/* * VFIO utility * * Copyright 2016 - 2018 Red Hat, Inc. * * Authors: * Fam Zheng <famz@redhat.com> * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include <sys/ioctl.h> #include <linux/vfio.h> #include "qapi/error.h" #include "exec/ramlist.h" #include "exec/cpu-common.h" #include "trace.h" #include "qemu/queue.h" #include "qemu/error-report.h" #include "standard-headers/linux/pci_regs.h" #include "qemu/event_notifier.h" #include "qemu/vfio-helpers.h" #include "trace.h" #define QEMU_VFIO_DEBUG 0 #define QEMU_VFIO_IOVA_MIN 0x10000ULL /* XXX: Once VFIO exposes the iova bit width in the IOMMU capability interface, * we can use a runtime limit; alternatively it's also possible to do platform * specific detection by reading sysfs entries. Until then, 39 is a safe bet. **/ #define QEMU_VFIO_IOVA_MAX (1ULL << 39) typedef struct { /* Page aligned addr. */ void *host; size_t size; uint64_t iova; } IOVAMapping; struct QEMUVFIOState { QemuMutex lock; /* These fields are protected by BQL */ int container; int group; int device; RAMBlockNotifier ram_notifier; struct vfio_region_info config_region_info, bar_region_info[6]; /* These fields are protected by @lock */ /* VFIO's IO virtual address space is managed by splitting into a few * sections: * * --------------- <= 0 * |xxxxxxxxxxxxx| * |-------------| <= QEMU_VFIO_IOVA_MIN * | | * | Fixed | * | | * |-------------| <= low_water_mark * | | * | Free | * | | * |-------------| <= high_water_mark * | | * | Temp | * | | * |-------------| <= QEMU_VFIO_IOVA_MAX * |xxxxxxxxxxxxx| * |xxxxxxxxxxxxx| * --------------- * * - Addresses lower than QEMU_VFIO_IOVA_MIN are reserved as invalid; * * - Fixed mappings of HVAs are assigned "low" IOVAs in the range of * [QEMU_VFIO_IOVA_MIN, low_water_mark). Once allocated they will not be * reclaimed - low_water_mark never shrinks; * * - IOVAs in range [low_water_mark, high_water_mark) are free; * * - IOVAs in range [high_water_mark, QEMU_VFIO_IOVA_MAX) are volatile * mappings. At each qemu_vfio_dma_reset_temporary() call, the whole area * is recycled. The caller should make sure I/O's depending on these * mappings are completed before calling. **/ uint64_t low_water_mark; uint64_t high_water_mark; IOVAMapping *mappings; int nr_mappings; }; /** * Find group file by PCI device address as specified @device, and return the * path. The returned string is owned by caller and should be g_free'ed later. */ static char *sysfs_find_group_file(const char *device, Error **errp) { char *sysfs_link; char *sysfs_group; char *p; char *path = NULL; sysfs_link = g_strdup_printf("/sys/bus/pci/devices/%s/iommu_group", device); sysfs_group = g_malloc0(PATH_MAX); if (readlink(sysfs_link, sysfs_group, PATH_MAX - 1) == -1) { error_setg_errno(errp, errno, "Failed to find iommu group sysfs path"); goto out; } p = strrchr(sysfs_group, '/'); if (!p) { error_setg(errp, "Failed to find iommu group number"); goto out; } path = g_strdup_printf("/dev/vfio/%s", p + 1); out: g_free(sysfs_link); g_free(sysfs_group); return path; } static inline void assert_bar_index_valid(QEMUVFIOState *s, int index) { assert(index >= 0 && index < ARRAY_SIZE(s->bar_region_info)); } static int qemu_vfio_pci_init_bar(QEMUVFIOState *s, int index, Error **errp) { assert_bar_index_valid(s, index); s->bar_region_info[index] = (struct vfio_region_info) { .index = VFIO_PCI_BAR0_REGION_INDEX + index, .argsz = sizeof(struct vfio_region_info), }; if (ioctl(s->device, VFIO_DEVICE_GET_REGION_INFO, &s->bar_region_info[index])) { error_setg_errno(errp, errno, "Failed