aboutsummaryrefslogtreecommitdiff
path: root/hw/arm/virt.c
blob: ebd5f306e4d53b316fbec1f34ba1fd3d58517fd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
/*
 * ARM mach-virt emulation
 *
 * Copyright (c) 2013 Linaro Limited
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2 or later, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * Emulate a virtual board which works by passing Linux all the information
 * it needs about what devices are present via the device tree.
 * There are some restrictions about what we can do here:
 *  + we can only present devices whose Linux drivers will work based
 *    purely on the device tree with no platform data at all
 *  + we want to present a very stripped-down minimalist platform,
 *    both because this reduces the security attack surface from the guest
 *    and also because it reduces our exposure to being broken when
 *    the kernel updates its device tree bindings and requires further
 *    information in a device binding that we aren't providing.
 * This is essentially the same approach kvmtool uses.
 */

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/sysbus.h"
#include "hw/arm/arm.h"
#include "hw/arm/primecell.h"
#include "hw/arm/virt.h"
#include "hw/vfio/vfio-calxeda-xgmac.h"
#include "hw/vfio/vfio-amd-xgbe.h"
#include "hw/display/ramfb.h"
#include "hw/devices.h"
#include "net/net.h"
#include "sysemu/device_tree.h"
#include "sysemu/numa.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "hw/compat.h"
#include "hw/loader.h"
#include "exec/address-spaces.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "hw/pci-host/gpex.h"
#include "hw/arm/sysbus-fdt.h"
#include "hw/platform-bus.h"
#include "hw/arm/fdt.h"
#include "hw/intc/arm_gic.h"
#include "hw/intc/arm_gicv3_common.h"
#include "kvm_arm.h"
#include "hw/firmware/smbios.h"
#include "qapi/visitor.h"
#include "standard-headers/linux/input.h"
#include "hw/arm/smmuv3.h"

#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
                                                    void *data) \
    { \
        MachineClass *mc = MACHINE_CLASS(oc); \
        virt_machine_##major##_##minor##_options(mc); \
        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
        if (latest) { \
            mc->alias = "virt"; \
        } \
    } \
    static const TypeInfo machvirt_##major##_##minor##_info = { \
        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
        .parent = TYPE_VIRT_MACHINE, \
        .class_init = virt_##major##_##minor##_class_init, \
    }; \
    static void machvirt_machine_##major##_##minor##_init(void) \
    { \
        type_register_static(&machvirt_##major##_##minor##_info); \
    } \
    type_init(machvirt_machine_##major##_##minor##_init);

#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
#define DEFINE_VIRT_MACHINE(major, minor) \
    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)


/* Number of external interrupt lines to configure the GIC with */
#define NUM_IRQS 256

#define PLATFORM_BUS_NUM_IRQS 64

/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
 * RAM can go up to the 256GB mark, leaving 256GB of the physical
 * address space unallocated and free for future use between 256G and 512G.
 * If we need to provide more RAM to VMs in the future then we need to:
 *  * allocate a second bank of RAM starting at 2TB and working up
 *  * fix the DT and ACPI table generation code in QEMU to correctly
 *    report two split lumps of RAM to the guest
 *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
 * (We don't want to fill all the way up to 512GB with RAM because
 * we might want it for non-RAM purposes later. Conversely it seems
 * reasonable to assume that anybody configuring a VM with a quarter
 * of a terabyte of RAM will be doing it on a host with more than a
 * terabyte of physical address space.)
 */
#define RAMLIMIT_GB 255
#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)

/* Addresses and sizes of our components.
 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 * 128MB..256MB is used for miscellaneous device I/O.
 * 256MB..1GB is reserved for possible future PCI support (ie where the
 * PCI memory window will go if we add a PCI host controller).
 * 1GB and up is RAM (which may happily spill over into the
 * high memory region beyond 4GB).
 * This represents a compromise between how much RAM can be given to
 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 * Note that devices should generally be placed at multiples of 0x10000,
 * to accommodate guests using 64K pages.
 */
static const MemMapEntry a15memmap[] = {
    /* Space up to 0x8000000 is reserved for a boot ROM */
    [VIRT_FLASH] =              {          0, 0x08000000 },
    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
    [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
    [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
    /* This redistributor space allows up to 2*64kB*123 CPUs */
    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
    [VIRT_UART] =               { 0x09000000, 0x00001000 },
    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
    [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
    [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
    /* Additional 64 MB redist region (can contain up to 512 redistributors) */
    [VIRT_GIC_REDIST2] =        { 0x4000000000ULL, 0x4000000 },
    [VIRT_PCIE_ECAM_HIGH] =     { 0x4010000000ULL, 0x10000000 },
    /* Second PCIe window, 512GB wide at the 512GB boundary */
    [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
};

static const int a15irqmap[] = {
    [VIRT_UART] = 1,
    [VIRT_RTC] = 2,
    [VIRT_PCIE] = 3, /* ... to 6 */
    [VIRT_GPIO] = 7,
    [VIRT_SECURE_UART] = 8,
    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
    [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
};

static const char *valid_cpus[] = {
    ARM_CPU_TYPE_NAME("cortex-a15"),
    ARM_CPU_TYPE_NAME("cortex-a53"),
    ARM_CPU_TYPE_NAME("cortex-a57"),
    ARM_CPU_TYPE_NAME("cortex-a72"),
    ARM_CPU_TYPE_NAME("host"),
    ARM_CPU_TYPE_NAME("max"),
};

static bool cpu_type_valid(const char *cpu)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
        if (strcmp(cpu, valid_cpus[i]) == 0) {
            return true;
        }
    }
    return false;
}

static void create_fdt(VirtMachineState *vms)
{
    void *fdt = create_device_tree(&vms->fdt_size);

    if (!fdt) {
        error_report("create_device_tree() failed");
        exit(1);
    }

    vms->fdt = fdt;

    /* Header */
    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);

    /* /chosen must exist for load_dtb to fill in necessary properties later */
    qemu_fdt_add_subnode(fdt, "/chosen");

