i];
            tcg_gen_mov_tl(hex_pred[pred_num], hex_new_pred_value[pred_num]);
            if (HEX_DEBUG) {
                /* Do this so HELPER(debug_commit_end) will know */
                tcg_gen_ori_tl(hex_pred_written, hex_pred_written,
                               1 << pred_num);
            }
        }
    }
}

static void gen_check_store_width(DisasContext *ctx, int slot_num)
{
    if (HEX_DEBUG) {
        TCGv slot = tcg_constant_tl(slot_num);
        TCGv check = tcg_constant_tl(ctx->store_width[slot_num]);
        gen_helper_debug_check_store_width(cpu_env, slot, check);
    }
}

static bool slot_is_predicated(Packet *pkt, int slot_num)
{
    for (int i = 0; i < pkt->num_insns; i++) {
        if (pkt->insn[i].slot == slot_num) {
            return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC);
        }
    }
    /* If we get to here, we didn't find an instruction in the requested slot */
    g_assert_not_reached();
}

void process_store(DisasContext *ctx, Packet *pkt, int slot_num)
{
    bool is_predicated = slot_is_predicated(pkt, slot_num);
    TCGLabel *label_end = NULL;

    /*
     * We may have already processed this store
     * See CHECK_NOSHUF in macros.h
     */
    if (slot_num == 1 && ctx->s1_store_processed) {
        return;
    }
    ctx->s1_store_processed = true;

    if (is_predicated) {
        TCGv cancelled = tcg_temp_new();
        label_end = gen_new_label();

        /* Don't do anything if the slot was cancelled */
        tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1);
        tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end);
        tcg_temp_free(cancelled);
    }
    {
        TCGv address = tcg_temp_local_new();
        tcg_gen_mov_tl(address, hex_store_addr[slot_num]);

        /*
         * If we know the width from the DisasContext, we can
         * generate much cleaner code.
         * Unfortunately, not all instructions execute the fSTORE
         * macro during code generation.  Anything that uses the
         * generic helper will have this problem.  Instructions
         * that use fWRAP to generate proper TCG code will be OK.
         */
        switch (ctx->store_width[slot_num]) {
        case 1:
            gen_check_store_width(ctx, slot_num);
            tcg_gen_qemu_st8(hex_store_val32[slot_num],
                             hex_store_addr[slot_num],
                             ctx->mem_idx);
            break;
        case 2:
            gen_check_store_width(ctx, slot_num);
            tcg_gen_qemu_st16(hex_store_val32[slot_num],
                              hex_store_addr[slot_num],
                              ctx->mem_idx);
            break;
        case 4:
            gen_check_store_width(ctx, slot_num);
            tcg_gen_qemu_st32(hex_store_val32[slot_num],
                              hex_store_addr[slot_num],
                              ctx->mem_idx);
            break;
        case 8:
            gen_check_store_width(ctx, slot_num);
            tcg_gen_qemu_st64(hex_store_val64[slot_num],
                              hex_store_addr[slot_num],
                              ctx->mem_idx);
            break;
        default:
            {
                /*
                 * If we get to here, we don't know the width at
                 * TCG generation time, we'll use a helper to
                 * avoid branching based on the width at runtime.
                 */
                TCGv slot = tcg_constant_tl(slot_num);
                gen_helper_commit_store(cpu_env, slot);
            }
        }
        tcg_temp_free(address);
    }
    if (is_predicated) {
        gen_set_label(label_end);
    }
}

static void process_store_log(DisasContext *ctx, Packet *pkt)
{
    /*
     *  When a packet has two stores, the hardware processes
     *  slot 1 and then slot 0.  This will be important when
     *  the memory accesses overlap.
     */
    if (pkt->pkt_has_store_s1) {
        g_assert(!pkt->pkt_has_dczeroa);
        process_store(ctx, pkt, 1);
    }
    if (pkt->pkt_has_store_s0) {
        g_assert(!pkt->pkt_has_dczeroa);
        process_store(ctx, pkt, 0);
    }
}

