1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
/*
* Block model of SPI controller present in
* Microsemi's SmartFusion2 and SmartFusion SoCs.
*
* Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/ssi/mss-spi.h"
#include "qemu/log.h"
#ifndef MSS_SPI_ERR_DEBUG
#define MSS_SPI_ERR_DEBUG 0
#endif
#define DB_PRINT_L(lvl, fmt, args...) do { \
if (MSS_SPI_ERR_DEBUG >= lvl) { \
qemu_log("%s: " fmt "\n", __func__, ## args); \
} \
} while (0);
#define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
#define FIFO_CAPACITY 32
#define R_SPI_CONTROL 0
#define R_SPI_DFSIZE 1
#define R_SPI_STATUS 2
#define R_SPI_INTCLR 3
#define R_SPI_RX 4
#define R_SPI_TX 5
#define R_SPI_CLKGEN 6
#define R_SPI_SS 7
#define R_SPI_MIS 8
#define R_SPI_RIS 9
#define S_TXDONE (1 << 0)
#define S_RXRDY (1 << 1)
#define S_RXCHOVRF (1 << 2)
#define S_RXFIFOFUL (1 << 4)
#define S_RXFIFOFULNXT (1 << 5)
#define S_RXFIFOEMP (1 << 6)
#define S_RXFIFOEMPNXT (1 << 7)
#define S_TXFIFOFUL (1 << 8)
#define S_TXFIFOFULNXT (1 << 9)
#define S_TXFIFOEMP (1 << 10)
#define S_TXFIFOEMPNXT (1 << 11)
#define S_FRAMESTART (1 << 12)
#define S_SSEL (1 << 13)
#define S_ACTIVE (1 << 14)
#define C_ENABLE (1 << 0)
#define C_MODE (1 << 1)
#define C_INTRXDATA (1 << 4)
#define C_INTTXDATA (1 << 5)
#define C_INTRXOVRFLO (1 << 6)
#define C_SPS (1 << 26)
#define C_BIGFIFO (1 << 29)
#define C_RESET (1 << 31)
#define FRAMESZ_MASK 0x3F
#define FMCOUNT_MASK 0x00FFFF00
#define FMCOUNT_SHIFT 8
#define FRAMESZ_MAX 32
static void txfifo_reset(MSSSpiState *s)
{
fifo32_reset(&s->tx_fifo);
s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL;
s->regs[R_SPI_STATUS] |= S_TXFIFOEMP;
}
static void rxfifo_reset(MSSSpiState *s)
{
fifo32_reset(&s->rx_fifo);
s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
}
static void set_fifodepth(MSSSpiState *s)
{
unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;
if (size <= 8) {
s->fifo_depth = 32;
} else if (size <= 16) {
s->fifo_depth = 16;
} else {
s->fifo_depth = 8;
}
}
static void update_mis(MSSSpiState *s)
{
uint32_t reg = s->regs[R_SPI_CONTROL];
uint32_t tmp;
/*
* form the Control register interrupt enable bits
* same as RIS, MIS and Interrupt clear registers for simplicity
*/
tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) |
((reg & C_INTTXDATA) >> 5);
s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS];
}
static void spi_update_irq(MSSSpiState *s)
{
int irq;
update_mis(s);
irq = !!(s->regs[R_SPI_MIS]);
qemu_set_irq(s->irq, irq);
}
static void mss_spi_reset(DeviceState *d)
{
MSSSpiState *s = MSS_SPI(d);
memset(s->regs, 0, sizeof s->regs);
s->regs[R_SPI_CONTROL] = 0x80000102;
s->regs[R_SPI_DFSIZE] = 0x4;
s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP;
s->regs[R_SPI_CLKGEN] = 0x7;
s->regs[R_SPI_RIS] = 0x0;
s->fifo_depth = 4;
s->frame_count = 1;
s->enabled = false;
rxfifo_reset(s);
txfifo_reset(s);
}
static uint64_t
spi_read(void *opaque, hwaddr addr, unsigned int size)
{
MSSSpiState *s = opaque;
uint32_t ret = 0;
addr >>= 2;
switch (addr) {
case R_SPI_RX:
s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF;
ret = fifo32_pop(&s->rx_fifo);
if (fifo32_is_empty(&s->rx_fifo)) {
s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
}
break;
case R_SPI_MIS:
update_mis(s);
ret = s->regs[R_SPI_MIS];
break;
default:
if (addr < ARRAY_SIZE(s->regs)) {
ret = s->regs[addr];
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
addr * 4);
return ret;
}
break;
}
DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret);
spi_update_irq(s);
return ret;
}
static void assert_cs(MSSSpiState *s)
{
qemu_set_irq(s->cs_line, 0);
}
static void deassert_cs(MSSSpiState *s)
{
qemu_set_irq(s->cs_line, 1);
}
static void spi_flush_txfifo(MSSSpiState *s)
{
uint32_t tx;
uint32_t rx;
bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS);
/*
* Chip Select(CS) is automatically controlled by this controller.