    /* Clock node, for the benefit of the UART. The kernel device tree
     * binding documentation claims the PL011 node clock properties are
     * optional but in practice if you omit them the kernel refuses to
     * probe for the device.
     */
    vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
    qemu_fdt_add_subnode(fdt, "/apb-pclk");
    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
                                "clk24mhz");
    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);

    if (have_numa_distance) {
        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
        uint32_t *matrix = g_malloc0(size);
        int idx, i, j;

        for (i = 0; i < nb_numa_nodes; i++) {
            for (j = 0; j < nb_numa_nodes; j++) {
                idx = (i * nb_numa_nodes + j) * 3;
                matrix[idx + 0] = cpu_to_be32(i);
                matrix[idx + 1] = cpu_to_be32(j);
                matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
            }
        }

        qemu_fdt_add_subnode(fdt, "/distance-map");
        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
                                "numa-distance-map-v1");
        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
                         matrix, size);
        g_free(matrix);
    }
}

static void fdt_add_timer_nodes(const VirtMachineState *vms)
{
    /* On real hardware these interrupts are level-triggered.
     * On KVM they were edge-triggered before host kernel version 4.4,
     * and level-triggered afterwards.
     * On emulated QEMU they are level-triggered.
     *
     * Getting the DTB info about them wrong is awkward for some
     * guest kernels:
     *  pre-4.8 ignore the DT and leave the interrupt configured
     *   with whatever the GIC reset value (or the bootloader) left it at
     *  4.8 before rc6 honour the incorrect data by programming it back
     *   into the GIC, causing problems
     *  4.8rc6 and later ignore the DT and always write "level triggered"
     *   into the GIC
     *
     * For backwards-compatibility, virt-2.8 and earlier will continue
     * to say these are edge-triggered, but later machines will report
     * the correct information.
     */
    ARMCPU *armcpu;
    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;

    if (vmc->claim_edge_triggered_timers) {
        irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
    }

    if (vms->gic_version == 2) {
        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
                             (1 << vms->smp_cpus) - 1);
    }

    qemu_fdt_add_subnode(vms->fdt, "/timer");

    armcpu = ARM_CPU(qemu_get_cpu(0));
    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
        qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
                         compat, sizeof(compat));
    } else {
        qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
                                "arm,armv7-timer");
    }
    qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
    qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
}

static void fdt_add_cpu_nodes(const VirtMachineState *vms)
{
    int cpu;
    int addr_cells = 1;
    const MachineState *ms = MACHINE(vms);

    /*
     * From Documentation/devicetree/bindings/arm/cpus.txt
     *  On ARM v8 64-bit systems value should be set to 2,
     *  that corresponds to the MPIDR_EL1 register size.
     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
     *  in the system, #address-cells can be set to 1, since
     *  MPIDR_EL1[63:32] bits are not used for CPUs
     *  identification.
     *
     *  Here we actually don't know whether our system is 32- or 64-bit one.
     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
     *  at least one of them has Aff3 populated, we set #address-cells to 2.
     */
    for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));

        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
            addr_cells = 2;
            break;
        }
    }

    qemu_fdt_add_subnode(vms->fdt, "/cpus");
    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);

    for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
        CPUState *cs = CPU(armcpu);

        qemu_fdt_add_subnode(vms->fdt, nodename);
        qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
                                    armcpu->dtb_compatible);

        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
            && vms->smp_cpus > 1) {
            qemu_fdt_setprop_string(vms->fdt, nodename,
                                        "enable-method", "psci");
        }

        if (addr_cells == 2) {
            qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
                                 armcpu->mp_affinity);
        } else {
            qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
                                  armcpu->mp_affinity);
        }

        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
            qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
        }

        g_free(nodename);
    }
}

static void fdt_add_its_gic_node(VirtMachineState *vms)
{
    char *nodename;

    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
    nodename = g_strdup_printf("/intc/its@%" PRIx64,
                               vms->memmap[VIRT_GIC_ITS].base);
    qemu_fdt_add_subnode(vms->fdt, nodename);
    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
                            "arm,gic-v3-its");
    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                 2, vms->memmap[VIRT_GIC_ITS].base,
                                 2, vms->memmap[VIRT_GIC_ITS].size);
    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
    g_free(nodename);
}

static void fdt_add_v2m_gic_node(VirtMachineState *vms)
{
    char *nodename;

    nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
                               vms->memmap[VIRT_GIC_V2M].base);
    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
    qemu_fdt_add_subnode(vms->fdt, nodename);
    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
                            "arm,gic-v2m-frame");
    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                 2, vms->memmap[VIRT_GIC_V2M].base,
                                 2, vms->memmap[VIRT_GIC_V2M].size);
    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
    g_free(nodename);
}

static void fdt_add_gic_node(VirtMachineState *vms)
{
    char *nodename;

    vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
    qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);

    nodename = g_strdup_printf("/intc@%" PRIx64,
                               vms->memmap[VIRT_GIC_DIST].base);
    qemu_fdt_add_subnode(vms->fdt, nodename);
    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
    qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
    if (vms->gic_version == 3) {
        int nb_redist_regions = virt_gicv3_redist_region_count(vms);

        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
                                "arm,gic-v3");

        qemu_fdt_setprop_cell(vms->fdt, nodename,
                              "#redistributor-regions", nb_redist_regions);

        if (nb_redist_regions == 1) {
            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                         2, vms->memmap[VIRT_GIC_DIST].base,
                                         2, vms->memmap[VIRT_GIC_DIST].size,
                                         2, vms->memmap[VIRT_GIC_REDIST].base,
                                         2, vms->memmap[VIRT_GIC_REDIST].size);
        } else {
            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                         2, vms->memmap[VIRT_GIC_DIST].base,
                                         2, vms->memmap[VIRT_GIC_DIST].size,
                                         2, vms->memmap[VIRT_GIC_REDIST].base,
                                         2, vms->memmap[VIRT_GIC_REDIST].size,
                                         2, vms->memmap[VIRT_GIC_REDIST2].base,
                                         2, vms->memmap[VIRT_GIC_REDIST2].size);
        }

        if (vms->virt) {
            qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
        }
    } else {
        /* 'cortex-a15-gic' means 'GIC v2' */
        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
                                "arm,cortex-a15-gic");
        if (!vms->virt) {
            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                         2, vms->memmap[VIRT_GIC_DIST].base,
                                         2, vms->memmap[VIRT_GIC_DIST].size,
                                         2, vms->memmap[VIRT_GIC_CPU].base,
                                         2, vms->memmap[VIRT_GIC_CPU].size);
        } else {
            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                         2, vms->memmap[VIRT_GIC_DIST].base,
                                         2, vms->memmap[VIRT_GIC_DIST].size,
                                         2, vms->memmap[VIRT_GIC_CPU].base,
                                         2, vms->memmap[VIRT_GIC_CPU].size,
                                         2, vms->memmap[VIRT_GIC_HYP].base,
                                         2, vms->memmap[VIRT_GIC_HYP].size,
                                         2, vms->memmap[VIRT_GIC_VCPU].base,
                                         2, vms->memmap[VIRT_GIC_VCPU].size);
            qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
        }
    }

