aboutsummaryrefslogtreecommitdiff
path: root/hw/acpi/nvdimm.c
blob: 07c95c1f1f4287bdd725fead340b3b7aca164999 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
/*
 * NVDIMM ACPI Implementation
 *
 * Copyright(C) 2015 Intel Corporation.
 *
 * Author:
 *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
 *
 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
 * and the DSM specification can be found at:
 *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
 *
 * Currently, it only supports PMEM Virtualization.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>
 */

#include "qemu/osdep.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/aml-build.h"
#include "hw/acpi/bios-linker-loader.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/mem/nvdimm.h"

static int nvdimm_plugged_device_list(Object *obj, void *opaque)
{
    GSList **list = opaque;

    if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
        DeviceState *dev = DEVICE(obj);

        if (dev->realized) { /* only realized NVDIMMs matter */
            *list = g_slist_append(*list, DEVICE(obj));
        }
    }

    object_child_foreach(obj, nvdimm_plugged_device_list, opaque);
    return 0;
}

/*
 * inquire plugged NVDIMM devices and link them into the list which is
 * returned to the caller.
 *
 * Note: it is the caller's responsibility to free the list to avoid
 * memory leak.
 */
static GSList *nvdimm_get_plugged_device_list(void)
{
    GSList *list = NULL;

    object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list,
                         &list);
    return list;
}

#define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7)             \
   { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
     (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff,          \
     (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }

/*
 * define Byte Addressable Persistent Memory (PM) Region according to
 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
 */
static const uint8_t nvdimm_nfit_spa_uuid[] =
      NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
                     0x18, 0xb7, 0x8c, 0xdb);

/*
 * NVDIMM Firmware Interface Table
 * @signature: "NFIT"
 *
 * It provides information that allows OSPM to enumerate NVDIMM present in
 * the platform and associate system physical address ranges created by the
 * NVDIMMs.
 *
 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
 */
struct NvdimmNfitHeader {
    ACPI_TABLE_HEADER_DEF
    uint32_t reserved;
} QEMU_PACKED;
typedef struct NvdimmNfitHeader NvdimmNfitHeader;

/*
 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
 * Interface Table (NFIT).
 */

/*
 * System Physical Address Range Structure
 *
 * It describes the system physical address ranges occupied by NVDIMMs and
 * the types of the regions.
 */
struct NvdimmNfitSpa {
    uint16_t type;
    uint16_t length;
    uint16_t spa_index;
    uint16_t flags;
    uint32_t reserved;
    uint32_t proximity_domain;
    uint8_t type_guid[16];
    uint64_t spa_base;
    uint64_t spa_length;
    uint64_t mem_attr;
} QEMU_PACKED;
typedef struct NvdimmNfitSpa NvdimmNfitSpa;

/*
 * Memory Device to System Physical Address Range Mapping Structure
 *
 * It enables identifying each NVDIMM region and the corresponding SPA
 * describing the memory interleave
 */
struct NvdimmNfitMemDev {
    uint16_t type;
    uint16_t length;
    uint32_t nfit_handle;
    uint16_t phys_id;
    uint16_t region_id;
    uint16_t spa_index;
    uint16_t dcr_index;
    uint64_t region_len;
    uint64_t region_offset;
    uint64_t region_dpa;
    uint16_t interleave_index;
    uint16_t interleave_ways;
    uint16_t flags;
    uint16_t reserved;
} QEMU_PACKED;
typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;

/*
 * NVDIMM Control Region Structure
 *
 * It describes the NVDIMM and if applicable, Block Control Window.
 */
struct NvdimmNfitControlRegion {
    uint16_t type;
    uint16_t length;
    uint16_t dcr_index;
    uint16_t vendor_id;
    uint16_t device_id;
    uint16_t revision_id;
    uint16_t sub_vendor_id;
    uint16_t sub_device_id;
    uint16_t sub_revision_id;
    uint8_t reserved[6];
    uint32_t serial_number;
    uint16_t fic;
    uint16_t num_bcw;
    uint64_t bcw_size;
    uint64_t cmd_offset;
    uint64_t cmd_size;
    uint64_t status_offset;
    uint64_t status_size;
    uint16_t flags;
    uint8_t reserved2[6];
} QEMU_PACKED;
typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;

