aboutsummaryrefslogtreecommitdiff
path: root/include/exec/exec-all.h
blob: e948992a809c3d6f246a2254a2c8711380b7f277 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
/*
 * internal execution defines for qemu
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#ifndef EXEC_ALL_H
#define EXEC_ALL_H

#include "cpu.h"
#ifdef CONFIG_TCG
#include "exec/cpu_ldst.h"
#endif

/* allow to see translation results - the slowdown should be negligible, so we leave it */
#define DEBUG_DISAS

/* Page tracking code uses ram addresses in system mode, and virtual
   addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
   type.  */
#if defined(CONFIG_USER_ONLY)
typedef abi_ulong tb_page_addr_t;
#define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
#else
typedef ram_addr_t tb_page_addr_t;
#define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
#endif

/**
 * cpu_restore_state:
 * @cpu: the vCPU state is to be restore to
 * @searched_pc: the host PC the fault occurred at
 * @will_exit: true if the TB executed will be interrupted after some
               cpu adjustments. Required for maintaining the correct
               icount valus
 * @return: true if state was restored, false otherwise
 *
 * Attempt to restore the state for a fault occurring in translated
 * code. If the searched_pc is not in translated code no state is
 * restored and the function returns false.
 */
bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);

G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu);
G_NORETURN void cpu_loop_exit(CPUState *cpu);
G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);

/**
 * cpu_loop_exit_requested:
 * @cpu: The CPU state to be tested
 *
 * Indicate if somebody asked for a return of the CPU to the main loop
 * (e.g., via cpu_exit() or cpu_interrupt()).
 *
 * This is helpful for architectures that support interruptible
 * instructions. After writing back all state to registers/memory, this
 * call can be used to check if it makes sense to return to the main loop
 * or to continue executing the interruptible instruction.
 */
static inline bool cpu_loop_exit_requested(CPUState *cpu)
{
    return (int32_t)qatomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0;
}

