aboutsummaryrefslogtreecommitdiff
path: root/linux-user/arm/cpu_loop.c
blob: f153ab503a8a91ca1da3997585a295edd6db80c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/*
 *  qemu user cpu loop
 *
 *  Copyright (c) 2003-2008 Fabrice Bellard
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu.h"
#include "user-internals.h"
#include "elf.h"
#include "cpu_loop-common.h"
#include "signal-common.h"
#include "semihosting/common-semi.h"
#include "target/arm/syndrome.h"

#define get_user_code_u32(x, gaddr, env)                \
    ({ abi_long __r = get_user_u32((x), (gaddr));       \
        if (!__r && bswap_code(arm_sctlr_b(env))) {     \
            (x) = bswap32(x);                           \
        }                                               \
        __r;                                            \
    })

#define get_user_code_u16(x, gaddr, env)                \
    ({ abi_long __r = get_user_u16((x), (gaddr));       \
        if (!__r && bswap_code(arm_sctlr_b(env))) {     \
            (x) = bswap16(x);                           \
        }                                               \
        __r;                                            \
    })

#define get_user_data_u32(x, gaddr, env)                \
    ({ abi_long __r = get_user_u32((x), (gaddr));       \
        if (!__r && arm_cpu_bswap_data(env)) {          \
            (x) = bswap32(x);                           \
        }                                               \
        __r;                                            \
    })

#define get_user_data_u16(x, gaddr, env)                \
    ({ abi_long __r = get_user_u16((x), (gaddr));       \
        if (!__r && arm_cpu_bswap_data(env)) {          \
            (x) = bswap16(x);                           \
        }                                               \
        __r;                                            \
    })

#define put_user_data_u32(x, gaddr, env)                \
    ({ typeof(x) __x = (x);                             \
        if (arm_cpu_bswap_data(env)) {                  \
            __x = bswap32(__x);                         \
        }                                               \
        put_user_u32(__x, (gaddr));                     \
    })

#define put_user_data_u16(x, gaddr, env)                \
    ({ typeof(x) __x = (x);                             \
        if (arm_cpu_bswap_data(env)) {                  \
            __x = bswap16(__x);                         \
        }                                               \
        put_user_u16(__x, (gaddr));                     \
    })

/* Commpage handling -- there is no commpage for AArch64 */

/*
 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
 * Input:
 * r0 = pointer to oldval
 * r1 = pointer to newval
 * r2 = pointer to target value
 *
 * Output:
 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
 * C set if *ptr was changed, clear if no exchange happened
 *
 * Note segv's in kernel helpers are a bit tricky, we can set the
 * data address sensibly but the PC address is just the entry point.
 */
static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
{
    uint64_t oldval, newval, val;
    uint32_t addr, cpsr;

    /* Based on the 32 bit code in do_kernel_trap */

    /* XXX: This only works between threads, not between processes.
       It's probably possible to implement this with native host
       operations. However things like ldrex/strex are much harder so
       there's not much point trying.  */
    start_exclusive();
    cpsr = cpsr_read(env);
    addr = env->regs[2];

    if (get_user_u64(oldval, env->regs[0])) {
        env->exception.vaddress = env->regs[0];
        goto segv;
    };

    if (get_user_u64(newval, env->regs[1])) {
        env->exception.vaddress = env->regs[1];
        goto segv;
    };

    if (get_user_u64(val, addr)) {
        env->exception.vaddress = addr;
        goto segv;
    }

    if (val == oldval) {
        val = newval;

        if (put_user_u64(val, addr)) {
            env->exception.vaddress = addr;
            goto segv;
        };

        env->regs[0] = 0;
        cpsr |= CPSR_C;
    } else {
        env->regs[0] = -1;
        cpsr &= ~CPSR_C;
    }
    cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
    end_exclusive();
    return;

segv:
    end_exclusive();
    /* We get the PC of the entry address - which is as good as anything,
       on a real kernel what you get depends on which mode it uses. */
    /* XXX: check env->error_code */
    force_sig_fault(TARGET_SIGSEGV, TARGET_SEGV_MAPERR,
                    env->exception.vaddress);
}

/* Handle a jump to the kernel code page.  */
static int
do_kernel_trap(CPUARMState *env)
{
    uint32_t addr;
    uint32_t cpsr;
    uint32_t val;

    switch (env->regs[15]) {
    case 0xffff0fa0: /* __kernel_memory_barrier */
        /* ??? No-op. Will need to do better for SMP.  */
        break;
    case 0xffff0fc0: /* __kernel_cmpxchg */
         /* XXX: This only works between threads, not between processes.
            It's probably possible to implement this with native host
            operations. However things like ldrex/strex are much harder so
            there's not much point trying.  */
        start_exclusive();
        cpsr = cpsr_read(env);
        addr = env->regs[2];
        /* FIXME: This should SEGV if the access fails.  */
        if (get_user_u32(val, addr))
            val = ~env->regs[0];
        if (val == env->regs[0]) {
            val = env->regs[1];
            /* FIXME: Check for segfaults.  */
            put_user_u32(val, addr);
            env->regs[0] = 0;
            cpsr |= CPSR_C;
        } else {
            env->regs[0] = -1;
            cpsr &= ~CPSR_C;
        }
        cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
        end_exclusive();
        break;
    case 0xffff0fe0: /* __kernel_get_tls */
        env->regs[0] = cpu_get_tls(env);
        break;
    case 0xffff0f60: /* __kernel_cmpxchg64 */
        arm_kernel_cmpxchg64_helper(env);
        break;

