/* * Wrappers around mutex/cond/thread functions * * Copyright Red Hat, Inc. 2009 * * Author: * Marcelo Tosatti <mtosatti@redhat.com> * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qemu/thread.h" #include "qemu/atomic.h" #include "qemu/notify.h" #include "qemu-thread-common.h" #include "qemu/tsan.h" #include "qemu/bitmap.h" static bool name_threads; void qemu_thread_naming(bool enable) { name_threads = enable; #if !defined CONFIG_PTHREAD_SETNAME_NP_W_TID && \ !defined CONFIG_PTHREAD_SETNAME_NP_WO_TID /* This is a debugging option, not fatal */ if (enable) { fprintf(stderr, "qemu: thread naming not supported on this host\n"); } #endif } static void error_exit(int err, const char *msg) { fprintf(stderr, "qemu: %s: %s\n", msg, strerror(err)); abort(); } static inline clockid_t qemu_timedwait_clockid(void) { #ifdef CONFIG_PTHREAD_CONDATTR_SETCLOCK return CLOCK_MONOTONIC; #else return CLOCK_REALTIME; #endif } static void compute_abs_deadline(struct timespec *ts, int ms) { clock_gettime(qemu_timedwait_clockid(), ts); ts->tv_nsec += (ms % 1000) * 1000000; ts->tv_sec += ms / 1000; if (ts->tv_nsec >= 1000000000) { ts->tv_sec++; ts->tv_nsec -= 1000000000; } } void qemu_mutex_init(QemuMutex *mutex) { int err; err = pthread_mutex_init(&mutex->lock, NULL); if (err) error_exit(err, __func__); qemu_mutex_post_init(mutex); } void qemu_mutex_destroy(QemuMutex *mutex) { int err; assert(mutex->initialized); mutex->initialized = false; err = pthread_mutex_destroy(&mutex->lock); if (err) error_exit(err, __func__); } void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line) { int err; assert(mutex->initialized); qemu_mutex_pre_lock(mutex, file, line); err = pthread_mutex_lock(&mutex->lock); if (err) error_exit(err, __func__); qemu_mutex_post_lock(mutex, file, line); } int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line) { int err; assert(mutex->initialized); err = pthread_mutex_trylock(&mutex->lock); if (err == 0) { qemu_mutex_post_lock(mutex, file, line); return 0; } if (err != EBUSY) { error_exit(err, __func__); } return -EBUSY; } void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line) { int err; assert(mutex->initialized); qemu_mutex_pre_unlock(mutex, file, line); err = pthread_mutex_unlock(&mutex->lock); if (err) error_exit(err, __func__); } void qemu_rec_mutex_init(QemuRecMutex *mutex) { int err; pthread_mutexattr_t attr; pthread_mutexattr_init(&attr); pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); err = pthread_mutex_init(&mutex->m.lock, &attr); pthread_mutexattr_destroy(&attr); if (err) { error_exit(err, __func__); } mutex->m.initialized = true; } void qemu_rec_mutex_destroy(QemuRecMutex *mutex) { qemu_mutex_destroy(&mutex->m); } void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line) { qemu_mutex_lock_impl(&mutex->m, file, line); } int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line) { return qemu_mutex_trylock_impl(&mutex->m, file, line); } void qemu_rec_mutex_unlock_impl(QemuRecMutex *mutex, const char *file, int line) { qemu_mutex_unlock_impl(&mutex->m, file, line); } void qemu_cond_init(QemuCond *cond) { pthread_condattr_t attr; int err; err = pthread_condattr_init(&attr); if (err) { error_exit(err, __func__); } #ifdef CONFIG_PTHREAD_CONDATTR_SETCLOCK err = pthread_condattr_setclock(&attr, qemu_timedwait_clockid()); if (err) { error_exit(err, __func__); } #endif