aboutsummaryrefslogtreecommitdiff
path: root/target/arm/sme_helper.c
blob: f891306bb981f967425dc461f1574aaff203605b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
/*
 * ARM SME Operations
 *
 * Copyright (c) 2022 Linaro, Ltd.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "tcg/tcg-gvec-desc.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
#include "exec/exec-all.h"
#include "qemu/int128.h"
#include "fpu/softfloat.h"
#include "vec_internal.h"
#include "sve_ldst_internal.h"

/* ResetSVEState */
void arm_reset_sve_state(CPUARMState *env)
{
    memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
    /* Recall that FFR is stored as pregs[16]. */
    memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
    vfp_set_fpcr(env, 0x0800009f);
}

void helper_set_pstate_sm(CPUARMState *env, uint32_t i)
{
    if (i == FIELD_EX64(env->svcr, SVCR, SM)) {
        return;
    }
    env->svcr ^= R_SVCR_SM_MASK;
    arm_reset_sve_state(env);
}

void helper_set_pstate_za(CPUARMState *env, uint32_t i)
{
    if (i == FIELD_EX64(env->svcr, SVCR, ZA)) {
        return;
    }
    env->svcr ^= R_SVCR_ZA_MASK;

    /*
     * ResetSMEState.
     *
     * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
     * on enable: while disabled, the storage is inaccessible and the
     * value does not matter.  We're not saving the storage in vmstate
     * when disabled either.
     */
    if (i) {
        memset(env->zarray, 0, sizeof(env->zarray));
    }
}

void helper_sme_zero(CPUARMState *env, uint32_t imm, uint32_t svl)
{
    uint32_t i;

    /*
     * Special case clearing the entire ZA space.
     * This falls into the CONSTRAINED UNPREDICTABLE zeroing of any
     * parts of the ZA storage outside of SVL.
     */
    if (imm == 0xff) {
        memset(env->zarray, 0, sizeof(env->zarray));
        return;
    }

    /*
     * Recall that ZAnH.D[m] is spread across ZA[n+8*m],
     * so each row is discontiguous within ZA[].
     */
    for (i = 0; i < svl; i++) {
        if (imm & (1 << (i % 8))) {
            memset(&env->zarray[i], 0, svl);
        }
    }
}


/*
 * When considering the ZA storage as an array of elements of
 * type T, the index within that array of the Nth element of
 * a vertical slice of a tile can be calculated like this,
 * regardless of the size of type T. This is because the tiles
 * are interleaved, so if type T is size N bytes then row 1 of
 * the tile is N rows away from row 0. The division by N to
 * convert a byte offset into an array index and the multiplication
 * by N to convert from vslice-index-within-the-tile to
 * the index within the ZA storage cancel out.
 */
#define tile_vslice_index(i) ((i) * sizeof(ARMVectorReg))

/*
 * When doing byte arithmetic on the ZA storage, the element
 * byteoff bytes away in a tile vertical slice is always this
 * many bytes away in the ZA storage, regardless of the
 * size of the tile element, assuming that byteoff is a multiple
 * of the element size. Again this is because of the interleaving
 * of the tiles. For instance if we have 1 byte per element then
 * each row of the ZA storage has one byte of the vslice data,
 * and (counting from 0) byte 8 goes in row 8 of the storage
 * at offset (8 * row-size-in-bytes).
 * If we have 8 bytes per element then each row of the ZA storage
 * has 8 bytes of the data, but there are 8 interleaved tiles and
 * so byte 8 of the data goes into row 1 of the tile,
 * which is again row 8 of the storage, so the offset is still
 * (8 * row-size-in-bytes). Similarly for other element sizes.
 */
#define tile_vslice_offset(byteoff) ((byteoff) * sizeof(ARMVectorReg))


/*
 * Move Zreg vector to ZArray column.
 */
#define DO_MOVA_C(NAME, TYPE, H)                                        \
void HELPER(NAME)(void *za, void *vn, void *vg, uint32_t desc)          \
{                                                                       \
    int i, oprsz = simd_oprsz(desc);                                    \
    for (i = 0; i < oprsz; ) {                                          \
        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));                 \
        do {                                                            \
            if (pg & 1) {                                               \
                *(TYPE *)(za + tile_vslice_offset(i)) = *(TYPE *)(vn + H(i)); \
            }                                                           \
            i += sizeof(TYPE);                                          \
            pg >>= sizeof(TYPE);                                        \
        } while (i & 15);                                               \
    }                                                                   \
}

DO_MOVA_C(sme_mova_cz_b, uint8_t, H1)
DO_MOVA_C(sme_mova_cz_h, uint16_t, H1_2)
DO_MOVA_C(sme_mova_cz_s, uint32_t, H1_4)

void HELPER(sme_mova_cz_d)(void *za, void *vn, void *vg, uint32_t desc)
{
    int i, oprsz = simd_oprsz(desc) / 8;
    uint8_t *pg = vg;
    uint64_t *n = vn;
    uint64_t *a = za;

    for (i = 0; i < oprsz; i++) {
        if (pg[H1(i)] & 1) {
            a[tile_vslice_index(i)] = n[i];
        }
    }
}

void HELPER(sme_mova_cz_q)(void *za, void *vn, void *vg, uint32_t desc)
{
    int i, oprsz = simd_oprsz(desc) / 16;
    uint16_t *pg = vg;
    Int128 *n = vn;
    Int128 *a = za;