    default:
        return 1;
    }
    /* Jump back to the caller.  */
    addr = env->regs[14];
    if (addr & 1) {
        env->thumb = 1;
        addr &= ~1;
    }
    env->regs[15] = addr;

    return 0;
}

static bool insn_is_linux_bkpt(uint32_t opcode, bool is_thumb)
{
    /*
     * Return true if this insn is one of the three magic UDF insns
     * which the kernel treats as breakpoint insns.
     */
    if (!is_thumb) {
        return (opcode & 0x0fffffff) == 0x07f001f0;
    } else {
        /*
         * Note that we get the two halves of the 32-bit T32 insn
         * in the opposite order to the value the kernel uses in
         * its undef_hook struct.
         */
        return ((opcode & 0xffff) == 0xde01) || (opcode == 0xa000f7f0);
    }
}

static bool emulate_arm_fpa11(CPUARMState *env, uint32_t opcode)
{
    TaskState *ts = env_cpu(env)->opaque;
    int rc = EmulateAll(opcode, &ts->fpa, env);
    int raise, enabled;

    if (rc == 0) {
        /* Illegal instruction */
        return false;
    }
    if (rc > 0) {
        /* Everything ok. */
        env->regs[15] += 4;
        return true;
    }

    /* FP exception */
    rc = -rc;
    raise = 0;

    /* Translate softfloat flags to FPSR flags */
    if (rc & float_flag_invalid) {
        raise |= BIT_IOC;
    }
    if (rc & float_flag_divbyzero) {
        raise |= BIT_DZC;
    }
    if (rc & float_flag_overflow) {
        raise |= BIT_OFC;
    }
    if (rc & float_flag_underflow) {
        raise |= BIT_UFC;
    }
    if (rc & float_flag_inexact) {
        raise |= BIT_IXC;
    }

    /* Accumulate unenabled exceptions */
    enabled = ts->fpa.fpsr >> 16;
    ts->fpa.fpsr |= raise & ~enabled;

    if (raise & enabled) {
        /*
         * The kernel's nwfpe emulator does not pass a real si_code.
         * It merely uses send_sig(SIGFPE, current, 1), which results in
         * __send_signal() filling out SI_KERNEL with pid and uid 0 (under
         * the "SEND_SIG_PRIV" case). That's what our force_sig() does.
         */
        force_sig(TARGET_SIGFPE);
    } else {
        env->regs[15] += 4;
    }
    return true;
}

void cpu_loop(CPUARMState *env)
{
    CPUState *cs = env_cpu(env);
    int trapnr, si_signo, si_code;
    unsigned int n, insn;
    abi_ulong ret;

    for(;;) {
        cpu_exec_start(cs);
        trapnr = cpu_exec(cs);
        cpu_exec_end(cs);
        process_queued_cpu_work(cs);

        switch(trapnr) {
        case EXCP_UDEF:
        case EXCP_NOCP:
        case EXCP_INVSTATE:
            {
                uint32_t opcode;

                /* we handle the FPU emulation here, as Linux */
                /* we get the opcode */
                /* FIXME - what to do if get_user() fails? */
                get_user_code_u32(opcode, env->regs[15], env);

                /*
                 * The Linux kernel treats some UDF patterns specially
                 * to use as breakpoints (instead of the architectural
                 * bkpt insn). These should trigger a SIGTRAP rather
                 * than SIGILL.
                 */
                if (insn_is_linux_bkpt(opcode, env->thumb)) {
                    goto excp_debug;
                }

                if (!env->thumb && emulate_arm_fpa11(env, opcode)) {
                    break;
                }

                force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLOPN,
                                env->regs[15]);
            }
            break;
        case EXCP_SWI:
            {
                env->eabi = 1;
                /* system call */
                if (env->thumb) {
                    /* Thumb is always EABI style with syscall number in r7 */
                    n = env->regs[7];
                } else {
                    /*
                     * Equivalent of kernel CONFIG_OABI_COMPAT: read the
                     * Arm SVC insn to extract the immediate, which is the
                     * syscall number in OABI.
                     */
                    /* FIXME - what to do if get_user() fails? */
                    get_user_code_u32(insn, env->regs[15] - 4, env);
                    n = insn & 0xffffff;
                    if (n == 0) {
                        /* zero immediate: EABI, syscall number in r7 */
                        n = env->regs[7];
                    } else {
                        /*
                         * This XOR matches the kernel code: an immediate
                         * in the valid range (0x900000 .. 0x9fffff) is
                         * converted into the correct EABI-style syscall
                         * number; invalid immediates end up as values
                         * > 0xfffff and are handled below as out-of-range.
                         */
                        n ^= ARM_SYSCALL_BASE;
                        env->eabi = 0;
                    }
                }

