aboutsummaryrefslogtreecommitdiff
path: root/accel/tcg/cpu-exec.c
blob: 5357608b144ebad70fb48552905ee7d25542c1cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
/*
 *  emulator main execution loop
 *
 *  Copyright (c) 2003-2005 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/qemu-print.h"
#include "qapi/error.h"
#include "qapi/qapi-commands-machine.h"
#include "qapi/type-helpers.h"
#include "hw/core/tcg-cpu-ops.h"
#include "trace.h"
#include "disas/disas.h"
#include "exec/exec-all.h"
#include "tcg/tcg.h"
#include "qemu/atomic.h"
#include "qemu/timer.h"
#include "qemu/rcu.h"
#include "exec/log.h"
#include "qemu/main-loop.h"
#if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
#include "hw/i386/apic.h"
#endif
#include "sysemu/cpus.h"
#include "exec/cpu-all.h"
#include "sysemu/cpu-timers.h"
#include "sysemu/replay.h"
#include "sysemu/tcg.h"
#include "exec/helper-proto.h"
#include "tb-jmp-cache.h"
#include "tb-hash.h"
#include "tb-context.h"
#include "internal.h"

/* -icount align implementation. */

typedef struct SyncClocks {
    int64_t diff_clk;
    int64_t last_cpu_icount;
    int64_t realtime_clock;
} SyncClocks;

#if !defined(CONFIG_USER_ONLY)
/* Allow the guest to have a max 3ms advance.
 * The difference between the 2 clocks could therefore
 * oscillate around 0.
 */
#define VM_CLOCK_ADVANCE 3000000
#define THRESHOLD_REDUCE 1.5
#define MAX_DELAY_PRINT_RATE 2000000000LL
#define MAX_NB_PRINTS 100

static int64_t max_delay;
static int64_t max_advance;

static void align_clocks(SyncClocks *sc, CPUState *cpu)
{
    int64_t cpu_icount;

    if (!icount_align_option) {
        return;
    }

    cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
    sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
    sc->last_cpu_icount = cpu_icount;

    if (sc->diff_clk > VM_CLOCK_ADVANCE) {
#ifndef _WIN32
        struct timespec sleep_delay, rem_delay;
        sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
        sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
        if (nanosleep(&sleep_delay, &rem_delay) < 0) {
            sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
        } else {
            sc->diff_clk = 0;
        }
#else
        Sleep(sc->diff_clk / SCALE_MS);
        sc->diff_clk = 0;
#endif
    }
}

static void print_delay(const SyncClocks *sc)
{
    static float threshold_delay;
    static int64_t last_realtime_clock;
    static int nb_prints;

    if (icount_align_option &&
        sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
        nb_prints < MAX_NB_PRINTS) {
        if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
            (-sc->diff_clk / (float)1000000000LL <
             (threshold_delay - THRESHOLD_REDUCE))) {
            threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
            qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
                        threshold_delay - 1,
                        threshold_delay);
            nb_prints++;
            last_realtime_clock = sc->realtime_clock;
        }
    }
}

static void init_delay_params(SyncClocks *sc, CPUState *cpu)
{
    if (!icount_align_option) {
        return;
    }
    sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
    sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
    sc->last_cpu_icount
        = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
    if (sc->diff_clk < max_delay) {
        max_delay = sc->diff_clk;
    }
    if (sc->diff_clk > max_advance) {
        max_advance = sc->diff_clk;
    }

    /* Print every 2s max if the guest is late. We limit the number
       of printed messages to NB_PRINT_MAX(currently 100) */
    print_delay(sc);
}
#else
static void align_clocks(SyncClocks *sc, const CPUState *cpu)
{
}

static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
{
}
#endif /* CONFIG USER ONLY */

uint32_t curr_cflags(CPUState *cpu)
{
    uint32_t cflags = cpu->tcg_cflags;

