aboutsummaryrefslogtreecommitdiff
path: root/hw/riscv/boot.c
blob: 52bf8e67de20aa3c034dc80cadd645f33ee59bde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/*
 * QEMU RISC-V Boot Helper
 *
 * Copyright (c) 2017 SiFive, Inc.
 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2 or later, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/datadir.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "exec/cpu-defs.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/boot_opensbi.h"
#include "elf.h"
#include "sysemu/device_tree.h"
#include "sysemu/qtest.h"
#include "sysemu/kvm.h"
#include "sysemu/reset.h"

#include <libfdt.h>

bool riscv_is_32bit(RISCVHartArrayState *harts)
{
    return harts->harts[0].env.misa_mxl_max == MXL_RV32;
}

/*
 * Return the per-socket PLIC hart topology configuration string
 * (caller must free with g_free())
 */
char *riscv_plic_hart_config_string(int hart_count)
{
    g_autofree const char **vals = g_new(const char *, hart_count + 1);
    int i;

    for (i = 0; i < hart_count; i++) {
        CPUState *cs = qemu_get_cpu(i);
        CPURISCVState *env = &RISCV_CPU(cs)->env;

        if (kvm_enabled()) {
            vals[i] = "S";
        } else if (riscv_has_ext(env, RVS)) {
            vals[i] = "MS";
        } else {
            vals[i] = "M";
        }
    }
    vals[i] = NULL;

    /* g_strjoinv() obliges us to cast away const here */
    return g_strjoinv(",", (char **)vals);
}

target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
                                          target_ulong firmware_end_addr) {
    if (riscv_is_32bit(harts)) {
        return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
    } else {
        return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
    }
}

const char *riscv_default_firmware_name(RISCVHartArrayState *harts)
{
    if (riscv_is_32bit(harts)) {
        return RISCV32_BIOS_BIN;
    }

    return RISCV64_BIOS_BIN;
}

static char *riscv_find_bios(const char *bios_filename)
{
    char *filename;

    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename);
    if (filename == NULL) {
        if (!qtest_enabled()) {
            /*
             * We only ship OpenSBI binary bios images in the QEMU source.
             * For machines that use images other than the default bios,
             * running QEMU test will complain hence let's suppress the error
             * report for QEMU testing.
             */
            error_report("Unable to find the RISC-V BIOS \"%s\"",
                         bios_filename);
            exit(1);
        }
    }

    return filename;
}

char *riscv_find_firmware(const char *firmware_filename,
                          const char *default_machine_firmware)
{
    char *filename = NULL;

    if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) {
        /*
         * The user didn't specify -bios, or has specified "-bios default".
         * That means we are going to load the OpenSBI binary included in
         * the QEMU source.
         */
        filename = riscv_find_bios(default_machine_firmware);
    } else if (strcmp(firmware_filename, "none")) {
        filename = riscv_find_bios(firmware_filename);
    }

    return filename;
}

target_ulong riscv_find_and_load_firmware(MachineState *machine,
                                          const char *default_machine_firmware,
                                          hwaddr firmware_load_addr,
                                          symbol_fn_t sym_cb)
{
    char *firmware_filename;
    target_ulong firmware_end_addr = firmware_load_addr;

    firmware_filename = riscv_find_firmware(machine->firmware,
                                            default_machine_firmware);

    if (firmware_filename) {
        /* If not "none" load the firmware */
        firmware_end_addr = riscv_load_firmware(firmware_filename,
                                                firmware_load_addr, sym_cb);
        g_free(firmware_filename);
    }

    return firmware_end_addr;
}

target_ulong riscv_load_firmware(const char *firmware_filename,
                                 hwaddr firmware_load_addr,
                                 symbol_fn_t sym_cb)
{
    uint64_t firmware_entry, firmware_end;
    ssize_t firmware_size;

    g_assert(firmware_filename != NULL);

    if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
                         &firmware_entry, NULL, &firmware_end, NULL,
                         0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
        return firmware_end;
    }

    firmware_size = load_image_targphys_as(firmware_filename,
                                           firmware_load_addr,
                                           current_machine->ram_size, NULL);

    if (firmware_size > 0) {
        return firmware_load_addr + firmware_size;
    }

    error_report("could not load firmware '%s'", firmware_filename);
    exit(1);
}

static void riscv_load_initrd(MachineState *machine, uint64_t kernel_entry)
{
    const char *filename = machine->initrd_filename;
    uint64_t mem_size = machine->ram_size;
    void *fdt = machine->fdt;
    hwaddr start, end;
    ssize_t size;

    g_assert(filename != NULL);