    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
    g_free(nodename);
}

static void fdt_add_pmu_nodes(const VirtMachineState *vms)
{
    CPUState *cpu;
    ARMCPU *armcpu;
    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;

    CPU_FOREACH(cpu) {
        armcpu = ARM_CPU(cpu);
        if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
            return;
        }
        if (kvm_enabled()) {
            if (kvm_irqchip_in_kernel()) {
                kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
            }
            kvm_arm_pmu_init(cpu);
        }
    }

    if (vms->gic_version == 2) {
        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
                             (1 << vms->smp_cpus) - 1);
    }

    armcpu = ARM_CPU(qemu_get_cpu(0));
    qemu_fdt_add_subnode(vms->fdt, "/pmu");
    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
        const char compat[] = "arm,armv8-pmuv3";
        qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
                         compat, sizeof(compat));
        qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
    }
}

static void create_its(VirtMachineState *vms, DeviceState *gicdev)
{
    const char *itsclass = its_class_name();
    DeviceState *dev;

    if (!itsclass) {
        /* Do nothing if not supported */
        return;
    }

    dev = qdev_create(NULL, itsclass);

    object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
                             &error_abort);
    qdev_init_nofail(dev);
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);

    fdt_add_its_gic_node(vms);
}

static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
{
    int i;
    int irq = vms->irqmap[VIRT_GIC_V2M];
    DeviceState *dev;

    dev = qdev_create(NULL, "arm-gicv2m");
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
    qdev_prop_set_uint32(dev, "base-spi", irq);
    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
    qdev_init_nofail(dev);

    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
    }

    fdt_add_v2m_gic_node(vms);
}

static void create_gic(VirtMachineState *vms, qemu_irq *pic)
{
    /* We create a standalone GIC */
    DeviceState *gicdev;
    SysBusDevice *gicbusdev;
    const char *gictype;
    int type = vms->gic_version, i;
    uint32_t nb_redist_regions = 0;

    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();

    gicdev = qdev_create(NULL, gictype);
    qdev_prop_set_uint32(gicdev, "revision", type);
    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
    /* Note that the num-irq property counts both internal and external
     * interrupts; there are always 32 of the former (mandated by GIC spec).
     */
    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
    if (!kvm_irqchip_in_kernel()) {
        qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
    }

    if (type == 3) {
        uint32_t redist0_capacity =
                    vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
        uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);

        nb_redist_regions = virt_gicv3_redist_region_count(vms);

        qdev_prop_set_uint32(gicdev, "len-redist-region-count",
                             nb_redist_regions);
        qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);

        if (nb_redist_regions == 2) {
            uint32_t redist1_capacity =
                        vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;

            qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
                MIN(smp_cpus - redist0_count, redist1_capacity));
        }
    } else {
        if (!kvm_irqchip_in_kernel()) {
            qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
                              vms->virt);
        }
    }
    qdev_init_nofail(gicdev);
    gicbusdev = SYS_BUS_DEVICE(gicdev);
    sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
    if (type == 3) {
        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
        if (nb_redist_regions == 2) {
            sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
        }
    } else {
        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
        if (vms->virt) {
            sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
            sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
        }
    }

    /* Wire the outputs from each CPU's generic timer and the GICv3
     * maintenance interrupt signal to the appropriate GIC PPI inputs,
     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
     */
    for (i = 0; i < smp_cpus; i++) {
        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
        int irq;
        /* Mapping from the output timer irq lines from the CPU to the
         * GIC PPI inputs we use for the virt board.
         */
        const int timer_irq[] = {
            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
        };

        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
            qdev_connect_gpio_out(cpudev, irq,
                                  qdev_get_gpio_in(gicdev,
                                                   ppibase + timer_irq[irq]));
        }

        if (type == 3) {
            qemu_irq irq = qdev_get_gpio_in(gicdev,
                                            ppibase + ARCH_GIC_MAINT_IRQ);
            qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
                                        0, irq);
        } else if (vms->virt) {
            qemu_irq irq = qdev_get_gpio_in(gicdev,
                                            ppibase + ARCH_GIC_MAINT_IRQ);
            sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
        }

        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
                                    qdev_get_gpio_in(gicdev, ppibase
                                                     + VIRTUAL_PMU_IRQ));

        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
        sysbus_connect_irq(gicbusdev, i + smp_cpus,
                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
    }

    for (i = 0; i < NUM_IRQS; i++) {
        pic[i] = qdev_get_gpio_in(gicdev, i);
    }

    fdt_add_gic_node(vms);

    if (type == 3 && vms->its) {
        create_its(vms, gicdev);
    } else if (type == 2) {
        create_v2m(vms, pic);
    }
}

static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
                        MemoryRegion *mem, Chardev *chr)
{
    char *nodename;
    hwaddr base = vms->memmap[uart].base;
    hwaddr size = vms->memmap[uart].size;
    int irq = vms->irqmap[uart];
    const char compat[] = "arm,pl011\0arm,primecell";
    const char clocknames[] = "uartclk\0apb_pclk";
    DeviceState *dev = qdev_create(NULL, "pl011");
    SysBusDevice *s = SYS_BUS_DEVICE(dev);

    qdev_prop_set_chr(dev, "chardev", chr);
    qdev_init_nofail(dev);
    memory_region_add_subregion(mem, base,
                                sysbus_mmio_get_region(s, 0));
    sysbus_connect_irq(s, 0, pic[irq]);

    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
    qemu_fdt_add_subnode(vms->fdt, nodename);
    /* Note that we can't use setprop_string because of the embedded NUL */
    qemu_fdt_setprop(vms->fdt, nodename, "compatible",
                         compat, sizeof(compat));
    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                     2, base, 2, size);
    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
                               GIC_FDT_IRQ_TYPE_SPI, irq,
                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
    qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
                               vms->clock_phandle, vms->clock_phandle);
    qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
                         clocknames, sizeof(clocknames));

    if (uart == VIRT_UART) {
        qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
    } else {
        /* Mark as not usable by the normal world */
        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");

        qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
        qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
                                nodename);
    }

    g_free(nodename);
}

static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
{
    char *nodename;
    hwaddr base = vms->memmap[VIRT_RTC].base;
    hwaddr size = vms->memmap[VIRT_RTC].size;
    int irq = vms->irqmap[VIRT_RTC];
    const char compat[] = "arm,pl031\0arm,primecell";

    sysbus_create_simple("pl031", base, pic[irq]);