/* Zero out a 32-bit cache line */
static void process_dczeroa(DisasContext *ctx, Packet *pkt)
{
    if (pkt->pkt_has_dczeroa) {
        /* Store 32 bytes of zero starting at (addr & ~0x1f) */
        TCGv addr = tcg_temp_new();
        TCGv_i64 zero = tcg_constant_i64(0);

        tcg_gen_andi_tl(addr, hex_dczero_addr, ~0x1f);
        tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
        tcg_gen_addi_tl(addr, addr, 8);
        tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
        tcg_gen_addi_tl(addr, addr, 8);
        tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
        tcg_gen_addi_tl(addr, addr, 8);
        tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);

        tcg_temp_free(addr);
    }
}

static bool pkt_has_hvx_store(Packet *pkt)
{
    int i;
    for (i = 0; i < pkt->num_insns; i++) {
        int opcode = pkt->insn[i].opcode;
        if (GET_ATTRIB(opcode, A_CVI) && GET_ATTRIB(opcode, A_STORE)) {
            return true;
        }
    }
    return false;
}

static void gen_commit_hvx(DisasContext *ctx, Packet *pkt)
{
    int i;

    /*
     *    for (i = 0; i < ctx->vreg_log_idx; i++) {
     *        int rnum = ctx->vreg_log[i];
     *        if (ctx->vreg_is_predicated[i]) {
     *            if (env->VRegs_updated & (1 << rnum)) {
     *                env->VRegs[rnum] = env->future_VRegs[rnum];
     *            }
     *        } else {
     *            env->VRegs[rnum] = env->future_VRegs[rnum];
     *        }
     *    }
     */
    for (i = 0; i < ctx->vreg_log_idx; i++) {
        int rnum = ctx->vreg_log[i];
        bool is_predicated = ctx->vreg_is_predicated[i];
        intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]);
        intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false);
        size_t size = sizeof(MMVector);

        if (is_predicated) {
            TCGv cmp = tcg_temp_new();
            TCGLabel *label_skip = gen_new_label();

            tcg_gen_andi_tl(cmp, hex_VRegs_updated, 1 << rnum);
            tcg_gen_brcondi_tl(TCG_COND_EQ, cmp, 0, label_skip);
            tcg_temp_free(cmp);
            tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
            gen_set_label(label_skip);
        } else {
            tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
        }
    }

    /*
     *    for (i = 0; i < ctx->qreg_log_idx; i++) {
     *        int rnum = ctx->qreg_log[i];
     *        if (ctx->qreg_is_predicated[i]) {
     *            if (env->QRegs_updated) & (1 << rnum)) {
     *                env->QRegs[rnum] = env->future_QRegs[rnum];
     *            }
     *        } else {
     *            env->QRegs[rnum] = env->future_QRegs[rnum];
     *        }
     *    }
     */
    for (i = 0; i < ctx->qreg_log_idx; i++) {
        int rnum = ctx->qreg_log[i];
        bool is_predicated = ctx->qreg_is_predicated[i];
        intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]);
        intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]);
        size_t size = sizeof(MMQReg);

        if (is_predicated) {
            TCGv cmp = tcg_temp_new();
            TCGLabel *label_skip = gen_new_label();

            tcg_gen_andi_tl(cmp, hex_QRegs_updated, 1 << rnum);
            tcg_gen_brcondi_tl(TCG_COND_EQ, cmp, 0, label_skip);
            tcg_temp_free(cmp);
            tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
            gen_set_label(label_skip);
        } else {
            tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
        }
    }

    if (pkt_has_hvx_store(pkt)) {
        gen_helper_commit_hvx_stores(cpu_env);
    }
}

static void update_exec_counters(DisasContext *ctx, Packet *pkt)
{
    int num_insns = pkt->num_insns;
    int num_real_insns = 0;
    int num_hvx_insns = 0;

    for (int i = 0; i < num_insns; i++) {
        if (!pkt->insn[i].is_endloop &&
            !pkt->insn[i].part1 &&
            !GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) {
            num_real_insns++;
        }
        if (GET_ATTRIB(pkt->insn[i].opcode, A_CVI)) {
            num_hvx_insns++;
        }
    }

