/* * QEMU Crypto block encryption * * Copyright (c) 2016 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "crypto/init.h" #include "crypto/block.h" #include "crypto/block-luks-priv.h" #include "qemu/buffer.h" #include "qemu/module.h" #include "crypto/secret.h" #ifndef _WIN32 #include #endif #if (defined(_WIN32) || defined RUSAGE_THREAD) && \ (defined(CONFIG_NETTLE) || defined(CONFIG_GCRYPT) || \ defined(CONFIG_GNUTLS_CRYPTO)) #define TEST_LUKS #else #undef TEST_LUKS #endif static QCryptoBlockCreateOptions qcow_create_opts = { .format = QCRYPTO_BLOCK_FORMAT_QCOW, .u.qcow = { .key_secret = (char *)"sec0", }, }; static QCryptoBlockOpenOptions qcow_open_opts = { .format = QCRYPTO_BLOCK_FORMAT_QCOW, .u.qcow = { .key_secret = (char *)"sec0", }, }; #ifdef TEST_LUKS static QCryptoBlockOpenOptions luks_open_opts = { .format = QCRYPTO_BLOCK_FORMAT_LUKS, .u.luks = { .key_secret = (char *)"sec0", }, }; /* Creation with all default values */ static QCryptoBlockCreateOptions luks_create_opts_default = { .format = QCRYPTO_BLOCK_FORMAT_LUKS, .u.luks = { .key_secret = (char *)"sec0", }, }; /* ...and with explicit values */ static QCryptoBlockCreateOptions luks_create_opts_aes256_cbc_plain64 = { .format = QCRYPTO_BLOCK_FORMAT_LUKS, .u.luks = { .key_secret = (char *)"sec0", .has_cipher_alg = true, .cipher_alg = QCRYPTO_CIPHER_ALG_AES_256, .has_cipher_mode = true, .cipher_mode = QCRYPTO_CIPHER_MODE_CBC, .has_ivgen_alg = true, .ivgen_alg = QCRYPTO_IVGEN_ALG_PLAIN64, }, }; static QCryptoBlockCreateOptions luks_create_opts_aes256_cbc_essiv = { .format = QCRYPTO_BLOCK_FORMAT_LUKS, .u.luks = { .key_secret = (char *)"sec0", .has_cipher_alg = true, .cipher_alg = QCRYPTO_CIPHER_ALG_AES_256, .has_cipher_mode = true, .cipher_mode = QCRYPTO_CIPHER_MODE_CBC, .has_ivgen_alg = true, .ivgen_alg = QCRYPTO_IVGEN_ALG_ESSIV, .has_ivgen_hash_alg = true, .ivgen_hash_alg = QCRYPTO_HASH_ALG_SHA256, .has_hash_alg = true, .hash_alg = QCRYPTO_HASH_ALG_SHA1, }, }; #endif /* TEST_LUKS */ static struct QCryptoBlockTestData { const char *path; QCryptoBlockCreateOptions *create_opts; QCryptoBlockOpenOptions *open_opts; bool expect_header; QCryptoCipherAlgorithm cipher_alg; QCryptoCipherMode cipher_mode; QCryptoHashAlgorithm hash_alg; QCryptoIVGenAlgorithm ivgen_alg; QCryptoHashAlgorithm ivgen_hash; bool slow; } test_data[] = { { .path = "/crypto/block/qcow", .create_opts = &qcow_create_opts, .open_opts = &qcow_open_opts, .expect_header = false, .cipher_alg = QCRYPTO_CIPHER_ALG_AES_128, .cipher_mode = QCRYPTO_CIPHER_MODE_CBC, .ivgen_alg = QCRYPTO_IVGEN_ALG_PLAIN64, }, #ifdef TEST_LUKS { .path = "/crypto/block/luks/default", .create_opts = &luks_create_opts_default, .open_opts = &luks_open_opts, .expect_header = true, .cipher_alg = QCRYPTO_CIPHER_ALG_AES_256, .cipher_mode = QCRYPTO_CIPHER_MODE_XTS, .hash_alg = QCRYPTO_HASH_ALG_SHA256, .ivgen_alg = QCRYPTO_IVGEN_ALG_PLAIN64, .slow = true, }, { .path = "/crypto/block/luks/aes-256-cbc-plain64", .create_opts = &luks_create_opts_aes256_cbc_plain64, .open_opts = &luks_open_opts, .expect_header = true, .cipher_alg = QCRYPTO_CIPHER_ALG_AES_256, .cipher_mode = QCRYPTO_CIPHER_MODE_CBC, .hash_alg = QCRYPTO_HASH_ALG_SHA256, .ivgen_alg = QCRYPTO_IVGEN_ALG_PLAIN64, .slow = true, }, { .path = "/crypto/block/luks/aes-256-cbc-essiv", .create_opts = &luks_create_opts_aes256_cbc_essiv, .open_opts = &luks_open_opts, .expect_header = true, .cipher_alg = QCRYPTO_CIPHER_ALG_AES_256, .cipher_mode = QCRYPTO_CIPHER_MODE_CBC, .hash_alg = QCRYPTO_HASH_ALG_SHA1, .ivgen_alg = QCRYPTO_IVGEN_ALG_ESSIV, .ivgen_hash = QCRYPTO_HASH_ALG_SHA256, .slow = true, }, #endif }; static int test_block_read_func(QCryptoBlock *block, size_t offset, uint8_t *buf, size_t buflen, void *opaque, Error **errp) { Buffer *header = opaque; g_assert_cmpint(offset + buflen, <=, header->capacity); memcpy(buf, header->buffer + offset, buflen); return 0; } static int test_block_init_func(QCryptoBlock *block, size_t headerlen, void *opaque, Error **errp) { Buffer *header = opaque; g_assert_cmpint(header->capacity, ==, 0); buffer_reserve(header, headerlen); return 0; } static int test_block_write_func(QCryptoBlock *block, size_t offset, const uint8_t *buf, size_t buflen, void *opaque, Error **errp) { Buffer *header = opaque; g_assert_cmpint(buflen + offset, <=, header->capacity); memcpy(header->buffer + offset, buf, buflen); header->offset = offset + buflen; return 0; } static Object *test_block_secret(void) { return object_new_with_props( TYPE_QCRYPTO_SECRET, object_get_objects_root(), "sec0", &error_abort, "data", "123456", NULL); } static void test_block_assert_setup(const struct QCryptoBlockTestData *data, QCryptoBlock *blk) { QCryptoIVGen *ivgen; QCryptoCipher *cipher; ivgen = qcrypto_block_get_ivgen(blk); cipher = qcrypto_block_get_cipher(blk); g_assert(ivgen); g_assert(cipher); g_assert_cmpint(data->cipher_alg, ==, cipher->alg); g_assert_cmpint(data->cipher_mode, ==, cipher->mode); g_assert_cmpint(data->hash_alg, ==, qcrypto_block_get_kdf_hash(blk)); g_assert_cmpint(data->ivgen_alg, ==, qcrypto_ivgen_get_algorithm(ivgen)); g_assert_cmpint(data->ivgen_hash, ==, qcrypto_ivgen_get_hash(ivgen)); } static void test_block(gconstpointer opaque) { const struct QCryptoBlockTestData *data = opaque; QCryptoBlock *blk; Buffer header; Object *sec = test_block_secret(); memset(&header, 0, sizeof(header)); buffer_init(&header, "header"); blk = qcrypto_block_create(data->create_opts, NULL, test_block_init_func, test_block_write_func, &header, 0, &error_abort); g_assert(blk); if (data->expect_header) { g_assert_cmpint(header.capacity, >, 0); } else { g_assert_cmpint(header.capacity, ==, 0); } test_block_assert_setup(data, blk); qcrypto_block_free(blk); object_unparent(sec); /* Ensure we can't open without the secret */ blk = qcrypto_block_open(data->open_opts, NULL, test_block_read_func, &header, 0, NULL); g_assert(blk == NULL); /* Ensure we can't open without the secret, unless NO_IO */ blk = qcrypto_block_open(data->open_opts, NULL, test_block_read_func, &header, QCRYPTO_BLOCK_OPEN_NO_IO, &error_abort); g_assert(qcrypto_block_get_cipher(blk) == NULL); g_assert(qcrypto_block_get_ivgen(blk) == NULL); qcrypto_block_free(blk); /* Now open for real with secret */ sec = test_block_secret(); blk = qcrypto_block_open(data->open_opts, NULL, test_block_read_func, &header, 0, &error_abort); g_assert(blk); test_block_assert_setup(data, blk); qcrypto_block_free(blk); object_unparent(sec); buffer_free(&header); } #ifdef TEST_LUKS typedef const char *(*LuksHeaderDoBadStuff)(QCryptoBlockLUKSHeader *hdr); static void test_luks_bad_header(gconstpointer data) { LuksHeaderDoBadStuff badstuff = data; QCryptoBlock *blk; Buffer buf; Object *sec = test_block_secret(); QCryptoBlockLUKSHeader hdr; Error *err = NULL; const char *msg; memset(&buf, 0, sizeof(buf)); buffer_init(&buf, "header"); /* Correctly create the volume initially */ blk = qcrypto_block_create(&luks_create_opts_default, NULL, test_block_init_func, test_block_write_func, &buf, 0, &error_abort); g_assert(blk); qcrypto_block_free(blk); /* Mangle it in some unpleasant way */ g_assert(buf.offset >= sizeof(hdr)); memcpy(&hdr, buf.buffer, sizeof(hdr)); qcrypto_block_luks_to_disk_endian(&hdr); msg = badstuff(&hdr); qcrypto_block_luks_from_disk_endian(&hdr); memcpy(buf.buffer, &hdr, sizeof(hdr)); /* Check that we fail to open it again */ blk = qcrypto_block_open(&luks_open_opts, NULL, test_block_read_func, &buf, 