/* * Generic vector operation expansion * * Copyright (c) 2018 Linaro * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "tcg/tcg.h" #include "tcg/tcg-op.h" #include "tcg/tcg-op-gvec.h" #include "qemu/main-loop.h" #include "tcg/tcg-gvec-desc.h" #define MAX_UNROLL 4 #ifdef CONFIG_DEBUG_TCG static const TCGOpcode vecop_list_empty[1] = { 0 }; #else #define vecop_list_empty NULL #endif /* Verify vector size and alignment rules. OFS should be the OR of all of the operand offsets so that we can check them all at once. */ static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs) { uint32_t opr_align = oprsz >= 16 ? 15 : 7; uint32_t max_align = maxsz >= 16 || oprsz >= 16 ? 15 : 7; tcg_debug_assert(oprsz > 0); tcg_debug_assert(oprsz <= maxsz); tcg_debug_assert((oprsz & opr_align) == 0); tcg_debug_assert((maxsz & max_align) == 0); tcg_debug_assert((ofs & max_align) == 0); } /* Verify vector overlap rules for two operands. */ static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s) { tcg_debug_assert(d == a || d + s <= a || a + s <= d); } /* Verify vector overlap rules for three operands. */ static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s) { check_overlap_2(d, a, s); check_overlap_2(d, b, s); check_overlap_2(a, b, s); } /* Verify vector overlap rules for four operands. */ static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b, uint32_t c, uint32_t s) { check_overlap_2(d, a, s); check_overlap_2(d, b, s); check_overlap_2(d, c, s); check_overlap_2(a, b, s); check_overlap_2(a, c, s); check_overlap_2(b, c, s); } /* Create a descriptor from components. */ uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data) { uint32_t desc = 0; assert(oprsz % 8 == 0 && oprsz <= (8 << SIMD_OPRSZ_BITS)); assert(maxsz % 8 == 0 && maxsz <= (8 << SIMD_MAXSZ_BITS)); assert(data == sextract32(data, 0, SIMD_DATA_BITS)); oprsz = (oprsz / 8) - 1; maxsz = (maxsz / 8) - 1; desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz); desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz); desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data); return desc; } /* Generate a call to a gvec-style helper with two vector operands. */ void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t maxsz, int32_t data, gen_helper_gvec_2 *fn) { TCGv_ptr a0, a1; TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data)); a0 = tcg_temp_new_ptr(); a1 = tcg_temp_new_ptr(); tcg_gen_addi_ptr(a0, cpu_env, dofs); tcg_gen_addi_ptr(a1, cpu_env, aofs); fn(a0, a1, desc); tcg_temp_free_ptr(a0); tcg_temp_free_ptr(a1); tcg_temp_free_i32(desc); } /* Generate a call to a gvec-style helper with two vector operands and one scalar operand. */ void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c, uint32_t oprsz, uint32_t maxsz, int32_t data, gen_helper_gvec_2i *fn) { TCGv_ptr a0, a1; TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data)); a0 = tcg_temp_new_ptr(); a1 = tcg_temp_new_ptr(); tcg_gen_addi_ptr(a0, cpu_env, dofs); tcg_gen_addi_ptr(a1, cpu_env, aofs); fn(a0, a1, c, desc); tcg_temp_free_ptr(a0); tcg_temp_free_ptr(a1); tcg_temp_free_i32(desc); } /* Generate a call to a gvec-style helper with three vector operands. */ void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz, int32_t data, gen_helper_gvec_3 *fn) { TCGv_ptr a0, a1, a2; TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data)); a0 = tcg_temp_new_ptr(); a1 = tcg_temp_new_ptr(); a2 = tcg_temp_new_ptr(); tcg_gen_addi_ptr(a0, cpu_env, dofs); tcg_gen_addi_ptr(a1, cpu_env, aofs); tcg_gen_addi_ptr(a2, cpu_env, bofs); fn(a0, a1, a2, desc); tcg_temp_free_ptr(a0); tcg_temp_free_ptr(a1); tcg_temp_free_ptr(a2); tcg_temp_free_i32(desc); } /* Generate a call to a gvec-style helper with four vector operands. */ void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, uint32_t oprsz, uint32_t maxsz, int32_t data, gen_helper_gvec_4 *fn) { TCGv_ptr a0, a1, a2, a3; TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data)); a0 = tcg_temp_new_ptr(); a1 = tcg_temp_new_ptr(); a2 = tcg_temp_new_ptr(); a3 = tcg_temp_new_ptr(); tcg_gen_addi_ptr(a0, cpu_env, dofs); tcg_gen_addi_ptr(a1, cpu_env, aofs); tcg_gen_addi_ptr(a2, cpu_env, bofs); tcg_gen_addi_ptr(a3, cpu_env, cofs); fn(a0, a1, a2, a3, desc); tcg_temp_free_ptr(a0); tcg_temp_free_ptr(a1); tcg_temp_free_ptr(a2); tcg_temp_free_ptr(a3); tcg_temp_free_i32(desc); } /* Generate a call to a gvec-style helper with five vector operands. */ void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, uint32_t xofs, uint32_t oprsz, uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn) { TCGv_ptr a0, a1, a2, a3, a4; TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data)); a0 = tcg_temp_new_ptr(); a1 = tcg_temp_new_ptr(); a2 = tcg_temp_new_ptr(); a3 = tcg_temp_new_ptr(); a4 = tcg_temp_new_ptr(); tcg_gen_addi_ptr(a0, cpu_env, dofs); tcg_gen_addi_ptr(a1, cpu_env, aofs); tcg_gen_addi_ptr(a2, cpu_env, bofs); tcg_gen_addi_ptr(a3, cpu_env, cofs); tcg_gen_addi_ptr(a4, cpu_env, xofs); fn(a0, a1, a2, a3, a4, desc); tcg_temp_free_ptr(a0); tcg_temp_free_ptr(a1); tcg_temp_free_ptr(a2); tcg_temp_free_ptr(a3); tcg_temp_free_ptr(a4); tcg_temp_free_i32(desc); } /* Generate a call to a gvec-style helper with three vector operands and an extra pointer operand. */ void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs, TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz, int32_t data, gen_helper_gvec_2_ptr *fn) { TCGv_ptr a0, a1; TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data)); a0 = tcg_temp_new_ptr(); a1 = tcg_temp_new_ptr(); tcg_gen_addi_ptr(a0, cpu_env, dofs); tcg_gen_addi_ptr(a1, cpu_env, aofs); fn(a0, a1, ptr, desc); tcg_temp_free_ptr(a0); tcg_temp_free_ptr(a1); tcg_temp_free_i32(desc); } /* Generate a call to a gvec-style helper with three vector operands and an extra pointer operand. */ void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs, TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz, int32_t data, gen_helper_gvec_3_ptr *fn) { TCGv_ptr a0, a1, a2; TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data)); a0 = tcg_temp_new_ptr(); a1 = tcg_temp_new_ptr(); a2 = tcg_temp_new_ptr(); tcg_gen_addi_ptr(a0, cpu_env, dofs); tcg_gen_addi_ptr(a1, cpu_env, aofs); tcg_gen_addi_ptr(a2, cpu_env, bofs); fn(a0, a1, a2, ptr, desc); tcg_temp_free_ptr(a0); tcg_temp_free_ptr(a1); tcg_temp_free_ptr(a2); tcg_temp_free_i32(desc); } /* Generate a call to a gvec-style helper with four vector operands and an extra pointer operand. */ void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz, int32_t data, gen_helper_gvec_4_ptr *fn) { TCGv_ptr a0, a1, a2, a3; TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data)); a0 = tcg_temp_new_ptr(); a1 = tcg_temp_new_ptr(); a2 = tcg_temp_new_ptr(); a3 = tcg_temp_new_ptr(); tcg_gen_addi_ptr(a0, cpu_env, dofs); tcg_gen_addi_ptr(a1, cpu_env, aofs); tcg_gen_addi_ptr(a2, cpu_env, bofs); tcg_gen_addi_ptr(a3, cpu_env, cofs); fn(a0, a1, a2, a3, ptr, desc); tcg_temp_free_ptr(a0); tcg_temp_free_ptr(a1); tcg_temp_free_ptr(a2); tcg_temp_free_ptr(a3); tcg_temp_free_i32(desc); } /* Generate a call to a gvec-style helper with five vector operands and an extra pointer operand. */ void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, uint32_t eofs, TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz, int32_t data, gen_helper_gvec_5_ptr *fn) { TCGv_ptr a0, a1, a2, a3, a4; TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data)); a0 = tcg_temp_new_ptr(); a1 = tcg_temp_new_ptr(); a2 = tcg_temp_new_ptr(); a3 = tcg_temp_new_ptr(); a4 = tcg_temp_new_ptr(); tcg_gen_addi_ptr(a0, cpu_env, dofs); tcg_gen_addi_ptr(a1, cpu_env, aofs); tcg_gen_addi_ptr(a2, cpu_env, bofs); tcg_gen_addi_ptr(a3, cpu_env, cofs); tcg_gen_addi_ptr(a4, cpu_env, eofs); fn(a0, a1, a2, a3, a4, ptr, desc); tcg_temp_free_ptr(a0); tcg_temp_free_ptr(a1); tcg_temp_free_ptr(a2); tcg_temp_free_ptr(a3); tcg_temp_free_ptr(a4); tcg_temp_free_i32(desc); } /* Return true if we want to implement something of OPRSZ bytes in units of LNSZ. This limits the expansion of inline code. */ static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz) { uint32_t q, r; if (oprsz < lnsz) { return false; } q = oprsz / lnsz; r = oprsz % lnsz; tcg_debug_assert((r & 7) == 0); if (lnsz < 16) { /* For sizes below 16, accept no remainder. */ if (r != 0) { return false; } } else { /* * Recall that ARM SVE allows vector sizes that are not a * power of 2, but always a multiple of 16. The intent is * that e.g. size == 80 would be expanded with 2x32 + 1x16. * In addition, expand_clr needs to handle a multiple of 8. * Thus we can handle the tail with one more operation per * diminishing power of 2. */ q += ctpop32(r); } return q <= MAX_UNROLL; } static void expand_clr(uint32_t dofs, uint32_t maxsz); /* Duplicate C as per VECE. */ uint64_t (dup_const)(unsigned vece, uint64_t c) { switch (vece) { case MO_8: return 0x0101010101010101ull * (uint8_t)c; case MO_16: return 0x0001000100010001ull * (uint16_t)c; case MO_32: return 0x0000000100000001ull * (uint32_t)c; case MO_64: return c; default: g_assert_not_reached(); } } /* Duplicate IN into OUT as per VECE. */ static void gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in) { switch (vece) { case MO_8: tcg_gen_ext8u_i32(out, in); tcg_gen_muli_i32(out, out, 0x01010101); break; case MO_16: tcg_gen_deposit_i32(out, in, in, 16, 16); break; case MO_32: tcg_gen_mov_i32(out, in); break; default: g_assert_not_reached(); } } static void gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in) { switch (vece) { case MO_8: tcg_gen_ext8u_i64(out, in); tcg_gen_muli_i64(out, out, 0x0101010101010101ull); break; case MO_16: tcg_gen_ext16u_i64(out, in); tcg_gen_muli_i64(out, out, 0x0001000100010001ull); break; case MO_32: tcg_gen_deposit_i64(out, in, in, 32, 32); break; case MO_64: tcg_gen_mov_i64(out, in); break; default: g_assert_not_reached(); } } /* Select a supported vector type for implementing an operation on SIZE * bytes. If OP is 0, assume that the real operation to be performed is * required by all backends. Otherwise, make sure than OP can be performed * on elements of size VECE in the selected type. Do not select V64 if * PREFER_I64 is true. Return 0 if no vector type is selected. */ static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece, uint32_t size, bool prefer_i64) { /* * Recall that ARM SVE allows vector sizes that are not a * power of 2, but always a multiple of 16. The intent is * that e.g. size == 80 would be expanded with 2x32 + 1x16. * It is hard to imagine a case in which v256 is supported * but v128 is not, but check anyway. * In addition, expand_clr needs to handle a multiple of 8. */ if (TCG_TARGET_HAS_v256 && check_size_impl(size, 32) && tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) && (!