/* * qsp.c - QEMU Synchronization Profiler * * Copyright (C) 2018, Emilio G. Cota <cota@braap.org> * * License: GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * * QSP profiles the time spent in synchronization primitives, which can * help diagnose performance problems, e.g. scalability issues when * contention is high. * * The primitives currently supported are mutexes, recursive mutexes and * condition variables. Note that not all related functions are intercepted; * instead we profile only those functions that can have a performance impact, * either due to blocking (e.g. cond_wait, mutex_lock) or cache line * contention (e.g. mutex_lock, mutex_trylock). * * QSP's design focuses on speed and scalability. This is achieved * by having threads do their profiling entirely on thread-local data. * The appropriate thread-local data is found via a QHT, i.e. a concurrent hash * table. To aggregate data in order to generate a report, we iterate over * all entries in the hash table. Depending on the number of threads and * synchronization objects this might be expensive, but note that it is * very rarely called -- reports are generated only when requested by users. * * Reports are generated as a table where each row represents a call site. A * call site is the triplet formed by the __file__ and __LINE__ of the caller * as well as the address of the "object" (i.e. mutex, rec. mutex or condvar) * being operated on. Optionally, call sites that operate on different objects * of the same type can be coalesced, which can be particularly useful when * profiling dynamically-allocated objects. * * Alternative designs considered: * * - Use an off-the-shelf profiler such as mutrace. This is not a viable option * for us because QEMU has __malloc_hook set (by one of the libraries it * uses); leaving this hook unset is required to avoid deadlock in mutrace. * * - Use a glib HT for each thread, protecting each HT with its own lock. * This isn't simpler than the current design, and is 10% slower in the * atomic_add-bench microbenchmark (-m option). * * - For reports, just use a binary tree as we aggregate data, instead of having * an intermediate hash table. This would simplify the code only slightly, but * would perform badly if there were many threads and objects to track. * * - Wrap operations on qsp entries with RCU read-side critical sections, so * that qsp_reset() can delete entries. Unfortunately, the overhead of calling * rcu_read_lock/unlock slows down atomic_add-bench -m by 24%. Having * a snapshot that is updated on qsp_reset() avoids this overhead. * * Related Work: * - Lennart Poettering's mutrace: http://0pointer.de/blog/projects/mutrace.html * - Lozi, David, Thomas, Lawall and Muller. "Remote Core Locking: Migrating * Critical-Section Execution to Improve the Performance of Multithreaded * Applications", USENIX ATC'12. */ #include "qemu/osdep.h" #include "qemu/thread.h" #include "qemu/timer.h" #include "qemu/qht.h" #include "qemu/rcu.h" #include "exec/tb-hash-xx.h" enum QSPType { QSP_MUTEX, QSP_BQL_MUTEX, QSP_REC_MUTEX, QSP_CONDVAR, }; struct QSPCallSite { const void *obj; const char *file; /* i.e. __FILE__; shortened later */ int line; enum QSPType type; }; typedef struct QSPCallSite QSPCallSite; struct QSPEntry { void *thread_ptr; const QSPCallSite *callsite; uint64_t n_acqs; uint64_t ns; unsigned int