    /*
     * Int128 is used here simply to copy 16 bytes, and to simplify
     * the address arithmetic.
     */
    for (i = 0; i < oprsz; i++) {
        if (pg[H2(i)] & 1) {
            a[tile_vslice_index(i)] = n[i];
        }
    }
}

#undef DO_MOVA_C

/*
 * Move ZArray column to Zreg vector.
 */
#define DO_MOVA_Z(NAME, TYPE, H)                                        \
void HELPER(NAME)(void *vd, void *za, void *vg, uint32_t desc)          \
{                                                                       \
    int i, oprsz = simd_oprsz(desc);                                    \
    for (i = 0; i < oprsz; ) {                                          \
        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));                 \
        do {                                                            \
            if (pg & 1) {                                               \
                *(TYPE *)(vd + H(i)) = *(TYPE *)(za + tile_vslice_offset(i)); \
            }                                                           \
            i += sizeof(TYPE);                                          \
            pg >>= sizeof(TYPE);                                        \
        } while (i & 15);                                               \
    }                                                                   \
}

DO_MOVA_Z(sme_mova_zc_b, uint8_t, H1)
DO_MOVA_Z(sme_mova_zc_h, uint16_t, H1_2)
DO_MOVA_Z(sme_mova_zc_s, uint32_t, H1_4)

void HELPER(sme_mova_zc_d)(void *vd, void *za, void *vg, uint32_t desc)
{
    int i, oprsz = simd_oprsz(desc) / 8;
    uint8_t *pg = vg;
    uint64_t *d = vd;
    uint64_t *a = za;

    for (i = 0; i < oprsz; i++) {
        if (pg[H1(i)] & 1) {
            d[i] = a[tile_vslice_index(i)];
        }
    }
}

void HELPER(sme_mova_zc_q)(void *vd, void *za, void *vg, uint32_t desc)
{
    int i, oprsz = simd_oprsz(desc) / 16;
    uint16_t *pg = vg;
    Int128 *d = vd;
    Int128 *a = za;

    /*
     * Int128 is used here simply to copy 16 bytes, and to simplify
     * the address arithmetic.
     */
    for (i = 0; i < oprsz; i++, za += sizeof(ARMVectorReg)) {
        if (pg[H2(i)] & 1) {
            d[i] = a[tile_vslice_index(i)];
        }
    }
}

#undef DO_MOVA_Z

/*
 * Clear elements in a tile slice comprising len bytes.
 */

typedef void ClearFn(void *ptr, size_t off, size_t len);

static void clear_horizontal(void *ptr, size_t off, size_t len)
{
    memset(ptr + off, 0, len);
}

static void clear_vertical_b(void *vptr, size_t off, size_t len)
{
    for (size_t i = 0; i < len; ++i) {
        *(uint8_t *)(vptr + tile_vslice_offset(i + off)) = 0;
    }
}

static void clear_vertical_h(void *vptr, size_t off, size_t len)
{
    for (size_t i = 0; i < len; i += 2) {
        *(uint16_t *)(vptr + tile_vslice_offset(i + off)) = 0;
    }
}

static void clear_vertical_s(void *vptr, size_t off, size_t len)
{
    for (size_t i = 0; i < len; i += 4) {
        *(uint32_t *)(vptr + tile_vslice_offset(i + off)) = 0;
    }
}

static void clear_vertical_d(void *vptr, size_t off, size_t len)
{
    for (size_t i = 0; i < len; i += 8) {
        *(uint64_t *)(vptr + tile_vslice_offset(i + off)) = 0;
    }
}

static void clear_vertical_q(void *vptr, size_t off, size_t len)
{
    for (size_t i = 0; i < len; i += 16) {
        memset(vptr + tile_vslice_offset(i + off), 0, 16);
    }
}

/*
 * Copy elements from an array into a tile slice comprising len bytes.
 */

typedef void CopyFn(void *dst, const void *src, size_t len);

static void copy_horizontal(void *dst, const void *src, size_t len)
{
    memcpy(dst, src, len);
}

static void copy_vertical_b(void *vdst, const void *vsrc, size_t len)
{
    const uint8_t *src = vsrc;
    uint8_t *dst = vdst;
    size_t i;

    for (i = 0; i < len; ++i) {
        dst[tile_vslice_index(i)] = src[i];
    }
}

static void copy_vertical_h(void *vdst, const void *vsrc, size_t len)
{
    const uint16_t *src = vsrc;
    uint16_t *dst = vdst;
    size_t i;

    for (i = 0; i < len / 2; ++i) {
        dst[tile_vslice_index(i)] = src[i];
    }
}

static void copy_vertical_s(void *vdst, const void *vsrc, size_t len)
{
    const uint32_t *src = vsrc;
    uint32_t *dst = vdst;
    size_t i;

    for (i = 0; i < len / 4; ++i) {
        dst[tile_vslice_index(i)] = src[i];
    }
}

static void copy_vertical_d(void *vdst, const void *vsrc, size_t len)
{
    const uint64_t *src = vsrc;
    uint64_t *dst = vdst;
    size_t i;

    for (i = 0; i < len / 8; ++i) {
        dst[tile_vslice_index(i)] = src[i];
    }
}

static void copy_vertical_q(void *vdst, const void *vsrc, size_t len)
{
    for (size_t i = 0; i < len; i += 16) {
        memcpy(vdst + tile_vslice_offset(i), vsrc + i, 16);
    }
}

