/* * Copyright (C) 2018, Emilio G. Cota <cota@braap.org> * * License: GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include <inttypes.h> #include <assert.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <stdio.h> #include <glib.h> #include <qemu-plugin.h> QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; #define MAX_CPUS 8 /* lets not go nuts */ typedef struct { uint64_t last_pc; uint64_t insn_count; } InstructionCount; static InstructionCount counts[MAX_CPUS]; static uint64_t inline_insn_count; static bool do_inline; static bool do_size; static GArray *sizes; typedef struct { char *match_string; uint64_t hits[MAX_CPUS]; uint64_t last_hit[MAX_CPUS]; uint64_t total_delta[MAX_CPUS]; GPtrArray *history[MAX_CPUS]; } Match; static GArray *matches; typedef struct { Match *match; uint64_t vaddr; uint64_t hits; char *disas; } Instruction; static void vcpu_insn_exec_before(unsigned int cpu_index, void *udata) { unsigned int i = cpu_index % MAX_CPUS; InstructionCount *c = &counts[i]; uint64_t this_pc = GPOINTER_TO_UINT(udata); if (this_pc == c->last_pc) { g_autofree gchar *out = g_strdup_printf("detected repeat execution @ 0x%" PRIx64 "\n", this_pc); qemu_plugin_outs(out); } c->last_pc = this_pc; c->insn_count++; } static void vcpu_insn_matched_exec_before(unsigned int cpu_index, void *udata) { unsigned int i = cpu_index % MAX_CPUS; Instruction *insn = (Instruction *) udata; Match *match = insn->match; g_autoptr(GString) ts = g_string_new(""); insn->hits++; g_string_append_printf(ts, "0x%" PRIx64 ", '%s', %"PRId64 " hits", insn->vaddr, insn->disas, insn->hits); uint64_t icount = counts[i].insn_count; uint64_t delta = icount - match->last_hit[i]; match->hits[i]++; match->total_delta[i] += delta; g_string_append_printf(ts, ", %"PRId64" match hits, " "Δ+%"PRId64 " since last match," " %"PRId64 " avg insns/match\n", match->hits[i], delta, match->total_delta[i] / match->hits[i]); match->last_hit[i] = icount; qemu_plugin_outs(ts->str); g_ptr_array_add(match->history[i], insn); } static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) { size_t n = qemu_plugin_tb_n_insns(tb); size_t i; for (i = 0; i < n; i++) { struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); if (do_inline) { qemu_plugin_register_vcpu_insn_exec_inline( insn, QEMU_PLUGIN_INLINE_ADD_U64, &inline_insn_count, 1); } else { uint64_t vaddr = qemu_plugin_insn_vaddr(insn); qemu_plugin_register_vcpu_insn_exec_cb( insn, vcpu_insn_exec_before, QEMU_PLUGIN_CB_NO_REGS, GUINT_TO_POINTER(vaddr)); } if (do_size) { size_t sz = qemu_plugin_insn_size(insn); if (sz > sizes->len) { g_array_set_size(sizes, sz); } unsigned long *cnt = &g_array_index(sizes, unsigned long, sz); (*cnt)++; } /* * If we are tracking certain instructions we will need more * information about the instruction which we also need to * save if there is a hit. */ if (matches) { char *insn_disas = qemu_plugin_insn_disas(insn); int j; for (j = 0; j < matches->len; j++) { Match *m = &g_array_index(matches, Match, j); if (g_str_has_prefix(insn_disas, m->match_string)) { Instruction *rec = g_new0(Instruction, 1); rec->disas = g_strdup(insn_disas); rec->vaddr = qemu_plugin_insn_vaddr(insn); rec->match = m; qemu_plugin_register_vcpu_insn_exec_cb( insn, vcpu_insn_matched_exec_before, QEMU_PLUGIN_CB_NO_REGS, rec); } } g_free(insn_disas); } } } static void plugin_exit(qemu_plugin_id_t id, void *p) { g_autoptr(GString) out = g_string_new(NULL); int i; if (do_size) { for (i = 0; i <= sizes->len; i++) { unsigned long *cnt = &g_array_index(sizes, unsigned long, i); if (*cnt) { g_string_append_printf(out, "len %d bytes: %ld insns\n", i, *cnt); } } } else if (do_inline) { g_string_append_printf(out, "insns: %" PRIu64 "\n", inline_insn_count); } else { uint64_t total_insns = 0; for (i = 0; i < MAX_CPUS; i++) { InstructionCount *c = &counts[i]; if (c->insn_count) { g_string_append_printf(out, "cpu %d insns: %" PRIu64 "\n", i, c->insn_count); total_insns += c->insn_count; } } g_string_append_printf(out, "total insns: %" PRIu64 "\n", total_insns); } qemu_plugin_outs(out->str); } /* Add a match to the array of matches */ static void parse_match(char *match) { Match new_match = { .match_string = match }; int i; for (i = 0; i < MAX_CPUS; i++) { new_match.history[i] = g_ptr_array_new(); } if (!matches) { matches = g_array_new(false, true, sizeof(Match)); } g_array_append_val(matches, new_match); } QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info, int argc, char **argv) { for (int i = 0; i < argc; i++) { char *opt = argv[i]; g_autofree char **tokens = g_strsplit(opt, "=", 2); if (g_strcmp0(tokens[0], "inline") == 0) { if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_inline)) { fprintf(stderr, "boolean argument parsing failed: %s\n", opt); return -1; } } else if (g_strcmp0(tokens[0], "sizes") == 0) { if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_size)) { fprintf(stderr, "boolean argument parsing failed: %s\n", opt); return -1; } } else if (g_strcmp0(tokens[0], "match") == 0) { parse_match(tokens[1]); } else { fprintf(stderr, "option parsing failed: %s\n", opt); return -1; } } if (do_size) { sizes = g_array_new(true, true, sizeof(unsigned long)); } qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); return 0; }