n_objs; /* count of coalesced objs; only used for reporting */ }; typedef struct QSPEntry QSPEntry; struct QSPSnapshot { struct rcu_head rcu; struct qht ht; }; typedef struct QSPSnapshot QSPSnapshot; /* initial sizing for hash tables */ #define QSP_INITIAL_SIZE 64 /* If this file is moved, QSP_REL_PATH should be updated accordingly */ #define QSP_REL_PATH "util/qsp.c" /* this file's full path. Used to present all call sites with relative paths */ static size_t qsp_qemu_path_len; /* the address of qsp_thread gives us a unique 'thread ID' */ static __thread int qsp_thread; /* * Call sites are the same for all threads, so we track them in a separate hash * table to save memory. */ static struct qht qsp_callsite_ht; static struct qht qsp_ht; static QSPSnapshot *qsp_snapshot; static bool qsp_initialized, qsp_initializing; static const char * const qsp_typenames[] = { [QSP_MUTEX] = "mutex", [QSP_BQL_MUTEX] = "BQL mutex", [QSP_REC_MUTEX] = "rec_mutex", [QSP_CONDVAR] = "condvar", }; QemuMutexLockFunc qemu_bql_mutex_lock_func = qemu_mutex_lock_impl; QemuMutexLockFunc qemu_mutex_lock_func = qemu_mutex_lock_impl; QemuMutexTrylockFunc qemu_mutex_trylock_func = qemu_mutex_trylock_impl; QemuRecMutexLockFunc qemu_rec_mutex_lock_func = qemu_rec_mutex_lock_impl; QemuRecMutexTrylockFunc qemu_rec_mutex_trylock_func = qemu_rec_mutex_trylock_impl; QemuCondWaitFunc qemu_cond_wait_func = qemu_cond_wait_impl; /* * It pays off to _not_ hash callsite->file; hashing a string is slow, and * without it we still get a pretty unique hash. */ static inline uint32_t do_qsp_callsite_hash(const QSPCallSite *callsite, uint64_t a) { uint64_t b = (uint64_t)(uintptr_t)callsite->obj; uint32_t e = callsite->line; uint32_t f = callsite->type; return tb_hash_func7(a, b, e, f, 0); } static inline uint32_t qsp_callsite_hash(const QSPCallSite *callsite) { return do_qsp_callsite_hash(callsite, 0); } static inline uint32_t do_qsp_entry_hash(const QSPEntry *entry, uint64_t a) { return do_qsp_callsite_hash(entry->callsite, a); } static uint32_t qsp_entry_hash(const QSPEntry *entry) { return do_qsp_entry_hash(entry, (uint64_t)(uintptr_t)entry->thread_ptr); } static uint32_t qsp_entry_no_thread_hash(const QSPEntry *entry) { return do_qsp_entry_hash(entry, 0); } /* without the objects we need to hash the file name to get a decent hash */ static uint32_t qsp_entry_no_thread_obj_hash(const QSPEntry *entry) { const QSPCallSite *callsite = entry->callsite; uint64_t a = g_str_hash(callsite->file); uint64_t b = callsite->line; uint32_t e = callsite->type; return tb_hash_func7(a, b, e, 0, 0); } static bool qsp_callsite_cmp(const void *ap, const void *bp) { const QSPCallSite *a = ap; const QSPCallSite *b = bp; return a == b || (a->obj == b->obj && a->line == b->line && a->type == b->type && (a->file == b->file || !strcmp(a->file, b->file))); } static bool qsp_callsite_no_obj_cmp(const void *ap, const void *bp) { const QSPCallSite *a = ap; const QSPCallSite *b = bp; return a == b || (a->line == b->line && a->type == b->type && (a->file == b->file || !strcmp(a->file, b->file))); } static bool qsp_entry_no_thread_cmp(const void *ap, const void *bp) { const QSPEntry *a = ap; const QSPEntry *b = bp; return qsp_callsite_cmp(a->callsite, b->callsite); } static bool qsp_entry_no_thread_obj_cmp(const void *ap, const void *bp) { const QSPEntry *a = ap; const QSPEntry *b = bp; return qsp_callsite_no_obj_cmp(a->callsite, b->callsite); } static bool qsp_entry_cmp(const void *ap, const void *bp) { const QSPEntry *a = ap; const QSPEntry *b = bp; return a->thread_ptr == b->thread_ptr && qsp_callsite_cmp(a->callsite, b->callsite); } /* * Normally we'd call this from a constructor function, but we want it to work * via libutil as well. */ static void qsp_do_init(void) { /* make sure this file's path in the tree is up to date with QSP_REL_PATH */ g_assert(strstr(__FILE__, QSP_REL_PATH)); qsp_qemu_path_len = strlen(__FILE__) - strlen(QSP_REL_PATH); qht_init(&qsp_ht, qsp_entry_cmp, QSP_INITIAL_SIZE, QHT_MODE_AUTO_RESIZE | QHT_MODE_RAW_MUTEXES); qht_init(&qsp_callsite_ht, qsp_callsite_cmp, QSP_INITIAL_SIZE, QHT_MODE_AUTO_RESIZE | QHT_MODE_RAW_MUTEXES); } static __attribute__((noinline)) void qsp_init__slowpath(void) { if (atomic_cmpxchg(&qsp_initializing, false, true) == false) { qsp_do_init(); atomic_set(&qsp_initialized, true); } else { while (!atomic_read(&qsp_initialized)) { cpu_relax(); } } } /* qsp_init() must be called from _all_ exported functions */ static inline void qsp_init(void) { if (likely(atomic_read(&qsp_initialized))) { return; } qsp_init__slowpath(); } static QSPCallSite *qsp_callsite_find(const QSPCallSite *orig) { QSPCallSite *callsite; uint32_t hash; hash = qsp_callsite_hash(orig); callsite = qht_lookup(&qsp_callsite_ht, orig, hash); if (callsite == NULL) { void *existing = NULL; callsite = g_new(QSPCallSite, 1); memcpy(callsite, orig, sizeof(*callsite)); qht_insert(&qsp_callsite_ht, callsite, hash, &existing); if (unlikely(existing)) { g_free(callsite); callsite = existing; } } return callsite; } static QSPEntry * qsp_entry_create(struct qht *ht, const QSPEntry *entry, uint32_t hash) { QSPEntry *e; void *existing = NULL; e = g_new0(QSPEntry, 1); e->thread_ptr = entry->thread_ptr; e->callsite = qsp_callsite_find(entry->callsite); qht_insert(ht, e, hash, &existing); if (unlikely(existing)) { g_free(e); e = existing; } return e; } static QSPEntry * qsp_entry_find(struct qht *ht, const QSPEntry *entry, uint32_t hash) { QSPEntry *e; e = qht_lookup(ht, entry, hash); if (e == NULL) { e = qsp_entry_create(ht, entry, hash); } return e; } /* * Note: Entries are never removed, so callers do not have to be in an RCU * read-side critical section. */ static QSPEntry *qsp_entry_get(const void *obj, const char *file, int line, enum QSPType type) { QSPCallSite callsite = { .obj = obj, .file = file, .line = line, .type = type, }; QSPEntry orig; uint32_t hash; qsp_init(); orig.thread_ptr = &qsp_thread; orig.callsite = &callsite; hash = qsp_entry_hash(&orig); return qsp_entry_find(&qsp_ht, &orig, hash); } /* * @e is in the global hash table; it is only written to by the current thread, * so we write to it atomically (as in "write once") to prevent torn reads. */ static inline void do_qsp_entry_record(QSPEntry *e, int64_t delta, bool acq) { atomic_set_u64(&e->ns, e->ns + delta); if (acq) { atomic_set_u64(&e->n_acqs, e->n_acqs + 1); } } static inline void qsp_entry_record(QSPEntry *e, int64_t delta) { do_qsp_entry_record(e, delta, true); } #define QSP_GEN_VOID(type_, qsp_t_, func_, impl_) \ static void func_(type_ *obj, const char *file, int line) \ { \ QSPEntry *e; \ int64_t t0, t1; \ \ t0 = get_clock(); \ impl_(obj, file, line); \ t1 = get_clock(); \ \ e = qsp_entry_get(obj, file, line, qsp_t_); \ qsp_entry_record(e, t1 - t0); \ } #define QSP_GEN_RET1(type_, qsp_t_, func_, impl_) \ static int func_(type_ *obj, const char *file, int line) \ { \ QSPEntry *e; \ int64_t t0, t1; \ int err; \ \ t0 = get_clock(); \ err = impl_(obj, file, line); \ t1 = get_clock(); \ \ e = qsp_entry_get(obj, file, line, qsp_t_); \ do_qsp_entry_record(e, t1 - t0, !err); \ return err; \ } QSP_GEN_VOID(QemuMutex, QSP_BQL_MUTEX, qsp_bql_mutex_lock, qemu_mutex_lock_impl) QSP_GEN_VOID(QemuMutex, QSP_MUTEX, qsp_mutex_lock, qemu_mutex_lock_impl) QSP_GEN_RET1(QemuMutex, QSP_MUTEX, qsp_mutex_trylock, qemu_mutex_trylock_impl) QSP_GEN_VOID(QemuRecMutex, QSP_REC_MUTEX, qsp_rec_mutex_lock, qemu_rec_mutex_lock_impl) QSP_GEN_RET1(QemuRecMutex, QSP_REC_MUTEX, qsp_rec_mutex_trylock, qemu_rec_mutex_trylock_impl) #undef QSP_GEN_RET1 #undef QSP_GEN_VOID static void qsp_cond_wait(QemuCond *cond, QemuMutex *mutex, const char *file, int line) { QSPEntry *e; int64_t t0, t1; t0 = get_clock(); qemu_cond_wait_impl(cond, mutex, file, line); t1 = get_clock(); e = qsp_entry_get(cond, file, line, QSP_CONDVAR); qsp_entry_record(e, t1 - t0); } bool qsp_is_enabled(void) { return atomic_read(&qemu_mutex_lock_func) == qsp_mutex_lock; } void qsp_enable(void) { atomic_set(&qemu_mutex_lock_func, qsp_mutex_lock); atomic_set(&qemu_mutex_trylock_func, qsp_mutex_trylock); atomic_set(&qemu_bql_mutex_lock_func, qsp_bql_mutex_lock); atomic_set(&qemu_rec_mutex_lock_func, qsp_rec_mutex_lock); atomic_set(&qemu_rec_mutex_trylock_func, qsp_rec_mutex_trylock); atomic_set(&qemu_cond_wait_func, qsp_cond_wait); } void qsp_disable(void) { atomic_set(&qemu_mutex_lock_func, qemu_mutex_lock_impl); atomic_set(&qemu_mutex_trylock_func, qemu_mutex_trylock_impl); atomic_set(&qemu_bql_mutex_lock_func, qemu_mutex_lock_impl); atomic_set(&qemu_rec_mutex_lock_func, qemu_rec_mutex_lock_impl); atomic_set(&qemu_rec_mutex_trylock_func, qemu_rec_mutex_trylock_impl); atomic_set(&qemu_cond_wait_func, qemu_cond_wait_impl); } static gint qsp_tree_cmp(gconstpointer ap, gconstpointer bp, gpointer up) { const QSPEntry *a = ap; const QSPEntry *b = bp; enum QSPSortBy sort_by = *(enum QSPSortBy *)up; const QSPCallSite *ca; const QSPCallSite *cb; switch (sort_by) { case QSP_SORT_BY_TOTAL_WAIT_TIME: if (a->ns > b->ns) { return -1; } else if (a->ns < b->ns) { return 1; } break; case QSP_SORT_BY_AVG_WAIT_TIME: { double avg_a = a->n_acqs ? a->ns / a->n_acqs : 0; double avg_b = b->n_acqs ? b->ns / b->n_acqs : 0; if (avg_a > avg_b) { return -1; } else if (avg_a < avg_b) { return 1; } break; } default: g_assert_not_reached(); } ca = a->callsite; cb = b->callsite; /* Break the tie with the object's address */ if (ca->obj < cb->obj) { return -1; } else if (ca->obj > cb->obj) { return 1; } else { int cmp; /* same obj. Break the tie with the callsite's file */ cmp = strcmp(ca->file, cb->file); if (cmp) { return cmp; } /* same callsite file. Break the tie with the callsite's line */ g_assert(ca->line != cb->line); if (ca->line < cb->line) { return -1; } else if (ca->line > cb->line) { return 1; } else { /* break the tie with the callsite's type */ return cb->type - ca->type; } } } static void qsp_sort(void *p, uint32_t h, void *userp) { QSPEntry *e = p; GTree *tree = userp; g_tree_insert(tree, e, NULL); } static void qsp_aggregate(void *p, uint32_t h, void *up) { struct qht *ht = up; const