/*
 * Host and TLB primitives for vertical tile slice addressing.
 */

#define DO_LD(NAME, TYPE, HOST, TLB)                                        \
static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host)  \
{                                                                           \
    TYPE val = HOST(host);                                                  \
    *(TYPE *)(za + tile_vslice_offset(off)) = val;                          \
}                                                                           \
static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za,           \
                        intptr_t off, target_ulong addr, uintptr_t ra)      \
{                                                                           \
    TYPE val = TLB(env, useronly_clean_ptr(addr), ra);                      \
    *(TYPE *)(za + tile_vslice_offset(off)) = val;                          \
}

#define DO_ST(NAME, TYPE, HOST, TLB)                                        \
static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host)  \
{                                                                           \
    TYPE val = *(TYPE *)(za + tile_vslice_offset(off));                     \
    HOST(host, val);                                                        \
}                                                                           \
static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za,           \
                        intptr_t off, target_ulong addr, uintptr_t ra)      \
{                                                                           \
    TYPE val = *(TYPE *)(za + tile_vslice_offset(off));                     \
    TLB(env, useronly_clean_ptr(addr), val, ra);                            \
}

/*
 * The ARMVectorReg elements are stored in host-endian 64-bit units.
 * For 128-bit quantities, the sequence defined by the Elem[] pseudocode
 * corresponds to storing the two 64-bit pieces in little-endian order.
 */
#define DO_LDQ(HNAME, VNAME, BE, HOST, TLB)                                 \
static inline void HNAME##_host(void *za, intptr_t off, void *host)         \
{                                                                           \
    uint64_t val0 = HOST(host), val1 = HOST(host + 8);                      \
    uint64_t *ptr = za + off;                                               \
    ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1;                   \
}                                                                           \
static inline void VNAME##_v_host(void *za, intptr_t off, void *host)       \
{                                                                           \
    HNAME##_host(za, tile_vslice_offset(off), host);                        \
}                                                                           \
static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off,    \
                               target_ulong addr, uintptr_t ra)             \
{                                                                           \
    uint64_t val0 = TLB(env, useronly_clean_ptr(addr), ra);                 \
    uint64_t val1 = TLB(env, useronly_clean_ptr(addr + 8), ra);             \
    uint64_t *ptr = za + off;                                               \
    ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1;                   \
}                                                                           \
static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off,  \
                               target_ulong addr, uintptr_t ra)             \
{                                                                           \
    HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra);                \
}

#define DO_STQ(HNAME, VNAME, BE, HOST, TLB)                                 \
static inline void HNAME##_host(void *za, intptr_t off, void *host)         \
{                                                                           \
    uint64_t *ptr = za + off;                                               \
    HOST(host, ptr[BE]);                                                    \
    HOST(host + 1, ptr[!BE]);                                               \
}                                                                           \
static inline void VNAME##_v_host(void *za, intptr_t off, void *host)       \
{                                                                           \
    HNAME##_host(za, tile_vslice_offset(off), host);                        \
}                                                                           \
static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off,    \
                               target_ulong addr, uintptr_t ra)             \
{                                                                           \
    uint64_t *ptr = za + off;                                               \
    TLB(env, useronly_clean_ptr(addr), ptr[BE], ra);                        \
    TLB(env, useronly_clean_ptr(addr + 8), ptr[!BE], ra);                   \
}                                                                           \
static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off,  \
                               target_ulong addr, uintptr_t ra)             \
{                                                                           \
    HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra);                \
}

DO_LD(ld1b, uint8_t, ldub_p, cpu_ldub_data_ra)
DO_LD(ld1h_be, uint16_t, lduw_be_p, cpu_lduw_be_data_ra)
DO_LD(ld1h_le, uint16_t, lduw_le_p, cpu_lduw_le_data_ra)
DO_LD(ld1s_be, uint32_t, ldl_be_p, cpu_ldl_be_data_ra)
DO_LD(ld1s_le, uint32_t, ldl_le_p, cpu_ldl_le_data_ra)
DO_LD(ld1d_be, uint64_t, ldq_be_p, cpu_ldq_be_data_ra)
DO_LD(ld1d_le, uint64_t, ldq_le_p, cpu_ldq_le_data_ra)

DO_LDQ(sve_ld1qq_be, sme_ld1q_be, 1, ldq_be_p, cpu_ldq_be_data_ra)
DO_LDQ(sve_ld1qq_le, sme_ld1q_le, 0, ldq_le_p, cpu_ldq_le_data_ra)

DO_ST(st1b, uint8_t, stb_p, cpu_stb_data_ra)
DO_ST(st1h_be, uint16_t, stw_be_p, cpu_stw_be_data_ra)
DO_ST(st1h_le, uint16_t, stw_le_p, cpu_stw_le_data_ra)
DO_ST(st1s_be, uint32_t, stl_be_p, cpu_stl_be_data_ra)
DO_ST(st1s_le, uint32_t, stl_le_p, cpu_stl_le_data_ra)
DO_ST(st1d_be, uint64_t, stq_be_p, cpu_stq_be_data_ra)
DO_ST(st1d_le, uint64_t, stq_le_p, cpu_stq_le_data_ra)