* If SPS bit is set in Control register then CS is asserted
* until all the frames set in frame count of Control register are
* transferred. If SPS is not set then CS pulses between frames.
* Note that Slave Select register specifies which of the CS line
* has to be controlled automatically by controller. Bits SS[7:1] are for
* masters in FPGA fabric since we model only Microcontroller subsystem
* of Smartfusion2 we control only one CS(SS[0]) line.
*/
while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) {
assert_cs(s);
s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY);
tx = fifo32_pop(&s->tx_fifo);
DB_PRINT("data tx:0x%" PRIx32, tx);
rx = ssi_transfer(s->spi, tx);
DB_PRINT("data rx:0x%" PRIx32, rx);
if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
s->regs[R_SPI_STATUS] |= S_RXCHOVRF;
s->regs[R_SPI_RIS] |= S_RXCHOVRF;
} else {
fifo32_push(&s->rx_fifo, rx);
s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP;
if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) {
s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT;
} else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
s->regs[R_SPI_STATUS] |= S_RXFIFOFUL;
}
}
s->frame_count--;
if (!sps) {
deassert_cs(s);
}
}
if (!s->frame_count) {
s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >>
FMCOUNT_SHIFT;
deassert_cs(s);
s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY;
s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY;
}
}
static void spi_write(void *opaque, hwaddr addr,
uint64_t val64, unsigned int size)
{
MSSSpiState *s = opaque;
uint32_t value = val64;
DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value);
addr >>= 2;
switch (addr) {
case R_SPI_TX:
/* adding to already full FIFO */
if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
break;
}
s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP;
fifo32_push(&s->tx_fifo, value);
if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) {
s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT;
} else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
s->regs[R_SPI_STATUS] |= S_TXFIFOFUL;
}
if (s->enabled) {
spi_flush_txfifo(s);
}
break;
case R_SPI_CONTROL:
s->regs[R_SPI_CONTROL] = value;
if (value & C_BIGFIFO) {
set_fifodepth(s);
} else {
s->fifo_depth = 4;
}
s->enabled = value & C_ENABLE;
s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT;
if (value & C_RESET) {
mss_spi_reset(DEVICE(s));
}
break;
case R_SPI_DFSIZE:
if (s->enabled) {
break;
}
/*
* [31:6] bits are reserved bits and for future use.
* [5:0] are for frame size. Only [5:0] bits are validated
* during write, [31:6] bits are untouched.
*/
if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided."
"Maximum frame size is %u\n",
__func__, value & FRAMESZ_MASK, FRAMESZ_MAX);
break;
}
s->regs[R_SPI_DFSIZE] = value;
break;
case R_SPI_INTCLR:
s->regs[R_SPI_INTCLR] = value;
if (value & S_TXDONE) {
s->regs[R_SPI_RIS] &= ~S_TXDONE;
}
if (value & S_RXRDY) {
s->regs[R_SPI_RIS] &= ~S_RXRDY;
}
if (value & S_RXCHOVRF) {
s->regs[R_SPI_RIS] &= ~S_RXCHOVRF;
}
break;
case R_SPI_MIS:
case R_SPI_STATUS:
case R_SPI_RIS:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Write to read only register 0x%" HWADDR_PRIx "\n",
__func__, addr * 4);
break;
default:
if (addr < ARRAY_SIZE(s->regs)) {
s->regs[addr] = value;
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
addr * 4);
}
break;
}
spi_update_irq(s);
}
static const MemoryRegionOps spi_ops = {
.read = spi_read,
.write = spi_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4
}
};
static void mss_spi_realize(DeviceState *dev, Error **errp)
{
MSSSpiState *s = MSS_SPI(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
s->spi = ssi_create_bus(dev, "spi");
sysbus_init_irq(sbd, &s->irq);
ssi_auto_connect_slaves(dev, &s->cs_line, s->spi);
sysbus_init_irq(sbd, &s->cs_line);
memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
TYPE_MSS_SPI, R_SPI_MAX * 4);
sysbus_init_mmio(sbd, &s->mmio);
fifo32_create(&s->tx_fifo, FIFO_CAPACITY);
fifo32_create(&s->rx_fifo, FIFO_CAPACITY);
}
static const VMStateDescription vmstate_mss_spi = {
.name = TYPE_MSS_SPI,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_FIFO32(tx_fifo, MSSSpiState),
VMSTATE_FIFO32(rx_fifo, MSSSpiState),
VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX),
VMSTATE_END_OF_LIST()
}
};
static void mss_spi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = mss_spi_realize;
dc->reset = mss_spi_reset;
dc->vmsd = &vmstate_mss_spi;
}
static const TypeInfo mss_spi_info = {
.name = TYPE_MSS_SPI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MSSSpiState),
.class_init = mss_spi_class_init,
};
static void mss_spi_register_types(void)
{
type_register_static(&mss_spi_info);
}
type_init(mss_spi_register_types)
|