(size & 16) || (TCG_TARGET_HAS_v128 && tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) && (!(size & 8) || (TCG_TARGET_HAS_v64 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) { return TCG_TYPE_V256; } if (TCG_TARGET_HAS_v128 && check_size_impl(size, 16) && tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) && (!(size & 8) || (TCG_TARGET_HAS_v64 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) { return TCG_TYPE_V128; } if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8) && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) { return TCG_TYPE_V64; } return 0; } static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz, uint32_t maxsz, TCGv_vec t_vec) { uint32_t i = 0; tcg_debug_assert(oprsz >= 8); /* * This may be expand_clr for the tail of an operation, e.g. * oprsz == 8 && maxsz == 64. The first 8 bytes of this store * are misaligned wrt the maximum vector size, so do that first. */ if (dofs & 8) { tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64); i += 8; } switch (type) { case TCG_TYPE_V256: /* * Recall that ARM SVE allows vector sizes that are not a * power of 2, but always a multiple of 16. The intent is * that e.g. size == 80 would be expanded with 2x32 + 1x16. */ for (; i + 32 <= oprsz; i += 32) { tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256); } /* fallthru */ case TCG_TYPE_V128: for (; i + 16 <= oprsz; i += 16) { tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128); } break; case TCG_TYPE_V64: for (; i < oprsz; i += 8) { tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64); } break; default: g_assert_not_reached(); } if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C. * Only one of IN_32 or IN_64 may be set; * IN_C is used if IN_32 and IN_64 are unset. */ static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz, uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64, uint64_t in_c) { TCGType type; TCGv_i64 t_64; TCGv_i32 t_32, t_desc; TCGv_ptr t_ptr; uint32_t i; assert(vece <= (in_32 ? MO_32 : MO_64)); assert(in_32 == NULL || in_64 == NULL); /* If we're storing 0, expand oprsz to maxsz. */ if (in_32 == NULL && in_64 == NULL) { in_c = dup_const(vece, in_c); if (in_c == 0) { oprsz = maxsz; } } /* Implement inline with a vector type, if possible. * Prefer integer when 64-bit host and no variable dup. */ type = choose_vector_type(NULL, vece, oprsz, (TCG_TARGET_REG_BITS == 64 && in_32 == NULL && (in_64 == NULL || vece == MO_64))); if (type != 0) { TCGv_vec t_vec = tcg_temp_new_vec(type); if (in_32) { tcg_gen_dup_i32_vec(vece, t_vec, in_32); } else if (in_64) { tcg_gen_dup_i64_vec(vece, t_vec, in_64); } else { tcg_gen_dupi_vec(vece, t_vec, in_c); } do_dup_store(type, dofs, oprsz, maxsz, t_vec); tcg_temp_free_vec(t_vec); return; } /* Otherwise, inline with an integer type, unless "large". */ if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) { t_64 = NULL; t_32 = NULL; if (in_32) { /* We are given a 32-bit variable input. For a 64-bit host, use a 64-bit operation unless the 32-bit operation would be simple enough. */ if (TCG_TARGET_REG_BITS == 64 && (vece != MO_32 || !check_size_impl(oprsz, 4))) { t_64 = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(t_64, in_32); gen_dup_i64(vece, t_64, t_64); } else { t_32 = tcg_temp_new_i32(); gen_dup_i32(vece, t_32, in_32); } } else if (in_64) { /* We are given a 64-bit variable input. */ t_64 = tcg_temp_new_i64(); gen_dup_i64(vece, t_64, in_64); } else { /* We are given a constant input. */ /* For 64-bit hosts, use 64-bit constants for "simple" constants or when we'd need too many 32-bit stores, or when a 64-bit constant is really required. */ if (vece == MO_64 || (TCG_TARGET_REG_BITS == 64 && (in_c == 0 || in_c == -1 || !check_size_impl(oprsz, 4)))) { t_64 = tcg_const_i64(in_c); } else { t_32 = tcg_const_i32(in_c); } } /* Implement inline if we picked an implementation size above. */ if (t_32) { for (i = 0; i < oprsz; i += 4) { tcg_gen_st_i32(t_32, cpu_env, dofs + i); } tcg_temp_free_i32(t_32); goto done; } if (t_64) { for (i = 0; i < oprsz; i += 8) { tcg_gen_st_i64(t_64, cpu_env, dofs + i); } tcg_temp_free_i64(t_64); goto done; } } /* Otherwise implement out of line. */ t_ptr = tcg_temp_new_ptr(); tcg_gen_addi_ptr(t_ptr, cpu_env, dofs); t_desc = tcg_const_i32(simd_desc(oprsz, maxsz, 0)); if (vece == MO_64) { if (in_64) { gen_helper_gvec_dup64(t_ptr, t_desc, in_64); } else { t_64 = tcg_const_i64(in_c); gen_helper_gvec_dup64(t_ptr, t_desc, t_64); tcg_temp_free_i64(t_64); } } else { typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32); static dup_fn * const fns[3] = { gen_helper_gvec_dup8, gen_helper_gvec_dup16, gen_helper_gvec_dup32 }; if (in_32) { fns[vece](t_ptr, t_desc, in_32); } else { t_32 = tcg_temp_new_i32(); if (in_64) { tcg_gen_extrl_i64_i32(t_32, in_64); } else if (vece == MO_8) { tcg_gen_movi_i32(t_32, in_c & 0xff); } else if (vece == MO_16) { tcg_gen_movi_i32(t_32, in_c & 0xffff); } else { tcg_gen_movi_i32(t_32, in_c); } fns[vece](t_ptr, t_desc, t_32); tcg_temp_free_i32(t_32); } } tcg_temp_free_ptr(t_ptr); tcg_temp_free_i32(t_desc); return; done: if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } /* Likewise, but with zero. */ static void expand_clr(uint32_t dofs, uint32_t maxsz) { do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0); } /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */ static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz, bool load_dest, void (*fni)(TCGv_i32, TCGv_i32)) { TCGv_i32 t0 = tcg_temp_new_i32(); TCGv_i32 t1 = tcg_temp_new_i32(); uint32_t i; for (i = 0; i < oprsz; i += 4) { tcg_gen_ld_i32(t0, cpu_env, aofs + i); if (load_dest) { tcg_gen_ld_i32(t1, cpu_env, dofs + i); } fni(t1, t0); tcg_gen_st_i32(t1, cpu_env, dofs + i); } tcg_temp_free_i32(t0); tcg_temp_free_i32(t1); } static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz, int32_t c, bool load_dest, void (*fni)(TCGv_i32, TCGv_i32, int32_t)) { TCGv_i32 t0 = tcg_temp_new_i32(); TCGv_i32 t1 = tcg_temp_new_i32(); uint32_t i; for (i = 0; i < oprsz; i += 4) { tcg_gen_ld_i32(t0, cpu_env, aofs + i); if (load_dest) { tcg_gen_ld_i32(t1, cpu_env, dofs + i); } fni(t1, t0, c); tcg_gen_st_i32(t1, cpu_env, dofs + i); } tcg_temp_free_i32(t0); tcg_temp_free_i32(t1); } static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz, TCGv_i32 c, bool scalar_first, void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32)) { TCGv_i32 t0 = tcg_temp_new_i32(); TCGv_i32 t1 = tcg_temp_new_i32(); uint32_t i; for (i = 0; i < oprsz; i += 4) { tcg_gen_ld_i32(t0, cpu_env, aofs + i); if (scalar_first) { fni(t1, c, t0); } else { fni(t1, t0, c); } tcg_gen_st_i32(t1, cpu_env, dofs + i); } tcg_temp_free_i32(t0); tcg_temp_free_i32(t1); } /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */ static void expand_3_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, bool load_dest, void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32)) { TCGv_i32 t0 = tcg_temp_new_i32(); TCGv_i32 t1 = tcg_temp_new_i32(); TCGv_i32 t2 = tcg_temp_new_i32(); uint32_t i; for (i = 0; i < oprsz; i += 4) { tcg_gen_ld_i32(t0, cpu_env, aofs + i); tcg_gen_ld_i32(t1, cpu_env, bofs + i); if (load_dest) { tcg_gen_ld_i32(t2, cpu_env, dofs + i); } fni(t2, t0, t1); tcg_gen_st_i32(t2, cpu_env, dofs + i); } tcg_temp_free_i32(t2); tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); } static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, int32_t c, bool load_dest, void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t)) { TCGv_i32 t0 = tcg_temp_new_i32(); TCGv_i32 t1 = tcg_temp_new_i32(); TCGv_i32 t2 = tcg_temp_new_i32(); uint32_t i; for (i = 0; i < oprsz; i += 4) { tcg_gen_ld_i32(t0, cpu_env, aofs + i); tcg_gen_ld_i32(t1, cpu_env, bofs + i); if (load_dest) { tcg_gen_ld_i32(t2, cpu_env, dofs + i); } fni(t2, t0, t1, c); tcg_gen_st_i32(t2, cpu_env, dofs + i); } tcg_temp_free_i32(t0); tcg_temp_free_i32(t1); tcg_temp_free_i32(t2); } /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */ static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, uint32_t oprsz, bool write_aofs, void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32)) { TCGv_i32 t0 = tcg_temp_new_i32(); TCGv_i32 t1 = tcg_temp_new_i32(); TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); uint32_t i; for (i = 0; i < oprsz; i += 4) { tcg_gen_ld_i32(t1, cpu_env, aofs + i); tcg_gen_ld_i32(t2, cpu_env, bofs + i); tcg_gen_ld_i32(t3, cpu_env, cofs + i); fni(t0, t1, t2, t3); tcg_gen_st_i32(t0, cpu_env, dofs + i); if (write_aofs) { tcg_gen_st_i32(t1, cpu_env, aofs + i); } } tcg_temp_free_i32(t3); tcg_temp_free_i32(t2); tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); } /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */ static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz, bool load_dest, void (*fni)(TCGv_i64, TCGv_i64)) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); uint32_t i; for (i = 0; i < oprsz; i += 8) { tcg_gen_ld_i64(t0, cpu_env, aofs + i); if (load_dest) { tcg_gen_ld_i64(t1, cpu_env, dofs + i); } fni(t1, t0); tcg_gen_st_i64(t1, cpu_env, dofs + i); } tcg_temp_free_i64(t0); tcg_temp_free_i64(t1); } static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz, int64_t c, bool load_dest, void (*fni)(TCGv_i64, TCGv_i64, int64_t)) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); uint32_t i; for (i = 0; i < oprsz; i += 8) { tcg_gen_ld_i64(t0, cpu_env, aofs + i); if (load_dest) { tcg_gen_ld_i64(t1, cpu_env, dofs + i); } fni(t1, t0, c); tcg_gen_st_i64(t1, cpu_env, dofs + i); } tcg_temp_free_i64(t0); tcg_temp_free_i64(t1); } static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz, TCGv_i64 c, bool scalar_first, void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64)) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); uint32_t i; for (i = 0; i < oprsz; i += 8) { tcg_gen_ld_i64(t0, cpu_env, aofs + i); if (scalar_first) { fni(t1, c, t0); } else { fni(t1, t0, c); } tcg_gen_st_i64(t1, cpu_env, dofs + i); } tcg_temp_free_i64(t0); tcg_temp_free_i64(t1); } /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */ static void expand_3_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, bool load_dest, void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64)) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); uint32_t i; for (i = 0; i < oprsz; i += 8) { tcg_gen_ld_i64(t0, cpu_env, aofs + i); tcg_gen_ld_i64(t1, cpu_env, bofs + i); if (load_dest) { tcg_gen_ld_i64(t2, cpu_env, dofs + i); } fni(t2, t0, t1); tcg_gen_st_i64(t2, cpu_env, dofs + i); } tcg_temp_free_i64(t2); tcg_temp_free_i64(t1); tcg_temp_free_i64(t0); } static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, int64_t c, bool load_dest, void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t)) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); uint32_t i; for (i = 0; i < oprsz; i += 8) { tcg_gen_ld_i64(t0, cpu_env, aofs + i); tcg_gen_ld_i64(t1, cpu_env, bofs + i); if (load_dest) { tcg_gen_ld_i64(t2, cpu_env, dofs + i); } fni(t2, t0, t1, c); tcg_gen_st_i64(t2, cpu_env, dofs + i); } tcg_temp_free_i64(t0); tcg_temp_free_i64(t1); tcg_temp_free_i64(t2); } /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */ static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, uint32_t oprsz, bool write_aofs, void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); uint32_t i; for (i = 0; i < oprsz; i += 8) { tcg_gen_ld_i64(t1, cpu_env, aofs + i); tcg_gen_ld_i64(t2, cpu_env, bofs + i); tcg_gen_ld_i64(t3, cpu_env, cofs + i); fni(t0, t1, t2, t3); tcg_gen_st_i64(t0, cpu_env, dofs + i); if (write_aofs) { tcg_gen_st_i64(t1, cpu_env, aofs + i); } } tcg_temp_free_i64(t3); tcg_temp_free_i64(t2); tcg_temp_free_i64(t1); tcg_temp_free_i64(t0); } /* Expand OPSZ bytes worth of two-operand operations using host vectors. */ static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t tysz, TCGType type, bool load_dest, void (*fni)(unsigned, TCGv_vec, TCGv_vec)) { TCGv_vec t0 = tcg_temp_new_vec(type); TCGv_vec t1 = tcg_temp_new_vec(type); uint32_t i; for (i = 0; i < oprsz; i += tysz) { tcg_gen_ld_vec(t0, cpu_env, aofs + i); if (load_dest) { tcg_gen_ld_vec(t1, cpu_env, dofs + i); } fni(vece, t1, t0); tcg_gen_st_vec(t1, cpu_env, dofs + i); } tcg_temp_free_vec(t0); tcg_temp_free_vec(t1); } /* Expand OPSZ bytes worth of two-vector operands and an immediate operand using host vectors. */ static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t tysz, TCGType type, int64_t c, bool load_dest, void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t)) { TCGv_vec t0 = tcg_temp_new_vec(type); TCGv_vec t1 = tcg_temp_new_vec(type); uint32_t i; for (i = 0; i < oprsz; i += tysz) { tcg_gen_ld_vec(t0, cpu_env, aofs + i); if (load_dest) { tcg_gen_ld_vec(t1, cpu_env, dofs + i); } fni(vece, t1, t0, c); tcg_gen_st_vec(t1, cpu_env, dofs + i); } tcg_temp_free_vec(t0); tcg_temp_free_vec(t1); } static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t tysz, TCGType type, TCGv_vec c, bool scalar_first, void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec)) { TCGv_vec t0 = tcg_temp_new_vec(type); TCGv_vec t1 = tcg_temp_new_vec(type); uint32_t i; for (i = 0; i < oprsz; i += tysz) { tcg_gen_ld_vec(t0, cpu_env, aofs + i); if (scalar_first) { fni(vece, t1, c, t0); } else { fni(vece, t1, t0, c); } tcg_gen_st_vec(t1, cpu_env, dofs + i); } tcg_temp_free_vec(t0); tcg_temp_free_vec(t1); } /* Expand OPSZ bytes worth of three-operand operations using host vectors. */ static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t tysz, TCGType type, bool load_dest, void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec)) { TCGv_vec t0 = tcg_temp_new_vec(type); TCGv_vec t1 = tcg_temp_new_vec(type); TCGv_vec t2 = tcg_temp_new_vec(type); uint32_t i; for (i = 0; i < oprsz; i += tysz) { tcg_gen_ld_vec(t0, cpu_env, aofs + i); tcg_gen_ld_vec(t1, cpu_env, bofs + i); if (load_dest) { tcg_gen_ld_vec(t2, cpu_env, dofs + i); } fni(vece, t2, t0, t1); tcg_gen_st_vec(t2, cpu_env, dofs + i); } tcg_temp_free_vec(t2); tcg_temp_free_vec(t1); tcg_temp_free_vec(t0); } /* * Expand OPSZ bytes worth of three-vector operands and an immediate operand * using host vectors. */ static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t tysz, TCGType type, int64_t c, bool load_dest, void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec, int64_t)) { TCGv_vec t0 = tcg_temp_new_vec(type); TCGv_vec t1 = tcg_temp_new_vec(type); TCGv_vec t2 = tcg_temp_new_vec(type); uint32_t i; for (i = 0; i < oprsz; i += tysz) { tcg_gen_ld_vec(t0, cpu_env, aofs + i); tcg_gen_ld_vec(t1, cpu_env, bofs + i); if (load_dest) { tcg_gen_ld_vec(t2, cpu_env, dofs + i); } fni(vece, t2, t0, t1, c); tcg_gen_st_vec(t2, cpu_env, dofs + i); } tcg_temp_free_vec(t0); tcg_temp_free_vec(t1); tcg_temp_free_vec(t2); } /* Expand OPSZ bytes worth of four-operand operations using host vectors. */ static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, uint32_t oprsz, uint32_t tysz, TCGType type, bool write_aofs, void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec, TCGv_vec)) { TCGv_vec t0 = tcg_temp_new_vec(type); TCGv_vec t1 = tcg_temp_new_vec(type); TCGv_vec t2 = tcg_temp_new_vec(type); TCGv_vec t3 = tcg_temp_new_vec(type); uint32_t i; for (i = 0; i < oprsz; i += tysz) { tcg_gen_ld_vec(t1, cpu_env, aofs + i); tcg_gen_ld_vec(t2, cpu_env, bofs + i); tcg_gen_ld_vec(t3, cpu_env, cofs + i); fni(vece, t0, t1, t2, t3); tcg_gen_st_vec(t0, cpu_env, dofs + i); if (write_aofs) { tcg_gen_st_vec(t1, cpu_env, aofs + i); } } tcg_temp_free_vec(t3); tcg_temp_free_vec(t2); tcg_temp_free_vec(t1); tcg_temp_free_vec(t0); } /* Expand a vector two-operand operation. */ void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g) { const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); TCGType type; uint32_t some; check_size_align(oprsz, maxsz, dofs | aofs); check_overlap_2(dofs, aofs, maxsz); type = 0; if (g->fniv) { type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); } switch (type) { case TCG_TYPE_V256: /* Recall that ARM SVE allows vector sizes that are not a * power of 2, but always a multiple of 16. The intent is * that e.g. size == 80 would be expanded with 2x32 + 1x16. */ some = QEMU_ALIGN_DOWN(oprsz, 32); expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, g->load_dest, g->fniv); if (some == oprsz) { break; } dofs += some; aofs += some; oprsz -= some; maxsz -= some; /* fallthru */ case TCG_TYPE_V128: expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, g->load_dest, g->fniv); break; case TCG_TYPE_V64: expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, g->load_dest, g->fniv); break; case 0: if (g->fni8 && check_size_impl(oprsz, 8)) { expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8); } else if (g->fni4 && check_size_impl(oprsz, 4)) { expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4); } else { assert(g->fno != NULL); tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno); oprsz = maxsz; } break; default: g_assert_not_reached(); } tcg_swap_vecop_list(hold_list); if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } /* Expand a vector operation with two vectors and an immediate. */ void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t maxsz, int64_t c, const GVecGen2i *g) { const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); TCGType type; uint32_t some; check_size_align(oprsz, maxsz, dofs | aofs); check_overlap_2(dofs, aofs, maxsz); type = 0; if (g->fniv) { type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); } switch (type) { case TCG_TYPE_V256: /* Recall that ARM SVE allows vector sizes that are not a * power of 2, but always a multiple of 16. The intent is * that e.g. size == 80 would be expanded with 2x32 + 1x16. */ some = QEMU_ALIGN_DOWN(oprsz, 32); expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, c, g->load_dest, g->fniv); if (some == oprsz) { break; } dofs += some; aofs += some; oprsz -= some; maxsz -= some; /* fallthru */ case TCG_TYPE_V128: expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, c, g->load_dest, g->fniv); break; case TCG_TYPE_V64: expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, c, g->load_dest, g->fniv); break; case 0: if (g->fni8 && check_size_impl(oprsz, 8)) { expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8); } else if (g->fni4 && check_size_impl(oprsz, 4)) { expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4); } else { if (g->fno) { tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno); } else { TCGv_i64 tcg_c = tcg_const_i64(c); tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz, maxsz, c, g->fnoi); tcg_temp_free_i64(tcg_c); } oprsz = maxsz; } break; default: g_assert_not_reached(); } tcg_swap_vecop_list(hold_list); if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } /* Expand a vector operation with two vectors and a scalar. */ void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g) { TCGType type; check_size_align(oprsz, maxsz, dofs | aofs); check_overlap_2(dofs, aofs, maxsz); type = 0; if (g->fniv) { type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); } if (type != 0) { const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); TCGv_vec t_vec = tcg_temp_new_vec(type); uint32_t some; tcg_gen_dup_i64_vec(g->vece, t_vec, c); switch (type) { case TCG_TYPE_V256: /* Recall that ARM SVE allows vector sizes that are not a * power of 2, but always a multiple of 16. The intent is * that e.g. size == 80 would be expanded with 2x32 + 1x16. */ some = QEMU_ALIGN_DOWN(oprsz, 32); expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, t_vec, g->scalar_first, g->fniv); if (some == oprsz) { break; } dofs += some; aofs += some; oprsz -= some; maxsz -= some; /* fallthru */ case TCG_TYPE_V128: expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, t_vec, g->scalar_first, g->fniv); break; case TCG_TYPE_V64: expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, t_vec, g->scalar_first, g->fniv); break; default: g_assert_not_reached(); } tcg_temp_free_vec(t_vec); tcg_swap_vecop_list(hold_list); } else if (g->fni8 && check_size_impl(oprsz, 8)) { TCGv_i64 t64 = tcg_temp_new_i64(); gen_dup_i64(g->vece, t64, c); expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8); tcg_temp_free_i64(t64); } else if (g->fni4 && check_size_impl(oprsz, 4)) { TCGv_i32 t32 = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(t32, c); gen_dup_i32(g->vece, t32, t32); expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4); tcg_temp_free_i32(t32); } else { tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno); return; } if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } /* Expand a vector three-operand operation. */ void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g) { const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); TCGType type; uint32_t some; check_size_align(oprsz, maxsz, dofs | aofs | bofs); check_overlap_3(dofs, aofs, bofs, maxsz); type = 0; if (g->fniv) { type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); } switch (type) { case TCG_TYPE_V256: /* Recall that ARM SVE allows vector sizes that are not a * power of 2, but always a multiple of 16. The intent is * that e.g. size == 80 would be expanded with 2x32 + 1x16. */ some = QEMU_ALIGN_DOWN(oprsz, 32); expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, g->load_dest, g->fniv); if (some == oprsz) { break; } dofs += some; aofs += some; bofs += some; oprsz -= some; maxsz -= some; /* fallthru */ case TCG_TYPE_V128: expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, g->load_dest, g->fniv); break; case TCG_TYPE_V64: expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, g->load_dest, g->fniv); break; case 0: if (g->fni8 && check_size_impl(oprsz, 8)) { expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8); } else if (g->fni4 && check_size_impl(oprsz, 4)) { expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4); } else { assert(g->fno != NULL); tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, g->data, g->fno); oprsz = maxsz; } break; default: g_assert_not_reached(); } tcg_swap_vecop_list(hold_list); if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } /* Expand a vector operation with three vectors and an immediate. */ void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz, int64_t c, const GVecGen3i *g) { const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); TCGType type; uint32_t some; check_size_align(oprsz, maxsz, dofs | aofs | bofs); check_overlap_3(dofs, aofs, bofs, maxsz); type = 0; if (g->fniv) { type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); } switch (type) { case TCG_TYPE_V256: /* * Recall that ARM SVE allows vector sizes that are not a * power of 2, but always a multiple of 16. The intent is * that e.g. size == 80 would be expanded with 2x32 + 1x16. */ some = QEMU_ALIGN_DOWN(oprsz, 32); expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, c, g->load_dest, g->fniv); if (some == oprsz) { break; } dofs += some; aofs += some; bofs += some; oprsz -= some; maxsz -= some; /* fallthru */ case TCG_TYPE_V128: expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, c, g->load_dest, g->fniv); break; case TCG_TYPE_V64: expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, c, g->load_dest, g->fniv); break; case 0: if (g->fni8 && check_size_impl(oprsz, 8)) { expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8); } else if (g->fni4 && check_size_impl(oprsz, 4)) { expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4); } else { assert(g->fno != NULL); tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno); oprsz = maxsz; } break; default: g_assert_not_reached(); } tcg_swap_vecop_list(hold_list); if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } /* Expand a vector four-operand operation. */ void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g) { const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); TCGType type; uint32_t some; check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs); check_overlap_4(dofs, aofs, bofs, cofs, maxsz); type = 0; if (g->fniv) { type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); } switch (type) { case TCG_TYPE_V256: /* Recall that ARM SVE allows vector sizes that are not a * power of 2, but always a multiple of 16. The intent is * that e.g. size == 80 would be expanded with 2x32 + 1x16. */ some = QEMU_ALIGN_DOWN(oprsz, 32); expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some, 32, TCG_TYPE_V256, g->write_aofs, g->fniv); if (some == oprsz) { break; } dofs += some; aofs += some; bofs += some; cofs += some; oprsz -= some; maxsz -= some; /* fallthru */ case TCG_TYPE_V128: expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz, 16, TCG_TYPE_V128, g->write_aofs, g->fniv); break; case TCG_TYPE_V64: expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz, 8, TCG_TYPE_V64, g->write_aofs, g->fniv); break; case 0: if (g->fni8 && check_size_impl(oprsz, 8)) { expand_4_i64(dofs, aofs, bofs, cofs, oprsz, g->write_aofs, g->fni8); } else if (g->fni4 && check_size_impl(oprsz, 4)) { expand_4_i32(dofs, aofs, bofs, cofs, oprsz, g->write_aofs, g->fni4); } else { assert(g->fno != NULL); tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs, oprsz, maxsz, g->data, g->fno); oprsz = maxsz; } break; default: g_assert_not_reached(); } tcg_swap_vecop_list(hold_list); if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } /* * Expand specific vector operations. */ static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b) { tcg_gen_mov_vec(a, b); } void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen2 g = { .fni8 = tcg_gen_mov_i64, .fniv = vec_mov2, .fno = gen_helper_gvec_mov, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (dofs != aofs) { tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g); } else { check_size_align(oprsz, maxsz, dofs); if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } } void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz, uint32_t maxsz, TCGv_i32 in) { check_size_align(oprsz, maxsz, dofs); tcg_debug_assert(vece <= MO_32); do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0); } void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz, uint32_t maxsz, TCGv_i64 in) { check_size_align(oprsz, maxsz, dofs); tcg_debug_assert(vece <= MO_64); do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0); } void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t maxsz) { check_size_align(oprsz, maxsz, dofs); if (vece <= MO_64) { TCGType type = choose_vector_type(NULL, vece, oprsz, 0); if (type != 0) { TCGv_vec t_vec = tcg_temp_new_vec(type); tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs); do_dup_store(type, dofs, oprsz, maxsz, t_vec); tcg_temp_free_vec(t_vec); } else if (vece <= MO_32) { TCGv_i32 in = tcg_temp_new_i32(); switch (vece) { case MO_8: tcg_gen_ld8u_i32(in, cpu_env, aofs); break; case MO_16: tcg_gen_ld16u_i32(in, cpu_env, aofs); break; default: tcg_gen_ld_i32(in, cpu_env, aofs); break; } do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0); tcg_temp_free_i32(in); } else { TCGv_i64 in = tcg_temp_new_i64(); tcg_gen_ld_i64(in, cpu_env, aofs); do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0); tcg_temp_free_i64(in); } } else { /* 128-bit duplicate. */ /* ??? Dup to 256-bit vector. */ int i; tcg_debug_assert(vece == 4); tcg_debug_assert(oprsz >= 16); if (TCG_TARGET_HAS_v128) { TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128); tcg_gen_ld_vec(in, cpu_env, aofs); for (i = 0; i < oprsz; i += 16) { tcg_gen_st_vec(in, cpu_env, dofs + i); } tcg_temp_free_vec(in); } else { TCGv_i64 in0 = tcg_temp_new_i64(); TCGv_i64 in1 = tcg_temp_new_i64(); tcg_gen_ld_i64(in0, cpu_env, aofs); tcg_gen_ld_i64(in1, cpu_env, aofs + 8); for (i = 0; i < oprsz; i += 16) { tcg_gen_st_i64(in0, cpu_env, dofs + i); tcg_gen_st_i64(in1, cpu_env, dofs + i + 8); } tcg_temp_free_i64(in0); tcg_temp_free_i64(in1); } if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } } void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz, uint32_t maxsz, uint64_t x) { check_size_align(oprsz, maxsz, dofs); do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x); } void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen2 g = { .fni8 = tcg_gen_not_i64, .fniv = tcg_gen_not_vec, .fno = gen_helper_gvec_not, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g); } /* Perform a vector addition using normal addition and a mask. The mask should be the sign bit of each lane. This 6-operation