to get BAR region info"); return -errno; } return 0; } /** * Map a PCI bar area. */ void *qemu_vfio_pci_map_bar(QEMUVFIOState *s, int index, uint64_t offset, uint64_t size, Error **errp) { void *p; assert_bar_index_valid(s, index); p = mmap(NULL, MIN(size, s->bar_region_info[index].size - offset), PROT_READ | PROT_WRITE, MAP_SHARED, s->device, s->bar_region_info[index].offset + offset); if (p == MAP_FAILED) { error_setg_errno(errp, errno, "Failed to map BAR region"); p = NULL; } return p; } /** * Unmap a PCI bar area. */ void qemu_vfio_pci_unmap_bar(QEMUVFIOState *s, int index, void *bar, uint64_t offset, uint64_t size) { if (bar) { munmap(bar, MIN(size, s->bar_region_info[index].size - offset)); } } /** * Initialize device IRQ with @irq_type and and register an event notifier. */ int qemu_vfio_pci_init_irq(QEMUVFIOState *s, EventNotifier *e, int irq_type, Error **errp) { int r; struct vfio_irq_set *irq_set; size_t irq_set_size; struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) }; irq_info.index = irq_type; if (ioctl(s->device, VFIO_DEVICE_GET_IRQ_INFO, &irq_info)) { error_setg_errno(errp, errno, "Failed to get device interrupt info"); return -errno; } if (!(irq_info.flags & VFIO_IRQ_INFO_EVENTFD)) { error_setg(errp, "Device interrupt doesn't support eventfd"); return -EINVAL; } irq_set_size = sizeof(*irq_set) + sizeof(int); irq_set = g_malloc0(irq_set_size); /* Get to a known IRQ state */ *irq_set = (struct vfio_irq_set) { .argsz = irq_set_size, .flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER, .index = irq_info.index, .start = 0, .count = 1, }; *(int *)&irq_set->data = event_notifier_get_fd(e); r = ioctl(s->device, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); if (r) { error_setg_errno(errp, errno, "Failed to setup device interrupt"); return -errno; } return 0; } static int qemu_vfio_pci_read_config(QEMUVFIOState *s, void *buf, int size, int ofs) { int ret; do { ret = pread(s->device, buf, size, s->config_region_info.offset + ofs); } while (ret == -1 && errno == EINTR); return ret == size ? 0 : -errno; } static int qemu_vfio_pci_write_config(QEMUVFIOState *s, void *buf, int size, int ofs) { int ret; do { ret = pwrite(s->device, buf, size, s->config_region_info.offset + ofs); } while (ret == -1 && errno == EINTR); return ret == size ? 0 : -errno; } static int qemu_vfio_init_pci(QEMUVFIOState *s, const char *device, Error **errp) { int ret; int i; uint16_t pci_cmd; struct vfio_group_status group_status = { .argsz = sizeof(group_status) }; struct vfio_iommu_type1_info iommu_info = { .argsz = sizeof(iommu_info) }; struct vfio_device_info device_info = { .argsz = sizeof(device_info) }; char *group_file = NULL; /* Create a new container */ s->container = open("/dev/vfio/vfio", O_RDWR); if (s->container == -1) { error_setg_errno(errp, errno, "Failed to open /dev/vfio/vfio"); return -errno; } if (ioctl(s->container, VFIO_GET_API_VERSION) != VFIO_API_VERSION) { error_setg(errp, "Invalid VFIO version"); ret = -EINVAL; goto fail_container; } if (!ioctl(s->container, VFIO_CHECK_EXTENSION, VFIO_TYPE1_IOMMU)) { error_setg_errno(errp, errno, "VFIO IOMMU check failed"); ret = -EINVAL; goto fail_container; } /* Open the group */ group_file = sysfs_find_group_file(device, errp); if (!group_file) { ret = -EINVAL; goto fail_container; } s->group = open(group_file, O_RDWR); if (s->group == -1) { error_setg_errno(errp, errno, "Failed to open VFIO group file: %s", group_file); g_free(group_file); ret = -errno; goto fail_container; } g_free(group_file); /* Test the group is viable and available */ if (ioctl(s->group, VFIO_GROUP_GET_STATUS, &group_status)) { error_setg_errno(errp, errno, "Failed to get VFIO group status"); ret = -errno; goto fail; } if (!