    /*
     * Record gdb single-step.  We should be exiting the TB by raising
     * EXCP_DEBUG, but to simplify other tests, disable chaining too.
     *
     * For singlestep and -d nochain, suppress goto_tb so that
     * we can log -d cpu,exec after every TB.
     */
    if (unlikely(cpu->singlestep_enabled)) {
        cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
    } else if (singlestep) {
        cflags |= CF_NO_GOTO_TB | 1;
    } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
        cflags |= CF_NO_GOTO_TB;
    }

    return cflags;
}

struct tb_desc {
    target_ulong pc;
    target_ulong cs_base;
    CPUArchState *env;
    tb_page_addr_t page_addr0;
    uint32_t flags;
    uint32_t cflags;
    uint32_t trace_vcpu_dstate;
};

static bool tb_lookup_cmp(const void *p, const void *d)
{
    const TranslationBlock *tb = p;
    const struct tb_desc *desc = d;

    if ((TARGET_TB_PCREL || tb_pc(tb) == desc->pc) &&
        tb_page_addr0(tb) == desc->page_addr0 &&
        tb->cs_base == desc->cs_base &&
        tb->flags == desc->flags &&
        tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
        tb_cflags(tb) == desc->cflags) {
        /* check next page if needed */
        tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
        if (tb_phys_page1 == -1) {
            return true;
        } else {
            tb_page_addr_t phys_page1;
            target_ulong virt_page1;

            /*
             * We know that the first page matched, and an otherwise valid TB
             * encountered an incomplete instruction at the end of that page,
             * therefore we know that generating a new TB from the current PC
             * must also require reading from the next page -- even if the
             * second pages do not match, and therefore the resulting insn
             * is different for the new TB.  Therefore any exception raised
             * here by the faulting lookup is not premature.
             */
            virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
            phys_page1 = get_page_addr_code(desc->env, virt_page1);
            if (tb_phys_page1 == phys_page1) {
                return true;
            }
        }
    }
    return false;
}

static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
                                          target_ulong cs_base, uint32_t flags,
                                          uint32_t cflags)
{
    tb_page_addr_t phys_pc;
    struct tb_desc desc;
    uint32_t h;

    desc.env = cpu->env_ptr;
    desc.cs_base = cs_base;
    desc.flags = flags;
    desc.cflags = cflags;
    desc.trace_vcpu_dstate = *cpu->trace_dstate;
    desc.pc = pc;
    phys_pc = get_page_addr_code(desc.env, pc);
    if (phys_pc == -1) {
        return NULL;
    }
    desc.page_addr0 = phys_pc;
    h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : pc),
                     flags, cflags, *cpu->trace_dstate);
    return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
}

/* Might cause an exception, so have a longjmp destination ready */
static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
                                          target_ulong cs_base,
                                          uint32_t flags, uint32_t cflags)
{
    TranslationBlock *tb;
    CPUJumpCache *jc;
    uint32_t hash;

    /* we should never be trying to look up an INVALID tb */
    tcg_debug_assert(!(cflags & CF_INVALID));

    hash = tb_jmp_cache_hash_func(pc);
    jc = cpu->tb_jmp_cache;
    tb = tb_jmp_cache_get_tb(jc, hash);

    if (likely(tb &&
               tb_jmp_cache_get_pc(jc, hash, tb) == pc &&
               tb->cs_base == cs_base &&
               tb->flags == flags &&
               tb->trace_vcpu_dstate == *cpu->trace_dstate &&
               tb_cflags(tb) == cflags)) {
        return tb;
    }
    tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
    if (tb == NULL) {
        return NULL;
    }
    tb_jmp_cache_set(jc, hash, tb, pc);
    return tb;
}

static void log_cpu_exec(target_ulong pc, CPUState *cpu,
                         const TranslationBlock *tb)
{
    if (qemu_log_in_addr_range(pc)) {
        qemu_log_mask(CPU_LOG_EXEC,
                      "Trace %d: %p [" TARGET_FMT_lx
                      "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
                      cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
                      tb->flags, tb->cflags, lookup_symbol(pc));

#if defined(DEBUG_DISAS)
        if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
            FILE *logfile = qemu_log_trylock();
            if (logfile) {
                int flags = 0;

                if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
                    flags |= CPU_DUMP_FPU;
                }
#if defined(TARGET_I386)
                flags |= CPU_DUMP_CCOP;
#endif
                cpu_dump_state(cpu, logfile, flags);
                qemu_log_unlock(logfile);
            }
        }
#endif /* DEBUG_DISAS */
    }
}

static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc,
                                       uint32_t *cflags)
{
    CPUBreakpoint *bp;
    bool match_page = false;