    ctx->num_packets++;
    ctx->num_insns += num_real_insns;
    ctx->num_hvx_insns += num_hvx_insns;
}

static void gen_commit_packet(CPUHexagonState *env, DisasContext *ctx,
                              Packet *pkt)
{
    /*
     * If there is more than one store in a packet, make sure they are all OK
     * before proceeding with the rest of the packet commit.
     *
     * dczeroa has to be the only store operation in the packet, so we go
     * ahead and process that first.
     *
     * When there is an HVX store, there can also be a scalar store in either
     * slot 0 or slot1, so we create a mask for the helper to indicate what
     * work to do.
     *
     * When there are two scalar stores, we probe the one in slot 0.
     *
     * Note that we don't call the probe helper for packets with only one
     * store.  Therefore, we call process_store_log before anything else
     * involved in committing the packet.
     */
    bool has_store_s0 = pkt->pkt_has_store_s0;
    bool has_store_s1 = (pkt->pkt_has_store_s1 && !ctx->s1_store_processed);
    bool has_hvx_store = pkt_has_hvx_store(pkt);
    if (pkt->pkt_has_dczeroa) {
        /*
         * The dczeroa will be the store in slot 0, check that we don't have
         * a store in slot 1 or an HVX store.
         */
        g_assert(!has_store_s1 && !has_hvx_store);
        process_dczeroa(ctx, pkt);
    } else if (has_hvx_store) {
        TCGv mem_idx = tcg_constant_tl(ctx->mem_idx);

        if (!has_store_s0 && !has_store_s1) {
            gen_helper_probe_hvx_stores(cpu_env, mem_idx);
        } else {
            int mask = 0;
            TCGv mask_tcgv;

            if (has_store_s0) {
                mask |= (1 << 0);
            }
            if (has_store_s1) {
                mask |= (1 << 1);
            }
            if (has_hvx_store) {
                mask |= (1 << 2);
            }
            mask_tcgv = tcg_constant_tl(mask);
            gen_helper_probe_pkt_scalar_hvx_stores(cpu_env, mask_tcgv, mem_idx);
        }
    } else if (has_store_s0 && has_store_s1) {
        /*
         * process_store_log will execute the slot 1 store first,
         * so we only have to probe the store in slot 0
         */
        TCGv mem_idx = tcg_constant_tl(ctx->mem_idx);
        gen_helper_probe_pkt_scalar_store_s0(cpu_env, mem_idx);
    }

    process_store_log(ctx, pkt);

    gen_reg_writes(ctx);
    gen_pred_writes(ctx, pkt);
    if (pkt->pkt_has_hvx) {
        gen_commit_hvx(ctx, pkt);
    }
    update_exec_counters(ctx, pkt);
    if (HEX_DEBUG) {
        TCGv has_st0 =
            tcg_constant_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa);
        TCGv has_st1 =
            tcg_constant_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa);

        /* Handy place to set a breakpoint at the end of execution */
        gen_helper_debug_commit_end(cpu_env, has_st0, has_st1);
    }

    if (pkt->vhist_insn != NULL) {
        ctx->pre_commit = false;
        pkt->vhist_insn->generate(env, ctx, pkt->vhist_insn, pkt);
    }

    if (pkt->pkt_has_cof) {
        gen_end_tb(ctx);
    }
}

static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx)
{
    uint32_t words[PACKET_WORDS_MAX];
    int nwords;
    Packet pkt;
    int i;

    nwords = read_packet_words(env, ctx, words);
    if (!nwords) {
        gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
        return;
    }

    if (decode_packet(nwords, words, &pkt, false) > 0) {
        HEX_DEBUG_PRINT_PKT(&pkt);
        gen_start_packet(ctx, &pkt);
        for (i = 0; i < pkt.num_insns; i++) {
            gen_insn(env, ctx, &pkt.insn[i], &pkt);
        }
        gen_commit_packet(env, ctx, &pkt);
        ctx->base.pc_next += pkt.encod_pkt_size_in_bytes;
    } else {
        gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
    }
}

