aboutsummaryrefslogtreecommitdiff
path: root/target/arm/psci.c
blob: 6c1239bb9685a00ef7d9ad883ba4c1a0e87ada8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/*
 * Copyright (C) 2014 - Linaro
 * Author: Rob Herring <rob.herring@linaro.org>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "kvm-consts.h"
#include "qemu/main-loop.h"
#include "sysemu/runstate.h"
#include "internals.h"
#include "arm-powerctl.h"

bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
{
    /*
     * Return true if the exception type matches the configured PSCI conduit.
     * This is called before the SMC/HVC instruction is executed, to decide
     * whether we should treat it as a PSCI call or with the architecturally
     * defined behaviour for an SMC or HVC (which might be UNDEF or trap
     * to EL2 or to EL3).
     */

    switch (excp_type) {
    case EXCP_HVC:
        if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_HVC) {
            return false;
        }
        break;
    case EXCP_SMC:
        if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
            return false;
        }
        break;
    default:
        return false;
    }

    return true;
}

void arm_handle_psci_call(ARMCPU *cpu)
{
    /*
     * This function partially implements the logic for dispatching Power State
     * Coordination Interface (PSCI) calls (as described in ARM DEN 0022D.b),
     * to the extent required for bringing up and taking down secondary cores,
     * and for handling reset and poweroff requests.
     * Additional information about the calling convention used is available in
     * the document 'SMC Calling Convention' (ARM DEN 0028)
     */
    CPUARMState *env = &cpu->env;
    uint64_t param[4];
    uint64_t context_id, mpidr;
    target_ulong entry;
    int32_t ret = 0;
    int i;

    for (i = 0; i < 4; i++) {
        /*
         * All PSCI functions take explicit 32-bit or native int sized
         * arguments so we can simply zero-extend all arguments regardless
         * of which exact function we are about to call.
         */
        param[i] = is_a64(env) ? env->xregs[i] : env->regs[i];
    }

    if ((param[0] & QEMU_PSCI_0_2_64BIT) && !is_a64(env)) {
        ret = QEMU_PSCI_RET_NOT_SUPPORTED;
        goto err;
    }

    switch (param[0]) {
        CPUState *target_cpu_state;
        ARMCPU *target_cpu;

    case QEMU_PSCI_0_2_FN_PSCI_VERSION:
        ret = QEMU_PSCI_VERSION_1_1;
        break;
    case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
        ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
        break;
    case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
    case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
        mpidr = param[1];

        switch (param[2]) {
        case 0:
            target_cpu_state = arm_get_cpu_by_id(mpidr);
            if (!target_cpu_state) {
                ret = QEMU_PSCI_RET_INVALID_PARAMS;
                break;
            }
            target_cpu = ARM_CPU(target_cpu_state);

            g_assert(qemu_mutex_iothread_locked());
            ret = target_cpu->power_state;
            break;
        default:
            /* Everything above affinity level 0 is always on. */
            ret = 0;
        }
        break;
    case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
        /* QEMU reset and shutdown are async requests, but PSCI
         * mandates that we never return from the reset/shutdown
         * call, so power the CPU off now so it doesn't execute
         * anything further.
         */
        goto cpu_off;
    case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
        goto cpu_off;
    case QEMU_PSCI_0_1_FN_CPU_ON:
    case QEMU_PSCI_0_2_FN_CPU_ON:
    case QEMU_PSCI_0_2_FN64_CPU_ON:
    {
        /* The PSCI spec mandates that newly brought up CPUs start
         * in the highest exception level which exists and is enabled
         * on the calling CPU. Since the QEMU PSCI implementation is
         * acting as a "fake EL3" or "fake EL2" firmware, this for us
         * means that we want to start at the highest NS exception level
         * that we are providing to the guest.
         * The execution mode should be that which is currently in use
         * by the same exception level on the calling CPU.
         * The CPU should be started with the context_id value
         * in x0 (if AArch64) or r0 (if AArch32).
         */
        int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
        bool target_aarch64 = arm_el_is_aa64(env, target_el);

        mpidr = param[1];
        entry = param[2];
        context_id = param[3];
        ret = arm_set_cpu_on(mpidr, entry, context_id,
                             target_el, target_aarch64);
        break;
    }
    case QEMU_PSCI_0_1_FN_CPU_OFF:
    case QEMU_PSCI_0_2_FN_CPU_OFF:
        goto cpu_off;
    case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
    case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
    case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
        /* Affinity levels are not supported in QEMU */
        if (param[1] & 0xfffe0000) {
            ret = QEMU_PSCI_RET_INVALID_PARAMS;
            break;
        }
        /* Powerdown is not supported, we always go into WFI */
        if (is_a64(env)) {
            env->xregs[0] = 0;
        } else {
            env->regs[0] = 0;
        }
        helper_wfi(env, 4);
        break;
    case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
        switch (param[1]) {
        case QEMU_PSCI_0_2_FN_PSCI_VERSION:
        case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
        case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
        case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
        case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
        case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
        case QEMU_PSCI_0_1_FN_CPU_ON:
        case QEMU_PSCI_0_2_FN_CPU_ON:
        case QEMU_PSCI_0_2_FN64_CPU_ON:
        case QEMU_PSCI_0_1_FN_CPU_OFF:
        case QEMU_PSCI_0_2_FN_CPU_OFF:
        case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
        case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
        case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
        case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
            if (!(param[1] & QEMU_PSCI_0_2_64BIT) || is_a64(env)) {
                ret = 0;
                break;
            }
            /* fallthrough */
        case QEMU_PSCI_0_1_FN_MIGRATE:
        case QEMU_PSCI_0_2_FN_MIGRATE:
        default:
            ret = QEMU_PSCI_RET_NOT_SUPPORTED;
            break;
        }
        break;
    case QEMU_PSCI_0_1_FN_MIGRATE:
    case QEMU_PSCI_0_2_FN_MIGRATE:
    default:
        ret = QEMU_PSCI_RET_NOT_SUPPORTED;
        break;
    }

err:
    if (is_a64(env)) {
        env->xregs[0] = ret;
    } else {
        env->regs[0] = ret;
    }
    return;

cpu_off:
    ret = arm_set_cpu_off(cpu->mp_affinity);
    /* notreached */
    /* sanity check in case something failed */
    assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
}