(group_status.flags & VFIO_GROUP_FLAGS_VIABLE)) { error_setg(errp, "VFIO group is not viable"); ret = -EINVAL; goto fail; } /* Add the group to the container */ if (ioctl(s->group, VFIO_GROUP_SET_CONTAINER, &s->container)) { error_setg_errno(errp, errno, "Failed to add group to VFIO container"); ret = -errno; goto fail; } /* Enable the IOMMU model we want */ if (ioctl(s->container, VFIO_SET_IOMMU, VFIO_TYPE1_IOMMU)) { error_setg_errno(errp, errno, "Failed to set VFIO IOMMU type"); ret = -errno; goto fail; } /* Get additional IOMMU info */ if (ioctl(s->container, VFIO_IOMMU_GET_INFO, &iommu_info)) { error_setg_errno(errp, errno, "Failed to get IOMMU info"); ret = -errno; goto fail; } s->device = ioctl(s->group, VFIO_GROUP_GET_DEVICE_FD, device); if (s->device < 0) { error_setg_errno(errp, errno, "Failed to get device fd"); ret = -errno; goto fail; } /* Test and setup the device */ if (ioctl(s->device, VFIO_DEVICE_GET_INFO, &device_info)) { error_setg_errno(errp, errno, "Failed to get device info"); ret = -errno; goto fail; } if (device_info.num_regions < VFIO_PCI_CONFIG_REGION_INDEX) { error_setg(errp, "Invalid device regions"); ret = -EINVAL; goto fail; } s->config_region_info = (struct vfio_region_info) { .index = VFIO_PCI_CONFIG_REGION_INDEX, .argsz = sizeof(struct vfio_region_info), }; if (ioctl(s->device, VFIO_DEVICE_GET_REGION_INFO, &s->config_region_info)) { error_setg_errno(errp, errno, "Failed to get config region info"); ret = -errno; goto fail; } for (i = 0; i < 6; i++) { ret = qemu_vfio_pci_init_bar(s, i, errp); if (ret) { goto fail; } } /* Enable bus master */ ret = qemu_vfio_pci_read_config(s, &pci_cmd, sizeof(pci_cmd), PCI_COMMAND); if (ret) { goto fail; } pci_cmd |= PCI_COMMAND_MASTER; ret = qemu_vfio_pci_write_config(s, &pci_cmd, sizeof(pci_cmd), PCI_COMMAND); if (ret) { goto fail; } return 0; fail: close(s->group); fail_container: close(s->container); return ret; } static void qemu_vfio_ram_block_added(RAMBlockNotifier *n, void *host, size_t size) { QEMUVFIOState *s = container_of(n, QEMUVFIOState, ram_notifier); trace_qemu_vfio_ram_block_added(s, host, size); qemu_vfio_dma_map(s, host, size, false, NULL); } static void qemu_vfio_ram_block_removed(RAMBlockNotifier *n, void *host, size_t size) { QEMUVFIOState *s = container_of(n, QEMUVFIOState, ram_notifier); if (host) { trace_qemu_vfio_ram_block_removed(s, host, size); qemu_vfio_dma_unmap(s, host); } } static int qemu_vfio_init_ramblock(const char *block_name, void *host_addr, ram_addr_t offset, ram_addr_t length, void *opaque) { int ret; QEMUVFIOState *s = opaque; if (!host_addr) { return 0; } ret = qemu_vfio_dma_map(s, host_addr, length, false, NULL); if (ret) { fprintf(stderr, "qemu_vfio_init_ramblock: failed %p %" PRId64 "\n", host_addr, (uint64_t)length); } return 0; } static void qemu_vfio_open_common(QEMUVFIOState *s) { s->ram_notifier.ram_block_added = qemu_vfio_ram_block_added; s->ram_notifier.ram_block_removed = qemu_vfio_ram_block_removed; ram_block_notifier_add(&s->ram_notifier); s->low_water_mark = QEMU_VFIO_IOVA_MIN; s->high_water_mark = QEMU_VFIO_IOVA_MAX; qemu_ram_foreach_block(qemu_vfio_init_ramblock, s); qemu_mutex_init(&s->lock); } /** * Open a PCI device, e.g. "0000:00:01.0". */ QEMUVFIOState *qemu_vfio_open_pci(const char *device, Error **errp) { int