/*
 * Module serial number is a unique number for each device. We use the
 * slot id of NVDIMM device to generate this number so that each device
 * associates with a different number.
 *
 * 0x123456 is a magic number we arbitrarily chose.
 */
static uint32_t nvdimm_slot_to_sn(int slot)
{
    return 0x123456 + slot;
}

/*
 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
 * by ACPI device _ADR method.
 *
 * We generate the handle with the slot id of NVDIMM device and reserve
 * 0 for NVDIMM root device.
 */
static uint32_t nvdimm_slot_to_handle(int slot)
{
    return slot + 1;
}

/*
 * index uniquely identifies the structure, 0 is reserved which indicates
 * that the structure is not valid or the associated structure is not
 * present.
 *
 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
 * nfit_dc which are generated by the slot id of NVDIMM device.
 */
static uint16_t nvdimm_slot_to_spa_index(int slot)
{
    return (slot + 1) << 1;
}

/* See the comments of nvdimm_slot_to_spa_index(). */
static uint32_t nvdimm_slot_to_dcr_index(int slot)
{
    return nvdimm_slot_to_spa_index(slot) + 1;
}

/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
static void
nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
{
    NvdimmNfitSpa *nfit_spa;
    uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
                                            NULL);
    uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
                                            NULL);
    uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
                                            NULL);
    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
                                            NULL);

    nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));

    nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
                                      Structure */);
    nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
    nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));

    /*
     * Control region is strict as all the device info, such as SN, index,
     * is associated with slot id.
     */
    nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
                                       management during hot add/online
                                       operation */ |
                                  2 /* Data in Proximity Domain field is
                                       valid*/);

    /* NUMA node. */
    nfit_spa->proximity_domain = cpu_to_le32(node);
    /* the region reported as PMEM. */
    memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
           sizeof(nvdimm_nfit_spa_uuid));

    nfit_spa->spa_base = cpu_to_le64(addr);
    nfit_spa->spa_length = cpu_to_le64(size);

    /* It is the PMEM and can be cached as writeback. */
    nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
                                     0x8000ULL /* EFI_MEMORY_NV */);
}

/*
 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
 * Structure
 */
static void
nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
{
    NvdimmNfitMemDev *nfit_memdev;
    uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
                                            NULL);
    uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
                                            NULL);
    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
                                            NULL);
    uint32_t handle = nvdimm_slot_to_handle(slot);

    nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));

    nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
                                         Range Map Structure*/);
    nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
    nfit_memdev->nfit_handle = cpu_to_le32(handle);

    /*
     * associate memory device with System Physical Address Range
     * Structure.
     */
    nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
    /* associate memory device with Control Region Structure. */
    nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));

    /* The memory region on the device. */
    nfit_memdev->region_len = cpu_to_le64(size);
    nfit_memdev->region_dpa = cpu_to_le64(addr);

    /* Only one interleave for PMEM. */
    nfit_memdev->interleave_ways = cpu_to_le16(1);
}

/*
 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
 */
static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
{
    NvdimmNfitControlRegion *nfit_dcr;
    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
                                       NULL);
    uint32_t sn = nvdimm_slot_to_sn(slot);

    nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));

    nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
    nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
    nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));

    /* vendor: Intel. */
    nfit_dcr->vendor_id = cpu_to_le16(0x8086);
    nfit_dcr->device_id = cpu_to_le16(1);

    /* The _DSM method is following Intel's DSM specification. */
    nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
                                             in ACPI 6.0 is 1. */);
    nfit_dcr->serial_number = cpu_to_le32(sn);
    nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
                                         2: NVDIMM Device Specific Method
                                         (DSM) in DSM Spec Rev1.*/);
}

static GArray *nvdimm_build_device_structure(GSList *device_list)
{
    GArray *structures = g_array_new(false, true /* clear */, 1);

    for (; device_list; device_list = device_list->next) {
        DeviceState *dev = device_list->data;

        /* build System Physical Address Range Structure. */
        nvdimm_build_structure_spa(structures, dev);

        /*
         * build Memory Device to System Physical Address Range Mapping
         * Structure.
         */
        nvdimm_build_structure_memdev(structures, dev);