    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
    qemu_fdt_add_subnode(vms->fdt, nodename);
    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                 2, base, 2, size);
    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
                           GIC_FDT_IRQ_TYPE_SPI, irq,
                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
    g_free(nodename);
}

static DeviceState *gpio_key_dev;
static void virt_powerdown_req(Notifier *n, void *opaque)
{
    /* use gpio Pin 3 for power button event */
    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
}

static Notifier virt_system_powerdown_notifier = {
    .notify = virt_powerdown_req
};

static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
{
    char *nodename;
    DeviceState *pl061_dev;
    hwaddr base = vms->memmap[VIRT_GPIO].base;
    hwaddr size = vms->memmap[VIRT_GPIO].size;
    int irq = vms->irqmap[VIRT_GPIO];
    const char compat[] = "arm,pl061\0arm,primecell";

    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);

    uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
    qemu_fdt_add_subnode(vms->fdt, nodename);
    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                 2, base, 2, size);
    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
    qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
    qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
                           GIC_FDT_IRQ_TYPE_SPI, irq,
                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);

    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
                                        qdev_get_gpio_in(pl061_dev, 3));
    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);

    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
                            "label", "GPIO Key Poweroff");
    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
                          KEY_POWER);
    qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
                           "gpios", phandle, 3, 0);

    /* connect powerdown request */
    qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);

    g_free(nodename);
}

static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
{
    int i;
    hwaddr size = vms->memmap[VIRT_MMIO].size;

    /* We create the transports in forwards order. Since qbus_realize()
     * prepends (not appends) new child buses, the incrementing loop below will
     * create a list of virtio-mmio buses with decreasing base addresses.
     *
     * When a -device option is processed from the command line,
     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
     * order. The upshot is that -device options in increasing command line
     * order are mapped to virtio-mmio buses with decreasing base addresses.
     *
     * When this code was originally written, that arrangement ensured that the
     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
     * the first -device on the command line. (The end-to-end order is a
     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
     * guest kernel's name-to-address assignment strategy.)
     *
     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
     * the message, if not necessarily the code, of commit 70161ff336.
     * Therefore the loop now establishes the inverse of the original intent.
     *
     * Unfortunately, we can't counteract the kernel change by reversing the
     * loop; it would break existing command lines.
     *
     * In any case, the kernel makes no guarantee about the stability of
     * enumeration order of virtio devices (as demonstrated by it changing
     * between kernel versions). For reliable and stable identification
     * of disks users must use UUIDs or similar mechanisms.
     */
    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
        int irq = vms->irqmap[VIRT_MMIO] + i;
        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;

        sysbus_create_simple("virtio-mmio", base, pic[irq]);
    }

    /* We add dtb nodes in reverse order so that they appear in the finished
     * device tree lowest address first.
     *
     * Note that this mapping is independent of the loop above. The previous
     * loop influences virtio device to virtio transport assignment, whereas
     * this loop controls how virtio transports are laid out in the dtb.
     */
    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
        char *nodename;
        int irq = vms->irqmap[VIRT_MMIO] + i;
        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;

        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
        qemu_fdt_add_subnode(vms->fdt, nodename);
        qemu_fdt_setprop_string(vms->fdt, nodename,
                                "compatible", "virtio,mmio");
        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                     2, base, 2, size);
        qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
                               GIC_FDT_IRQ_TYPE_SPI, irq,
                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
        qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
        g_free(nodename);
    }
}

static void create_one_flash(const char *name, hwaddr flashbase,
                             hwaddr flashsize, const char *file,
                             MemoryRegion *sysmem)
{
    /* Create and map a single flash device. We use the same
     * parameters as the flash devices on the Versatile Express board.
     */
    DriveInfo *dinfo = drive_get_next(IF_PFLASH);
    DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
    const uint64_t sectorlength = 256 * 1024;

    if (dinfo) {
        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
                            &error_abort);
    }

    qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
    qdev_prop_set_uint64(dev, "sector-length", sectorlength);
    qdev_prop_set_uint8(dev, "width", 4);
    qdev_prop_set_uint8(dev, "device-width", 2);
    qdev_prop_set_bit(dev, "big-endian", false);
    qdev_prop_set_uint16(dev, "id0", 0x89);
    qdev_prop_set_uint16(dev, "id1", 0x18);
    qdev_prop_set_uint16(dev, "id2", 0x00);
    qdev_prop_set_uint16(dev, "id3", 0x00);
    qdev_prop_set_string(dev, "name", name);
    qdev_init_nofail(dev);

    memory_region_add_subregion(sysmem, flashbase,
                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));

    if (file) {
        char *fn;
        int image_size;

        if (drive_get(IF_PFLASH, 0, 0)) {
            error_report("The contents of the first flash device may be "
                         "specified with -bios or with -drive if=pflash... "
                         "but you cannot use both options at once");
            exit(1);
        }
        fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
        if (!fn) {
            error_report("Could not find ROM image '%s'", file);
            exit(1);
        }
        image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
        g_free(fn);
        if (image_size < 0) {
            error_report("Could not load ROM image '%s'", file);
            exit(1);
        }
    }
}

static void create_flash(const VirtMachineState *vms,
                         MemoryRegion *sysmem,
                         MemoryRegion *secure_sysmem)
{
    /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
     * Any file passed via -bios goes in the first of these.
     * sysmem is the system memory space. secure_sysmem is the secure view
     * of the system, and the first flash device should be made visible only
     * there. The second flash device is visible to both secure and nonsecure.
     * If sysmem == secure_sysmem this means there is no separate Secure
     * address space and both flash devices are generally visible.
     */
    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
    char *nodename;

    create_one_flash("virt.flash0", flashbase, flashsize,
                     bios_name, secure_sysmem);
    create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
                     NULL, sysmem);

    if (sysmem == secure_sysmem) {
        /* Report both flash devices as a single node in the DT */
        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
        qemu_fdt_add_subnode(vms->fdt, nodename);
        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                     2, flashbase, 2, flashsize,
                                     2, flashbase + flashsize, 2, flashsize);
        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
        g_free(nodename);
    } else {
        /* Report the devices as separate nodes so we can mark one as
         * only visible to the secure world.
         */
        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
        qemu_fdt_add_subnode(vms->fdt, nodename);
        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                     2, flashbase, 2, flashsize);
        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
        g_free(nodename);