form is more efficient than separate additions when there are 4 or more lanes in the 64-bit operation. */ static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m) { TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); tcg_gen_andc_i64(t1, a, m); tcg_gen_andc_i64(t2, b, m); tcg_gen_xor_i64(t3, a, b); tcg_gen_add_i64(d, t1, t2); tcg_gen_and_i64(t3, t3, m); tcg_gen_xor_i64(d, d, t3); tcg_temp_free_i64(t1); tcg_temp_free_i64(t2); tcg_temp_free_i64(t3); } void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80)); gen_addv_mask(d, a, b, m); tcg_temp_free_i64(m); } void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000)); gen_addv_mask(d, a, b, m); tcg_temp_free_i64(m); } void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_andi_i64(t1, a, ~0xffffffffull); tcg_gen_add_i64(t2, a, b); tcg_gen_add_i64(t1, t1, b); tcg_gen_deposit_i64(d, t1, t2, 0, 32); tcg_temp_free_i64(t1); tcg_temp_free_i64(t2); } static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 }; void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 g[4] = { { .fni8 = tcg_gen_vec_add8_i64, .fniv = tcg_gen_add_vec, .fno = gen_helper_gvec_add8, .opt_opc = vecop_list_add, .vece = MO_8 }, { .fni8 = tcg_gen_vec_add16_i64, .fniv = tcg_gen_add_vec, .fno = gen_helper_gvec_add16, .opt_opc = vecop_list_add, .vece = MO_16 }, { .fni4 = tcg_gen_add_i32, .fniv = tcg_gen_add_vec, .fno = gen_helper_gvec_add32, .opt_opc = vecop_list_add, .vece = MO_32 }, { .fni8 = tcg_gen_add_i64, .fniv = tcg_gen_add_vec, .fno = gen_helper_gvec_add64, .opt_opc = vecop_list_add, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) { static const GVecGen2s g[4] = { { .fni8 = tcg_gen_vec_add8_i64, .fniv = tcg_gen_add_vec, .fno = gen_helper_gvec_adds8, .opt_opc = vecop_list_add, .vece = MO_8 }, { .fni8 = tcg_gen_vec_add16_i64, .fniv = tcg_gen_add_vec, .fno = gen_helper_gvec_adds16, .opt_opc = vecop_list_add, .vece = MO_16 }, { .fni4 = tcg_gen_add_i32, .fniv = tcg_gen_add_vec, .fno = gen_helper_gvec_adds32, .opt_opc = vecop_list_add, .vece = MO_32 }, { .fni8 = tcg_gen_add_i64, .fniv = tcg_gen_add_vec, .fno = gen_helper_gvec_adds64, .opt_opc = vecop_list_add, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]); } void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t c, uint32_t oprsz, uint32_t maxsz) { TCGv_i64 tmp = tcg_const_i64(c); tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz); tcg_temp_free_i64(tmp); } static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 }; void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) { static const GVecGen2s g[4] = { { .fni8 = tcg_gen_vec_sub8_i64, .fniv = tcg_gen_sub_vec, .fno = gen_helper_gvec_subs8, .opt_opc = vecop_list_sub, .vece = MO_8 }, { .fni8 = tcg_gen_vec_sub16_i64, .fniv = tcg_gen_sub_vec, .fno = gen_helper_gvec_subs16, .opt_opc = vecop_list_sub, .vece = MO_16 }, { .fni4 = tcg_gen_sub_i32, .fniv = tcg_gen_sub_vec, .fno = gen_helper_gvec_subs32, .opt_opc = vecop_list_sub, .vece = MO_32 }, { .fni8 = tcg_gen_sub_i64, .fniv = tcg_gen_sub_vec, .fno = gen_helper_gvec_subs64, .opt_opc = vecop_list_sub, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]); } /* Perform a vector subtraction using normal subtraction and a mask. Compare gen_addv_mask above. */ static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m) { TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); tcg_gen_or_i64(t1, a, m); tcg_gen_andc_i64(t2, b, m); tcg_gen_eqv_i64(t3, a, b); tcg_gen_sub_i64(d, t1, t2); tcg_gen_and_i64(t3, t3, m); tcg_gen_xor_i64(d, d, t3); tcg_temp_free_i64(t1); tcg_temp_free_i64(t2); tcg_temp_free_i64(t3); } void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80)); gen_subv_mask(d, a, b, m); tcg_temp_free_i64(m); } void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000)); gen_subv_mask(d, a, b, m); tcg_temp_free_i64(m); } void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_andi_i64(t1, b, ~0xffffffffull); tcg_gen_sub_i64(t2, a, b); tcg_gen_sub_i64(t1, a, t1); tcg_gen_deposit_i64(d, t1, t2, 0, 32); tcg_temp_free_i64(t1); tcg_temp_free_i64(t2); } void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 g[4] = { { .fni8 = tcg_gen_vec_sub8_i64, .fniv = tcg_gen_sub_vec, .fno = gen_helper_gvec_sub8, .opt_opc = vecop_list_sub, .vece = MO_8 }, { .fni8 = tcg_gen_vec_sub16_i64, .fniv = tcg_gen_sub_vec, .fno = gen_helper_gvec_sub16, .opt_opc = vecop_list_sub, .vece = MO_16 }, { .fni4 = tcg_gen_sub_i32, .fniv = tcg_gen_sub_vec, .fno = gen_helper_gvec_sub32, .opt_opc = vecop_list_sub, .vece = MO_32 }, { .fni8 = tcg_gen_sub_i64, .fniv = tcg_gen_sub_vec, .fno = gen_helper_gvec_sub64, .opt_opc = vecop_list_sub, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 }; void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 g[4] = { { .fniv = tcg_gen_mul_vec, .fno = gen_helper_gvec_mul8, .opt_opc = vecop_list_mul, .vece = MO_8 }, { .fniv = tcg_gen_mul_vec, .fno = gen_helper_gvec_mul16, .opt_opc = vecop_list_mul, .vece = MO_16 }, { .fni4 = tcg_gen_mul_i32, .fniv = tcg_gen_mul_vec, .fno = gen_helper_gvec_mul32, .opt_opc = vecop_list_mul, .vece = MO_32 }, { .fni8 = tcg_gen_mul_i64, .fniv = tcg_gen_mul_vec, .fno = gen_helper_gvec_mul64, .opt_opc = vecop_list_mul, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) { static const GVecGen2s g[4] = { { .fniv = tcg_gen_mul_vec, .fno = gen_helper_gvec_muls8, .opt_opc = vecop_list_mul, .vece = MO_8 }, { .fniv = tcg_gen_mul_vec, .fno = gen_helper_gvec_muls16, .opt_opc = vecop_list_mul, .vece = MO_16 }, { .fni4 = tcg_gen_mul_i32, .fniv = tcg_gen_mul_vec, .fno = gen_helper_gvec_muls32, .opt_opc = vecop_list_mul, .vece = MO_32 }, { .fni8 = tcg_gen_mul_i64, .fniv = tcg_gen_mul_vec, .fno = gen_helper_gvec_muls64, .opt_opc = vecop_list_mul, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]); } void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t c, uint32_t oprsz, uint32_t maxsz) { TCGv_i64 tmp = tcg_const_i64(c); tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz); tcg_temp_free_i64(tmp); } void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_ssadd_vec, .fno = gen_helper_gvec_ssadd8, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_ssadd_vec, .fno = gen_helper_gvec_ssadd16, .opt_opc = vecop_list, .vece = MO_16 }, { .fniv = tcg_gen_ssadd_vec, .fno = gen_helper_gvec_ssadd32, .opt_opc = vecop_list, .vece = MO_32 }, { .fniv = tcg_gen_ssadd_vec, .fno = gen_helper_gvec_ssadd64, .opt_opc = vecop_list, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_sssub_vec, .fno = gen_helper_gvec_sssub8, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_sssub_vec, .fno = gen_helper_gvec_sssub16, .opt_opc = vecop_list, .vece = MO_16 }, { .fniv = tcg_gen_sssub_vec, .fno = gen_helper_gvec_sssub32, .opt_opc = vecop_list, .vece = MO_32 }, { .fniv = tcg_gen_sssub_vec, .fno = gen_helper_gvec_sssub64, .opt_opc = vecop_list, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 max = tcg_const_i32(-1); tcg_gen_add_i32(d, a, b); tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d); tcg_temp_free_i32(max); } static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 max = tcg_const_i64(-1); tcg_gen_add_i64(d, a, b); tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d); tcg_temp_free_i64(max); } void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_usadd_vec, .fno = gen_helper_gvec_usadd8, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_usadd_vec, .fno = gen_helper_gvec_usadd16, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_usadd_i32, .fniv = tcg_gen_usadd_vec, .fno = gen_helper_gvec_usadd32, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_usadd_i64, .fniv = tcg_gen_usadd_vec, .fno = gen_helper_gvec_usadd64, .opt_opc = vecop_list, .vece = MO_64 } }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 min = tcg_const_i32(0); tcg_gen_sub_i32(d, a, b); tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d); tcg_temp_free_i32(min); } static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 min = tcg_const_i64(0); tcg_gen_sub_i64(d, a, b); tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d); tcg_temp_free_i64(min); } void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_ussub_vec, .fno = gen_helper_gvec_ussub8, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_ussub_vec, .fno = gen_helper_gvec_ussub16, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_ussub_i32, .fniv = tcg_gen_ussub_vec, .fno = gen_helper_gvec_ussub32, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_ussub_i64, .fniv = tcg_gen_ussub_vec, .fno = gen_helper_gvec_ussub64, .opt_opc = vecop_list, .vece = MO_64 } }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_smin_vec, .fno = gen_helper_gvec_smin8, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_smin_vec, .fno = gen_helper_gvec_smin16, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_smin_i32, .fniv = tcg_gen_smin_vec, .fno = gen_helper_gvec_smin32, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_smin_i64, .fniv = tcg_gen_smin_vec, .fno = gen_helper_gvec_smin64, .opt_opc = vecop_list, .vece = MO_64 } }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_umin_vec, .fno = gen_helper_gvec_umin8, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_umin_vec, .fno = gen_helper_gvec_umin16, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_umin_i32, .fniv = tcg_gen_umin_vec, .fno = gen_helper_gvec_umin32, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_umin_i64, .fniv = tcg_gen_umin_vec, .fno = gen_helper_gvec_umin64, .opt_opc = vecop_list, .vece = MO_64 } }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_smax_vec, .fno = gen_helper_gvec_smax8, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_smax_vec, .fno = gen_helper_gvec_smax16, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_smax_i32, .fniv = tcg_gen_smax_vec, .fno = gen_helper_gvec_smax32, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_smax_i64, .fniv = tcg_gen_smax_vec, .fno = gen_helper_gvec_smax64, .opt_opc = vecop_list, .vece = MO_64 } }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_umax_vec, .fno = gen_helper_gvec_umax8, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_umax_vec, .fno = gen_helper_gvec_umax16, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_umax_i32, .fniv = tcg_gen_umax_vec, .fno = gen_helper_gvec_umax32, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_umax_i64, .fniv = tcg_gen_umax_vec, .fno = gen_helper_gvec_umax64, .opt_opc = vecop_list, .vece = MO_64 } }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } /* Perform a vector negation using normal negation and a mask. Compare gen_subv_mask above. */ static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m) { TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); tcg_gen_andc_i64(t3, m, b); tcg_gen_andc_i64(t2, b, m); tcg_gen_sub_i64(d, m, t2); tcg_gen_xor_i64(d, d, t3); tcg_temp_free_i64(t2); tcg_temp_free_i64(t3); } void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b) { TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80)); gen_negv_mask(d, b, m); tcg_temp_free_i64(m); } void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b) { TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000)); gen_negv_mask(d, b, m); tcg_temp_free_i64(m); } void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b) { TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_andi_i64(t1, b, ~0xffffffffull); tcg_gen_neg_i64(t2, b); tcg_gen_neg_i64(t1, t1); tcg_gen_deposit_i64(d, t1, t2, 0, 32); tcg_temp_free_i64(t1); tcg_temp_free_i64(t2); } void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 }; static const GVecGen2 g[4] = { { .fni8 = tcg_gen_vec_neg8_i64, .fniv = tcg_gen_neg_vec, .fno = gen_helper_gvec_neg8, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = tcg_gen_vec_neg16_i64, .fniv = tcg_gen_neg_vec, .fno = gen_helper_gvec_neg16, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_neg_i32, .fniv = tcg_gen_neg_vec, .fno = gen_helper_gvec_neg32, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_neg_i64, .fniv = tcg_gen_neg_vec, .fno = gen_helper_gvec_neg64, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]); } static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece) { TCGv_i64 t = tcg_temp_new_i64(); int nbit = 8 << vece; /* Create -1 for each negative element. */ tcg_gen_shri_i64(t, b, nbit - 1); tcg_gen_andi_i64(t, t, dup_const(vece, 1)); tcg_gen_muli_i64(t, t, (1 << nbit) - 1); /* * Invert (via xor -1) and add one (via sub -1). * Because of the ordering the msb is cleared, * so we never have carry into the next element. */ tcg_gen_xor_i64(d, b, t); tcg_gen_sub_i64(d, d, t); tcg_temp_free_i64(t); } static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b) { gen_absv_mask(d, b, MO_8); } static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b) { gen_absv_mask(d, b, MO_16); } void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 }; static const GVecGen2 g[4] = { { .fni8 = tcg_gen_vec_abs8_i64, .fniv = tcg_gen_abs_vec, .fno = gen_helper_gvec_abs8, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = tcg_gen_vec_abs16_i64, .fniv = tcg_gen_abs_vec, .fno = gen_helper_gvec_abs16, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_abs_i32, .fniv = tcg_gen_abs_vec, .fno = gen_helper_gvec_abs32, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_abs_i64, .fniv = tcg_gen_abs_vec, .fno = gen_helper_gvec_abs64, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]); } void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 g = { .fni8 = tcg_gen_and_i64, .fniv = tcg_gen_and_vec, .fno = gen_helper_gvec_and, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (aofs == bofs) { tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); } else { tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); } } void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 g = { .fni8 = tcg_gen_or_i64, .fniv = tcg_gen_or_vec, .fno = gen_helper_gvec_or, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (aofs == bofs) { tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); } else { tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); } } void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 g = { .fni8 = tcg_gen_xor_i64, .fniv = tcg_gen_xor_vec, .fno = gen_helper_gvec_xor, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (aofs == bofs) { tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0); } else { tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); } } void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 g = { .fni8 = tcg_gen_andc_i64, .fniv = tcg_gen_andc_vec, .fno = gen_helper_gvec_andc, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (aofs == bofs) { tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0); } else { tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); } } void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 g = { .fni8 = tcg_gen_orc_i64, .fniv = tcg_gen_orc_vec, .fno = gen_helper_gvec_orc, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (aofs == bofs) { tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1); } else { tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); } } void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 g = { .fni8 = tcg_gen_nand_i64, .fniv = tcg_gen_nand_vec, .fno = gen_helper_gvec_nand, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (aofs == bofs) { tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz); } else { tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); } } void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 g = { .fni8 = tcg_gen_nor_i64, .fniv = tcg_gen_nor_vec, .fno = gen_helper_gvec_nor, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (aofs == bofs) { tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz); } else { tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); } } void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen3 g = { .fni8 = tcg_gen_eqv_i64, .fniv = tcg_gen_eqv_vec, .fno = gen_helper_gvec_eqv, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (aofs == bofs) { tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1); } else { tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); } } static const GVecGen2s gop_ands = { .fni8 = tcg_gen_and_i64, .fniv = tcg_gen_and_vec, .fno = gen_helper_gvec_ands, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }; void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) { TCGv_i64 tmp = tcg_temp_new_i64(); gen_dup_i64(vece, tmp, c); tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands); tcg_temp_free_i64(tmp); } void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t c, uint32_t oprsz, uint32_t maxsz) { TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c)); tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands); tcg_temp_free_i64(tmp); } static const GVecGen2s gop_xors = { .fni8 = tcg_gen_xor_i64, .fniv = tcg_gen_xor_vec, .fno = gen_helper_gvec_xors, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }; void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) { TCGv_i64 tmp = tcg_temp_new_i64(); gen_dup_i64(vece, tmp, c); tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors); tcg_temp_free_i64(tmp); } void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t c, uint32_t oprsz, uint32_t maxsz) { TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c)); tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors); tcg_temp_free_i64(tmp); } static const GVecGen2s gop_ors = { .fni8 = tcg_gen_or_i64, .fniv = tcg_gen_or_vec, .fno = gen_helper_gvec_ors, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }; void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) { TCGv_i64 tmp = tcg_temp_new_i64(); gen_dup_i64(vece, tmp, c); tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors); tcg_temp_free_i64(tmp); } void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t c, uint32_t oprsz, uint32_t maxsz) { TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c)); tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors); tcg_temp_free_i64(tmp); } void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) { uint64_t mask = dup_const(MO_8, 0xff << c); tcg_gen_shli_i64(d, a, c); tcg_gen_andi_i64(d, d, mask); } void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) { uint64_t mask = dup_const(MO_16, 0xffff << c); tcg_gen_shli_i64(d, a, c); tcg_gen_andi_i64(d, d, mask); } void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t shift, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 }; static const GVecGen2i g[4] = { { .fni8 = tcg_gen_vec_shl8i_i64, .fniv = tcg_gen_shli_vec, .fno = gen_helper_gvec_shl8i, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = tcg_gen_vec_shl16i_i64, .fniv = tcg_gen_shli_vec, .fno = gen_helper_gvec_shl16i, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_shli_i32, .fniv = tcg_gen_shli_vec, .fno = gen_helper_gvec_shl32i, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_shli_i64, .fniv = tcg_gen_shli_vec, .fno = gen_helper_gvec_shl64i, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_debug_assert(shift >= 0 && shift < (8 << vece)); if (shift == 0) { tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); } else { tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); } } void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) { uint64_t mask = dup_const(MO_8, 0xff >> c); tcg_gen_shri_i64(d, a, c); tcg_gen_andi_i64(d, d, mask); } void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) { uint64_t mask = dup_const(MO_16, 0xffff >> c); tcg_gen_shri_i64(d, a, c); tcg_gen_andi_i64(d, d, mask); } void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t