DO_STQ(sve_st1qq_be, sme_st1q_be, 1, stq_be_p, cpu_stq_be_data_ra)
DO_STQ(sve_st1qq_le, sme_st1q_le, 0, stq_le_p, cpu_stq_le_data_ra)

#undef DO_LD
#undef DO_ST
#undef DO_LDQ
#undef DO_STQ

/*
 * Common helper for all contiguous predicated loads.
 */

static inline QEMU_ALWAYS_INLINE
void sme_ld1(CPUARMState *env, void *za, uint64_t *vg,
             const target_ulong addr, uint32_t desc, const uintptr_t ra,
             const int esz, uint32_t mtedesc, bool vertical,
             sve_ldst1_host_fn *host_fn,
             sve_ldst1_tlb_fn *tlb_fn,
             ClearFn *clr_fn,
             CopyFn *cpy_fn)
{
    const intptr_t reg_max = simd_oprsz(desc);
    const intptr_t esize = 1 << esz;
    intptr_t reg_off, reg_last;
    SVEContLdSt info;
    void *host;
    int flags;

    /* Find the active elements.  */
    if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) {
        /* The entire predicate was false; no load occurs.  */
        clr_fn(za, 0, reg_max);
        return;
    }

    /* Probe the page(s).  Exit with exception for any invalid page. */
    sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, ra);

    /* Handle watchpoints for all active elements. */
    sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize,
                              BP_MEM_READ, ra);

    /*
     * Handle mte checks for all active elements.
     * Since TBI must be set for MTE, !mtedesc => !mte_active.
     */
    if (mtedesc) {
        sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize,
                                mtedesc, ra);
    }

    flags = info.page[0].flags | info.page[1].flags;
    if (unlikely(flags != 0)) {
#ifdef CONFIG_USER_ONLY
        g_assert_not_reached();
#else
        /*
         * At least one page includes MMIO.
         * Any bus operation can fail with cpu_transaction_failed,
         * which for ARM will raise SyncExternal.  Perform the load
         * into scratch memory to preserve register state until the end.
         */
        ARMVectorReg scratch = { };

        reg_off = info.reg_off_first[0];
        reg_last = info.reg_off_last[1];
        if (reg_last < 0) {
            reg_last = info.reg_off_split;
            if (reg_last < 0) {
                reg_last = info.reg_off_last[0];
            }
        }

        do {
            uint64_t pg = vg[reg_off >> 6];
            do {
                if ((pg >> (reg_off & 63)) & 1) {
                    tlb_fn(env, &scratch, reg_off, addr + reg_off, ra);
                }
                reg_off += esize;
            } while (reg_off & 63);
        } while (reg_off <= reg_last);

        cpy_fn(za, &scratch, reg_max);
        return;
#endif
    }

    /* The entire operation is in RAM, on valid pages. */

    reg_off = info.reg_off_first[0];
    reg_last = info.reg_off_last[0];
    host = info.page[0].host;

    if (!vertical) {
        memset(za, 0, reg_max);
    } else if (reg_off) {
        clr_fn(za, 0, reg_off);
    }

    while (reg_off <= reg_last) {
        uint64_t pg = vg[reg_off >> 6];
        do {
            if ((pg >> (reg_off & 63)) & 1) {
                host_fn(za, reg_off, host + reg_off);
            } else if (vertical) {
                clr_fn(za, reg_off, esize);
            }
            reg_off += esize;
        } while (reg_off <= reg_last && (reg_off & 63));
    }

    /*
     * Use the slow path to manage the cross-page misalignment.
     * But we know this is RAM and cannot trap.
     */
    reg_off = info.reg_off_split;
    if (unlikely(reg_off >= 0)) {
        tlb_fn(env, za, reg_off, addr + reg_off, ra);
    }

    reg_off = info.reg_off_first[1];
    if (unlikely(reg_off >= 0)) {
        reg_last = info.reg_off_last[1];
        host = info.page[1].host;

        do {
            uint64_t pg = vg[reg_off >> 6];
            do {
                if ((pg >> (reg_off & 63)) & 1) {
                    host_fn(za, reg_off, host + reg_off);
                } else if (vertical) {
                    clr_fn(za, reg_off, esize);
                }
                reg_off += esize;
            } while (reg_off & 63);
        } while (reg_off <= reg_last);
    }
}

static inline QEMU_ALWAYS_INLINE
void sme_ld1_mte(CPUARMState *env, void *za, uint64_t *vg,
                 target_ulong addr, uint32_t desc, uintptr_t ra,
                 const int esz, bool vertical,
                 sve_ldst1_host_fn *host_fn,
                 sve_ldst1_tlb_fn *tlb_fn,
                 ClearFn *clr_fn,
                 CopyFn *cpy_fn)
{
    uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
    int bit55 = extract64(addr, 55, 1);

    /* Remove mtedesc from the normal sve descriptor. */
    desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);

    /* Perform gross MTE suppression early. */
    if (!tbi_check(desc, bit55) ||
        tcma_check(desc, bit55, allocation_tag_from_addr(addr))) {
        mtedesc = 0;
    }

    sme_ld1(env, za, vg, addr, desc, ra, esz, mtedesc, vertical,
            host_fn, tlb_fn, clr_fn, cpy_fn);
}