r; QEMUVFIOState *s = g_new0(QEMUVFIOState, 1); r = qemu_vfio_init_pci(s, device, errp); if (r) { g_free(s); return NULL; } qemu_vfio_open_common(s); return s; } static void qemu_vfio_dump_mapping(IOVAMapping *m) { if (QEMU_VFIO_DEBUG) { printf(" vfio mapping %p %" PRIx64 " to %" PRIx64 "\n", m->host, (uint64_t)m->size, (uint64_t)m->iova); } } static void qemu_vfio_dump_mappings(QEMUVFIOState *s) { int i; if (QEMU_VFIO_DEBUG) { printf("vfio mappings\n"); for (i = 0; i < s->nr_mappings; ++i) { qemu_vfio_dump_mapping(&s->mappings[i]); } } } /** * Find the mapping entry that contains [host, host + size) and set @index to * the position. If no entry contains it, @index is the position _after_ which * to insert the new mapping. IOW, it is the index of the largest element that * is smaller than @host, or -1 if no entry is. */ static IOVAMapping *qemu_vfio_find_mapping(QEMUVFIOState *s, void *host, int *index) { IOVAMapping *p = s->mappings; IOVAMapping *q = p ? p + s->nr_mappings - 1 : NULL; IOVAMapping *mid; trace_qemu_vfio_find_mapping(s, host); if (!p) { *index = -1; return NULL; } while (true) { mid = p + (q - p) / 2; if (mid == p) { break; } if (mid->host > host) { q = mid; } else if (mid->host < host) { p = mid; } else { break; } } if (mid->host > host) { mid--; } else if (mid < &s->mappings[s->nr_mappings - 1] && (mid + 1)->host <= host) { mid++; } *index = mid - &s->mappings[0]; if (mid >= &s->mappings[0] && mid->host <= host && mid->host + mid->size > host) { assert(mid < &s->mappings[s->nr_mappings]); return mid; } /* At this point *index + 1 is the right position to insert the new * mapping.*/ return NULL; } /** * Allocate IOVA and and create a new mapping record and insert it in @s. */ static IOVAMapping *qemu_vfio_add_mapping(QEMUVFIOState *s, void *host, size_t size, int index, uint64_t iova) { int shift; IOVAMapping m = {.host = host, .size = size, .iova = iova}; IOVAMapping *insert; assert(QEMU_IS_ALIGNED(size, getpagesize())); assert(QEMU_IS_ALIGNED(s->low_water_mark, getpagesize())); assert(QEMU_IS_ALIGNED(s->high_water_mark, getpagesize())); trace_qemu_vfio_new_mapping(s, host, size, index, iova); assert(index >= 0); s->nr_mappings++; s->mappings = g_renew(IOVAMapping, s->mappings, s->nr_mappings); insert = &s->mappings[index]; shift = s->nr_mappings - index - 1; if (shift) { memmove(insert + 1, insert, shift * sizeof(s->mappings[0])); } *insert = m; return insert; } /* Do the DMA mapping with VFIO. */ static int qemu_vfio_do_mapping(QEMUVFIOState *s, void *host, size_t size, uint64_t iova) { struct vfio_iommu_type1_dma_map dma_map = { .argsz = sizeof(dma_map), .flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE, .iova = iova, .vaddr = (uintptr_t)host, .size = size, }; trace_qemu_vfio_do_mapping(s, host, size, iova); if (ioctl(s->container, VFIO_IOMMU_MAP_DMA, &dma_map)) { error_report("VFIO_MAP_DMA: %d", -errno); return -errno; } return 0; } /** * Undo the DMA mapping from @s with VFIO, and remove from mapping list. */ static void qemu_vfio_undo_mapping(QEMUVFIOState *s, IOVAMapping *mapping, Error **errp) { int index; struct vfio_iommu_type1_dma_unmap unmap = { .argsz = sizeof(unmap), .flags = 0, .iova = mapping->iova, .size = mapping->size, }; index = mapping - s->mappings; assert(mapping->size > 0); assert(QEMU_IS_ALIGNED(mapping->size, getpagesize())); assert(index >= 0 && index < s->nr_mappings); if (ioctl(s->container, VFIO_IOMMU_UNMAP_DMA, &unmap)) { error_setg(errp, "VFIO_UNMAP_DMA failed: %d", -errno); } memmove(mapping, &s->mappings[index + 1], sizeof(s->mappings[0]) * (s->nr_mappings - index - 1)); s->nr_mappings--; s->mappings = g_renew(IOVAMapping, s->mappings, s->nr_mappings); } /* Check if the mapping list is (ascending) ordered. */ static bool qemu_vfio_verify_mappings(QEMUVFIOState *s) { int i; if (QEMU_VFIO_DEBUG) { for (i = 0; i < s->nr_mappings - 1; ++i) { if (!