#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
/* cputlb.c */
/**
 * tlb_init - initialize a CPU's TLB
 * @cpu: CPU whose TLB should be initialized
 */
void tlb_init(CPUState *cpu);
/**
 * tlb_destroy - destroy a CPU's TLB
 * @cpu: CPU whose TLB should be destroyed
 */
void tlb_destroy(CPUState *cpu);
/**
 * tlb_flush_page:
 * @cpu: CPU whose TLB should be flushed
 * @addr: virtual address of page to be flushed
 *
 * Flush one page from the TLB of the specified CPU, for all
 * MMU indexes.
 */
void tlb_flush_page(CPUState *cpu, target_ulong addr);
/**
 * tlb_flush_page_all_cpus:
 * @cpu: src CPU of the flush
 * @addr: virtual address of page to be flushed
 *
 * Flush one page from the TLB of the specified CPU, for all
 * MMU indexes.
 */
void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
/**
 * tlb_flush_page_all_cpus_synced:
 * @cpu: src CPU of the flush
 * @addr: virtual address of page to be flushed
 *
 * Flush one page from the TLB of the specified CPU, for all MMU
 * indexes like tlb_flush_page_all_cpus except the source vCPUs work
 * is scheduled as safe work meaning all flushes will be complete once
 * the source vCPUs safe work is complete. This will depend on when
 * the guests translation ends the TB.
 */
void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
/**
 * tlb_flush:
 * @cpu: CPU whose TLB should be flushed
 *
 * Flush the entire TLB for the specified CPU. Most CPU architectures
 * allow the implementation to drop entries from the TLB at any time
 * so this is generally safe. If more selective flushing is required
 * use one of the other functions for efficiency.
 */
void tlb_flush(CPUState *cpu);
/**
 * tlb_flush_all_cpus:
 * @cpu: src CPU of the flush
 */
void tlb_flush_all_cpus(CPUState *src_cpu);
/**
 * tlb_flush_all_cpus_synced:
 * @cpu: src CPU of the flush
 *
 * Like tlb_flush_all_cpus except this except the source vCPUs work is
 * scheduled as safe work meaning all flushes will be complete once
 * the source vCPUs safe work is complete. This will depend on when
 * the guests translation ends the TB.
 */
void tlb_flush_all_cpus_synced(CPUState *src_cpu);
/**
 * tlb_flush_page_by_mmuidx:
 * @cpu: CPU whose TLB should be flushed
 * @addr: virtual address of page to be flushed
 * @idxmap: bitmap of MMU indexes to flush
 *
 * Flush one page from the TLB of the specified CPU, for the specified
 * MMU indexes.
 */
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
                              uint16_t idxmap);
/**
 * tlb_flush_page_by_mmuidx_all_cpus:
 * @cpu: Originating CPU of the flush
 * @addr: virtual address of page to be flushed
 * @idxmap: bitmap of MMU indexes to flush
 *
 * Flush one page from the TLB of all CPUs, for the specified
 * MMU indexes.
 */
void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
                                       uint16_t idxmap);
/**
 * tlb_flush_page_by_mmuidx_all_cpus_synced:
 * @cpu: Originating CPU of the flush
 * @addr: virtual address of page to be flushed
 * @idxmap: bitmap of MMU indexes to flush
 *
 * Flush one page from the TLB of all CPUs, for the specified MMU
 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
 * vCPUs work is scheduled as safe work meaning all flushes will be
 * complete once  the source vCPUs safe work is complete. This will
 * depend on when the guests translation ends the TB.
 */
void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
                                              uint16_t idxmap);
/**
 * tlb_flush_by_mmuidx:
 * @cpu: CPU whose TLB should be flushed
 * @wait: If true ensure synchronisation by exiting the cpu_loop
 * @idxmap: bitmap of MMU indexes to flush
 *
 * Flush all entries from the TLB of the specified CPU, for the specified
 * MMU indexes.
 */
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
/**
 * tlb_flush_by_mmuidx_all_cpus:
 * @cpu: Originating CPU of the flush
 * @idxmap: bitmap of MMU indexes to flush
 *
 * Flush all entries from all TLBs of all CPUs, for the specified
 * MMU indexes.
 */
void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
/**
 * tlb_flush_by_mmuidx_all_cpus_synced:
 * @cpu: Originating CPU of the flush
 * @idxmap: bitmap of MMU indexes to flush
 *
 * Flush all entries from all TLBs of all CPUs, for the specified
 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
 * vCPUs work is scheduled as safe work meaning all flushes will be
 * complete once  the source vCPUs safe work is complete. This will
 * depend on when the guests translation ends the TB.
 */
void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);

/**
 * tlb_flush_page_bits_by_mmuidx
 * @cpu: CPU whose TLB should be flushed
 * @addr: virtual address of page to be flushed
 * @idxmap: bitmap of mmu indexes to flush
 * @bits: number of significant bits in address
 *
 * Similar to tlb_flush_page_mask, but with a bitmap of indexes.
 */
void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
                                   uint16_t idxmap, unsigned bits);

/* Similarly, with broadcast and syncing. */
void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
                                            uint16_t idxmap, unsigned bits);
void tlb_flush_page_bits_by_mmuidx_all_cpus_synced
    (CPUState *cpu, target_ulong addr, uint16_t idxmap, unsigned bits);

/**
 * tlb_flush_range_by_mmuidx
 * @cpu: CPU whose TLB should be flushed
 * @addr: virtual address of the start of the range to be flushed
 * @len: length of range to be flushed
 * @idxmap: bitmap of mmu indexes to flush
 * @bits: number of significant bits in address
 *
 * For each mmuidx in @idxmap, flush all pages within [@addr,@addr+@len),
 * comparing only the low @bits worth of each virtual page.
 */
void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
                               target_ulong len, uint16_t idxmap,
                               unsigned bits);

/* Similarly, with broadcast and syncing. */
void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
                                        target_ulong len, uint16_t idxmap,
                                        unsigned bits);
void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
                                               target_ulong addr,
                                               target_ulong len,
                                               uint16_t idxmap,
                                               unsigned bits);