    /*
     * Singlestep overrides breakpoints.
     * This requirement is visible in the record-replay tests, where
     * we would fail to make forward progress in reverse-continue.
     *
     * TODO: gdb singlestep should only override gdb breakpoints,
     * so that one could (gdb) singlestep into the guest kernel's
     * architectural breakpoint handler.
     */
    if (cpu->singlestep_enabled) {
        return false;
    }

    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
        /*
         * If we have an exact pc match, trigger the breakpoint.
         * Otherwise, note matches within the page.
         */
        if (pc == bp->pc) {
            bool match_bp = false;

            if (bp->flags & BP_GDB) {
                match_bp = true;
            } else if (bp->flags & BP_CPU) {
#ifdef CONFIG_USER_ONLY
                g_assert_not_reached();
#else
                CPUClass *cc = CPU_GET_CLASS(cpu);
                assert(cc->tcg_ops->debug_check_breakpoint);
                match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
#endif
            }

            if (match_bp) {
                cpu->exception_index = EXCP_DEBUG;
                return true;
            }
        } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
            match_page = true;
        }
    }

    /*
     * Within the same page as a breakpoint, single-step,
     * returning to helper_lookup_tb_ptr after each insn looking
     * for the actual breakpoint.
     *
     * TODO: Perhaps better to record all of the TBs associated
     * with a given virtual page that contains a breakpoint, and
     * then invalidate them when a new overlapping breakpoint is
     * set on the page.  Non-overlapping TBs would not be
     * invalidated, nor would any TB need to be invalidated as
     * breakpoints are removed.
     */
    if (match_page) {
        *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
    }
    return false;
}

static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
                                         uint32_t *cflags)
{
    return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
        check_for_breakpoints_slow(cpu, pc, cflags);
}

/**
 * helper_lookup_tb_ptr: quick check for next tb
 * @env: current cpu state
 *
 * Look for an existing TB matching the current cpu state.
 * If found, return the code pointer.  If not found, return
 * the tcg epilogue so that we return into cpu_tb_exec.
 */
const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
{
    CPUState *cpu = env_cpu(env);
    TranslationBlock *tb;
    target_ulong cs_base, pc;
    uint32_t flags, cflags;

    cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);

    cflags = curr_cflags(cpu);
    if (check_for_breakpoints(cpu, pc, &cflags)) {
        cpu_loop_exit(cpu);
    }

    tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
    if (tb == NULL) {
        return tcg_code_gen_epilogue;
    }

    if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
        log_cpu_exec(pc, cpu, tb);
    }

    return tb->tc.ptr;
}

/* Execute a TB, and fix up the CPU state afterwards if necessary */
/*
 * Disable CFI checks.
 * TCG creates binary blobs at runtime, with the transformed code.
 * A TB is a blob of binary code, created at runtime and called with an
 * indirect function call. Since such function did not exist at compile time,
 * the CFI runtime has no way to verify its signature and would fail.
 * TCG is not considered a security-sensitive part of QEMU so this does not
 * affect the impact of CFI in environment with high security requirements
 */
static inline TranslationBlock * QEMU_DISABLE_CFI
cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
{
    CPUArchState *env = cpu->env_ptr;
    uintptr_t ret;
    TranslationBlock *last_tb;
    const void *tb_ptr = itb->tc.ptr;

    if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
        log_cpu_exec(log_pc(cpu, itb), cpu, itb);
    }

    qemu_thread_jit_execute();
    ret = tcg_qemu_tb_exec(env, tb_ptr);
    cpu->can_do_io = 1;
    /*
     * TODO: Delay swapping back to the read-write region of the TB
     * until we actually need to modify the TB.  The read-only copy,
     * coming from the rx region, shares the same host TLB entry as
     * the code that executed the exit_tb opcode that arrived here.
     * If we insist on touching both the RX and the RW pages, we
     * double the host TLB pressure.
     */
    last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
    *tb_exit = ret & TB_EXIT_MASK;