        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
        qemu_fdt_add_subnode(vms->fdt, nodename);
        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                     2, flashbase + flashsize, 2, flashsize);
        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
        g_free(nodename);
    }
}

static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
{
    hwaddr base = vms->memmap[VIRT_FW_CFG].base;
    hwaddr size = vms->memmap[VIRT_FW_CFG].size;
    FWCfgState *fw_cfg;
    char *nodename;

    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);

    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
    qemu_fdt_add_subnode(vms->fdt, nodename);
    qemu_fdt_setprop_string(vms->fdt, nodename,
                            "compatible", "qemu,fw-cfg-mmio");
    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                 2, base, 2, size);
    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
    g_free(nodename);
    return fw_cfg;
}

static void create_pcie_irq_map(const VirtMachineState *vms,
                                uint32_t gic_phandle,
                                int first_irq, const char *nodename)
{
    int devfn, pin;
    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
    uint32_t *irq_map = full_irq_map;

    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
        for (pin = 0; pin < 4; pin++) {
            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
            int i;

            uint32_t map[] = {
                devfn << 8, 0, 0,                           /* devfn */
                pin + 1,                                    /* PCI pin */
                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */

            /* Convert map to big endian */
            for (i = 0; i < 10; i++) {
                irq_map[i] = cpu_to_be32(map[i]);
            }
            irq_map += 10;
        }
    }

    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
                     full_irq_map, sizeof(full_irq_map));

    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
                           0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
                           0x7           /* PCI irq */);
}

static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
                        PCIBus *bus)
{
    char *node;
    const char compat[] = "arm,smmu-v3";
    int irq =  vms->irqmap[VIRT_SMMU];
    int i;
    hwaddr base = vms->memmap[VIRT_SMMU].base;
    hwaddr size = vms->memmap[VIRT_SMMU].size;
    const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
    DeviceState *dev;

    if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
        return;
    }

    dev = qdev_create(NULL, "arm-smmuv3");

    object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
                             &error_abort);
    qdev_init_nofail(dev);
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
    for (i = 0; i < NUM_SMMU_IRQS; i++) {
        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
    }

    node = g_strdup_printf("/smmuv3@%" PRIx64, base);
    qemu_fdt_add_subnode(vms->fdt, node);
    qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
    qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);

    qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
            GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
            GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
            GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
            GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);

    qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
                     sizeof(irq_names));

    qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
    qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
    qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);

    qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);

    qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
    g_free(node);
}

static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
{
    hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
    hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
    hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
    hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
    hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
    hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
    hwaddr base_ecam, size_ecam;
    hwaddr base = base_mmio;
    int nr_pcie_buses;
    int irq = vms->irqmap[VIRT_PCIE];
    MemoryRegion *mmio_alias;
    MemoryRegion *mmio_reg;
    MemoryRegion *ecam_alias;
    MemoryRegion *ecam_reg;
    DeviceState *dev;
    char *nodename;
    int i, ecam_id;
    PCIHostState *pci;

    dev = qdev_create(NULL, TYPE_GPEX_HOST);
    qdev_init_nofail(dev);

    ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
    base_ecam = vms->memmap[ecam_id].base;
    size_ecam = vms->memmap[ecam_id].size;
    nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
    /* Map only the first size_ecam bytes of ECAM space */
    ecam_alias = g_new0(MemoryRegion, 1);
    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
                             ecam_reg, 0, size_ecam);
    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);

    /* Map the MMIO window into system address space so as to expose
     * the section of PCI MMIO space which starts at the same base address
     * (ie 1:1 mapping for that part of PCI MMIO space visible through
     * the window).
     */
    mmio_alias = g_new0(MemoryRegion, 1);
    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
                             mmio_reg, base_mmio, size_mmio);
    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);

    if (vms->highmem) {
        /* Map high MMIO space */
        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);

        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
                                 mmio_reg, base_mmio_high, size_mmio_high);
        memory_region_add_subregion(get_system_memory(), base_mmio_high,
                                    high_mmio_alias);
    }

    /* Map IO port space */
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);

    for (i = 0; i < GPEX_NUM_IRQS; i++) {
        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
    }

    pci = PCI_HOST_BRIDGE(dev);
    if (pci->bus) {
        for (i = 0; i < nb_nics; i++) {
            NICInfo *nd = &nd_table[i];

            if (!nd->model) {
                nd->model = g_strdup("virtio");
            }

            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
        }
    }

    nodename = g_strdup_printf("/pcie@%" PRIx64, base);
    qemu_fdt_add_subnode(vms->fdt, nodename);
    qemu_fdt_setprop_string(vms->fdt, nodename,
                            "compatible", "pci-host-ecam-generic");
    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
    qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
    qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
                           nr_pcie_buses - 1);
    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);

    if (vms->msi_phandle) {
        qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
                               vms->msi_phandle);
    }

    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
                                 2, base_ecam, 2, size_ecam);

    if (vms->highmem) {
        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
                                     2, base_pio, 2, size_pio,
                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
                                     2, base_mmio, 2, size_mmio,
                                     1, FDT_PCI_RANGE_MMIO_64BIT,
                                     2, base_mmio_high,
                                     2, base_mmio_high, 2, size_mmio_high);
    } else {
        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
                                     2, base_pio, 2, size_pio,
                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
                                     2, base_mmio, 2, size_mmio);
    }

    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
    create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);

    if (vms->iommu) {
        vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);

        create_smmu(vms, pic, pci->bus);

        qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
                               0x0, vms->iommu_phandle, 0x0, 0x10000);
    }

    g_free(nodename);
}

static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
{
    DeviceState *dev;
    SysBusDevice *s;
    int i;
    MemoryRegion *sysmem = get_system_memory();

    dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
    dev->id = TYPE_PLATFORM_BUS_DEVICE;
    qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
    qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
    qdev_init_nofail(dev);
    vms->platform_bus_dev = dev;

    s = SYS_BUS_DEVICE(dev);
    for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
        int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
        sysbus_connect_irq(s, i, pic[irqn]);
    }

    memory_region_add_subregion(sysmem,
                                vms->memmap[VIRT_PLATFORM_BUS].base,
                                sysbus_mmio_get_region(s, 0));
}

static void create_secure_ram(VirtMachineState *vms,
                              MemoryRegion *secure_sysmem)
{
    MemoryRegion *secram = g_new(MemoryRegion, 1);
    char *nodename;
    hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
    hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;

    memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
                           &error_fatal);
    memory_region_add_subregion(secure_sysmem, base, secram);

    nodename = g_strdup_printf("/secram@%" PRIx64, base);
    qemu_fdt_add_subnode(vms->fdt, nodename);
    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
    qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
    qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");

    g_free(nodename);
}

static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
    const VirtMachineState *board = container_of(binfo, VirtMachineState,
                                                 bootinfo);