static void hexagon_tr_init_disas_context(DisasContextBase *dcbase,
                                          CPUState *cs)
{
    DisasContext *ctx = container_of(dcbase, DisasContext, base);

    ctx->mem_idx = MMU_USER_IDX;
    ctx->num_packets = 0;
    ctx->num_insns = 0;
    ctx->num_hvx_insns = 0;
}

static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu)
{
}

static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
{
    DisasContext *ctx = container_of(dcbase, DisasContext, base);

    tcg_gen_insn_start(ctx->base.pc_next);
}

static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx)
{
    target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
    bool found_end = false;
    int nwords;

    for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
        uint32_t word = cpu_ldl_code(env,
                            ctx->base.pc_next + nwords * sizeof(uint32_t));
        found_end = is_packet_end(word);
    }
    uint32_t next_ptr =  ctx->base.pc_next + nwords * sizeof(uint32_t);
    return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE;
}

static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu)
{
    DisasContext *ctx = container_of(dcbase, DisasContext, base);
    CPUHexagonState *env = cpu->env_ptr;

    decode_and_translate_packet(env, ctx);

    if (ctx->base.is_jmp == DISAS_NEXT) {
        target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
        target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong);

        if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE ||
            (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max &&
             pkt_crosses_page(env, ctx))) {
            ctx->base.is_jmp = DISAS_TOO_MANY;
        }

        /*
         * The CPU log is used to compare against LLDB single stepping,
         * so end the TLB after every packet.
         */
        HexagonCPU *hex_cpu = env_archcpu(env);
        if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
            ctx->base.is_jmp = DISAS_TOO_MANY;
        }
    }
}

static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
{
    DisasContext *ctx = container_of(dcbase, DisasContext, base);

    switch (ctx->base.is_jmp) {
    case DISAS_TOO_MANY:
        gen_exec_counters(ctx);
        tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next);
        tcg_gen_exit_tb(NULL, 0);
        break;
    case DISAS_NORETURN:
        break;
    default:
        g_assert_not_reached();
    }
}

static void hexagon_tr_disas_log(const DisasContextBase *dcbase,
                                 CPUState *cpu, FILE *logfile)
{
    fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
    target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size);
}


static const TranslatorOps hexagon_tr_ops = {
    .init_disas_context = hexagon_tr_init_disas_context,
    .tb_start           = hexagon_tr_tb_start,
    .insn_start         = hexagon_tr_insn_start,
    .translate_insn     = hexagon_tr_translate_packet,
    .tb_stop            = hexagon_tr_tb_stop,
    .disas_log          = hexagon_tr_disas_log,
};

void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns,
                           target_ulong pc, void *host_pc)
{
    DisasContext ctx;

    translator_loop(cs, tb, max_insns, pc, host_pc,
                    &hexagon_tr_ops, &ctx.base);
}

#define NAME_LEN               64
static char new_value_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
static char new_pred_value_names[NUM_PREGS][NAME_LEN];
static char store_addr_names[STORES_MAX][NAME_LEN];
static char store_width_names[STORES_MAX][NAME_LEN];
static char store_val32_names[STORES_MAX][NAME_LEN];
static char store_val64_names[STORES_MAX][NAME_LEN];
static char vstore_addr_names[VSTORES_MAX][NAME_LEN];
static char vstore_size_names[VSTORES_MAX][NAME_LEN];
static char vstore_pending_names[VSTORES_MAX][NAME_LEN];

void hexagon_translate_init(void)
{
    int i;

    opcode_init();

    for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
        hex_gpr[i] = tcg_global_mem_new(cpu_env,
            offsetof(CPUHexagonState, gpr[i]),
            hexagon_regnames[i]);

        snprintf(new_value_names[i], NAME_LEN, "new_%s", hexagon_regnames[i]);
        hex_new_value[i] = tcg_global_mem_new(cpu_env,
            offsetof(CPUHexagonState, new_value[i]),
            new_value_names[i]);