0, &err); g_assert(!blk); g_assert(err); g_assert_cmpstr(error_get_pretty(err), ==, msg); error_free(err); object_unparent(sec); buffer_free(&buf); } static const char *luks_bad_null_term_cipher_name(QCryptoBlockLUKSHeader *hdr) { /* Replace NUL termination with spaces */ char *offset = hdr->cipher_name + strlen(hdr->cipher_name); memset(offset, ' ', sizeof(hdr->cipher_name) - (offset - hdr->cipher_name)); return "LUKS header cipher name is not NUL terminated"; } static const char *luks_bad_null_term_cipher_mode(QCryptoBlockLUKSHeader *hdr) { /* Replace NUL termination with spaces */ char *offset = hdr->cipher_mode + strlen(hdr->cipher_mode); memset(offset, ' ', sizeof(hdr->cipher_mode) - (offset - hdr->cipher_mode)); return "LUKS header cipher mode is not NUL terminated"; } static const char *luks_bad_null_term_hash_spec(QCryptoBlockLUKSHeader *hdr) { /* Replace NUL termination with spaces */ char *offset = hdr->hash_spec + strlen(hdr->hash_spec); memset(offset, ' ', sizeof(hdr->hash_spec) - (offset - hdr->hash_spec)); return "LUKS header hash spec is not NUL terminated"; } static const char *luks_bad_cipher_name_empty(QCryptoBlockLUKSHeader *hdr) { memcpy(hdr->cipher_name, "", 1); return "Algorithm '' with key size 32 bytes not supported"; } static const char *luks_bad_cipher_name_unknown(QCryptoBlockLUKSHeader *hdr) { memcpy(hdr->cipher_name, "aess", 5); return "Algorithm 'aess' with key size 32 bytes not supported"; } static const char *luks_bad_cipher_xts_size(QCryptoBlockLUKSHeader *hdr) { hdr->master_key_len = 33; return "XTS cipher key length should be a multiple of 2"; } static const char *luks_bad_cipher_cbc_size(QCryptoBlockLUKSHeader *hdr) { hdr->master_key_len = 33; memcpy(hdr->cipher_mode, "cbc-essiv", 10); return "Algorithm 'aes' with key size 33 bytes not supported"; } static const char *luks_bad_cipher_mode_empty(QCryptoBlockLUKSHeader *hdr) { memcpy(hdr->cipher_mode, "", 1); return "Unexpected cipher mode string format ''"; } static const char *luks_bad_cipher_mode_unknown(QCryptoBlockLUKSHeader *hdr) { memcpy(hdr->cipher_mode, "xfs", 4); return "Unexpected cipher mode string format 'xfs'"; } static const char *luks_bad_ivgen_separator(QCryptoBlockLUKSHeader *hdr) { memcpy(hdr->cipher_mode, "xts:plain64", 12); return "Unexpected cipher mode string format 'xts:plain64'"; } static const char *luks_bad_ivgen_name_empty(QCryptoBlockLUKSHeader *hdr) { memcpy(hdr->cipher_mode, "xts-", 5); return "IV generator '' not supported"; } static const char *luks_bad_ivgen_name_unknown(QCryptoBlockLUKSHeader *hdr) { memcpy(hdr->cipher_mode, "xts-plain65", 12); return "IV generator 'plain65' not supported"; } static const char *luks_bad_ivgen_hash_empty(QCryptoBlockLUKSHeader *hdr) { memcpy(hdr->cipher_mode, "xts-plain65:", 13); return "Hash algorithm '' not supported"; } static const char *luks_bad_ivgen_hash_unknown(QCryptoBlockLUKSHeader *hdr) { memcpy(hdr->cipher_mode, "xts-plain65:sha257", 19); return "Hash algorithm 'sha257' not supported"; } static const char *luks_bad_hash_spec_empty(QCryptoBlockLUKSHeader *hdr) { memcpy(hdr->hash_spec, "", 1); return "Hash algorithm '' not supported"; } static const char *luks_bad_hash_spec_unknown(QCryptoBlockLUKSHeader *hdr) { memcpy(hdr->hash_spec, "sha2566", 8); return "Hash algorithm 'sha2566' not supported"; } static const char *luks_bad_stripes(QCryptoBlockLUKSHeader *hdr) { hdr->key_slots[0].stripes = 3999; return "Keyslot 0 is corrupted (stripes 3999 != 4000)"; } static const char *luks_bad_key_overlap_header(QCryptoBlockLUKSHeader *hdr) { hdr->key_slots[0].key_offset_sector = 2; return "Keyslot 0 is overlapping with the LUKS header"; } static const char *luks_bad_key_overlap_key(QCryptoBlockLUKSHeader *hdr) { hdr->key_slots[0].key_offset_sector = hdr->key_slots[1].key_offset_sector; return "Keyslots 0 and 1 are overlapping in the header"; } static const char *luks_bad_key_overlap_payload(QCryptoBlockLUKSHeader *hdr) { hdr->key_slots[0].key_offset_sector = hdr->payload_offset_sector + 42; return "Keyslot 0 is overlapping with the encrypted payload"; } static const char *luks_bad_payload_overlap_header(QCryptoBlockLUKSHeader *hdr) { hdr->payload_offset_sector = 2; return "LUKS payload is overlapping with the header"; } static const char *luks_bad_key_iterations(QCryptoBlockLUKSHeader *hdr) { hdr->key_slots[0].iterations = 0; return "Keyslot 0 iteration count is zero"; } static const char *luks_bad_iterations(QCryptoBlockLUKSHeader *hdr) { hdr->master_key_iterations = 0; return "LUKS key iteration count is zero"; } #endif int main(int argc, char **argv) { gsize i; module_call_init(MODULE_INIT_QOM); g_test_init(&argc, &argv, NULL); g_assert(qcrypto_init(NULL) == 0); for (i = 0; i < G_N_ELEMENTS(test_data); i++) { if (test_data[i].open_opts->format == QCRYPTO_BLOCK_FORMAT_LUKS && !qcrypto_hash_supports(test_data[i].hash_alg)) { continue; } if (!test_data[i].slow || g_test_slow()) { g_test_add_data_func(test_data[i].path, &test_data[i], test_block); } } #ifdef TEST_LUKS if (g_test_slow()) { g_test_add_data_func("/crypto/block/luks/bad/cipher-name-nul-term", luks_bad_null_term_cipher_name, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/cipher-mode-nul-term", luks_bad_null_term_cipher_mode, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/hash-spec-nul-term", luks_bad_null_term_hash_spec, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/cipher-name-empty", luks_bad_cipher_name_empty, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/cipher-name-unknown", luks_bad_cipher_name_unknown, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/cipher-xts-size", luks_bad_cipher_xts_size, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/cipher-cbc-size", luks_bad_cipher_cbc_size, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/cipher-mode-empty", luks_bad_cipher_mode_empty, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/cipher-mode-unknown", luks_bad_cipher_mode_unknown, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/ivgen-separator", luks_bad_ivgen_separator, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/ivgen-name-empty", luks_bad_ivgen_name_empty, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/ivgen-name-unknown", luks_bad_ivgen_name_unknown, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/ivgen-hash-empty", luks_bad_ivgen_hash_empty, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/ivgen-hash-unknown", luks_bad_ivgen_hash_unknown, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/hash-spec-empty", luks_bad_hash_spec_empty, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/hash-spec-unknown", luks_bad_hash_spec_unknown, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/stripes", luks_bad_stripes, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/key-overlap-header", luks_bad_key_overlap_header, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/key-overlap-key", luks_bad_key_overlap_key, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/key-overlap-payload", luks_bad_key_overlap_payload, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/payload-overlap-header", luks_bad_payload_overlap_header, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/iterations", luks_bad_iterations, test_luks_bad_header); g_test_add_data_func("/crypto/block/luks/bad/key-iterations", luks_bad_key_iterations, test_luks_bad_header); } #endif return g_test_run(); }