    *fdt_size = board->fdt_size;
    return board->fdt;
}

static void virt_build_smbios(VirtMachineState *vms)
{
    MachineClass *mc = MACHINE_GET_CLASS(vms);
    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
    uint8_t *smbios_tables, *smbios_anchor;
    size_t smbios_tables_len, smbios_anchor_len;
    const char *product = "QEMU Virtual Machine";

    if (!vms->fw_cfg) {
        return;
    }

    if (kvm_enabled()) {
        product = "KVM Virtual Machine";
    }

    smbios_set_defaults("QEMU", product,
                        vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
                        true, SMBIOS_ENTRY_POINT_30);

    smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
                      &smbios_anchor, &smbios_anchor_len);

    if (smbios_anchor) {
        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
                        smbios_tables, smbios_tables_len);
        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
                        smbios_anchor, smbios_anchor_len);
    }
}

static
void virt_machine_done(Notifier *notifier, void *data)
{
    VirtMachineState *vms = container_of(notifier, VirtMachineState,
                                         machine_done);
    ARMCPU *cpu = ARM_CPU(first_cpu);
    struct arm_boot_info *info = &vms->bootinfo;
    AddressSpace *as = arm_boot_address_space(cpu, info);

    /*
     * If the user provided a dtb, we assume the dynamic sysbus nodes
     * already are integrated there. This corresponds to a use case where
     * the dynamic sysbus nodes are complex and their generation is not yet
     * supported. In that case the user can take charge of the guest dt
     * while qemu takes charge of the qom stuff.
     */
    if (info->dtb_filename == NULL) {
        platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
                                       vms->memmap[VIRT_PLATFORM_BUS].base,
                                       vms->memmap[VIRT_PLATFORM_BUS].size,
                                       vms->irqmap[VIRT_PLATFORM_BUS]);
    }
    if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
        exit(1);
    }

    virt_acpi_setup(vms);
    virt_build_smbios(vms);
}

static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
{
    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);

    if (!vmc->disallow_affinity_adjustment) {
        /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
         * GIC's target-list limitations. 32-bit KVM hosts currently
         * always create clusters of 4 CPUs, but that is expected to
         * change when they gain support for gicv3. When KVM is enabled
         * it will override the changes we make here, therefore our
         * purposes are to make TCG consistent (with 64-bit KVM hosts)
         * and to improve SGI efficiency.
         */
        if (vms->gic_version == 3) {
            clustersz = GICV3_TARGETLIST_BITS;
        } else {
            clustersz = GIC_TARGETLIST_BITS;
        }
    }
    return arm_cpu_mp_affinity(idx, clustersz);
}

static void machvirt_init(MachineState *machine)
{
    VirtMachineState *vms = VIRT_MACHINE(machine);
    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
    MachineClass *mc = MACHINE_GET_CLASS(machine);
    const CPUArchIdList *possible_cpus;
    qemu_irq pic[NUM_IRQS];
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *secure_sysmem = NULL;
    int n, virt_max_cpus;
    MemoryRegion *ram = g_new(MemoryRegion, 1);
    bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
    bool aarch64 = true;

    /* We can probe only here because during property set
     * KVM is not available yet
     */
    if (vms->gic_version <= 0) {
        /* "host" or "max" */
        if (!kvm_enabled()) {
            if (vms->gic_version == 0) {
                error_report("gic-version=host requires KVM");
                exit(1);
            } else {
                /* "max": currently means 3 for TCG */
                vms->gic_version = 3;
            }
        } else {
            vms->gic_version = kvm_arm_vgic_probe();
            if (!vms->gic_version) {
                error_report(
                    "Unable to determine GIC version supported by host");
                exit(1);
            }
        }
    }

    if (!cpu_type_valid(machine->cpu_type)) {
        error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
        exit(1);
    }

    /* If we have an EL3 boot ROM then the assumption is that it will
     * implement PSCI itself, so disable QEMU's internal implementation
     * so it doesn't get in the way. Instead of starting secondary
     * CPUs in PSCI powerdown state we will start them all running and
     * let the boot ROM sort them out.
     * The usual case is that we do use QEMU's PSCI implementation;
     * if the guest has EL2 then we will use SMC as the conduit,
     * and otherwise we will use HVC (for backwards compatibility and
     * because if we're using KVM then we must use HVC).
     */
    if (vms->secure && firmware_loaded) {
        vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
    } else if (vms->virt) {
        vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
    } else {
        vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
    }

    /* The maximum number of CPUs depends on the GIC version, or on how
     * many redistributors we can fit into the memory map.
     */
    if (vms->gic_version == 3) {
        virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
        virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
    } else {
        virt_max_cpus = GIC_NCPU;
    }

    if (max_cpus > virt_max_cpus) {
        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
                     "supported by machine 'mach-virt' (%d)",
                     max_cpus, virt_max_cpus);
        exit(1);
    }

    vms->smp_cpus = smp_cpus;

    if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
        error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
        exit(1);
    }

    if (vms->virt && kvm_enabled()) {
        error_report("mach-virt: KVM does not support providing "
                     "Virtualization extensions to the guest CPU");
        exit(1);
    }

    if (vms->secure) {
        if (kvm_enabled()) {
            error_report("mach-virt: KVM does not support Security extensions");
            exit(1);
        }

        /* The Secure view of the world is the same as the NonSecure,
         * but with a few extra devices. Create it as a container region
         * containing the system memory at low priority; any secure-only
         * devices go in at higher priority and take precedence.
         */
        secure_sysmem = g_new(MemoryRegion, 1);
        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
                           UINT64_MAX);
        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
    }

    create_fdt(vms);

    possible_cpus = mc->possible_cpu_arch_ids(machine);
    for (n = 0; n < possible_cpus->len; n++) {
        Object *cpuobj;
        CPUState *cs;

        if (n >= smp_cpus) {
            break;
        }

        cpuobj = object_new(possible_cpus->cpus[n].type);
        object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
                                "mp-affinity", NULL);

        cs = CPU(cpuobj);
        cs->cpu_index = n;