    /*
     * We want to put the initrd far enough into RAM that when the
     * kernel is uncompressed it will not clobber the initrd. However
     * on boards without much RAM we must ensure that we still leave
     * enough room for a decent sized initrd, and on boards with large
     * amounts of RAM we must avoid the initrd being so far up in RAM
     * that it is outside lowmem and inaccessible to the kernel.
     * So for boards with less  than 256MB of RAM we put the initrd
     * halfway into RAM, and for boards with 256MB of RAM or more we put
     * the initrd at 128MB.
     */
    start = kernel_entry + MIN(mem_size / 2, 128 * MiB);

    size = load_ramdisk(filename, start, mem_size - start);
    if (size == -1) {
        size = load_image_targphys(filename, start, mem_size - start);
        if (size == -1) {
            error_report("could not load ramdisk '%s'", filename);
            exit(1);
        }
    }

    /* Some RISC-V machines (e.g. opentitan) don't have a fdt. */
    if (fdt) {
        end = start + size;
        qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", start);
        qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", end);
    }
}

target_ulong riscv_load_kernel(MachineState *machine,
                               RISCVHartArrayState *harts,
                               target_ulong kernel_start_addr,
                               bool load_initrd,
                               symbol_fn_t sym_cb)
{
    const char *kernel_filename = machine->kernel_filename;
    uint64_t kernel_load_base, kernel_entry;
    void *fdt = machine->fdt;

    g_assert(kernel_filename != NULL);

    /*
     * NB: Use low address not ELF entry point to ensure that the fw_dynamic
     * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
     * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
     * the (expected) load address load address. This allows kernels to have
     * separate SBI and ELF entry points (used by FreeBSD, for example).
     */
    if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
                         NULL, &kernel_load_base, NULL, NULL, 0,
                         EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
        kernel_entry = kernel_load_base;
        goto out;
    }

    if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
                       NULL, NULL, NULL) > 0) {
        goto out;
    }

    if (load_image_targphys_as(kernel_filename, kernel_start_addr,
                               current_machine->ram_size, NULL) > 0) {
        kernel_entry = kernel_start_addr;
        goto out;
    }

    error_report("could not load kernel '%s'", kernel_filename);
    exit(1);

out:
    /*
     * For 32 bit CPUs 'kernel_entry' can be sign-extended by
     * load_elf_ram_sym().
     */
    if (riscv_is_32bit(harts)) {
        kernel_entry = extract64(kernel_entry, 0, 32);
    }

    if (load_initrd && machine->initrd_filename) {
        riscv_load_initrd(machine, kernel_entry);
    }

    if (fdt && machine->kernel_cmdline && *machine->kernel_cmdline) {
        qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
                                machine->kernel_cmdline);
    }

    return kernel_entry;
}

/*
 * This function makes an assumption that the DRAM interval
 * 'dram_base' + 'dram_size' is contiguous.
 *
 * Considering that 'dram_end' is the lowest value between
 * the end of the DRAM block and MachineState->ram_size, the
 * FDT location will vary according to 'dram_base':
 *
 * - if 'dram_base' is less that 3072 MiB, the FDT will be
 * put at the lowest value between 3072 MiB and 'dram_end';
 *
 * - if 'dram_base' is higher than 3072 MiB, the FDT will be
 * put at 'dram_end'.
 *
 * The FDT is fdt_packed() during the calculation.
 */
uint64_t riscv_compute_fdt_addr(hwaddr dram_base, hwaddr dram_size,
                                MachineState *ms)
{
    int ret = fdt_pack(ms->fdt);
    hwaddr dram_end, temp;
    int fdtsize;

    /* Should only fail if we've built a corrupted tree */
    g_assert(ret == 0);

    fdtsize = fdt_totalsize(ms->fdt);
    if (fdtsize <= 0) {
        error_report("invalid device-tree");
        exit(1);
    }

    /*
     * A dram_size == 0, usually from a MemMapEntry[].size element,
     * means that the DRAM block goes all the way to ms->ram_size.
     */
    dram_end = dram_base;
    dram_end += dram_size ? MIN(ms->ram_size, dram_size) : ms->ram_size;

    /*
     * We should put fdt as far as possible to avoid kernel/initrd overwriting
     * its content. But it should be addressable by 32 bit system as well.
     * Thus, put it at an 2MB aligned address that less than fdt size from the
     * end of dram or 3GB whichever is lesser.
     */
    temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;

    return QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
}

/*
 * 'fdt_addr' is received as hwaddr because boards might put
 * the FDT beyond 32-bit addressing boundary.
 */
void riscv_load_fdt(hwaddr fdt_addr, void *fdt)
{
    uint32_t fdtsize = fdt_totalsize(fdt);