/**
 * tlb_set_page_full:
 * @cpu: CPU context
 * @mmu_idx: mmu index of the tlb to modify
 * @vaddr: virtual address of the entry to add
 * @full: the details of the tlb entry
 *
 * Add an entry to @cpu tlb index @mmu_idx.  All of the fields of
 * @full must be filled, except for xlat_section, and constitute
 * the complete description of the translated page.
 *
 * This is generally called by the target tlb_fill function after
 * having performed a successful page table walk to find the physical
 * address and attributes for the translation.
 *
 * At most one entry for a given virtual address is permitted. Only a
 * single TARGET_PAGE_SIZE region is mapped; @full->lg_page_size is only
 * used by tlb_flush_page.
 */
void tlb_set_page_full(CPUState *cpu, int mmu_idx, target_ulong vaddr,
                       CPUTLBEntryFull *full);

/**
 * tlb_set_page_with_attrs:
 * @cpu: CPU to add this TLB entry for
 * @vaddr: virtual address of page to add entry for
 * @paddr: physical address of the page
 * @attrs: memory transaction attributes
 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
 * @mmu_idx: MMU index to insert TLB entry for
 * @size: size of the page in bytes
 *
 * Add an entry to this CPU's TLB (a mapping from virtual address
 * @vaddr to physical address @paddr) with the specified memory
 * transaction attributes. This is generally called by the target CPU
 * specific code after it has been called through the tlb_fill()
 * entry point and performed a successful page table walk to find
 * the physical address and attributes for the virtual address
 * which provoked the TLB miss.
 *
 * At most one entry for a given virtual address is permitted. Only a
 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
 * used by tlb_flush_page.
 */
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
                             hwaddr paddr, MemTxAttrs attrs,
                             int prot, int mmu_idx, target_ulong size);
/* tlb_set_page:
 *
 * This function is equivalent to calling tlb_set_page_with_attrs()
 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
 * as a convenience for CPUs which don't use memory transaction attributes.
 */
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
                  hwaddr paddr, int prot,
                  int mmu_idx, target_ulong size);
#else
static inline void tlb_init(CPUState *cpu)
{
}
static inline void tlb_destroy(CPUState *cpu)
{
}
static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
{
}
static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
{
}
static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
                                                  target_ulong addr)
{
}
static inline void tlb_flush(CPUState *cpu)
{
}
static inline void tlb_flush_all_cpus(CPUState *src_cpu)
{
}
static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
{
}
static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
                                            target_ulong addr, uint16_t idxmap)
{
}

static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
{
}
static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
                                                     target_ulong addr,
                                                     uint16_t idxmap)
{
}
static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
                                                            target_ulong addr,
                                                            uint16_t idxmap)
{
}
static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
{
}

static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
                                                       uint16_t idxmap)
{
}
static inline void tlb_flush_page_bits_by_mmuidx(CPUState *cpu,
                                                 target_ulong addr,
                                                 uint16_t idxmap,
                                                 unsigned bits)
{
}
static inline void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu,
                                                          target_ulong addr,
                                                          uint16_t idxmap,
                                                          unsigned bits)
{
}
static inline void
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
                                              uint16_t idxmap, unsigned bits)
{
}
static inline void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
                                             target_ulong len, uint16_t idxmap,
                                             unsigned bits)
{
}
static inline void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu,
                                                      target_ulong addr,
                                                      target_ulong len,
                                                      uint16_t idxmap,
                                                      unsigned bits)
{
}
static inline void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
                                                             target_ulong addr,
                                                             target_long len,
                                                             uint16_t idxmap,
                                                             unsigned bits)
{
}
#endif
/**
 * probe_access:
 * @env: CPUArchState
 * @addr: guest virtual address to look up
 * @size: size of the access
 * @access_type: read, write or execute permission
 * @mmu_idx: MMU index to use for lookup
 * @retaddr: return address for unwinding
 *
 * Look up the guest virtual address @addr.  Raise an exception if the
 * page does not satisfy @access_type.  Raise an exception if the
 * access (@addr, @size) hits a watchpoint.  For writes, mark a clean
 * page as dirty.
 *
 * Finally, return the host address for a page that is backed by RAM,
 * or NULL if the page requires I/O.
 */
void *probe_access(CPUArchState *env, target_ulong addr, int size,
                   MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);

static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
                                int mmu_idx, uintptr_t retaddr)
{
    return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
}

static inline void *probe_read(CPUArchState *env, target_ulong addr, int size,
                               int mmu_idx, uintptr_t retaddr)
{
    return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
}