        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
                          &error_fatal);

        aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);

        if (!vms->secure) {
            object_property_set_bool(cpuobj, false, "has_el3", NULL);
        }

        if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
            object_property_set_bool(cpuobj, false, "has_el2", NULL);
        }

        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
            object_property_set_int(cpuobj, vms->psci_conduit,
                                    "psci-conduit", NULL);

            /* Secondary CPUs start in PSCI powered-down state */
            if (n > 0) {
                object_property_set_bool(cpuobj, true,
                                         "start-powered-off", NULL);
            }
        }

        if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
            object_property_set_bool(cpuobj, false, "pmu", NULL);
        }

        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
            object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
                                    "reset-cbar", &error_abort);
        }

        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
                                 &error_abort);
        if (vms->secure) {
            object_property_set_link(cpuobj, OBJECT(secure_sysmem),
                                     "secure-memory", &error_abort);
        }

        object_property_set_bool(cpuobj, true, "realized", &error_fatal);
        object_unref(cpuobj);
    }
    fdt_add_timer_nodes(vms);
    fdt_add_cpu_nodes(vms);

    memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
                                         machine->ram_size);
    memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);

    create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);

    create_gic(vms, pic);

    fdt_add_pmu_nodes(vms);

    create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));

    if (vms->secure) {
        create_secure_ram(vms, secure_sysmem);
        create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
    }

    vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);

    create_rtc(vms, pic);

    create_pcie(vms, pic);

    create_gpio(vms, pic);

    /* Create mmio transports, so the user can create virtio backends
     * (which will be automatically plugged in to the transports). If
     * no backend is created the transport will just sit harmlessly idle.
     */
    create_virtio_devices(vms, pic);

    vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
    rom_set_fw(vms->fw_cfg);

    create_platform_bus(vms, pic);

    vms->bootinfo.ram_size = machine->ram_size;
    vms->bootinfo.kernel_filename = machine->kernel_filename;
    vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
    vms->bootinfo.initrd_filename = machine->initrd_filename;
    vms->bootinfo.nb_cpus = smp_cpus;
    vms->bootinfo.board_id = -1;
    vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
    vms->bootinfo.get_dtb = machvirt_dtb;
    vms->bootinfo.skip_dtb_autoload = true;
    vms->bootinfo.firmware_loaded = firmware_loaded;
    arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);

    vms->machine_done.notify = virt_machine_done;
    qemu_add_machine_init_done_notifier(&vms->machine_done);
}

static bool virt_get_secure(Object *obj, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);

    return vms->secure;
}

static void virt_set_secure(Object *obj, bool value, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);

    vms->secure = value;
}

static bool virt_get_virt(Object *obj, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);

    return vms->virt;
}

static void virt_set_virt(Object *obj, bool value, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);

    vms->virt = value;
}

static bool virt_get_highmem(Object *obj, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);

    return vms->highmem;
}

static void virt_set_highmem(Object *obj, bool value, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);

    vms->highmem = value;
}

static bool virt_get_its(Object *obj, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);

    return vms->its;
}

static void virt_set_its(Object *obj, bool value, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);

    vms->its = value;
}

static char *virt_get_gic_version(Object *obj, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);
    const char *val = vms->gic_version == 3 ? "3" : "2";

    return g_strdup(val);
}

static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);

    if (!strcmp(value, "3")) {
        vms->gic_version = 3;
    } else if (!strcmp(value, "2")) {
        vms->gic_version = 2;
    } else if (!strcmp(value, "host")) {
        vms->gic_version = 0; /* Will probe later */
    } else if (!strcmp(value, "max")) {
        vms->gic_version = -1; /* Will probe later */
    } else {
        error_setg(errp, "Invalid gic-version value");
        error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
    }
}

static char *virt_get_iommu(Object *obj, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);

    switch (vms->iommu) {
    case VIRT_IOMMU_NONE:
        return g_strdup("none");
    case VIRT_IOMMU_SMMUV3:
        return g_strdup("smmuv3");
    default:
        g_assert_not_reached();
    }
}

static void virt_set_iommu(Object *obj, const char *value, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);

    if (!strcmp(value, "smmuv3")) {
        vms->iommu = VIRT_IOMMU_SMMUV3;
    } else if (!strcmp(value, "none")) {
        vms->iommu = VIRT_IOMMU_NONE;
    } else {
        error_setg(errp, "Invalid iommu value");
        error_append_hint(errp, "Valid values are none, smmuv3.\n");
    }
}

static CpuInstanceProperties
virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
    MachineClass *mc = MACHINE_GET_CLASS(ms);
    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);

    assert(cpu_index < possible_cpus->len);
    return possible_cpus->cpus[cpu_index].props;
}

static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
{
    return idx % nb_numa_nodes;
}

static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
{
    int n;
    VirtMachineState *vms = VIRT_MACHINE(ms);

    if (ms->possible_cpus) {
        assert(ms->possible_cpus->len == max_cpus);
        return ms->possible_cpus;
    }

    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
                                  sizeof(CPUArchId) * max_cpus);
    ms->possible_cpus->len = max_cpus;
    for (n = 0; n < ms->possible_cpus->len; n++) {
        ms->possible_cpus->cpus[n].type = ms->cpu_type;
        ms->possible_cpus->cpus[n].arch_id =
            virt_cpu_mp_affinity(vms, n);
        ms->possible_cpus->cpus[n].props.has_thread_id = true;
        ms->possible_cpus->cpus[n].props.thread_id = n;
    }
    return ms->possible_cpus;
}

static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
                                        DeviceState *dev, Error **errp)
{
    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);

    if (vms->platform_bus_dev) {
        if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
            platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
                                     SYS_BUS_DEVICE(dev));
        }
    }
}

static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
                                                        DeviceState *dev)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
        return HOTPLUG_HANDLER(machine);
    }

    return NULL;
}

static void virt_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);

    mc->init = machvirt_init;
    /* Start with max_cpus set to 512, which is the maximum supported by KVM.
     * The value may be reduced later when we have more information about the
     * configuration of the particular instance.
     */
    mc->max_cpus = 512;
    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
    mc->block_default_type = IF_VIRTIO;
    mc->no_cdrom = 1;
    mc->pci_allow_0_address = true;
    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
    mc->minimum_page_bits = 12;
    mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
    mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
    mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
    assert(!mc->get_hotplug_handler);
    mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
    hc->plug = virt_machine_device_plug_cb;
}

static void virt_instance_init(Object *obj)
{
    VirtMachineState *vms = VIRT_MACHINE(obj);
    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);