        /* build NVDIMM Control Region Structure. */
        nvdimm_build_structure_dcr(structures, dev);
    }

    return structures;
}

static void nvdimm_build_nfit(GSList *device_list, GArray *table_offsets,
                              GArray *table_data, BIOSLinker *linker)
{
    GArray *structures = nvdimm_build_device_structure(device_list);
    unsigned int header;

    acpi_add_table(table_offsets, table_data);

    /* NFIT header. */
    header = table_data->len;
    acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
    /* NVDIMM device structures. */
    g_array_append_vals(table_data, structures->data, structures->len);

    build_header(linker, table_data,
                 (void *)(table_data->data + header), "NFIT",
                 sizeof(NvdimmNfitHeader) + structures->len, 1, NULL, NULL);
    g_array_free(structures, true);
}

struct NvdimmDsmIn {
    uint32_t handle;
    uint32_t revision;
    uint32_t function;
    /* the remaining size in the page is used by arg3. */
    union {
        uint8_t arg3[4084];
    };
} QEMU_PACKED;
typedef struct NvdimmDsmIn NvdimmDsmIn;
QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096);

struct NvdimmDsmOut {
    /* the size of buffer filled by QEMU. */
    uint32_t len;
    uint8_t data[4092];
} QEMU_PACKED;
typedef struct NvdimmDsmOut NvdimmDsmOut;
QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096);

struct NvdimmDsmFunc0Out {
    /* the size of buffer filled by QEMU. */
     uint32_t len;
     uint32_t supported_func;
} QEMU_PACKED;
typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;

struct NvdimmDsmFuncNoPayloadOut {
    /* the size of buffer filled by QEMU. */
     uint32_t len;
     uint32_t func_ret_status;
} QEMU_PACKED;
typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;

static void
nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
{
    NvdimmDsmFunc0Out func0 = {
        .len = cpu_to_le32(sizeof(func0)),
        .supported_func = cpu_to_le32(supported_func),
    };
    cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
}

static void
nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
{
    NvdimmDsmFuncNoPayloadOut out = {
        .len = cpu_to_le32(sizeof(out)),
        .func_ret_status = cpu_to_le32(func_ret_status),
    };
    cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
}

static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
{
    /*
     * function 0 is called to inquire which functions are supported by
     * OSPM
     */
    if (!in->function) {
        nvdimm_dsm_function0(0 /* No function supported other than
                                  function 0 */, dsm_mem_addr);
        return;
    }

    /* No function except function 0 is supported yet. */
    nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
}

static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
{
    /* See the comments in nvdimm_dsm_root(). */
    if (!in->function) {
        nvdimm_dsm_function0(0 /* No function supported other than
                                  function 0 */, dsm_mem_addr);
        return;
    }

    /* No function except function 0 is supported yet. */
    nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
}

static uint64_t
nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
{
    nvdimm_debug("BUG: we never read _DSM IO Port.\n");
    return 0;
}

static void
nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
{
    NvdimmDsmIn *in;
    hwaddr dsm_mem_addr = val;

    nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);

    /*
     * The DSM memory is mapped to guest address space so an evil guest
     * can change its content while we are doing DSM emulation. Avoid
     * this by copying DSM memory to QEMU local memory.
     */
    in = g_new(NvdimmDsmIn, 1);
    cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));

    le32_to_cpus(&in->revision);
    le32_to_cpus(&in->function);
    le32_to_cpus(&in->handle);

    nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
                 in->handle, in->function);

     /* Handle 0 is reserved for NVDIMM Root Device. */
    if (!in->handle) {
        nvdimm_dsm_root(in, dsm_mem_addr);
        goto exit;
    }

    nvdimm_dsm_device(in, dsm_mem_addr);

exit:
    g_free(in);
}

static const MemoryRegionOps nvdimm_dsm_ops = {
    .read = nvdimm_dsm_read,
    .write = nvdimm_dsm_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .valid = {
        .min_access_size = 4,
        .max_access_size = 4,
    },
};

void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
                            FWCfgState *fw_cfg, Object *owner)
{
    memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
                          "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
    memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);

    state->dsm_mem = g_array_new(false, true /* clear */, 1);
    acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
    fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
                    state->dsm_mem->len);
}