/**
 * probe_access_flags:
 * @env: CPUArchState
 * @addr: guest virtual address to look up
 * @access_type: read, write or execute permission
 * @mmu_idx: MMU index to use for lookup
 * @nonfault: suppress the fault
 * @phost: return value for host address
 * @retaddr: return address for unwinding
 *
 * Similar to probe_access, loosely returning the TLB_FLAGS_MASK for
 * the page, and storing the host address for RAM in @phost.
 *
 * If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK.
 * Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags.
 * Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags.
 * For simplicity, all "mmio-like" flags are folded to TLB_MMIO.
 */
int probe_access_flags(CPUArchState *env, target_ulong addr,
                       MMUAccessType access_type, int mmu_idx,
                       bool nonfault, void **phost, uintptr_t retaddr);

#ifndef CONFIG_USER_ONLY
/**
 * probe_access_full:
 * Like probe_access_flags, except also return into @pfull.
 *
 * The CPUTLBEntryFull structure returned via @pfull is transient
 * and must be consumed or copied immediately, before any further
 * access or changes to TLB @mmu_idx.
 */
int probe_access_full(CPUArchState *env, target_ulong addr,
                      MMUAccessType access_type, int mmu_idx,
                      bool nonfault, void **phost,
                      CPUTLBEntryFull **pfull, uintptr_t retaddr);
#endif

#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */

/* Estimated block size for TB allocation.  */
/* ??? The following is based on a 2015 survey of x86_64 host output.
   Better would seem to be some sort of dynamically sized TB array,
   adapting to the block sizes actually being produced.  */
#if defined(CONFIG_SOFTMMU)
#define CODE_GEN_AVG_BLOCK_SIZE 400
#else
#define CODE_GEN_AVG_BLOCK_SIZE 150
#endif

/*
 * Translation Cache-related fields of a TB.
 * This struct exists just for convenience; we keep track of TB's in a binary
 * search tree, and the only fields needed to compare TB's in the tree are
 * @ptr and @size.
 * Note: the address of search data can be obtained by adding @size to @ptr.
 */
struct tb_tc {
    const void *ptr;    /* pointer to the translated code */
    size_t size;
};

struct TranslationBlock {
#if !TARGET_TB_PCREL
    /*
     * Guest PC corresponding to this block.  This must be the true
     * virtual address.  Therefore e.g. x86 stores EIP + CS_BASE, and
     * targets like Arm, MIPS, HP-PA, which reuse low bits for ISA or
     * privilege, must store those bits elsewhere.
     *
     * If TARGET_TB_PCREL, the opcodes for the TranslationBlock are
     * written such that the TB is associated only with the physical
     * page and may be run in any virtual address context.  In this case,
     * PC must always be taken from ENV in a target-specific manner.
     * Unwind information is taken as offsets from the page, to be
     * deposited into the "current" PC.
     */
    target_ulong pc;
#endif

    /*
     * Target-specific data associated with the TranslationBlock, e.g.:
     * x86: the original user, the Code Segment virtual base,
     * arm: an extension of tb->flags,
     * s390x: instruction data for EXECUTE,
     * sparc: the next pc of the instruction queue (for delay slots).
     */
    target_ulong cs_base;

    uint32_t flags; /* flags defining in which context the code was generated */
    uint32_t cflags;    /* compile flags */