(s->mappings[i].host < s->mappings[i + 1].host)) { fprintf(stderr, "item %d not sorted!\n", i); qemu_vfio_dump_mappings(s); return false; } if (!(s->mappings[i].host + s->mappings[i].size <= s->mappings[i + 1].host)) { fprintf(stderr, "item %d overlap with next!\n", i); qemu_vfio_dump_mappings(s); return false; } } } return true; } /* Map [host, host + size) area into a contiguous IOVA address space, and store * the result in @iova if not NULL. The caller need to make sure the area is * aligned to page size, and mustn't overlap with existing mapping areas (split * mapping status within this area is not allowed). */ int qemu_vfio_dma_map(QEMUVFIOState *s, void *host, size_t size, bool temporary, uint64_t *iova) { int ret = 0; int index; IOVAMapping *mapping; uint64_t iova0; assert(QEMU_PTR_IS_ALIGNED(host, getpagesize())); assert(QEMU_IS_ALIGNED(size, getpagesize())); trace_qemu_vfio_dma_map(s, host, size, temporary, iova); qemu_mutex_lock(&s->lock); mapping = qemu_vfio_find_mapping(s, host, &index); if (mapping) { iova0 = mapping->iova + ((uint8_t *)host - (uint8_t *)mapping->host); } else { if (s->high_water_mark - s->low_water_mark + 1 < size) { ret = -ENOMEM; goto out; } if (!temporary) { iova0 = s->low_water_mark; mapping = qemu_vfio_add_mapping(s, host, size, index + 1, iova0); if (!mapping) { ret = -ENOMEM; goto out; } assert(qemu_vfio_verify_mappings(s)); ret = qemu_vfio_do_mapping(s, host, size, iova0); if (ret) { qemu_vfio_undo_mapping(s, mapping, NULL); goto out; } s->low_water_mark += size; qemu_vfio_dump_mappings(s); } else { iova0 = s->high_water_mark - size; ret = qemu_vfio_do_mapping(s, host, size, iova0); if (ret) { goto out; } s->high_water_mark -= size; } } if (iova) { *iova = iova0; } out: qemu_mutex_unlock(&s->lock); return ret; } /* Reset the high watermark and free all "temporary" mappings. */ int qemu_vfio_dma_reset_temporary(QEMUVFIOState *s) { struct vfio_iommu_type1_dma_unmap unmap = { .argsz = sizeof(unmap), .flags = 0, .iova = s->high_water_mark, .size = QEMU_VFIO_IOVA_MAX - s->high_water_mark, }; trace_qemu_vfio_dma_reset_temporary(s); qemu_mutex_lock(&s->lock); if (ioctl(s->container, VFIO_IOMMU_UNMAP_DMA, &unmap)) { error_report("VFIO_UNMAP_DMA: %d", -errno); qemu_mutex_unlock(&s->lock); return -errno; } s->high_water_mark = QEMU_VFIO_IOVA_MAX; qemu_mutex_unlock(&s->lock); return 0; } /* Unmapping the whole area that was previously mapped with * qemu_vfio_dma_map(). */ void qemu_vfio_dma_unmap(QEMUVFIOState *s, void *host) { int index = 0; IOVAMapping *m; if (!host) { return; } trace_qemu_vfio_dma_unmap(s, host); qemu_mutex_lock(&s->lock); m = qemu_vfio_find_mapping(s, host, &index); if (!m) { goto out; } qemu_vfio_undo_mapping(s, m, NULL); out: qemu_mutex_unlock(&s->lock); } static void qemu_vfio_reset(QEMUVFIOState *s) { ioctl(s->device, VFIO_DEVICE_RESET); } /* Close and free the VFIO resources. */ void qemu_vfio_close(QEMUVFIOState *s) { int i; if (!s) { return; } for (i = 0; i < s->nr_mappings; ++i) { qemu_vfio_undo_mapping(s, &s->mappings[i], NULL); } ram_block_notifier_remove(&s->ram_notifier); qemu_vfio_reset(s); close(s->device); close(s->group); close(s->container); }