shift, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 }; static const GVecGen2i g[4] = { { .fni8 = tcg_gen_vec_shr8i_i64, .fniv = tcg_gen_shri_vec, .fno = gen_helper_gvec_shr8i, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = tcg_gen_vec_shr16i_i64, .fniv = tcg_gen_shri_vec, .fno = gen_helper_gvec_shr16i, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_shri_i32, .fniv = tcg_gen_shri_vec, .fno = gen_helper_gvec_shr32i, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_shri_i64, .fniv = tcg_gen_shri_vec, .fno = gen_helper_gvec_shr64i, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_debug_assert(shift >= 0 && shift < (8 << vece)); if (shift == 0) { tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); } else { tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); } } void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) { uint64_t s_mask = dup_const(MO_8, 0x80 >> c); uint64_t c_mask = dup_const(MO_8, 0xff >> c); TCGv_i64 s = tcg_temp_new_i64(); tcg_gen_shri_i64(d, a, c); tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */ tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */ tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */ tcg_gen_or_i64(d, d, s); /* include sign extension */ tcg_temp_free_i64(s); } void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) { uint64_t s_mask = dup_const(MO_16, 0x8000 >> c); uint64_t c_mask = dup_const(MO_16, 0xffff >> c); TCGv_i64 s = tcg_temp_new_i64(); tcg_gen_shri_i64(d, a, c); tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */ tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */ tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */ tcg_gen_or_i64(d, d, s); /* include sign extension */ tcg_temp_free_i64(s); } void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t shift, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 }; static const GVecGen2i g[4] = { { .fni8 = tcg_gen_vec_sar8i_i64, .fniv = tcg_gen_sari_vec, .fno = gen_helper_gvec_sar8i, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = tcg_gen_vec_sar16i_i64, .fniv = tcg_gen_sari_vec, .fno = gen_helper_gvec_sar16i, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_sari_i32, .fniv = tcg_gen_sari_vec, .fno = gen_helper_gvec_sar32i, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_sari_i64, .fniv = tcg_gen_sari_vec, .fno = gen_helper_gvec_sar64i, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_debug_assert(shift >= 0 && shift < (8 << vece)); if (shift == 0) { tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); } else { tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); } } void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) { uint64_t mask = dup_const(MO_8, 0xff << c); tcg_gen_shli_i64(d, a, c); tcg_gen_shri_i64(a, a, 8 - c); tcg_gen_andi_i64(d, d, mask); tcg_gen_andi_i64(a, a, ~mask); tcg_gen_or_i64(d, d, a); } void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) { uint64_t mask = dup_const(MO_16, 0xffff << c); tcg_gen_shli_i64(d, a, c); tcg_gen_shri_i64(a, a, 16 - c); tcg_gen_andi_i64(d, d, mask); tcg_gen_andi_i64(a, a, ~mask); tcg_gen_or_i64(d, d, a); } void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t shift, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; static const GVecGen2i g[4] = { { .fni8 = tcg_gen_vec_rotl8i_i64, .fniv = tcg_gen_rotli_vec, .fno = gen_helper_gvec_rotl8i, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = tcg_gen_vec_rotl16i_i64, .fniv = tcg_gen_rotli_vec, .fno = gen_helper_gvec_rotl16i, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_rotli_i32, .fniv = tcg_gen_rotli_vec, .fno = gen_helper_gvec_rotl32i, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_rotli_i64, .fniv = tcg_gen_rotli_vec, .fno = gen_helper_gvec_rotl64i, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_debug_assert(shift >= 0 && shift < (8 << vece)); if (shift == 0) { tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); } else { tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); } } void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t shift, uint32_t oprsz, uint32_t maxsz) { tcg_debug_assert(vece <= MO_64); tcg_debug_assert(shift >= 0 && shift < (8 << vece)); tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1), oprsz, maxsz); } /* * Specialized generation vector shifts by a non-constant scalar. */ typedef struct { void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32); void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64); void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32); void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec); gen_helper_gvec_2 *fno[4]; TCGOpcode s_list[2]; TCGOpcode v_list[2]; } GVecGen2sh; static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t oprsz, uint32_t tysz, TCGType type, TCGv_i32 shift, void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32)) { TCGv_vec t0 = tcg_temp_new_vec(type); uint32_t i; for (i = 0; i < oprsz; i += tysz) { tcg_gen_ld_vec(t0, cpu_env, aofs + i); fni(vece, t0, t0, shift); tcg_gen_st_vec(t0, cpu_env, dofs + i); } tcg_temp_free_vec(t0); } static void do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g) { TCGType type; uint32_t some; check_size_align(oprsz, maxsz, dofs | aofs); check_overlap_2(dofs, aofs, maxsz); /* If the backend has a scalar expansion, great. */ type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64); if (type) { const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL); switch (type) { case TCG_TYPE_V256: some = QEMU_ALIGN_DOWN(oprsz, 32); expand_2sh_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256, shift, g->fniv_s); if (some == oprsz) { break; } dofs += some; aofs += some; oprsz -= some; maxsz -= some; /* fallthru */ case TCG_TYPE_V128: expand_2sh_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, shift, g->fniv_s); break; case TCG_TYPE_V64: expand_2sh_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, shift, g->fniv_s); break; default: g_assert_not_reached(); } tcg_swap_vecop_list(hold_list); goto clear_tail; } /* If the backend supports variable vector shifts, also cool. */ type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64); if (type) { const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL); TCGv_vec v_shift = tcg_temp_new_vec(type); if (vece == MO_64) { TCGv_i64 sh64 = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(sh64, shift); tcg_gen_dup_i64_vec(MO_64, v_shift, sh64); tcg_temp_free_i64(sh64); } else { tcg_gen_dup_i32_vec(vece, v_shift, shift); } switch (type) { case TCG_TYPE_V256: some = QEMU_ALIGN_DOWN(oprsz, 32); expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256, v_shift, false, g->fniv_v); if (some == oprsz) { break; } dofs += some; aofs += some; oprsz -= some; maxsz -= some; /* fallthru */ case TCG_TYPE_V128: expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, v_shift, false, g->fniv_v); break; case TCG_TYPE_V64: expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, v_shift, false, g->fniv_v); break; default: g_assert_not_reached(); } tcg_temp_free_vec(v_shift); tcg_swap_vecop_list(hold_list); goto clear_tail; } /* Otherwise fall back to integral... */ if (vece == MO_32 && check_size_impl(oprsz, 4)) { expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4); } else if (vece == MO_64 && check_size_impl(oprsz, 8)) { TCGv_i64 sh64 = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(sh64, shift); expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8); tcg_temp_free_i64(sh64); } else { TCGv_ptr a0 = tcg_temp_new_ptr(); TCGv_ptr a1 = tcg_temp_new_ptr(); TCGv_i32 desc = tcg_temp_new_i32(); tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT); tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0)); tcg_gen_addi_ptr(a0, cpu_env, dofs); tcg_gen_addi_ptr(a1, cpu_env, aofs); g->fno[vece](a0, a1, desc); tcg_temp_free_ptr(a0); tcg_temp_free_ptr(a1); tcg_temp_free_i32(desc); return; } clear_tail: if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) { static const GVecGen2sh g = { .fni4 = tcg_gen_shl_i32, .fni8 = tcg_gen_shl_i64, .fniv_s = tcg_gen_shls_vec, .fniv_v = tcg_gen_shlv_vec, .fno = { gen_helper_gvec_shl8i, gen_helper_gvec_shl16i, gen_helper_gvec_shl32i, gen_helper_gvec_shl64i, }, .s_list = { INDEX_op_shls_vec, 0 }, .v_list = { INDEX_op_shlv_vec, 0 }, }; tcg_debug_assert(vece <= MO_64); do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g); } void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) { static const GVecGen2sh g = { .fni4 = tcg_gen_shr_i32, .fni8 = tcg_gen_shr_i64, .fniv_s = tcg_gen_shrs_vec, .fniv_v = tcg_gen_shrv_vec, .fno = { gen_helper_gvec_shr8i, gen_helper_gvec_shr16i, gen_helper_gvec_shr32i, gen_helper_gvec_shr64i, }, .s_list = { INDEX_op_shrs_vec, 0 }, .v_list = { INDEX_op_shrv_vec, 0 }, }; tcg_debug_assert(vece <= MO_64); do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g); } void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) { static const GVecGen2sh g = { .fni4 = tcg_gen_sar_i32, .fni8 = tcg_gen_sar_i64, .fniv_s = tcg_gen_sars_vec, .fniv_v = tcg_gen_sarv_vec, .fno = { gen_helper_gvec_sar8i, gen_helper_gvec_sar16i, gen_helper_gvec_sar32i, gen_helper_gvec_sar64i, }, .s_list = { INDEX_op_sars_vec, 0 }, .v_list = { INDEX_op_sarv_vec, 0 }, }; tcg_debug_assert(vece <= MO_64); do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g); } /* * Expand D = A << (B % element bits) * * Unlike scalar shifts, where it is easy for the target front end * to include the modulo as part of the expansion. If the target * naturally includes the modulo as part of the operation, great! * If the target has some other behaviour from out-of-range shifts, * then it could not use this function anyway, and would need to * do it's own expansion with custom functions. */ static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_dupi_vec(vece, t, (8 << vece) - 1); tcg_gen_and_vec(vece, t, t, b); tcg_gen_shlv_vec(vece, d, a, t); tcg_temp_free_vec(t); } static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_andi_i32(t, b, 31); tcg_gen_shl_i32(d, a, t); tcg_temp_free_i32(t); } static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_andi_i64(t, b, 63); tcg_gen_shl_i64(d, a, t); tcg_temp_free_i64(t); } void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_shlv_mod_vec, .fno = gen_helper_gvec_shl8v, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_shlv_mod_vec, .fno = gen_helper_gvec_shl16v, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_shl_mod_i32, .fniv = tcg_gen_shlv_mod_vec, .fno = gen_helper_gvec_shl32v, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_shl_mod_i64, .fniv = tcg_gen_shlv_mod_vec, .fno = gen_helper_gvec_shl64v, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } /* * Similarly for logical right shifts. */ static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_dupi_vec(vece, t, (8 << vece) - 1); tcg_gen_and_vec(vece, t, t, b); tcg_gen_shrv_vec(vece, d, a, t); tcg_temp_free_vec(t); } static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_andi_i32(t, b, 31); tcg_gen_shr_i32(d, a, t); tcg_temp_free_i32(t); } static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_andi_i64(t, b, 63); tcg_gen_shr_i64(d, a, t); tcg_temp_free_i64(t); } void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_shrv_mod_vec, .fno = gen_helper_gvec_shr8v, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_shrv_mod_vec, .fno = gen_helper_gvec_shr16v, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_shr_mod_i32, .fniv = tcg_gen_shrv_mod_vec, .fno = gen_helper_gvec_shr32v, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_shr_mod_i64, .fniv = tcg_gen_shrv_mod_vec, .fno = gen_helper_gvec_shr64v, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } /* * Similarly for arithmetic right shifts. */ static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_dupi_vec(vece, t, (8 << vece) - 1); tcg_gen_and_vec(vece, t, t, b); tcg_gen_sarv_vec(vece, d, a, t); tcg_temp_free_vec(t); } static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_andi_i32(t, b, 31); tcg_gen_sar_i32(d, a, t); tcg_temp_free_i32(t); } static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_andi_i64(t, b, 63); tcg_gen_sar_i64(d, a, t); tcg_temp_free_i64(t); } void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_sarv_mod_vec, .fno = gen_helper_gvec_sar8v, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_sarv_mod_vec, .fno = gen_helper_gvec_sar16v, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_sar_mod_i32, .fniv = tcg_gen_sarv_mod_vec, .fno = gen_helper_gvec_sar32v, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_sar_mod_i64, .fniv = tcg_gen_sarv_mod_vec, .fno = gen_helper_gvec_sar64v, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } /* * Similarly for rotates. */ static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_dupi_vec(vece, t, (8 << vece) - 1); tcg_gen_and_vec(vece, t, t, b); tcg_gen_rotlv_vec(vece, d, a, t); tcg_temp_free_vec(t); } static void tcg_gen_rotl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_andi_i32(t, b, 31); tcg_gen_rotl_i32(d, a, t); tcg_temp_free_i32(t); } static void tcg_gen_rotl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_andi_i64(t, b, 63); tcg_gen_rotl_i64(d, a, t); tcg_temp_free_i64(t); } void tcg_gen_gvec_rotlv(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_rotlv_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_rotlv_mod_vec, .fno = gen_helper_gvec_rotl8v, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_rotlv_mod_vec, .fno = gen_helper_gvec_rotl16v, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_rotl_mod_i32, .fniv = tcg_gen_rotlv_mod_vec, .fno = gen_helper_gvec_rotl32v, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_rotl_mod_i64, .fniv = tcg_gen_rotlv_mod_vec, .fno = gen_helper_gvec_rotl64v, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } static void tcg_gen_rotrv_mod_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_dupi_vec(vece, t, (8 << vece) - 1); tcg_gen_and_vec(vece, t, t, b); tcg_gen_rotrv_vec(vece, d, a, t); tcg_temp_free_vec(t); } static void tcg_gen_rotr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_andi_i32(t, b, 31); tcg_gen_rotr_i32(d, a, t); tcg_temp_free_i32(t); } static void tcg_gen_rotr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_andi_i64(t, b, 63); tcg_gen_rotr_i64(d, a, t); tcg_temp_free_i64(t); } void tcg_gen_gvec_rotrv(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_rotrv_vec, 0 }; static const GVecGen3 g[4] = { { .fniv = tcg_gen_rotrv_mod_vec, .fno = gen_helper_gvec_rotr8v, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = tcg_gen_rotrv_mod_vec, .fno = gen_helper_gvec_rotr16v, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = tcg_gen_rotr_mod_i32, .fniv = tcg_gen_rotrv_mod_vec, .fno = gen_helper_gvec_rotr32v, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = tcg_gen_rotr_mod_i64, .fniv = tcg_gen_rotrv_mod_vec, .fno = gen_helper_gvec_rotr64v, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); } /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */ static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, TCGCond cond) { TCGv_i32 t0 = tcg_temp_new_i32(); TCGv_i32 t1 = tcg_temp_new_i32(); uint32_t i; for (i = 0; i < oprsz; i += 4) { tcg_gen_ld_i32(t0, cpu_env, aofs + i); tcg_gen_ld_i32(t1, cpu_env, bofs + i); tcg_gen_setcond_i32(cond, t0, t0, t1); tcg_gen_neg_i32(t0, t0); tcg_gen_st_i32(t0, cpu_env, dofs + i); } tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); } static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, TCGCond cond) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); uint32_t i; for (i = 0; i < oprsz; i += 8) { tcg_gen_ld_i64(t0, cpu_env, aofs + i); tcg_gen_ld_i64(t1, cpu_env, bofs + i); tcg_gen_setcond_i64(cond, t0, t0, t1); tcg_gen_neg_i64(t0, t0); tcg_gen_st_i64(t0, cpu_env, dofs + i); } tcg_temp_free_i64(t1); tcg_temp_free_i64(t0); } static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t tysz, TCGType type, TCGCond cond) { TCGv_vec t0 = tcg_temp_new_vec(type); TCGv_vec t1 = tcg_temp_new_vec(type); uint32_t i; for (i = 0; i < oprsz; i += tysz) { tcg_gen_ld_vec(t0, cpu_env, aofs + i); tcg_gen_ld_vec(t1, cpu_env, bofs + i); tcg_gen_cmp_vec(cond, vece, t0, t0, t1); tcg_gen_st_vec(t0, cpu_env, dofs + i); } tcg_temp_free_vec(t1); tcg_temp_free_vec(t0); } void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 }; static gen_helper_gvec_3 * const eq_fn[4] = { gen_helper_gvec_eq8, gen_helper_gvec_eq16, gen_helper_gvec_eq32, gen_helper_gvec_eq64 }; static gen_helper_gvec_3 * const ne_fn[4] = { gen_helper_gvec_ne8, gen_helper_gvec_ne16, gen_helper_gvec_ne32, gen_helper_gvec_ne64 }; static gen_helper_gvec_3 * const lt_fn[4] = { gen_helper_gvec_lt8, gen_helper_gvec_lt16, gen_helper_gvec_lt32, gen_helper_gvec_lt64 }; static gen_helper_gvec_3 * const le_fn[4] = { gen_helper_gvec_le8, gen_helper_gvec_le16, gen_helper_gvec_le32, gen_helper_gvec_le64 }; static gen_helper_gvec_3 * const ltu_fn[4] = { gen_helper_gvec_ltu8, gen_helper_gvec_ltu16, gen_helper_gvec_ltu32, gen_helper_gvec_ltu64 }; static gen_helper_gvec_3 * const leu_fn[4] = { gen_helper_gvec_leu8, gen_helper_gvec_leu16, gen_helper_gvec_leu32, gen_helper_gvec_leu64 }; static gen_helper_gvec_3 * const * const fns[16] = { [TCG_COND_EQ] = eq_fn, [TCG_COND_NE] = ne_fn, [TCG_COND_LT] = lt_fn, [TCG_COND_LE] = le_fn, [TCG_COND_LTU] = ltu_fn, [TCG_COND_LEU] = leu_fn, }; const TCGOpcode *hold_list; TCGType type; uint32_t some; check_size_align(oprsz, maxsz, dofs | aofs | bofs); check_overlap_3(dofs, aofs, bofs, maxsz); if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) { do_dup(MO_8, dofs, oprsz, maxsz, NULL, NULL, -(cond == TCG_COND_ALWAYS)); return; } /* * Implement inline with a vector type, if possible. * Prefer integer when 64-bit host and 64-bit comparison. */ hold_list = tcg_swap_vecop_list(cmp_list); type = choose_vector_type(cmp_list, vece, oprsz, TCG_TARGET_REG_BITS == 64 && vece == MO_64); switch (type) { case TCG_TYPE_V256: /* Recall that ARM SVE allows vector sizes that are not a * power of 2, but always a multiple of 16. The intent is * that e.g. size == 80 would be expanded with 2x32 + 1x16. */ some = QEMU_ALIGN_DOWN(oprsz, 32); expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond); if (some == oprsz) { break; } dofs += some; aofs += some; bofs += some; oprsz -= some; maxsz -= some; /* fallthru */ case TCG_TYPE_V128: expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond); break; case TCG_TYPE_V64: expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond); break; case 0: if (vece == MO_64 && check_size_impl(oprsz, 8)) { expand_cmp_i64(dofs, aofs, bofs, oprsz, cond); } else if (vece == MO_32 && check_size_impl(oprsz, 4)) { expand_cmp_i32(dofs, aofs, bofs, oprsz, cond); } else { gen_helper_gvec_3 * const *fn = fns[cond]; if (fn == NULL) { uint32_t tmp; tmp = aofs, aofs = bofs, bofs = tmp; cond = tcg_swap_cond(cond); fn = fns[cond]; assert(fn != NULL); } tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]); oprsz = maxsz; } break; default: g_assert_not_reached(); } tcg_swap_vecop_list(hold_list); if (oprsz < maxsz) { expand_clr(dofs + oprsz, maxsz - oprsz); } } static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_and_i64(t, b, a); tcg_gen_andc_i64(d, c, a); tcg_gen_or_i64(d, d, t); tcg_temp_free_i64(t); } void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, uint32_t oprsz, uint32_t maxsz) { static const GVecGen4 g = { .fni8 = tcg_gen_bitsel_i64, .fniv = tcg_gen_bitsel_vec, .fno = gen_helper_gvec_bitsel, }; tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g); }