err = pthread_cond_init(&cond->cond, &attr); if (err) { error_exit(err, __func__); } err = pthread_condattr_destroy(&attr); if (err) { error_exit(err, __func__); } cond->initialized = true; } void qemu_cond_destroy(QemuCond *cond) { int err; assert(cond->initialized); cond->initialized = false; err = pthread_cond_destroy(&cond->cond); if (err) error_exit(err, __func__); } void qemu_cond_signal(QemuCond *cond) { int err; assert(cond->initialized); err = pthread_cond_signal(&cond->cond); if (err) error_exit(err, __func__); } void qemu_cond_broadcast(QemuCond *cond) { int err; assert(cond->initialized); err = pthread_cond_broadcast(&cond->cond); if (err) error_exit(err, __func__); } void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line) { int err; assert(cond->initialized); qemu_mutex_pre_unlock(mutex, file, line); err = pthread_cond_wait(&cond->cond, &mutex->lock); qemu_mutex_post_lock(mutex, file, line); if (err) error_exit(err, __func__); } static bool qemu_cond_timedwait_ts(QemuCond *cond, QemuMutex *mutex, struct timespec *ts, const char *file, const int line) { int err; assert(cond->initialized); trace_qemu_mutex_unlock(mutex, file, line); err = pthread_cond_timedwait(&cond->cond, &mutex->lock, ts); trace_qemu_mutex_locked(mutex, file, line); if (err && err != ETIMEDOUT) { error_exit(err, __func__); } return err != ETIMEDOUT; } bool qemu_cond_timedwait_impl(QemuCond *cond, QemuMutex *mutex, int ms, const char *file, const int line) { struct timespec ts; compute_abs_deadline(&ts, ms); return qemu_cond_timedwait_ts(cond, mutex, &ts, file, line); } void qemu_sem_init(QemuSemaphore *sem, int init) { qemu_mutex_init(&sem->mutex); qemu_cond_init(&sem->cond); if (init < 0) { error_exit(EINVAL, __func__); } sem->count = init; } void qemu_sem_destroy(QemuSemaphore *sem) { qemu_cond_destroy(&sem->cond); qemu_mutex_destroy(&sem->mutex); } void qemu_sem_post(QemuSemaphore *sem) { qemu_mutex_lock(&sem->mutex); if (sem->count == UINT_MAX) { error_exit(EINVAL, __func__); } else { sem->count++; qemu_cond_signal(&sem->cond); } qemu_mutex_unlock(&sem->mutex); } int qemu_sem_timedwait(QemuSemaphore *sem, int ms) { bool rc = true; struct timespec ts; compute_abs_deadline(&ts, ms); qemu_mutex_lock(&sem->mutex); while (sem->count == 0) { if (ms == 0) { rc = false; } else { rc = qemu_cond_timedwait_ts(&sem->cond, &sem->mutex, &ts, __FILE__, __LINE__); } if (!rc) { /* timeout */ break; } } if (rc) { --sem->count; } qemu_mutex_unlock(&sem->mutex); return (rc ? 0 : -1); } void qemu_sem_wait(QemuSemaphore *sem) { qemu_mutex_lock(&sem->mutex); while (sem->count == 0) { qemu_cond_wait(&sem->cond, &sem->mutex); } --sem->count; qemu_mutex_unlock(&sem->mutex); } #ifdef __linux__ #include "qemu/futex.h" #else static inline void qemu_futex_wake(QemuEvent *ev, int n) { assert(ev->initialized); pthread_mutex_lock(&ev->lock); if (n == 1) { pthread_cond_signal(&ev->cond); } else { pthread_cond_broadcast(&ev->cond); } pthread_mutex_unlock(&ev->lock); } static inline void qemu_futex_wait(QemuEvent *ev, unsigned val) { assert(ev->initialized); pthread_mutex_lock(&ev->lock); if (ev->value == val) { pthread_cond_wait(&ev->cond, &ev->lock); } pthread_mutex_unlock(&ev->lock); } #endif /* Valid transitions: * - free->set, when setting the event * - busy->set, when setting the event, followed by qemu_futex_wake * - set->free, when