QSPEntry *e = p; QSPEntry *agg; uint32_t hash; hash = qsp_entry_no_thread_hash(e); agg = qsp_entry_find(ht, e, hash); /* * The entry is in the global hash table; read from it atomically (as in * "read once"). */ agg->ns += atomic_read_u64(&e->ns); agg->n_acqs += atomic_read_u64(&e->n_acqs); } static void qsp_iter_diff(void *p, uint32_t hash, void *htp) { struct qht *ht = htp; QSPEntry *old = p; QSPEntry *new; new = qht_lookup(ht, old, hash); /* entries are never deleted, so we must have this one */ g_assert(new != NULL); /* our reading of the stats happened after the snapshot was taken */ g_assert(new->n_acqs >= old->n_acqs); g_assert(new->ns >= old->ns); new->n_acqs -= old->n_acqs; new->ns -= old->ns; /* No point in reporting an empty entry */ if (new->n_acqs == 0 && new->ns == 0) { bool removed = qht_remove(ht, new, hash); g_assert(removed); g_free(new); } } static void qsp_diff(struct qht *orig, struct qht *new) { qht_iter(orig, qsp_iter_diff, new); } static void qsp_iter_callsite_coalesce(void *p, uint32_t h, void *htp) { struct qht *ht = htp; QSPEntry *old = p; QSPEntry *e; uint32_t hash; hash = qsp_entry_no_thread_obj_hash(old); e = qht_lookup(ht, old, hash); if (e == NULL) { e = qsp_entry_create(ht, old, hash); e->n_objs = 1; } else if (e->callsite->obj != old->callsite->obj) { e->n_objs++; } e->ns += old->ns; e->n_acqs += old->n_acqs; } static void qsp_ht_delete(void *p, uint32_t h, void *htp) { g_free(p); } static void qsp_mktree(GTree *tree, bool callsite_coalesce) { QSPSnapshot *snap; struct qht ht, coalesce_ht; struct qht *htp; /* * First, see if there's a prior snapshot, so that we read the global hash * table _after_ the snapshot has been created, which guarantees that * the entries we'll read will be a superset of the snapshot's entries. * * We must remain in an RCU read-side critical section until we're done * with the snapshot. */ rcu_read_lock(); snap = atomic_rcu_read(&qsp_snapshot); /* Aggregate all results from the global hash table into a local one */ qht_init(&ht, qsp_entry_no_thread_cmp, QSP_INITIAL_SIZE, QHT_MODE_AUTO_RESIZE | QHT_MODE_RAW_MUTEXES); qht_iter(&qsp_ht, qsp_aggregate, &ht); /* compute the difference wrt the snapshot, if any */ if (snap) { qsp_diff(&snap->ht, &ht); } /* done with the snapshot; RCU can reclaim it */ rcu_read_unlock(); htp = &ht; if (callsite_coalesce) { qht_init(&coalesce_ht, qsp_entry_no_thread_obj_cmp, QSP_INITIAL_SIZE, QHT_MODE_AUTO_RESIZE | QHT_MODE_RAW_MUTEXES); qht_iter(&ht, qsp_iter_callsite_coalesce, &coalesce_ht); /* free the previous hash table, and point htp to coalesce_ht */ qht_iter(&ht, qsp_ht_delete, NULL); qht_destroy(&ht); htp = &coalesce_ht; } /* sort the hash table elements by using a tree */ qht_iter(htp, qsp_sort, tree); /* free the hash table, but keep the elements (those are in the tree now) */ qht_destroy(htp); } /* free string with g_free */ static char *qsp_at(const QSPCallSite *callsite) { GString *s = g_string_new(NULL); const char *shortened; /* remove the absolute path to qemu */ if (unlikely(strlen(callsite->file) < qsp_qemu_path_len)) { shortened = callsite->file; } else { shortened = callsite->file + qsp_qemu_path_len; } g_string_append_printf(s, "%s:%u", shortened, callsite->line); return g_string_free(s, FALSE); } struct QSPReportEntry { const void *obj; char *callsite_at; const char *typename; double time_s; double