    /* EL3 is disabled by default on virt: this makes us consistent
     * between KVM and TCG for this board, and it also allows us to
     * boot UEFI blobs which assume no TrustZone support.
     */
    vms->secure = false;
    object_property_add_bool(obj, "secure", virt_get_secure,
                             virt_set_secure, NULL);
    object_property_set_description(obj, "secure",
                                    "Set on/off to enable/disable the ARM "
                                    "Security Extensions (TrustZone)",
                                    NULL);

    /* EL2 is also disabled by default, for similar reasons */
    vms->virt = false;
    object_property_add_bool(obj, "virtualization", virt_get_virt,
                             virt_set_virt, NULL);
    object_property_set_description(obj, "virtualization",
                                    "Set on/off to enable/disable emulating a "
                                    "guest CPU which implements the ARM "
                                    "Virtualization Extensions",
                                    NULL);

    /* High memory is enabled by default */
    vms->highmem = true;
    object_property_add_bool(obj, "highmem", virt_get_highmem,
                             virt_set_highmem, NULL);
    object_property_set_description(obj, "highmem",
                                    "Set on/off to enable/disable using "
                                    "physical address space above 32 bits",
                                    NULL);
    /* Default GIC type is v2 */
    vms->gic_version = 2;
    object_property_add_str(obj, "gic-version", virt_get_gic_version,
                        virt_set_gic_version, NULL);
    object_property_set_description(obj, "gic-version",
                                    "Set GIC version. "
                                    "Valid values are 2, 3 and host", NULL);

    vms->highmem_ecam = !vmc->no_highmem_ecam;

    if (vmc->no_its) {
        vms->its = false;
    } else {
        /* Default allows ITS instantiation */
        vms->its = true;
        object_property_add_bool(obj, "its", virt_get_its,
                                 virt_set_its, NULL);
        object_property_set_description(obj, "its",
                                        "Set on/off to enable/disable "
                                        "ITS instantiation",
                                        NULL);
    }

    /* Default disallows iommu instantiation */
    vms->iommu = VIRT_IOMMU_NONE;
    object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
    object_property_set_description(obj, "iommu",
                                    "Set the IOMMU type. "
                                    "Valid values are none and smmuv3",
                                    NULL);

    vms->memmap = a15memmap;
    vms->irqmap = a15irqmap;
}

static const TypeInfo virt_machine_info = {
    .name          = TYPE_VIRT_MACHINE,
    .parent        = TYPE_MACHINE,
    .abstract      = true,
    .instance_size = sizeof(VirtMachineState),
    .class_size    = sizeof(VirtMachineClass),
    .class_init    = virt_machine_class_init,
    .instance_init = virt_instance_init,
    .interfaces = (InterfaceInfo[]) {
         { TYPE_HOTPLUG_HANDLER },
         { }
    },
};

static void machvirt_machine_init(void)
{
    type_register_static(&virt_machine_info);
}
type_init(machvirt_machine_init);

static void virt_machine_4_0_options(MachineClass *mc)
{
}
DEFINE_VIRT_MACHINE_AS_LATEST(4, 0)

static void virt_machine_3_1_options(MachineClass *mc)
{
    virt_machine_4_0_options(mc);
    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
}
DEFINE_VIRT_MACHINE(3, 1)

static void virt_machine_3_0_options(MachineClass *mc)
{
    static GlobalProperty compat[] = {
        HW_COMPAT_3_0
    };

    virt_machine_3_1_options(mc);
    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
}
DEFINE_VIRT_MACHINE(3, 0)

static void virt_machine_2_12_options(MachineClass *mc)
{
    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
    static GlobalProperty compat[] = {
        HW_COMPAT_2_12
    };

    virt_machine_3_0_options(mc);
    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
    vmc->no_highmem_ecam = true;
    mc->max_cpus = 255;
}
DEFINE_VIRT_MACHINE(2, 12)

static void virt_machine_2_11_options(MachineClass *mc)
{
    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
    static GlobalProperty compat[] = {
        HW_COMPAT_2_11
    };

    virt_machine_2_12_options(mc);
    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
    vmc->smbios_old_sys_ver = true;
}
DEFINE_VIRT_MACHINE(2, 11)

static void virt_machine_2_10_options(MachineClass *mc)
{
    static GlobalProperty compat[] = {
        HW_COMPAT_2_10
    };

    virt_machine_2_11_options(mc);
    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
    /* before 2.11 we never faulted accesses to bad addresses */
    mc->ignore_memory_transaction_failures = true;
}
DEFINE_VIRT_MACHINE(2, 10)

static void virt_machine_2_9_options(MachineClass *mc)
{
    static GlobalProperty compat[] = {
        HW_COMPAT_2_9
    };

    virt_machine_2_10_options(mc);
    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
}
DEFINE_VIRT_MACHINE(2, 9)

static void virt_machine_2_8_options(MachineClass *mc)
{
    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
    static GlobalProperty compat[] = {
        HW_COMPAT_2_8
    };

    virt_machine_2_9_options(mc);
    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
    /* For 2.8 and earlier we falsely claimed in the DT that
     * our timers were edge-triggered, not level-triggered.
     */
    vmc->claim_edge_triggered_timers = true;
}
DEFINE_VIRT_MACHINE(2, 8)

static void virt_machine_2_7_options(MachineClass *mc)
{
    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
    static GlobalProperty compat[] = {
        HW_COMPAT_2_7
    };

    virt_machine_2_8_options(mc);
    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
    /* ITS was introduced with 2.8 */
    vmc->no_its = true;
    /* Stick with 1K pages for migration compatibility */
    mc->minimum_page_bits = 0;
}
DEFINE_VIRT_MACHINE(2, 7)

static void virt_machine_2_6_options(MachineClass *mc)
{
    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
    static GlobalProperty compat[] = {
        HW_COMPAT_2_6
    };

    virt_machine_2_7_options(mc);
    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
    vmc->disallow_affinity_adjustment = true;
    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
    vmc->no_pmu = true;
}
DEFINE_VIRT_MACHINE(2, 6)