    trace_exec_tb_exit(last_tb, *tb_exit);

    if (*tb_exit > TB_EXIT_IDX1) {
        /* We didn't start executing this TB (eg because the instruction
         * counter hit zero); we must restore the guest PC to the address
         * of the start of the TB.
         */
        CPUClass *cc = CPU_GET_CLASS(cpu);

        if (cc->tcg_ops->synchronize_from_tb) {
            cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
        } else {
            assert(!TARGET_TB_PCREL);
            assert(cc->set_pc);
            cc->set_pc(cpu, tb_pc(last_tb));
        }
        if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
            target_ulong pc = log_pc(cpu, last_tb);
            if (qemu_log_in_addr_range(pc)) {
                qemu_log("Stopped execution of TB chain before %p ["
                         TARGET_FMT_lx "] %s\n",
                         last_tb->tc.ptr, pc, lookup_symbol(pc));
            }
        }
    }

    /*
     * If gdb single-step, and we haven't raised another exception,
     * raise a debug exception.  Single-step with another exception
     * is handled in cpu_handle_exception.
     */
    if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
        cpu->exception_index = EXCP_DEBUG;
        cpu_loop_exit(cpu);
    }

    return last_tb;
}


static void cpu_exec_enter(CPUState *cpu)
{
    CPUClass *cc = CPU_GET_CLASS(cpu);

    if (cc->tcg_ops->cpu_exec_enter) {
        cc->tcg_ops->cpu_exec_enter(cpu);
    }
}

static void cpu_exec_exit(CPUState *cpu)
{
    CPUClass *cc = CPU_GET_CLASS(cpu);

    if (cc->tcg_ops->cpu_exec_exit) {
        cc->tcg_ops->cpu_exec_exit(cpu);
    }
    QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
}

void cpu_exec_step_atomic(CPUState *cpu)
{
    CPUArchState *env = cpu->env_ptr;
    TranslationBlock *tb;
    target_ulong cs_base, pc;
    uint32_t flags, cflags;
    int tb_exit;

    if (sigsetjmp(cpu->jmp_env, 0) == 0) {
        start_exclusive();
        g_assert(cpu == current_cpu);
        g_assert(!cpu->running);
        cpu->running = true;

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);

        cflags = curr_cflags(cpu);
        /* Execute in a serial context. */
        cflags &= ~CF_PARALLEL;
        /* After 1 insn, return and release the exclusive lock. */
        cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
        /*
         * No need to check_for_breakpoints here.
         * We only arrive in cpu_exec_step_atomic after beginning execution
         * of an insn that includes an atomic operation we can't handle.
         * Any breakpoint for this insn will have been recognized earlier.
         */

        tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
        if (tb == NULL) {
            mmap_lock();
            tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
            mmap_unlock();
        }

        cpu_exec_enter(cpu);
        /* execute the generated code */
        trace_exec_tb(tb, pc);
        cpu_tb_exec(cpu, tb, &tb_exit);
        cpu_exec_exit(cpu);
    } else {
#ifndef CONFIG_SOFTMMU
        clear_helper_retaddr();
        if (have_mmap_lock()) {
            mmap_unlock();
        }
#endif
        if (qemu_mutex_iothread_locked()) {
            qemu_mutex_unlock_iothread();
        }
        assert_no_pages_locked();
        qemu_plugin_disable_mem_helpers(cpu);
    }

    /*
     * As we start the exclusive region before codegen we must still
     * be in the region if we longjump out of either the codegen or
     * the execution.
     */
    g_assert(cpu_in_exclusive_context(cpu));
    cpu->running = false;
    end_exclusive();
}

void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
{
    /*
     * Get the rx view of the structure, from which we find the
     * executable code address, and tb_target_set_jmp_target can
     * produce a pc-relative displacement to jmp_target_addr[n].
     */
    const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
    uintptr_t offset = tb->jmp_insn_offset[n];
    uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
    uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;

    tb->jmp_target_addr[n] = addr;
    tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
}

static inline void tb_add_jump(TranslationBlock *tb, int n,
                               TranslationBlock *tb_next)
{
    uintptr_t old;

    qemu_thread_jit_write();
    assert(n < ARRAY_SIZE(tb->jmp_list_next));
    qemu_spin_lock(&tb_next->jmp_lock);