#define NVDIMM_COMMON_DSM      "NCAL"
#define NVDIMM_ACPI_MEM_ADDR   "MEMA"

static void nvdimm_build_common_dsm(Aml *dev)
{
    Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *result_size;
    Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
    Aml *pckg, *pckg_index, *pckg_buf;
    uint8_t byte_list[1];

    method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
    uuid = aml_arg(0);
    function = aml_arg(2);
    handle = aml_arg(4);
    dsm_mem = aml_name(NVDIMM_ACPI_MEM_ADDR);

    /*
     * do not support any method if DSM memory address has not been
     * patched.
     */
    unpatched = aml_equal(dsm_mem, aml_int(0x0));

    expected_uuid = aml_local(0);

    ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
    aml_append(ifctx, aml_store(
               aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
               /* UUID for NVDIMM Root Device */, expected_uuid));
    aml_append(method, ifctx);
    elsectx = aml_else();
    aml_append(elsectx, aml_store(
               aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
               /* UUID for NVDIMM Devices */, expected_uuid));
    aml_append(method, elsectx);

    uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));

    unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));

    /*
     * function 0 is called to inquire what functions are supported by
     * OSPM
     */
    ifctx = aml_if(aml_equal(function, aml_int(0)));
    byte_list[0] = 0 /* No function Supported */;
    aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
    aml_append(unsupport, ifctx);

    /* No function is supported yet. */
    byte_list[0] = 1 /* Not Supported */;
    aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
    aml_append(method, unsupport);

    /*
     * The HDLE indicates the DSM function is issued from which device,
     * it reserves 0 for root device and is the handle for NVDIMM devices.
     * See the comments in nvdimm_slot_to_handle().
     */
    aml_append(method, aml_store(handle, aml_name("HDLE")));
    aml_append(method, aml_store(aml_arg(1), aml_name("REVS")));
    aml_append(method, aml_store(aml_arg(2), aml_name("FUNC")));

    /*
     * The fourth parameter (Arg3) of _DSM is a package which contains
     * a buffer, the layout of the buffer is specified by UUID (Arg0),
     * Revision ID (Arg1) and Function Index (Arg2) which are documented
     * in the DSM Spec.
     */
    pckg = aml_arg(3);
    ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
                   aml_int(4 /* Package */)) /* It is a Package? */,
                   aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
                   NULL));

    pckg_index = aml_local(2);
    pckg_buf = aml_local(3);
    aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
    aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
    aml_append(ifctx, aml_store(pckg_buf, aml_name("ARG3")));
    aml_append(method, ifctx);

    /*
     * tell QEMU about the real address of DSM memory, then QEMU
     * gets the control and fills the result in DSM memory.
     */
    aml_append(method, aml_store(dsm_mem, aml_name("NTFI")));

    result_size = aml_local(1);
    aml_append(method, aml_store(aml_name("RLEN"), result_size));
    aml_append(method, aml_store(aml_shiftleft(result_size, aml_int(3)),
                                 result_size));
    aml_append(method, aml_create_field(aml_name("ODAT"), aml_int(0),
                                        result_size, "OBUF"));
    aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
                                       aml_arg(6)));
    aml_append(method, aml_return(aml_arg(6)));
    aml_append(dev, method);
}

static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
{
    Aml *method;

    method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
    aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
                                  aml_arg(1), aml_arg(2), aml_arg(3),
                                  aml_int(handle))));
    aml_append(dev, method);
}

static void nvdimm_build_nvdimm_devices(GSList *device_list, Aml *root_dev)
{
    for (; device_list; device_list = device_list->next) {
        DeviceState *dev = device_list->data;
        int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
                                           NULL);
        uint32_t handle = nvdimm_slot_to_handle(slot);
        Aml *nvdimm_dev;

        nvdimm_dev = aml_device("NV%02X", slot);