#define DO_LD(L, END, ESZ)                                                 \
void HELPER(sme_ld1##L##END##_h)(CPUARMState *env, void *za, void *vg,     \
                                 target_ulong addr, uint32_t desc)         \
{                                                                          \
    sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false,               \
            sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb,           \
            clear_horizontal, copy_horizontal);                            \
}                                                                          \
void HELPER(sme_ld1##L##END##_v)(CPUARMState *env, void *za, void *vg,     \
                                 target_ulong addr, uint32_t desc)         \
{                                                                          \
    sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true,                \
            sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb,             \
            clear_vertical_##L, copy_vertical_##L);                        \
}                                                                          \
void HELPER(sme_ld1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \
                                     target_ulong addr, uint32_t desc)     \
{                                                                          \
    sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false,              \
                sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb,       \
                clear_horizontal, copy_horizontal);                        \
}                                                                          \
void HELPER(sme_ld1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \
                                     target_ulong addr, uint32_t desc)     \
{                                                                          \
    sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true,               \
                sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb,         \
                clear_vertical_##L, copy_vertical_##L);                    \
}

DO_LD(b, , MO_8)
DO_LD(h, _be, MO_16)
DO_LD(h, _le, MO_16)
DO_LD(s, _be, MO_32)
DO_LD(s, _le, MO_32)
DO_LD(d, _be, MO_64)
DO_LD(d, _le, MO_64)
DO_LD(q, _be, MO_128)
DO_LD(q, _le, MO_128)

#undef DO_LD

/*
 * Common helper for all contiguous predicated stores.
 */

static inline QEMU_ALWAYS_INLINE
void sme_st1(CPUARMState *env, void *za, uint64_t *vg,
             const target_ulong addr, uint32_t desc, const uintptr_t ra,
             const int esz, uint32_t mtedesc, bool vertical,
             sve_ldst1_host_fn *host_fn,
             sve_ldst1_tlb_fn *tlb_fn)
{
    const intptr_t reg_max = simd_oprsz(desc);
    const intptr_t esize = 1 << esz;
    intptr_t reg_off, reg_last;
    SVEContLdSt info;
    void *host;
    int flags;

    /* Find the active elements.  */
    if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) {
        /* The entire predicate was false; no store occurs.  */
        return;
    }

    /* Probe the page(s).  Exit with exception for any invalid page. */
    sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, ra);

    /* Handle watchpoints for all active elements. */
    sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize,
                              BP_MEM_WRITE, ra);

    /*
     * Handle mte checks for all active elements.
     * Since TBI must be set for MTE, !mtedesc => !mte_active.
     */
    if (mtedesc) {
        sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize,
                                mtedesc, ra);
    }

    flags = info.page[0].flags | info.page[1].flags;
    if (unlikely(flags != 0)) {
#ifdef CONFIG_USER_ONLY
        g_assert_not_reached();
#else
        /*
         * At least one page includes MMIO.
         * Any bus operation can fail with cpu_transaction_failed,
         * which for ARM will raise SyncExternal.  We cannot avoid
         * this fault and will leave with the store incomplete.
         */
        reg_off = info.reg_off_first[0];
        reg_last = info.reg_off_last[1];
        if (reg_last < 0) {
            reg_last = info.reg_off_split;
            if (reg_last < 0) {
                reg_last = info.reg_off_last[0];
            }
        }

        do {
            uint64_t pg = vg[reg_off >> 6];
            do {
                if ((pg >> (reg_off & 63)) & 1) {
                    tlb_fn(env, za, reg_off, addr + reg_off, ra);
                }
                reg_off += esize;
            } while (reg_off & 63);
        } while (reg_off <= reg_last);
        return;
#endif
    }

    reg_off = info.reg_off_first[0];
    reg_last = info.reg_off_last[0];
    host = info.page[0].host;

    while (reg_off <= reg_last) {
        uint64_t pg = vg[reg_off >> 6];
        do {
            if ((pg >> (reg_off & 63)) & 1) {
                host_fn(za, reg_off, host + reg_off);
            }
            reg_off += 1 << esz;
        } while (reg_off <= reg_last && (reg_off & 63));
    }

    /*
     * Use the slow path to manage the cross-page misalignment.
     * But we know this is RAM and cannot trap.
     */
    reg_off = info.reg_off_split;
    if (unlikely(reg_off >= 0)) {
        tlb_fn(env, za, reg_off, addr + reg_off, ra);
    }

    reg_off = info.reg_off_first[1];
    if (unlikely(reg_off >= 0)) {
        reg_last = info.reg_off_last[1];
        host = info.page[1].host;

        do {
            uint64_t pg = vg[reg_off >> 6];
            do {
                if ((pg >> (reg_off & 63)) & 1) {
                    host_fn(za, reg_off, host + reg_off);
                }
                reg_off += 1 << esz;
            } while (reg_off & 63);
        } while (reg_off <= reg_last);
    }
}

static inline QEMU_ALWAYS_INLINE
void sme_st1_mte(CPUARMState *env, void *za, uint64_t *vg, target_ulong addr,
                 uint32_t desc, uintptr_t ra, int esz, bool vertical,
                 sve_ldst1_host_fn *host_fn,
                 sve_ldst1_tlb_fn *tlb_fn)
{
    uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
    int bit55 = extract64(addr, 55, 1);