resetting the event * - free->busy, when waiting * * set->busy does not happen (it can be observed from the outside but * it really is set->free->busy). * * busy->free provably cannot happen; to enforce it, the set->free transition * is done with an OR, which becomes a no-op if the event has concurrently * transitioned to free or busy. */ #define EV_SET 0 #define EV_FREE 1 #define EV_BUSY -1 void qemu_event_init(QemuEvent *ev, bool init) { #ifndef __linux__ pthread_mutex_init(&ev->lock, NULL); pthread_cond_init(&ev->cond, NULL); #endif ev->value = (init ? EV_SET : EV_FREE); ev->initialized = true; } void qemu_event_destroy(QemuEvent *ev) { assert(ev->initialized); ev->initialized = false; #ifndef __linux__ pthread_mutex_destroy(&ev->lock); pthread_cond_destroy(&ev->cond); #endif } void qemu_event_set(QemuEvent *ev) { /* qemu_event_set has release semantics, but because it *loads* * ev->value we need a full memory barrier here. */ assert(ev->initialized); smp_mb(); if (qatomic_read(&ev->value) != EV_SET) { if (qatomic_xchg(&ev->value, EV_SET) == EV_BUSY) { /* There were waiters, wake them up. */ qemu_futex_wake(ev, INT_MAX); } } } void qemu_event_reset(QemuEvent *ev) { unsigned value; assert(ev->initialized); value = qatomic_read(&ev->value); smp_mb_acquire(); if (value == EV_SET) { /* * If there was a concurrent reset (or even reset+wait), * do nothing. Otherwise change EV_SET->EV_FREE. */ qatomic_or(&ev->value, EV_FREE); } } void qemu_event_wait(QemuEvent *ev) { unsigned value; assert(ev->initialized); value = qatomic_read(&ev->value); smp_mb_acquire(); if (value != EV_SET) { if (value == EV_FREE) { /* * Leave the event reset and tell qemu_event_set that there * are waiters. No need to retry, because there cannot be * a concurrent busy->free transition. After the CAS, the * event will be either set or busy. */ if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) { return; } } qemu_futex_wait(ev, EV_BUSY); } } static __thread NotifierList thread_exit; /* * Note that in this implementation you can register a thread-exit * notifier for the main thread, but it will never be called. * This is OK because main thread exit can only happen when the * entire process is exiting, and the API allows notifiers to not * be called on process exit. */ void qemu_thread_atexit_add(Notifier *notifier) { notifier_list_add(&thread_exit, notifier); } void qemu_thread_atexit_remove(Notifier *notifier) { notifier_remove(notifier); } static void qemu_thread_atexit_notify(void *arg) { /* * Called when non-main thread exits (via qemu_thread_exit() * or by returning from its start routine.) */ notifier_list_notify(&thread_exit, NULL); } typedef struct { void *(*start_routine)(void *); void *arg; char *name; } QemuThreadArgs; static void *qemu_thread_start(void *args) { QemuThreadArgs *qemu_thread_args = args; void *(*start_routine)(void *) = qemu_thread_args->start_routine; void *arg = qemu_thread_args->arg; void *r; /* Attempt to set the threads name; note that this is for debug, so * we're not going to fail if we can't set it. */ if (name_threads && qemu_thread_args->name) { # if defined(CONFIG_PTHREAD_SETNAME_NP_W_TID) pthread_setname_np(pthread_self(), qemu_thread_args->name); # elif defined(CONFIG_PTHREAD_SETNAME_NP_WO_TID) pthread_setname_np(qemu_thread_args->name); # endif } QEMU_TSAN_ANNOTATE_THREAD_NAME(qemu_thread_args->name); g_free(qemu_thread_args->name); g_free(qemu_thread_args); /* * GCC 11 with glibc 2.17 on PowerPC reports * * qemu-thread-posix.c:540:5: error: ‘__sigsetjmp’ accessing 656 bytes * in a region of size 528 [-Werror=stringop-overflow=] * 540 | pthread_cleanup_push(qemu_thread_atexit_notify, NULL); * | ^~~~~~~~~~~~~~~~~~~~ * * which is clearly nonsense. */ #pragma GCC diagnostic push #ifndef __clang__ #pragma GCC diagnostic ignored "-Wstringop-overflow" #endif pthread_cleanup_push(qemu_thread_atexit_notify, NULL); r = start_routine(arg); pthread_cleanup_pop(1); #pragma GCC diagnostic pop return r; } void qemu_thread_create(QemuThread *thread, const char *name, void *(*start_routine)(void*), void *arg, int mode) { sigset_t set, oldset; int err; pthread_attr_t attr; QemuThreadArgs *qemu_thread_args; err = pthread_attr_init(&attr); if (err) { error_exit(err, __func__); } if (mode == QEMU_THREAD_DETACHED) { pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); } /* Leave signal handling to the iothread. */ sigfillset(&set); /* Blocking the signals can result in undefined behaviour. */ sigdelset(&set, SIGSEGV); sigdelset(&set, SIGFPE); sigdelset(&set, SIGILL); /* TODO avoid SIGBUS loss on macOS */ pthread_sigmask(SIG_SETMASK, &set, &oldset); qemu_thread_args = g_new0(QemuThreadArgs, 1); qemu_thread_args->name = g_strdup(name); qemu_thread_args->start_routine = start_routine; qemu_thread_args->arg = arg; err = pthread_create(&thread->thread, &attr, qemu_thread_start, qemu_thread_args); if (err) error_exit(err, __func__); pthread_sigmask(SIG_SETMASK, &oldset, NULL); pthread_attr_destroy(&attr); } int qemu_thread_set_affinity(QemuThread *thread, unsigned long *host_cpus, unsigned long nbits) { #if defined(CONFIG_PTHREAD_AFFINITY_NP) const size_t setsize = CPU_ALLOC_SIZE(nbits); unsigned long value; cpu_set_t *cpuset; int err; cpuset = CPU_ALLOC(nbits); g_assert(cpuset); CPU_ZERO_S(setsize, cpuset); value = find_first_bit(host_cpus, nbits); while (value < nbits) { CPU_SET_S(value, setsize, cpuset); value = find_next_bit(host_cpus, nbits, value + 1); } err = pthread_setaffinity_np(thread->thread, setsize, cpuset); CPU_FREE(cpuset); return err; #else return -ENOSYS; #endif } int qemu_thread_get_affinity(QemuThread *thread, unsigned long **host_cpus, unsigned long *nbits) { #if defined(CONFIG_PTHREAD_AFFINITY_NP) unsigned long tmpbits; cpu_set_t *cpuset; size_t setsize; int i, err; tmpbits = CPU_SETSIZE; while (true) { setsize = CPU_ALLOC_SIZE(tmpbits); cpuset = CPU_ALLOC(tmpbits); g_assert(cpuset); err = pthread_getaffinity_np(thread->thread, setsize, cpuset); if (err) { CPU_FREE(cpuset); if (err != -EINVAL) { return err; } tmpbits *= 2; } else { break; } } /* Convert the result into a proper bitmap. */ *nbits = tmpbits; *host_cpus = bitmap_new(tmpbits); for (i = 0; i < tmpbits; i++) { if (CPU_ISSET(i, cpuset)) { set_bit(i, *host_cpus); } } CPU_FREE(cpuset); return 0; #else return -ENOSYS; #endif } void qemu_thread_get_self(QemuThread *thread) { thread->thread = pthread_self(); } bool qemu_thread_is_self(QemuThread *thread) { return pthread_equal(pthread_self(), thread->thread); } void qemu_thread_exit(void *retval) { pthread_exit(retval); } void *qemu_thread_join(QemuThread *thread) { int err; void *ret; err = pthread_join(thread->thread, &ret); if (err) { error_exit(err, __func__); } return ret; }