                if (n > ARM_NR_BASE) {
                    switch (n) {
                    case ARM_NR_cacheflush:
                        /* nop */
                        break;
                    case ARM_NR_set_tls:
                        cpu_set_tls(env, env->regs[0]);
                        env->regs[0] = 0;
                        break;
                    case ARM_NR_breakpoint:
                        env->regs[15] -= env->thumb ? 2 : 4;
                        goto excp_debug;
                    case ARM_NR_get_tls:
                        env->regs[0] = cpu_get_tls(env);
                        break;
                    default:
                        if (n < 0xf0800) {
                            /*
                             * Syscalls 0xf0000..0xf07ff (or 0x9f0000..
                             * 0x9f07ff in OABI numbering) are defined
                             * to return -ENOSYS rather than raising
                             * SIGILL. Note that we have already
                             * removed the 0x900000 prefix.
                             */
                            qemu_log_mask(LOG_UNIMP,
                                "qemu: Unsupported ARM syscall: 0x%x\n",
                                          n);
                            env->regs[0] = -TARGET_ENOSYS;
                        } else {
                            /*
                             * Otherwise SIGILL. This includes any SWI with
                             * immediate not originally 0x9fxxxx, because
                             * of the earlier XOR.
                             * Like the real kernel, we report the addr of the
                             * SWI in the siginfo si_addr but leave the PC
                             * pointing at the insn after the SWI.
                             */
                            abi_ulong faultaddr = env->regs[15];
                            faultaddr -= env->thumb ? 2 : 4;
                            force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLTRP,
                                            faultaddr);
                        }
                        break;
                    }
                } else {
                    ret = do_syscall(env,
                                     n,
                                     env->regs[0],
                                     env->regs[1],
                                     env->regs[2],
                                     env->regs[3],
                                     env->regs[4],
                                     env->regs[5],
                                     0, 0);
                    if (ret == -QEMU_ERESTARTSYS) {
                        env->regs[15] -= env->thumb ? 2 : 4;
                    } else if (ret != -QEMU_ESIGRETURN) {
                        env->regs[0] = ret;
                    }
                }
            }
            break;
        case EXCP_SEMIHOST:
            env->regs[0] = do_common_semihosting(cs);
            env->regs[15] += env->thumb ? 2 : 4;
            break;
        case EXCP_INTERRUPT:
            /* just indicate that signals should be handled asap */
            break;
        case EXCP_PREFETCH_ABORT:
        case EXCP_DATA_ABORT:
            /* For user-only we don't set TTBCR_EAE, so look at the FSR. */
            switch (env->exception.fsr & 0x1f) {
            case 0x1: /* Alignment */
                si_signo = TARGET_SIGBUS;
                si_code = TARGET_BUS_ADRALN;
                break;
            case 0x3: /* Access flag fault, level 1 */
            case 0x6: /* Access flag fault, level 2 */
            case 0x9: /* Domain fault, level 1 */
            case 0xb: /* Domain fault, level 2 */
            case 0xd: /* Permision fault, level 1 */
            case 0xf: /* Permision fault, level 2 */
                si_signo = TARGET_SIGSEGV;
                si_code = TARGET_SEGV_ACCERR;
                break;
            case 0x5: /* Translation fault, level 1 */
            case 0x7: /* Translation fault, level 2 */
                si_signo = TARGET_SIGSEGV;
                si_code = TARGET_SEGV_MAPERR;
                break;
            default:
                g_assert_not_reached();
            }
            force_sig_fault(si_signo, si_code, env->exception.vaddress);
            break;
        case EXCP_DEBUG:
        case EXCP_BKPT:
        excp_debug:
            force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->regs[15]);
            break;
        case EXCP_KERNEL_TRAP:
            if (do_kernel_trap(env))
              goto error;
            break;
        case EXCP_YIELD:
            /* nothing to do here for user-mode, just resume guest code */
            break;
        case EXCP_ATOMIC:
            cpu_exec_step_atomic(cs);
            break;
        default:
        error:
            EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
            abort();
        }
        process_pending_signals(env);
    }
}

void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
{
    CPUState *cpu = env_cpu(env);
    TaskState *ts = cpu->opaque;
    struct image_info *info = ts->info;
    int i;

    cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC,
               CPSRWriteByInstr);
    for(i = 0; i < 16; i++) {
        env->regs[i] = regs->uregs[i];
    }
#ifdef TARGET_WORDS_BIGENDIAN
    /* Enable BE8.  */
    if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
        && (info->elf_flags & EF_ARM_BE8)) {
        env->uncached_cpsr |= CPSR_E;
        env->cp15.sctlr_el[1] |= SCTLR_E0E;
    } else {
        env->cp15.sctlr_el[1] |= SCTLR_B;
    }
    arm_rebuild_hflags(env);
#endif

    ts->stack_base = info->start_stack;
    ts->heap_base = info->brk;
    /* This will be filled in on the first SYS_HEAPINFO call.  */
    ts->heap_limit = 0;
}