    /* make sure the destination TB is valid */
    if (tb_next->cflags & CF_INVALID) {
        goto out_unlock_next;
    }
    /* Atomically claim the jump destination slot only if it was NULL */
    old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
                          (uintptr_t)tb_next);
    if (old) {
        goto out_unlock_next;
    }

    /* patch the native jump address */
    tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);

    /* add in TB jmp list */
    tb->jmp_list_next[n] = tb_next->jmp_list_head;
    tb_next->jmp_list_head = (uintptr_t)tb | n;

    qemu_spin_unlock(&tb_next->jmp_lock);

    qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
                  tb->tc.ptr, n, tb_next->tc.ptr);
    return;

 out_unlock_next:
    qemu_spin_unlock(&tb_next->jmp_lock);
    return;
}

static inline bool cpu_handle_halt(CPUState *cpu)
{
#ifndef CONFIG_USER_ONLY
    if (cpu->halted) {
#if defined(TARGET_I386)
        if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
            X86CPU *x86_cpu = X86_CPU(cpu);
            qemu_mutex_lock_iothread();
            apic_poll_irq(x86_cpu->apic_state);
            cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
            qemu_mutex_unlock_iothread();
        }
#endif /* TARGET_I386 */
        if (!cpu_has_work(cpu)) {
            return true;
        }

        cpu->halted = 0;
    }
#endif /* !CONFIG_USER_ONLY */

    return false;
}

static inline void cpu_handle_debug_exception(CPUState *cpu)
{
    CPUClass *cc = CPU_GET_CLASS(cpu);
    CPUWatchpoint *wp;

    if (!cpu->watchpoint_hit) {
        QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
            wp->flags &= ~BP_WATCHPOINT_HIT;
        }
    }

    if (cc->tcg_ops->debug_excp_handler) {
        cc->tcg_ops->debug_excp_handler(cpu);
    }
}

static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
{
    if (cpu->exception_index < 0) {
#ifndef CONFIG_USER_ONLY
        if (replay_has_exception()
            && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
            /* Execute just one insn to trigger exception pending in the log */
            cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
                | CF_NOIRQ | 1;
        }
#endif
        return false;
    }
    if (cpu->exception_index >= EXCP_INTERRUPT) {
        /* exit request from the cpu execution loop */
        *ret = cpu->exception_index;
        if (*ret == EXCP_DEBUG) {
            cpu_handle_debug_exception(cpu);
        }
        cpu->exception_index = -1;
        return true;
    } else {
#if defined(CONFIG_USER_ONLY)
        /* if user mode only, we simulate a fake exception
           which will be handled outside the cpu execution
           loop */
#if defined(TARGET_I386)
        CPUClass *cc = CPU_GET_CLASS(cpu);
        cc->tcg_ops->fake_user_interrupt(cpu);
#endif /* TARGET_I386 */
        *ret = cpu->exception_index;
        cpu->exception_index = -1;
        return true;
#else
        if (replay_exception()) {
            CPUClass *cc = CPU_GET_CLASS(cpu);
            qemu_mutex_lock_iothread();
            cc->tcg_ops->do_interrupt(cpu);
            qemu_mutex_unlock_iothread();
            cpu->exception_index = -1;

            if (unlikely(cpu->singlestep_enabled)) {
                /*
                 * After processing the exception, ensure an EXCP_DEBUG is
                 * raised when single-stepping so that GDB doesn't miss the
                 * next instruction.
                 */
                *ret = EXCP_DEBUG;
                cpu_handle_debug_exception(cpu);
                return true;
            }
        } else if (!replay_has_interrupt()) {
            /* give a chance to iothread in replay mode */
            *ret = EXCP_INTERRUPT;
            return true;
        }
#endif
    }

    return false;
}

#ifndef CONFIG_USER_ONLY
/*
 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
 * "real" interrupt event later. It does not need to be recorded for
 * replay purposes.
 */
static inline bool need_replay_interrupt(int interrupt_request)
{
#if defined(TARGET_I386)
    return !(interrupt_request & CPU_INTERRUPT_POLL);
#else
    return true;
#endif
}
#endif /* !CONFIG_USER_ONLY */

static inline bool cpu_handle_interrupt(CPUState *cpu,
                                        TranslationBlock **last_tb)
{
    /*
     * If we have requested custom cflags with CF_NOIRQ we should
     * skip checking here. Any pending interrupts will get picked up
     * by the next TB we execute under normal cflags.
     */
    if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
        return false;
    }