    /* Remove mtedesc from the normal sve descriptor. */
    desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);

    /* Perform gross MTE suppression early. */
    if (!tbi_check(desc, bit55) ||
        tcma_check(desc, bit55, allocation_tag_from_addr(addr))) {
        mtedesc = 0;
    }

    sme_st1(env, za, vg, addr, desc, ra, esz, mtedesc,
            vertical, host_fn, tlb_fn);
}

#define DO_ST(L, END, ESZ)                                                 \
void HELPER(sme_st1##L##END##_h)(CPUARMState *env, void *za, void *vg,     \
                                 target_ulong addr, uint32_t desc)         \
{                                                                          \
    sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false,               \
            sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb);          \
}                                                                          \
void HELPER(sme_st1##L##END##_v)(CPUARMState *env, void *za, void *vg,     \
                                 target_ulong addr, uint32_t desc)         \
{                                                                          \
    sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true,                \
            sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb);            \
}                                                                          \
void HELPER(sme_st1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \
                                     target_ulong addr, uint32_t desc)     \
{                                                                          \
    sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false,              \
                sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb);      \
}                                                                          \
void HELPER(sme_st1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \
                                     target_ulong addr, uint32_t desc)     \
{                                                                          \
    sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true,               \
                sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb);        \
}

DO_ST(b, , MO_8)
DO_ST(h, _be, MO_16)
DO_ST(h, _le, MO_16)
DO_ST(s, _be, MO_32)
DO_ST(s, _le, MO_32)
DO_ST(d, _be, MO_64)
DO_ST(d, _le, MO_64)
DO_ST(q, _be, MO_128)
DO_ST(q, _le, MO_128)

#undef DO_ST

void HELPER(sme_addha_s)(void *vzda, void *vzn, void *vpn,
                         void *vpm, uint32_t desc)
{
    intptr_t row, col, oprsz = simd_oprsz(desc) / 4;
    uint64_t *pn = vpn, *pm = vpm;
    uint32_t *zda = vzda, *zn = vzn;

    for (row = 0; row < oprsz; ) {
        uint64_t pa = pn[row >> 4];
        do {
            if (pa & 1) {
                for (col = 0; col < oprsz; ) {
                    uint64_t pb = pm[col >> 4];
                    do {
                        if (pb & 1) {
                            zda[tile_vslice_index(row) + H4(col)] += zn[H4(col)];
                        }
                        pb >>= 4;
                    } while (++col & 15);
                }
            }
            pa >>= 4;
        } while (++row & 15);
    }
}

void HELPER(sme_addha_d)(void *vzda, void *vzn, void *vpn,
                         void *vpm, uint32_t desc)
{
    intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
    uint8_t *pn = vpn, *pm = vpm;
    uint64_t *zda = vzda, *zn = vzn;

    for (row = 0; row < oprsz; ++row) {
        if (pn[H1(row)] & 1) {
            for (col = 0; col < oprsz; ++col) {
                if (pm[H1(col)] & 1) {
                    zda[tile_vslice_index(row) + col] += zn[col];
                }
            }
        }
    }
}

void HELPER(sme_addva_s)(void *vzda, void *vzn, void *vpn,
                         void *vpm, uint32_t desc)
{
    intptr_t row, col, oprsz = simd_oprsz(desc) / 4;
    uint64_t *pn = vpn, *pm = vpm;
    uint32_t *zda = vzda, *zn = vzn;

    for (row = 0; row < oprsz; ) {
        uint64_t pa = pn[row >> 4];
        do {
            if (pa & 1) {
                uint32_t zn_row = zn[H4(row)];
                for (col = 0; col < oprsz; ) {
                    uint64_t pb = pm[col >> 4];
                    do {
                        if (pb & 1) {
                            zda[tile_vslice_index(row) + H4(col)] += zn_row;
                        }
                        pb >>= 4;
                    } while (++col & 15);
                }
            }
            pa >>= 4;
        } while (++row & 15);
    }
}

void HELPER(sme_addva_d)(void *vzda, void *vzn, void *vpn,
                         void *vpm, uint32_t desc)
{
    intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
    uint8_t *pn = vpn, *pm = vpm;
    uint64_t *zda = vzda, *zn = vzn;

    for (row = 0; row < oprsz; ++row) {
        if (pn[H1(row)] & 1) {
            uint64_t zn_row = zn[row];
            for (col = 0; col < oprsz; ++col) {
                if (pm[H1(col)] & 1) {
                    zda[tile_vslice_index(row) + col] += zn_row;
                }
            }
        }
    }
}

void HELPER(sme_fmopa_s)(void *vza, void *vzn, void *vzm, void *vpn,
                         void *vpm, void *vst, uint32_t desc)
{
    intptr_t row, col, oprsz = simd_maxsz(desc);
    uint32_t neg = simd_data(desc) << 31;
    uint16_t *pn = vpn, *pm = vpm;
    float_status fpst;

