1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
/*
* BCM2835 CPRMAN clock manager
*
* Copyright (c) 2020 Luc Michel <luc@lmichel.fr>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
/*
* This peripheral is roughly divided into 3 main parts:
* - the PLLs
* - the PLL channels
* - the clock muxes
*
* A main oscillator (xosc) feeds all the PLLs. Each PLLs has one or more
* channels. Those channel are then connected to the clock muxes. Each mux has
* multiples sources (usually the xosc, some of the PLL channels and some "test
* debug" clocks). A mux is configured to select a given source through its
* control register. Each mux has one output clock that also goes out of the
* CPRMAN. This output clock usually connects to another peripheral in the SoC
* (so a given mux is dedicated to a peripheral).
*
* At each level (PLL, channel and mux), the clock can be altered through
* dividers (and multipliers in case of the PLLs), and can be disabled (in this
* case, the next levels see no clock).
*
* This can be sum-up as follows (this is an example and not the actual BCM2835
* clock tree):
*
* /-->[PLL]-|->[PLL channel]--... [mux]--> to peripherals
* | |->[PLL channel] muxes takes [mux]
* | \->[PLL channel] inputs from [mux]
* | some channels [mux]
* [xosc]---|-->[PLL]-|->[PLL channel] and other srcs [mux]
* | \->[PLL channel] ...-->[mux]
* | [mux]
* \-->[PLL]--->[PLL channel] [mux]
*
* The page at https://elinux.org/The_Undocumented_Pi gives the actual clock
* tree configuration.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "migration/vmstate.h"
#include "hw/qdev-properties.h"
#include "hw/misc/bcm2835_cprman.h"
#include "hw/misc/bcm2835_cprman_internals.h"
#include "trace.h"
/* PLL */
static bool pll_is_locked(const CprmanPllState *pll)
{
return !FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PWRDN)
&& !FIELD_EX32(*pll->reg_cm, CM_PLLx, ANARST);
}
static void pll_update(CprmanPllState *pll)
{
uint64_t freq, ndiv, fdiv, pdiv;
if (!pll_is_locked(pll)) {
clock_update(pll->out, 0);
return;
}
pdiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PDIV);
if (!pdiv) {
clock_update(pll->out, 0);
return;
}
ndiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, NDIV);
fdiv = FIELD_EX32(*pll->reg_a2w_frac, A2W_PLLx_FRAC, FRAC);
if (pll->reg_a2w_ana[1] & pll->prediv_mask) {
/* The prescaler doubles the parent frequency */
ndiv *= 2;
fdiv *= 2;
}
/*
* We have a multiplier with an integer part (ndiv) and a fractional part
* (fdiv), and a divider (pdiv).
*/
freq = clock_get_hz(pll->xosc_in) *
((ndiv << R_A2W_PLLx_FRAC_FRAC_LENGTH) + fdiv);
freq /= pdiv;
freq >>= R_A2W_PLLx_FRAC_FRAC_LENGTH;
clock_update_hz(pll->out, freq);
}
static void pll_xosc_update(void *opaque)
{
pll_update(CPRMAN_PLL(opaque));
}
static void pll_init(Object *obj)
{
CprmanPllState *s = CPRMAN_PLL(obj);
s->xosc_in = qdev_init_clock_in(DEVICE(s), "xosc-in", pll_xosc_update, s);
s->out = qdev_init_clock_out(DEVICE(s), "out");
}
static const VMStateDescription pll_vmstate = {
.name = TYPE_CPRMAN_PLL,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(xosc_in, CprmanPllState),
VMSTATE_END_OF_LIST()
}
};
static void pll_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &pll_vmstate;
}
static const TypeInfo cprman_pll_info = {
.name = TYPE_CPRMAN_PLL,
.parent = TYPE_DEVICE,
.instance_size = sizeof(CprmanPllState),
.class_init = pll_class_init,
.instance_init = pll_init,
};
/* PLL channel */
static bool pll_channel_is_enabled(CprmanPllChannelState *channel)
{
/*
* XXX I'm not sure of the purpose of the LOAD field. The Linux driver does
* not set it when enabling the channel, but does clear it when disabling
* it.
*/
return !FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DISABLE)
&& !(*channel->reg_cm & channel->hold_mask);
}
static void pll_channel_update(CprmanPllChannelState *channel)
{
uint64_t freq, div;
if (!pll_channel_is_enabled(channel)) {
clock_update(channel->out, 0);
return;
}
div = FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DIV);
if (!div) {
/*
* It seems that when the divider value is 0, it is considered as
* being maximum by the hardware (see the Linux driver).