        /*
         * ACPI 6.0: 9.20 NVDIMM Devices:
         *
         * _ADR object that is used to supply OSPM with unique address
         * of the NVDIMM device. This is done by returning the NFIT Device
         * handle that is used to identify the associated entries in ACPI
         * table NFIT or _FIT.
         */
        aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));

        nvdimm_build_device_dsm(nvdimm_dev, handle);
        aml_append(root_dev, nvdimm_dev);
    }
}

static void nvdimm_build_ssdt(GSList *device_list, GArray *table_offsets,
                              GArray *table_data, BIOSLinker *linker,
                              GArray *dsm_dma_arrea)
{
    Aml *ssdt, *sb_scope, *dev, *field;
    int mem_addr_offset, nvdimm_ssdt;

    acpi_add_table(table_offsets, table_data);

    ssdt = init_aml_allocator();
    acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));

    sb_scope = aml_scope("\\_SB");

    dev = aml_device("NVDR");

    /*
     * ACPI 6.0: 9.20 NVDIMM Devices:
     *
     * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
     * NVDIMM interface device. Platform firmware is required to contain one
     * such device in _SB scope if NVDIMMs support is exposed by platform to
     * OSPM.
     * For each NVDIMM present or intended to be supported by platform,
     * platform firmware also exposes an ACPI Namespace Device under the
     * root device.
     */
    aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));

    /* map DSM memory and IO into ACPI namespace. */
    aml_append(dev, aml_operation_region("NPIO", AML_SYSTEM_IO,
               aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
    aml_append(dev, aml_operation_region("NRAM", AML_SYSTEM_MEMORY,
               aml_name(NVDIMM_ACPI_MEM_ADDR), sizeof(NvdimmDsmIn)));

    /*
     * DSM notifier:
     * NTFI: write the address of DSM memory and notify QEMU to emulate
     *       the access.
     *
     * It is the IO port so that accessing them will cause VM-exit, the
     * control will be transferred to QEMU.
     */
    field = aml_field("NPIO", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
    aml_append(field, aml_named_field("NTFI",
               sizeof(uint32_t) * BITS_PER_BYTE));
    aml_append(dev, field);

    /*
     * DSM input:
     * HDLE: store device's handle, it's zero if the _DSM call happens
     *       on NVDIMM Root Device.
     * REVS: store the Arg1 of _DSM call.
     * FUNC: store the Arg2 of _DSM call.
     * ARG3: store the Arg3 of _DSM call.
     *
     * They are RAM mapping on host so that these accesses never cause
     * VM-EXIT.
     */
    field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
    aml_append(field, aml_named_field("HDLE",
               sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
    aml_append(field, aml_named_field("REVS",
               sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
    aml_append(field, aml_named_field("FUNC",
               sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
    aml_append(field, aml_named_field("ARG3",
               (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
    aml_append(dev, field);

    /*
     * DSM output:
     * RLEN: the size of the buffer filled by QEMU.
     * ODAT: the buffer QEMU uses to store the result.
     *
     * Since the page is reused by both input and out, the input data
     * will be lost after storing new result into ODAT so we should fetch
     * all the input data before writing the result.
     */
    field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
    aml_append(field, aml_named_field("RLEN",
               sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
    aml_append(field, aml_named_field("ODAT",
               (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
    aml_append(dev, field);

    nvdimm_build_common_dsm(dev);

    /* 0 is reserved for root device. */
    nvdimm_build_device_dsm(dev, 0);

    nvdimm_build_nvdimm_devices(device_list, dev);

    aml_append(sb_scope, dev);
    aml_append(ssdt, sb_scope);

    nvdimm_ssdt = table_data->len;

    /* copy AML table into ACPI tables blob and patch header there */
    g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
    mem_addr_offset = build_append_named_dword(table_data,
                                               NVDIMM_ACPI_MEM_ADDR);

    bios_linker_loader_alloc(linker,
                             NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
                             sizeof(NvdimmDsmIn), false /* high memory */);
    bios_linker_loader_add_pointer(linker,
        ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
        NVDIMM_DSM_MEM_FILE, 0);
    build_header(linker, table_data,
        (void *)(table_data->data + nvdimm_ssdt),
        "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
    free_aml_allocator();
}

void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
                       BIOSLinker *linker, GArray *dsm_dma_arrea)
{
    GSList *device_list;

    /* no NVDIMM device is plugged. */
    device_list = nvdimm_get_plugged_device_list();
    if (!device_list) {
        return;
    }
    nvdimm_build_nfit(device_list, table_offsets, table_data, linker);
    nvdimm_build_ssdt(device_list, table_offsets, table_data, linker,
                      dsm_dma_arrea);
    g_slist_free(device_list);
}