    /*
     * Make a copy of float_status because this operation does not
     * update the cumulative fp exception status.  It also produces
     * default nans.
     */
    fpst = *(float_status *)vst;
    set_default_nan_mode(true, &fpst);

    for (row = 0; row < oprsz; ) {
        uint16_t pa = pn[H2(row >> 4)];
        do {
            if (pa & 1) {
                void *vza_row = vza + tile_vslice_offset(row);
                uint32_t n = *(uint32_t *)(vzn + H1_4(row)) ^ neg;

                for (col = 0; col < oprsz; ) {
                    uint16_t pb = pm[H2(col >> 4)];
                    do {
                        if (pb & 1) {
                            uint32_t *a = vza_row + H1_4(col);
                            uint32_t *m = vzm + H1_4(col);
                            *a = float32_muladd(n, *m, *a, 0, vst);
                        }
                        col += 4;
                        pb >>= 4;
                    } while (col & 15);
                }
            }
            row += 4;
            pa >>= 4;
        } while (row & 15);
    }
}

void HELPER(sme_fmopa_d)(void *vza, void *vzn, void *vzm, void *vpn,
                         void *vpm, void *vst, uint32_t desc)
{
    intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
    uint64_t neg = (uint64_t)simd_data(desc) << 63;
    uint64_t *za = vza, *zn = vzn, *zm = vzm;
    uint8_t *pn = vpn, *pm = vpm;
    float_status fpst = *(float_status *)vst;

    set_default_nan_mode(true, &fpst);

    for (row = 0; row < oprsz; ++row) {
        if (pn[H1(row)] & 1) {
            uint64_t *za_row = &za[tile_vslice_index(row)];
            uint64_t n = zn[row] ^ neg;

            for (col = 0; col < oprsz; ++col) {
                if (pm[H1(col)] & 1) {
                    uint64_t *a = &za_row[col];
                    *a = float64_muladd(n, zm[col], *a, 0, &fpst);
                }
            }
        }
    }
}

/*
 * Alter PAIR as needed for controlling predicates being false,
 * and for NEG on an enabled row element.
 */
static inline uint32_t f16mop_adj_pair(uint32_t pair, uint32_t pg, uint32_t neg)
{
    /*
     * The pseudocode uses a conditional negate after the conditional zero.
     * It is simpler here to unconditionally negate before conditional zero.
     */
    pair ^= neg;
    if (!(pg & 1)) {
        pair &= 0xffff0000u;
    }
    if (!(pg & 4)) {
        pair &= 0x0000ffffu;
    }
    return pair;
}

static float32 f16_dotadd(float32 sum, uint32_t e1, uint32_t e2,
                          float_status *s_std, float_status *s_odd)
{
    float64 e1r = float16_to_float64(e1 & 0xffff, true, s_std);
    float64 e1c = float16_to_float64(e1 >> 16, true, s_std);
    float64 e2r = float16_to_float64(e2 & 0xffff, true, s_std);
    float64 e2c = float16_to_float64(e2 >> 16, true, s_std);
    float64 t64;
    float32 t32;

    /*
     * The ARM pseudocode function FPDot performs both multiplies
     * and the add with a single rounding operation.  Emulate this
     * by performing the first multiply in round-to-odd, then doing
     * the second multiply as fused multiply-add, and rounding to
     * float32 all in one step.
     */
    t64 = float64_mul(e1r, e2r, s_odd);
    t64 = float64r32_muladd(e1c, e2c, t64, 0, s_std);

    /* This conversion is exact, because we've already rounded. */
    t32 = float64_to_float32(t64, s_std);

    /* The final accumulation step is not fused. */
    return float32_add(sum, t32, s_std);
}

void HELPER(sme_fmopa_h)(void *vza, void *vzn, void *vzm, void *vpn,
                         void *vpm, void *vst, uint32_t desc)
{
    intptr_t row, col, oprsz = simd_maxsz(desc);
    uint32_t neg = simd_data(desc) * 0x80008000u;
    uint16_t *pn = vpn, *pm = vpm;
    float_status fpst_odd, fpst_std;

    /*
     * Make a copy of float_status because this operation does not
     * update the cumulative fp exception status.  It also produces
     * default nans.  Make a second copy with round-to-odd -- see above.
     */
    fpst_std = *(float_status *)vst;
    set_default_nan_mode(true, &fpst_std);
    fpst_odd = fpst_std;
    set_float_rounding_mode(float_round_to_odd, &fpst_odd);

    for (row = 0; row < oprsz; ) {
        uint16_t prow = pn[H2(row >> 4)];
        do {
            void *vza_row = vza + tile_vslice_offset(row);
            uint32_t n = *(uint32_t *)(vzn + H1_4(row));

            n = f16mop_adj_pair(n, prow, neg);

            for (col = 0; col < oprsz; ) {
                uint16_t pcol = pm[H2(col >> 4)];
                do {
                    if (prow & pcol & 0b0101) {
                        uint32_t *a = vza_row + H1_4(col);
                        uint32_t m = *(uint32_t *)(vzm + H1_4(col));

                        m = f16mop_adj_pair(m, pcol, 0);
                        *a = f16_dotadd(*a, n, m, &fpst_std, &fpst_odd);