ns_avg; uint64_t n_acqs; unsigned int n_objs; }; typedef struct QSPReportEntry QSPReportEntry; struct QSPReport { QSPReportEntry *entries; size_t n_entries; size_t max_n_entries; }; typedef struct QSPReport QSPReport; static gboolean qsp_tree_report(gpointer key, gpointer value, gpointer udata) { const QSPEntry *e = key; QSPReport *report = udata; QSPReportEntry *entry; if (report->n_entries == report->max_n_entries) { return TRUE; } entry = &report->entries[report->n_entries]; report->n_entries++; entry->obj = e->callsite->obj; entry->n_objs = e->n_objs; entry->callsite_at = qsp_at(e->callsite); entry->typename = qsp_typenames[e->callsite->type]; entry->time_s = e->ns * 1e-9; entry->n_acqs = e->n_acqs; entry->ns_avg = e->n_acqs ? e->ns / e->n_acqs : 0; return FALSE; } static void pr_report(const QSPReport *rep, FILE *f, fprintf_function pr) { char *dashes; size_t max_len = 0; int callsite_len = 0; int callsite_rspace; int n_dashes; size_t i; /* find out the maximum length of all 'callsite' fields */ for (i = 0; i < rep->n_entries; i++) { const QSPReportEntry *e = &rep->entries[i]; size_t len = strlen(e->callsite_at); if (len > max_len) { max_len = len; } } callsite_len = MAX(max_len, strlen("Call site")); /* white space to leave to the right of "Call site" */ callsite_rspace = callsite_len - strlen("Call site"); pr(f, "Type Object Call site%*s Wait Time (s) " " Count Average (us)\n", callsite_rspace, ""); /* build a horizontal rule with dashes */ n_dashes = 79 + callsite_rspace; dashes = g_malloc(n_dashes + 1); memset(dashes, '-', n_dashes); dashes[n_dashes] = '\0'; pr(f, "%s\n", dashes); for (i = 0; i < rep->n_entries; i++) { const QSPReportEntry *e = &rep->entries[i]; GString *s = g_string_new(NULL); g_string_append_printf(s, "%-9s ", e->typename); if (e->n_objs > 1) { g_string_append_printf(s, "[%12u]", e->n_objs); } else { g_string_append_printf(s, "%14p", e->obj); } g_string_append_printf(s, " %s%*s %13.5f %12" PRIu64 " %12.2f\n", e->callsite_at, callsite_len - (int)strlen(e->callsite_at), "", e->time_s, e->n_acqs, e->ns_avg * 1e-3); pr(f, "%s", s->str); g_string_free(s, TRUE); } pr(f, "%s\n", dashes); g_free(dashes); } static void report_destroy(QSPReport *rep) { size_t i; for (i = 0; i < rep->n_entries; i++) { QSPReportEntry *e = &rep->entries[i]; g_free(e->callsite_at); } g_free(rep->entries); } void qsp_report(FILE *f, fprintf_function cpu_fprintf, size_t max, enum QSPSortBy sort_by, bool callsite_coalesce) { GTree *tree = g_tree_new_full(qsp_tree_cmp, &sort_by, g_free, NULL); QSPReport rep; qsp_init(); rep.entries = g_new0(QSPReportEntry, max); rep.n_entries = 0; rep.max_n_entries = max; qsp_mktree(tree, callsite_coalesce); g_tree_foreach(tree, qsp_tree_report, &rep); g_tree_destroy(tree); pr_report(&rep, f, cpu_fprintf); report_destroy(&rep); } static void qsp_snapshot_destroy(QSPSnapshot *snap) { qht_iter(&snap->ht, qsp_ht_delete, NULL); qht_destroy(&snap->ht); g_free(snap); } void qsp_reset(void) { QSPSnapshot *new = g_new(QSPSnapshot, 1); QSPSnapshot *old; qsp_init(); qht_init(&new->ht, qsp_entry_cmp, QSP_INITIAL_SIZE, QHT_MODE_AUTO_RESIZE | QHT_MODE_RAW_MUTEXES); /* take a snapshot of the current state */ qht_iter(&qsp_ht, qsp_aggregate, &new->ht); /* replace the previous snapshot, if any */ old = atomic_xchg(&qsp_snapshot, new); if (old) { call_rcu(old, qsp_snapshot_destroy, rcu); } }