    /* Clear the interrupt flag now since we're processing
     * cpu->interrupt_request and cpu->exit_request.
     * Ensure zeroing happens before reading cpu->exit_request or
     * cpu->interrupt_request (see also smp_wmb in cpu_exit())
     */
    qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);

    if (unlikely(qatomic_read(&cpu->interrupt_request))) {
        int interrupt_request;
        qemu_mutex_lock_iothread();
        interrupt_request = cpu->interrupt_request;
        if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
            /* Mask out external interrupts for this step. */
            interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
        }
        if (interrupt_request & CPU_INTERRUPT_DEBUG) {
            cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
            cpu->exception_index = EXCP_DEBUG;
            qemu_mutex_unlock_iothread();
            return true;
        }
#if !defined(CONFIG_USER_ONLY)
        if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
            /* Do nothing */
        } else if (interrupt_request & CPU_INTERRUPT_HALT) {
            replay_interrupt();
            cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
            cpu->halted = 1;
            cpu->exception_index = EXCP_HLT;
            qemu_mutex_unlock_iothread();
            return true;
        }
#if defined(TARGET_I386)
        else if (interrupt_request & CPU_INTERRUPT_INIT) {
            X86CPU *x86_cpu = X86_CPU(cpu);
            CPUArchState *env = &x86_cpu->env;
            replay_interrupt();
            cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
            do_cpu_init(x86_cpu);
            cpu->exception_index = EXCP_HALTED;
            qemu_mutex_unlock_iothread();
            return true;
        }
#else
        else if (interrupt_request & CPU_INTERRUPT_RESET) {
            replay_interrupt();
            cpu_reset(cpu);
            qemu_mutex_unlock_iothread();
            return true;
        }
#endif /* !TARGET_I386 */
        /* The target hook has 3 exit conditions:
           False when the interrupt isn't processed,
           True when it is, and we should restart on a new TB,
           and via longjmp via cpu_loop_exit.  */
        else {
            CPUClass *cc = CPU_GET_CLASS(cpu);

            if (cc->tcg_ops->cpu_exec_interrupt &&
                cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
                if (need_replay_interrupt(interrupt_request)) {
                    replay_interrupt();
                }
                /*
                 * After processing the interrupt, ensure an EXCP_DEBUG is
                 * raised when single-stepping so that GDB doesn't miss the
                 * next instruction.
                 */
                if (unlikely(cpu->singlestep_enabled)) {
                    cpu->exception_index = EXCP_DEBUG;
                    qemu_mutex_unlock_iothread();
                    return true;
                }
                cpu->exception_index = -1;
                *last_tb = NULL;
            }
            /* The target hook may have updated the 'cpu->interrupt_request';
             * reload the 'interrupt_request' value */
            interrupt_request = cpu->interrupt_request;
        }
#endif /* !CONFIG_USER_ONLY */
        if (interrupt_request & CPU_INTERRUPT_EXITTB) {
            cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
            /* ensure that no TB jump will be modified as
               the program flow was changed */
            *last_tb = NULL;
        }

        /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
        qemu_mutex_unlock_iothread();
    }

    /* Finally, check if we need to exit to the main loop.  */
    if (unlikely(qatomic_read(&cpu->exit_request))
        || (icount_enabled()
            && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
            && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
        qatomic_set(&cpu->exit_request, 0);
        if (cpu->exception_index == -1) {
            cpu->exception_index = EXCP_INTERRUPT;
        }
        return true;
    }

    return false;
}

static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
                                    target_ulong pc,
                                    TranslationBlock **last_tb, int *tb_exit)
{
    int32_t insns_left;

    trace_exec_tb(tb, pc);
    tb = cpu_tb_exec(cpu, tb, tb_exit);
    if (*tb_exit != TB_EXIT_REQUESTED) {
        *last_tb = tb;
        return;
    }