    /* copy in the device tree */
    qemu_fdt_dumpdtb(fdt, fdtsize);

    rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
                          &address_space_memory);
    qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
                        rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
}

void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
                                  hwaddr rom_size, uint32_t reset_vec_size,
                                  uint64_t kernel_entry)
{
    struct fw_dynamic_info dinfo;
    size_t dinfo_len;

    if (sizeof(dinfo.magic) == 4) {
        dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
        dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
        dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
        dinfo.next_addr = cpu_to_le32(kernel_entry);
    } else {
        dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
        dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
        dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
        dinfo.next_addr = cpu_to_le64(kernel_entry);
    }
    dinfo.options = 0;
    dinfo.boot_hart = 0;
    dinfo_len = sizeof(dinfo);

    /**
     * copy the dynamic firmware info. This information is specific to
     * OpenSBI but doesn't break any other firmware as long as they don't
     * expect any certain value in "a2" register.
     */
    if (dinfo_len > (rom_size - reset_vec_size)) {
        error_report("not enough space to store dynamic firmware info");
        exit(1);
    }

    rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
                           rom_base + reset_vec_size,
                           &address_space_memory);
}

void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
                               hwaddr start_addr,
                               hwaddr rom_base, hwaddr rom_size,
                               uint64_t kernel_entry,
                               uint64_t fdt_load_addr)
{
    int i;
    uint32_t start_addr_hi32 = 0x00000000;
    uint32_t fdt_load_addr_hi32 = 0x00000000;

    if (!riscv_is_32bit(harts)) {
        start_addr_hi32 = start_addr >> 32;
        fdt_load_addr_hi32 = fdt_load_addr >> 32;
    }
    /* reset vector */
    uint32_t reset_vec[10] = {
        0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(fw_dyn) */
        0x02828613,                  /*     addi   a2, t0, %pcrel_lo(1b) */
        0xf1402573,                  /*     csrr   a0, mhartid  */
        0,
        0,
        0x00028067,                  /*     jr     t0 */
        start_addr,                  /* start: .dword */
        start_addr_hi32,
        fdt_load_addr,               /* fdt_laddr: .dword */
        fdt_load_addr_hi32,
                                     /* fw_dyn: */
    };
    if (riscv_is_32bit(harts)) {
        reset_vec[3] = 0x0202a583;   /*     lw     a1, 32(t0) */
        reset_vec[4] = 0x0182a283;   /*     lw     t0, 24(t0) */
    } else {
        reset_vec[3] = 0x0202b583;   /*     ld     a1, 32(t0) */
        reset_vec[4] = 0x0182b283;   /*     ld     t0, 24(t0) */
    }

    if (!harts->harts[0].cfg.ext_icsr) {
        /*
         * The Zicsr extension has been disabled, so let's ensure we don't
         * run the CSR instruction. Let's fill the address with a non
         * compressed nop.
         */
        reset_vec[2] = 0x00000013;   /*     addi   x0, x0, 0 */
    }

    /* copy in the reset vector in little_endian byte order */
    for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
        reset_vec[i] = cpu_to_le32(reset_vec[i]);
    }
    rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
                          rom_base, &address_space_memory);
    riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
                                 kernel_entry);
}

void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
{
    CPUState *cs;

    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
        RISCVCPU *riscv_cpu = RISCV_CPU(cs);
        riscv_cpu->env.kernel_addr = kernel_addr;
        riscv_cpu->env.fdt_addr = fdt_addr;
    }
}

void riscv_setup_firmware_boot(MachineState *machine)
{
    if (machine->kernel_filename) {
        FWCfgState *fw_cfg;
        fw_cfg = fw_cfg_find();

        assert(fw_cfg);
        /*
         * Expose the kernel, the command line, and the initrd in fw_cfg.
         * We don't process them here at all, it's all left to the
         * firmware.
         */
        load_image_to_fw_cfg(fw_cfg,
                             FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
                             machine->kernel_filename,
                             true);
        load_image_to_fw_cfg(fw_cfg,
                             FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
                             machine->initrd_filename, false);

        if (machine->kernel_cmdline) {
            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
                           strlen(machine->kernel_cmdline) + 1);
            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
                              machine->kernel_cmdline);
        }
    }
}