/* Note that TCG_MAX_INSNS is 512; we validate this match elsewhere. */
#define CF_COUNT_MASK    0x000001ff
#define CF_NO_GOTO_TB    0x00000200 /* Do not chain with goto_tb */
#define CF_NO_GOTO_PTR   0x00000400 /* Do not chain with goto_ptr */
#define CF_SINGLE_STEP   0x00000800 /* gdbstub single-step in effect */
#define CF_LAST_IO       0x00008000 /* Last insn may be an IO access.  */
#define CF_MEMI_ONLY     0x00010000 /* Only instrument memory ops */
#define CF_USE_ICOUNT    0x00020000
#define CF_INVALID       0x00040000 /* TB is stale. Set with @jmp_lock held */
#define CF_PARALLEL      0x00080000 /* Generate code for a parallel context */
#define CF_NOIRQ         0x00100000 /* Generate an uninterruptible TB */
#define CF_CLUSTER_MASK  0xff000000 /* Top 8 bits are cluster ID */
#define CF_CLUSTER_SHIFT 24

    /* Per-vCPU dynamic tracing state used to generate this TB */
    uint32_t trace_vcpu_dstate;

    /*
     * Above fields used for comparing
     */

    /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */
    uint16_t size;
    uint16_t icount;

    struct tb_tc tc;

    /* first and second physical page containing code. The lower bit
       of the pointer tells the index in page_next[].
       The list is protected by the TB's page('s) lock(s) */
    uintptr_t page_next[2];
    tb_page_addr_t page_addr[2];

    /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
    QemuSpin jmp_lock;

    /* The following data are used to directly call another TB from
     * the code of this one. This can be done either by emitting direct or
     * indirect native jump instructions. These jumps are reset so that the TB
     * just continues its execution. The TB can be linked to another one by
     * setting one of the jump targets (or patching the jump instruction). Only
     * two of such jumps are supported.
     */
    uint16_t jmp_reset_offset[2]; /* offset of original jump target */
#define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
    uintptr_t jmp_target_arg[2];  /* target address or offset */

    /*
     * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
     * Each TB can have two outgoing jumps, and therefore can participate
     * in two lists. The list entries are kept in jmp_list_next[2]. The least
     * significant bit (LSB) of the pointers in these lists is used to encode
     * which of the two list entries is to be used in the pointed TB.
     *
     * List traversals are protected by jmp_lock. The destination TB of each
     * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
     * can be acquired from any origin TB.
     *
     * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
     * being invalidated, so that no further outgoing jumps from it can be set.
     *
     * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
     * to a destination TB that has CF_INVALID set.
     */
    uintptr_t jmp_list_head;
    uintptr_t jmp_list_next[2];
    uintptr_t jmp_dest[2];
};

/* Hide the read to avoid ifdefs for TARGET_TB_PCREL. */
static inline target_ulong tb_pc(const TranslationBlock *tb)
{
#if TARGET_TB_PCREL
    qemu_build_not_reached();
#else
    return tb->pc;
#endif
}

/* Hide the qatomic_read to make code a little easier on the eyes */
static inline uint32_t tb_cflags(const TranslationBlock *tb)
{
    return qatomic_read(&tb->cflags);
}

static inline tb_page_addr_t tb_page_addr0(const TranslationBlock *tb)
{
    return tb->page_addr[0];
}

static inline tb_page_addr_t tb_page_addr1(const TranslationBlock *tb)
{
    return tb->page_addr[1];
}

static inline void tb_set_page_addr0(TranslationBlock *tb,
                                     tb_page_addr_t addr)
{
    tb->page_addr[0] = addr;
}

static inline void tb_set_page_addr1(TranslationBlock *tb,
                                     tb_page_addr_t addr)
{
    tb->page_addr[1] = addr;
}

/* current cflags for hashing/comparison */
uint32_t curr_cflags(CPUState *cpu);

/* TranslationBlock invalidate API */
#if defined(CONFIG_USER_ONLY)
void tb_invalidate_phys_addr(target_ulong addr);
#else
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
#endif
void tb_flush(CPUState *cpu);
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end);
void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);

/* GETPC is the true target of the return instruction that we'll execute.  */
#if defined(CONFIG_TCG_INTERPRETER)
extern __thread uintptr_t tci_tb_ptr;
# define GETPC() tci_tb_ptr
#else
# define GETPC() \
    ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
#endif