    *last_tb = NULL;
    insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
    if (insns_left < 0) {
        /* Something asked us to stop executing chained TBs; just
         * continue round the main loop. Whatever requested the exit
         * will also have set something else (eg exit_request or
         * interrupt_request) which will be handled by
         * cpu_handle_interrupt.  cpu_handle_interrupt will also
         * clear cpu->icount_decr.u16.high.
         */
        return;
    }

    /* Instruction counter expired.  */
    assert(icount_enabled());
#ifndef CONFIG_USER_ONLY
    /* Ensure global icount has gone forward */
    icount_update(cpu);
    /* Refill decrementer and continue execution.  */
    insns_left = MIN(0xffff, cpu->icount_budget);
    cpu_neg(cpu)->icount_decr.u16.low = insns_left;
    cpu->icount_extra = cpu->icount_budget - insns_left;

    /*
     * If the next tb has more instructions than we have left to
     * execute we need to ensure we find/generate a TB with exactly
     * insns_left instructions in it.
     */
    if (insns_left > 0 && insns_left < tb->icount)  {
        assert(insns_left <= CF_COUNT_MASK);
        assert(cpu->icount_extra == 0);
        cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
    }
#endif
}

/* main execution loop */

static int __attribute__((noinline))
cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
{
    int ret;

    /* if an exception is pending, we execute it here */
    while (!cpu_handle_exception(cpu, &ret)) {
        TranslationBlock *last_tb = NULL;
        int tb_exit = 0;

        while (!cpu_handle_interrupt(cpu, &last_tb)) {
            TranslationBlock *tb;
            target_ulong cs_base, pc;
            uint32_t flags, cflags;

            cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);

            /*
             * When requested, use an exact setting for cflags for the next
             * execution.  This is used for icount, precise smc, and stop-
             * after-access watchpoints.  Since this request should never
             * have CF_INVALID set, -1 is a convenient invalid value that
             * does not require tcg headers for cpu_common_reset.
             */
            cflags = cpu->cflags_next_tb;
            if (cflags == -1) {
                cflags = curr_cflags(cpu);
            } else {
                cpu->cflags_next_tb = -1;
            }

            if (check_for_breakpoints(cpu, pc, &cflags)) {
                break;
            }

            tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
            if (tb == NULL) {
                uint32_t h;

                mmap_lock();
                tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
                mmap_unlock();
                /*
                 * We add the TB in the virtual pc hash table
                 * for the fast lookup
                 */
                h = tb_jmp_cache_hash_func(pc);
                tb_jmp_cache_set(cpu->tb_jmp_cache, h, tb, pc);
            }

#ifndef CONFIG_USER_ONLY
            /*
             * We don't take care of direct jumps when address mapping
             * changes in system emulation.  So it's not safe to make a
             * direct jump to a TB spanning two pages because the mapping
             * for the second page can change.
             */
            if (tb_page_addr1(tb) != -1) {
                last_tb = NULL;
            }
#endif
            /* See if we can patch the calling TB. */
            if (last_tb) {
                tb_add_jump(last_tb, tb_exit, tb);
            }

            cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);

            QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
            /* Try to align the host and virtual clocks
               if the guest is in advance */
            align_clocks(sc, cpu);
        }
    }
    return ret;
}

static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
{
    /* Prepare setjmp context for exception handling. */
    if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
        /* Non-buggy compilers preserve this; assert the correct value. */
        g_assert(cpu == current_cpu);

#ifndef CONFIG_SOFTMMU
        clear_helper_retaddr();
        if (have_mmap_lock()) {
            mmap_unlock();
        }
#endif
        if (qemu_mutex_iothread_locked()) {
            qemu_mutex_unlock_iothread();
        }
        qemu_plugin_disable_mem_helpers(cpu);

        assert_no_pages_locked();
    }

    return cpu_exec_loop(cpu, sc);
}

int cpu_exec(CPUState *cpu)
{
    int ret;
    SyncClocks sc = { 0 };