        if (HEX_DEBUG) {
            snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s",
                     hexagon_regnames[i]);
            hex_reg_written[i] = tcg_global_mem_new(cpu_env,
                offsetof(CPUHexagonState, reg_written[i]),
                reg_written_names[i]);
        }
    }
    for (i = 0; i < NUM_PREGS; i++) {
        hex_pred[i] = tcg_global_mem_new(cpu_env,
            offsetof(CPUHexagonState, pred[i]),
            hexagon_prednames[i]);

        snprintf(new_pred_value_names[i], NAME_LEN, "new_pred_%s",
                 hexagon_prednames[i]);
        hex_new_pred_value[i] = tcg_global_mem_new(cpu_env,
            offsetof(CPUHexagonState, new_pred_value[i]),
            new_pred_value_names[i]);
    }
    hex_pred_written = tcg_global_mem_new(cpu_env,
        offsetof(CPUHexagonState, pred_written), "pred_written");
    hex_next_PC = tcg_global_mem_new(cpu_env,
        offsetof(CPUHexagonState, next_PC), "next_PC");
    hex_this_PC = tcg_global_mem_new(cpu_env,
        offsetof(CPUHexagonState, this_PC), "this_PC");
    hex_slot_cancelled = tcg_global_mem_new(cpu_env,
        offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled");
    hex_branch_taken = tcg_global_mem_new(cpu_env,
        offsetof(CPUHexagonState, branch_taken), "branch_taken");
    hex_pkt_has_store_s1 = tcg_global_mem_new(cpu_env,
        offsetof(CPUHexagonState, pkt_has_store_s1), "pkt_has_store_s1");
    hex_dczero_addr = tcg_global_mem_new(cpu_env,
        offsetof(CPUHexagonState, dczero_addr), "dczero_addr");
    hex_llsc_addr = tcg_global_mem_new(cpu_env,
        offsetof(CPUHexagonState, llsc_addr), "llsc_addr");
    hex_llsc_val = tcg_global_mem_new(cpu_env,
        offsetof(CPUHexagonState, llsc_val), "llsc_val");
    hex_llsc_val_i64 = tcg_global_mem_new_i64(cpu_env,
        offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64");
    hex_VRegs_updated = tcg_global_mem_new(cpu_env,
        offsetof(CPUHexagonState, VRegs_updated), "VRegs_updated");
    hex_QRegs_updated = tcg_global_mem_new(cpu_env,
        offsetof(CPUHexagonState, QRegs_updated), "QRegs_updated");
    for (i = 0; i < STORES_MAX; i++) {
        snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i);
        hex_store_addr[i] = tcg_global_mem_new(cpu_env,
            offsetof(CPUHexagonState, mem_log_stores[i].va),
            store_addr_names[i]);

        snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i);
        hex_store_width[i] = tcg_global_mem_new(cpu_env,
            offsetof(CPUHexagonState, mem_log_stores[i].width),
            store_width_names[i]);

        snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i);
        hex_store_val32[i] = tcg_global_mem_new(cpu_env,
            offsetof(CPUHexagonState, mem_log_stores[i].data32),
            store_val32_names[i]);

        snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i);
        hex_store_val64[i] = tcg_global_mem_new_i64(cpu_env,
            offsetof(CPUHexagonState, mem_log_stores[i].data64),
            store_val64_names[i]);
    }
    for (int i = 0; i < VSTORES_MAX; i++) {
        snprintf(vstore_addr_names[i], NAME_LEN, "vstore_addr_%d", i);
        hex_vstore_addr[i] = tcg_global_mem_new(cpu_env,
            offsetof(CPUHexagonState, vstore[i].va),
            vstore_addr_names[i]);

        snprintf(vstore_size_names[i], NAME_LEN, "vstore_size_%d", i);
        hex_vstore_size[i] = tcg_global_mem_new(cpu_env,
            offsetof(CPUHexagonState, vstore[i].size),
            vstore_size_names[i]);

        snprintf(vstore_pending_names[i], NAME_LEN, "vstore_pending_%d", i);
        hex_vstore_pending[i] = tcg_global_mem_new(cpu_env,
            offsetof(CPUHexagonState, vstore_pending[i]),
            vstore_pending_names[i]);
    }
}