*/
div = R_A2W_PLLx_CHANNELy_DIV_MASK;
}
/* Some channels have an additional fixed divider */
freq = clock_get_hz(channel->pll_in) / (div * channel->fixed_divider);
clock_update_hz(channel->out, freq);
}
/* Update a PLL and all its channels */
static void pll_update_all_channels(BCM2835CprmanState *s,
CprmanPllState *pll)
{
size_t i;
pll_update(pll);
for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
CprmanPllChannelState *channel = &s->channels[i];
if (channel->parent == pll->id) {
pll_channel_update(channel);
}
}
}
static void pll_channel_pll_in_update(void *opaque)
{
pll_channel_update(CPRMAN_PLL_CHANNEL(opaque));
}
static void pll_channel_init(Object *obj)
{
CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(obj);
s->pll_in = qdev_init_clock_in(DEVICE(s), "pll-in",
pll_channel_pll_in_update, s);
s->out = qdev_init_clock_out(DEVICE(s), "out");
}
static const VMStateDescription pll_channel_vmstate = {
.name = TYPE_CPRMAN_PLL_CHANNEL,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(pll_in, CprmanPllChannelState),
VMSTATE_END_OF_LIST()
}
};
static void pll_channel_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &pll_channel_vmstate;
}
static const TypeInfo cprman_pll_channel_info = {
.name = TYPE_CPRMAN_PLL_CHANNEL,
.parent = TYPE_DEVICE,
.instance_size = sizeof(CprmanPllChannelState),
.class_init = pll_channel_class_init,
.instance_init = pll_channel_init,
};
/* CPRMAN "top level" model */
static uint32_t get_cm_lock(const BCM2835CprmanState *s)
{
static const int CM_LOCK_MAPPING[CPRMAN_NUM_PLL] = {
[CPRMAN_PLLA] = R_CM_LOCK_FLOCKA_SHIFT,
[CPRMAN_PLLC] = R_CM_LOCK_FLOCKC_SHIFT,
[CPRMAN_PLLD] = R_CM_LOCK_FLOCKD_SHIFT,
[CPRMAN_PLLH] = R_CM_LOCK_FLOCKH_SHIFT,
[CPRMAN_PLLB] = R_CM_LOCK_FLOCKB_SHIFT,
};
uint32_t r = 0;
size_t i;
for (i = 0; i < CPRMAN_NUM_PLL; i++) {
r |= pll_is_locked(&s->plls[i]) << CM_LOCK_MAPPING[i];
}
return r;
}
static uint64_t cprman_read(void *opaque, hwaddr offset,
unsigned size)
{
BCM2835CprmanState *s = CPRMAN(opaque);
uint64_t r = 0;
size_t idx = offset / sizeof(uint32_t);
switch (idx) {
case R_CM_LOCK:
r = get_cm_lock(s);
break;
default:
r = s->regs[idx];
}
trace_bcm2835_cprman_read(offset, r);
return r;
}
static inline void update_pll_and_channels_from_cm(BCM2835CprmanState *s,
size_t idx)
{
size_t i;
for (i = 0; i < CPRMAN_NUM_PLL; i++) {
if (PLL_INIT_INFO[i].cm_offset == idx) {
pll_update_all_channels(s, &s->plls[i]);
return;
}
}
}
static inline void update_channel_from_a2w(BCM2835CprmanState *s, size_t idx)
{
size_t i;
for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
if (PLL_CHANNEL_INIT_INFO[i].a2w_ctrl_offset == idx) {
pll_channel_update(&s->channels[i]);
return;
}
}
}
#define CASE_PLL_A2W_REGS(pll_) \
case R_A2W_ ## pll_ ## _CTRL: \
case R_A2W_ ## pll_ ## _ANA0: \
case R_A2W_ ## pll_ ## _ANA1: \
case R_A2W_ ## pll_ ## _ANA2: \
case R_A2W_ ## pll_ ## _ANA3: \
case R_A2W_ ## pll_ ## _FRAC
static void cprman_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
BCM2835CprmanState *s = CPRMAN(opaque);
size_t idx = offset / sizeof(uint32_t);
if (FIELD_EX32(value, CPRMAN, PASSWORD) != CPRMAN_PASSWORD) {
trace_bcm2835_cprman_write_invalid_magic(offset, value);
return;
}
value &= ~R_CPRMAN_PASSWORD_MASK;
trace_bcm2835_cprman_write(offset, value);
s->regs[idx] = value;
switch (idx) {
case R_CM_PLLA ... R_CM_PLLH:
case R_CM_PLLB:
/*
* A given CM_PLLx register is shared by both the PLL and the channels
* of this PLL.