/* The true return address will often point to a host insn that is part of
   the next translated guest insn.  Adjust the address backward to point to
   the middle of the call insn.  Subtracting one would do the job except for
   several compressed mode architectures (arm, mips) which set the low bit
   to indicate the compressed mode; subtracting two works around that.  It
   is also the case that there are no host isas that contain a call insn
   smaller than 4 bytes, so we don't worry about special-casing this.  */
#define GETPC_ADJ   2

#if !defined(CONFIG_USER_ONLY)

/**
 * iotlb_to_section:
 * @cpu: CPU performing the access
 * @index: TCG CPU IOTLB entry
 *
 * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
 * it refers to. @index will have been initially created and returned
 * by memory_region_section_get_iotlb().
 */
struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                             hwaddr index, MemTxAttrs attrs);
#endif

/**
 * get_page_addr_code_hostp()
 * @env: CPUArchState
 * @addr: guest virtual address of guest code
 *
 * See get_page_addr_code() (full-system version) for documentation on the
 * return value.
 *
 * Sets *@hostp (when @hostp is non-NULL) as follows.
 * If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp
 * to the host address where @addr's content is kept.
 *
 * Note: this function can trigger an exception.
 */
tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
                                        void **hostp);

/**
 * get_page_addr_code()
 * @env: CPUArchState
 * @addr: guest virtual address of guest code
 *
 * If we cannot translate and execute from the entire RAM page, or if
 * the region is not backed by RAM, returns -1. Otherwise, returns the
 * ram_addr_t corresponding to the guest code at @addr.
 *
 * Note: this function can trigger an exception.
 */
static inline tb_page_addr_t get_page_addr_code(CPUArchState *env,
                                                target_ulong addr)
{
    return get_page_addr_code_hostp(env, addr, NULL);
}

#if defined(CONFIG_USER_ONLY)
void mmap_lock(void);
void mmap_unlock(void);
bool have_mmap_lock(void);

/**
 * adjust_signal_pc:
 * @pc: raw pc from the host signal ucontext_t.
 * @is_write: host memory operation was write, or read-modify-write.
 *
 * Alter @pc as required for unwinding.  Return the type of the
 * guest memory access -- host reads may be for guest execution.
 */
MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write);

/**
 * handle_sigsegv_accerr_write:
 * @cpu: the cpu context
 * @old_set: the sigset_t from the signal ucontext_t
 * @host_pc: the host pc, adjusted for the signal
 * @host_addr: the host address of the fault
 *
 * Return true if the write fault has been handled, and should be re-tried.
 */
bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
                                 uintptr_t host_pc, abi_ptr guest_addr);

/**
 * cpu_loop_exit_sigsegv:
 * @cpu: the cpu context
 * @addr: the guest address of the fault
 * @access_type: access was read/write/execute
 * @maperr: true for invalid page, false for permission fault
 * @ra: host pc for unwinding
 *
 * Use the TCGCPUOps hook to record cpu state, do guest operating system
 * specific things to raise SIGSEGV, and jump to the main cpu loop.
 */
G_NORETURN void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
                                      MMUAccessType access_type,
                                      bool maperr, uintptr_t ra);

/**
 * cpu_loop_exit_sigbus:
 * @cpu: the cpu context
 * @addr: the guest address of the alignment fault
 * @access_type: access was read/write/execute
 * @ra: host pc for unwinding
 *
 * Use the TCGCPUOps hook to record cpu state, do guest operating system
 * specific things to raise SIGBUS, and jump to the main cpu loop.
 */
G_NORETURN void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
                                     MMUAccessType access_type,
                                     uintptr_t ra);

#else
static inline void mmap_lock(void) {}
static inline void mmap_unlock(void) {}

void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);

MemoryRegionSection *
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
                                  hwaddr *xlat, hwaddr *plen,
                                  MemTxAttrs attrs, int *prot);
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
                                       MemoryRegionSection *section);
#endif

#endif