                        col += 4;
                        pcol >>= 4;
                    }
                } while (col & 15);
            }
            row += 4;
            prow >>= 4;
        } while (row & 15);
    }
}

void HELPER(sme_bfmopa)(void *vza, void *vzn, void *vzm, void *vpn,
                        void *vpm, uint32_t desc)
{
    intptr_t row, col, oprsz = simd_maxsz(desc);
    uint32_t neg = simd_data(desc) * 0x80008000u;
    uint16_t *pn = vpn, *pm = vpm;

    for (row = 0; row < oprsz; ) {
        uint16_t prow = pn[H2(row >> 4)];
        do {
            void *vza_row = vza + tile_vslice_offset(row);
            uint32_t n = *(uint32_t *)(vzn + H1_4(row));

            n = f16mop_adj_pair(n, prow, neg);

            for (col = 0; col < oprsz; ) {
                uint16_t pcol = pm[H2(col >> 4)];
                do {
                    if (prow & pcol & 0b0101) {
                        uint32_t *a = vza_row + H1_4(col);
                        uint32_t m = *(uint32_t *)(vzm + H1_4(col));

                        m = f16mop_adj_pair(m, pcol, 0);
                        *a = bfdotadd(*a, n, m);

                        col += 4;
                        pcol >>= 4;
                    }
                } while (col & 15);
            }
            row += 4;
            prow >>= 4;
        } while (row & 15);
    }
}

typedef uint64_t IMOPFn(uint64_t, uint64_t, uint64_t, uint8_t, bool);

static inline void do_imopa(uint64_t *za, uint64_t *zn, uint64_t *zm,
                            uint8_t *pn, uint8_t *pm,
                            uint32_t desc, IMOPFn *fn)
{
    intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
    bool neg = simd_data(desc);

    for (row = 0; row < oprsz; ++row) {
        uint8_t pa = pn[H1(row)];
        uint64_t *za_row = &za[tile_vslice_index(row)];
        uint64_t n = zn[row];

        for (col = 0; col < oprsz; ++col) {
            uint8_t pb = pm[H1(col)];
            uint64_t *a = &za_row[col];

            *a = fn(n, zm[col], *a, pa & pb, neg);
        }
    }
}

#define DEF_IMOP_32(NAME, NTYPE, MTYPE) \
static uint64_t NAME(uint64_t n, uint64_t m, uint64_t a, uint8_t p, bool neg) \
{                                                                           \
    uint32_t sum0 = 0, sum1 = 0;                                            \
    /* Apply P to N as a mask, making the inactive elements 0. */           \
    n &= expand_pred_b(p);                                                  \
    sum0 += (NTYPE)(n >> 0) * (MTYPE)(m >> 0);                              \
    sum0 += (NTYPE)(n >> 8) * (MTYPE)(m >> 8);                              \
    sum0 += (NTYPE)(n >> 16) * (MTYPE)(m >> 16);                            \
    sum0 += (NTYPE)(n >> 24) * (MTYPE)(m >> 24);                            \
    sum1 += (NTYPE)(n >> 32) * (MTYPE)(m >> 32);                            \
    sum1 += (NTYPE)(n >> 40) * (MTYPE)(m >> 40);                            \
    sum1 += (NTYPE)(n >> 48) * (MTYPE)(m >> 48);                            \
    sum1 += (NTYPE)(n >> 56) * (MTYPE)(m >> 56);                            \
    if (neg) {                                                              \
        sum0 = (uint32_t)a - sum0, sum1 = (uint32_t)(a >> 32) - sum1;       \
    } else {                                                                \
        sum0 = (uint32_t)a + sum0, sum1 = (uint32_t)(a >> 32) + sum1;       \
    }                                                                       \
    return ((uint64_t)sum1 << 32) | sum0;                                   \
}

#define DEF_IMOP_64(NAME, NTYPE, MTYPE) \
static uint64_t NAME(uint64_t n, uint64_t m, uint64_t a, uint8_t p, bool neg) \
{                                                                           \
    uint64_t sum = 0;                                                       \
    /* Apply P to N as a mask, making the inactive elements 0. */           \
    n &= expand_pred_h(p);                                                  \
    sum += (NTYPE)(n >> 0) * (MTYPE)(m >> 0);                               \
    sum += (NTYPE)(n >> 16) * (MTYPE)(m >> 16);                             \
    sum += (NTYPE)(n >> 32) * (MTYPE)(m >> 32);                             \
    sum += (NTYPE)(n >> 48) * (MTYPE)(m >> 48);                             \
    return neg ? a - sum : a + sum;                                         \
}

DEF_IMOP_32(smopa_s, int8_t, int8_t)
DEF_IMOP_32(umopa_s, uint8_t, uint8_t)
DEF_IMOP_32(sumopa_s, int8_t, uint8_t)
DEF_IMOP_32(usmopa_s, uint8_t, int8_t)

DEF_IMOP_64(smopa_d, int16_t, int16_t)
DEF_IMOP_64(umopa_d, uint16_t, uint16_t)
DEF_IMOP_64(sumopa_d, int16_t, uint16_t)
DEF_IMOP_64(usmopa_d, uint16_t, int16_t)

#define DEF_IMOPH(NAME) \
    void HELPER(sme_##NAME)(void *vza, void *vzn, void *vzm, void *vpn,      \
                            void *vpm, uint32_t desc)                        \
    { do_imopa(vza, vzn, vzm, vpn, vpm, desc, NAME); }

DEF_IMOPH(smopa_s)
DEF_IMOPH(umopa_s)
DEF_IMOPH(sumopa_s)
DEF_IMOPH(usmopa_s)
DEF_IMOPH(smopa_d)
DEF_IMOPH(umopa_d)
DEF_IMOPH(sumopa_d)
DEF_IMOPH(usmopa_d)