*/
update_pll_and_channels_from_cm(s, idx);
break;
CASE_PLL_A2W_REGS(PLLA) :
pll_update(&s->plls[CPRMAN_PLLA]);
break;
CASE_PLL_A2W_REGS(PLLC) :
pll_update(&s->plls[CPRMAN_PLLC]);
break;
CASE_PLL_A2W_REGS(PLLD) :
pll_update(&s->plls[CPRMAN_PLLD]);
break;
CASE_PLL_A2W_REGS(PLLH) :
pll_update(&s->plls[CPRMAN_PLLH]);
break;
CASE_PLL_A2W_REGS(PLLB) :
pll_update(&s->plls[CPRMAN_PLLB]);
break;
case R_A2W_PLLA_DSI0:
case R_A2W_PLLA_CORE:
case R_A2W_PLLA_PER:
case R_A2W_PLLA_CCP2:
case R_A2W_PLLC_CORE2:
case R_A2W_PLLC_CORE1:
case R_A2W_PLLC_PER:
case R_A2W_PLLC_CORE0:
case R_A2W_PLLD_DSI0:
case R_A2W_PLLD_CORE:
case R_A2W_PLLD_PER:
case R_A2W_PLLD_DSI1:
case R_A2W_PLLH_AUX:
case R_A2W_PLLH_RCAL:
case R_A2W_PLLH_PIX:
case R_A2W_PLLB_ARM:
update_channel_from_a2w(s, idx);
break;
}
}
#undef CASE_PLL_A2W_REGS
static const MemoryRegionOps cprman_ops = {
.read = cprman_read,
.write = cprman_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
/*
* Although this hasn't been checked against real hardware, nor the
* information can be found in a datasheet, it seems reasonable because
* of the "PASSWORD" magic value found in every registers.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
.impl = {
.max_access_size = 4,
},
};
static void cprman_reset(DeviceState *dev)
{
BCM2835CprmanState *s = CPRMAN(dev);
size_t i;
memset(s->regs, 0, sizeof(s->regs));
for (i = 0; i < CPRMAN_NUM_PLL; i++) {
device_cold_reset(DEVICE(&s->plls[i]));
}
for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
device_cold_reset(DEVICE(&s->channels[i]));
}
clock_update_hz(s->xosc, s->xosc_freq);
}
static void cprman_init(Object *obj)
{
BCM2835CprmanState *s = CPRMAN(obj);
size_t i;
for (i = 0; i < CPRMAN_NUM_PLL; i++) {
object_initialize_child(obj, PLL_INIT_INFO[i].name,
&s->plls[i], TYPE_CPRMAN_PLL);
set_pll_init_info(s, &s->plls[i], i);
}
for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
object_initialize_child(obj, PLL_CHANNEL_INIT_INFO[i].name,
&s->channels[i],
TYPE_CPRMAN_PLL_CHANNEL);
set_pll_channel_init_info(s, &s->channels[i], i);
}
s->xosc = clock_new(obj, "xosc");
memory_region_init_io(&s->iomem, obj, &cprman_ops,
s, "bcm2835-cprman", 0x2000);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
}
static void cprman_realize(DeviceState *dev, Error **errp)
{
BCM2835CprmanState *s = CPRMAN(dev);
size_t i;
for (i = 0; i < CPRMAN_NUM_PLL; i++) {
CprmanPllState *pll = &s->plls[i];
clock_set_source(pll->xosc_in, s->xosc);
if (!qdev_realize(DEVICE(pll), NULL, errp)) {
return;
}
}
for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
CprmanPllChannelState *channel = &s->channels[i];
CprmanPll parent = PLL_CHANNEL_INIT_INFO[i].parent;
Clock *parent_clk = s->plls[parent].out;
clock_set_source(channel->pll_in, parent_clk);
if (!qdev_realize(DEVICE(channel), NULL, errp)) {
return;
}
}
}
static const VMStateDescription cprman_vmstate = {
.name = TYPE_BCM2835_CPRMAN,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, BCM2835CprmanState, CPRMAN_NUM_REGS),
VMSTATE_END_OF_LIST()
}
};
static Property cprman_properties[] = {
DEFINE_PROP_UINT32("xosc-freq-hz", BCM2835CprmanState, xosc_freq, 19200000),
DEFINE_PROP_END_OF_LIST()
};
static void cprman_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = cprman_realize;
dc->reset = cprman_reset;
dc->vmsd = &cprman_vmstate;
device_class_set_props(dc, cprman_properties);
}
static const TypeInfo cprman_info = {
.name = TYPE_BCM2835_CPRMAN,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(BCM2835CprmanState),
.class_init = cprman_class_init,
.instance_init = cprman_init,
};
static void cprman_register_types(void)
{
type_register_static(&cprman_info);
type_register_static(&cprman_pll_info);
type_register_static(&cprman_pll_channel_info);
}
type_init(cprman_register_types);
|