    /* replay_interrupt may need current_cpu */
    current_cpu = cpu;

    if (cpu_handle_halt(cpu)) {
        return EXCP_HALTED;
    }

    rcu_read_lock();
    cpu_exec_enter(cpu);

    /*
     * Calculate difference between guest clock and host clock.
     * This delay includes the delay of the last cycle, so
     * what we have to do is sleep until it is 0. As for the
     * advance/delay we gain here, we try to fix it next time.
     */
    init_delay_params(&sc, cpu);

    ret = cpu_exec_setjmp(cpu, &sc);

    cpu_exec_exit(cpu);
    rcu_read_unlock();

    return ret;
}

void tcg_exec_realizefn(CPUState *cpu, Error **errp)
{
    static bool tcg_target_initialized;
    CPUClass *cc = CPU_GET_CLASS(cpu);

    if (!tcg_target_initialized) {
        cc->tcg_ops->initialize();
        tcg_target_initialized = true;
    }

    cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
    tlb_init(cpu);
#ifndef CONFIG_USER_ONLY
    tcg_iommu_init_notifier_list(cpu);
#endif /* !CONFIG_USER_ONLY */
    /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
}

/* undo the initializations in reverse order */
void tcg_exec_unrealizefn(CPUState *cpu)
{
#ifndef CONFIG_USER_ONLY
    tcg_iommu_free_notifier_list(cpu);
#endif /* !CONFIG_USER_ONLY */

    tlb_destroy(cpu);
    g_free_rcu(cpu->tb_jmp_cache, rcu);
}

#ifndef CONFIG_USER_ONLY

static void dump_drift_info(GString *buf)
{
    if (!icount_enabled()) {
        return;
    }

    g_string_append_printf(buf, "Host - Guest clock  %"PRIi64" ms\n",
                           (cpu_get_clock() - icount_get()) / SCALE_MS);
    if (icount_align_option) {
        g_string_append_printf(buf, "Max guest delay     %"PRIi64" ms\n",
                               -max_delay / SCALE_MS);
        g_string_append_printf(buf, "Max guest advance   %"PRIi64" ms\n",
                               max_advance / SCALE_MS);
    } else {
        g_string_append_printf(buf, "Max guest delay     NA\n");
        g_string_append_printf(buf, "Max guest advance   NA\n");
    }
}

HumanReadableText *qmp_x_query_jit(Error **errp)
{
    g_autoptr(GString) buf = g_string_new("");

    if (!tcg_enabled()) {
        error_setg(errp, "JIT information is only available with accel=tcg");
        return NULL;
    }

    dump_exec_info(buf);
    dump_drift_info(buf);

    return human_readable_text_from_str(buf);
}

HumanReadableText *qmp_x_query_opcount(Error **errp)
{
    g_autoptr(GString) buf = g_string_new("");

    if (!tcg_enabled()) {
        error_setg(errp, "Opcode count information is only available with accel=tcg");
        return NULL;
    }

    tcg_dump_op_count(buf);

    return human_readable_text_from_str(buf);
}

#ifdef CONFIG_PROFILER

int64_t dev_time;

HumanReadableText *qmp_x_query_profile(Error **errp)
{
    g_autoptr(GString) buf = g_string_new("");
    static int64_t last_cpu_exec_time;
    int64_t cpu_exec_time;
    int64_t delta;

    cpu_exec_time = tcg_cpu_exec_time();
    delta = cpu_exec_time - last_cpu_exec_time;

    g_string_append_printf(buf, "async time  %" PRId64 " (%0.3f)\n",
                           dev_time, dev_time / (double)NANOSECONDS_PER_SECOND);
    g_string_append_printf(buf, "qemu time   %" PRId64 " (%0.3f)\n",
                           delta, delta / (double)NANOSECONDS_PER_SECOND);
    last_cpu_exec_time = cpu_exec_time;
    dev_time = 0;

    return human_readable_text_from_str(buf);
}
#else
HumanReadableText *qmp_x_query_profile(Error **errp)
{
    error_setg(errp, "Internal profiler not compiled");
    return NULL;
}
#endif

#endif /* !CONFIG_USER_ONLY */