/* * Tiny Code Generator for QEMU * * Copyright (c) 2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef NDEBUG static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { "%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%o6", "%o7", "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%i6", "%i7", }; #endif /* Define some temporary registers. T2 is used for constant generation. */ #define TCG_REG_T1 TCG_REG_G1 #define TCG_REG_T2 TCG_REG_O7 #ifdef CONFIG_USE_GUEST_BASE # define TCG_GUEST_BASE_REG TCG_REG_I5 #else # define TCG_GUEST_BASE_REG TCG_REG_G0 #endif static const int tcg_target_reg_alloc_order[] = { TCG_REG_L0, TCG_REG_L1, TCG_REG_L2, TCG_REG_L3, TCG_REG_L4, TCG_REG_L5, TCG_REG_L6, TCG_REG_L7, TCG_REG_I0, TCG_REG_I1, TCG_REG_I2, TCG_REG_I3, TCG_REG_I4, TCG_REG_I5, TCG_REG_G2, TCG_REG_G3, TCG_REG_G4, TCG_REG_G5, TCG_REG_O0, TCG_REG_O1, TCG_REG_O2, TCG_REG_O3, TCG_REG_O4, TCG_REG_O5, }; static const int tcg_target_call_iarg_regs[6] = { TCG_REG_O0, TCG_REG_O1, TCG_REG_O2, TCG_REG_O3, TCG_REG_O4, TCG_REG_O5, }; static const int tcg_target_call_oarg_regs[] = { TCG_REG_O0, TCG_REG_O1, TCG_REG_O2, TCG_REG_O3, }; #define INSN_OP(x) ((x) << 30) #define INSN_OP2(x) ((x) << 22) #define INSN_OP3(x) ((x) << 19) #define INSN_OPF(x) ((x) << 5) #define INSN_RD(x) ((x) << 25) #define INSN_RS1(x) ((x) << 14) #define INSN_RS2(x) (x) #define INSN_ASI(x) ((x) << 5) #define INSN_IMM11(x) ((1 << 13) | ((x) & 0x7ff)) #define INSN_IMM13(x) ((1 << 13) | ((x) & 0x1fff)) #define INSN_OFF16(x) ((((x) >> 2) & 0x3fff) | ((((x) >> 16) & 3) << 20)) #define INSN_OFF19(x) (((x) >> 2) & 0x07ffff) #define INSN_COND(x) ((x) << 25) #define COND_N 0x0 #define COND_E 0x1 #define COND_LE 0x2 #define COND_L 0x3 #define COND_LEU 0x4 #define COND_CS 0x5 #define COND_NEG 0x6 #define COND_VS 0x7 #define COND_A 0x8 #define COND_NE 0x9 #define COND_G 0xa #define COND_GE 0xb #define COND_GU 0xc #define COND_CC 0xd #define COND_POS 0xe #define COND_VC 0xf #define BA (INSN_OP(0) | INSN_COND(COND_A) | INSN_OP2(0x2)) #define RCOND_Z 1 #define RCOND_LEZ 2 #define RCOND_LZ 3 #define RCOND_NZ 5 #define RCOND_GZ 6 #define RCOND_GEZ 7 #define MOVCC_ICC (1 << 18) #define MOVCC_XCC (1 << 18 | 1 << 12) #define BPCC_ICC 0 #define BPCC_XCC (2 << 20) #define BPCC_PT (1 << 19) #define BPCC_PN 0 #define BPCC_A (1 << 29) #define BPR_PT BPCC_PT #define ARITH_ADD (INSN_OP(2) | INSN_OP3(0x00)) #define ARITH_ADDCC (INSN_OP(2) | INSN_OP3(0x10)) #define ARITH_AND (INSN_OP(2) | INSN_OP3(0x01)) #define ARITH_ANDN (INSN_OP(2) | INSN_OP3(0x05)) #define ARITH_OR (INSN_OP(2) | INSN_OP3(0x02)) #define ARITH_ORCC (INSN_OP(2) | INSN_OP3(0x12)) #define ARITH_ORN (INSN_OP(2) | INSN_OP3(0x06)) #define ARITH_XOR (INSN_OP(2) | INSN_OP3(0x03)) #define ARITH_SUB (INSN_OP(2) | INSN_OP3(0x04)) #define ARITH_SUBCC (INSN_OP(2) | INSN_OP3(0x14)) #define ARITH_ADDX (INSN_OP(2) | INSN_OP3(0x08)) #define ARITH_SUBX (INSN_OP(2) | INSN_OP3(0x0c)) #define ARITH_UMUL (INSN_OP(2) | INSN_OP3(0x0a)) #define ARITH_UDIV (INSN_OP(2) | INSN_OP3(0x0e)) #define ARITH_SDIV (INSN_OP(2) | INSN_OP3(0x0f)) #define ARITH_MULX (INSN_OP(2) | INSN_OP3(0x09)) #define ARITH_UDIVX (INSN_OP(2) | INSN_OP3(0x0d)) #define ARITH_SDIVX (INSN_OP(2) | INSN_OP3(0x2d)) #define ARITH_MOVCC (INSN_OP(2) | INSN_OP3(0x2c)) #define SHIFT_SLL (INSN_OP(2) | INSN_OP3(0x25)) #define SHIFT_SRL (INSN_OP(2) | INSN_OP3(0x26)) #define SHIFT_SRA (INSN_OP(2) | INSN_OP3(0x27)) #define SHIFT_SLLX (INSN_OP(2) | INSN_OP3(0x25) | (1 << 12)) #define SHIFT_SRLX (INSN_OP(2) | INSN_OP3(0x26) | (1 << 12)) #define SHIFT_SRAX (INSN_OP(2) | INSN_OP3(0x27) | (1 << 12)) #define RDY (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(0)) #define WRY (INSN_OP(2) | INSN_OP3(0x30) | INSN_RD(0)) #define JMPL (INSN_OP(2) | INSN_OP3(0x38)) #define SAVE (INSN_OP(2) | INSN_OP3(0x3c)) #define RESTORE (INSN_OP(2) | INSN_OP3(0x3d)) #define SETHI (INSN_OP(0) | INSN_OP2(0x4)) #define CALL INSN_OP(1) #define LDUB (INSN_OP(3) | INSN_OP3(0x01)) #define LDSB (INSN_OP(3) | INSN_OP3(0x09)) #define LDUH (INSN_OP(3) | INSN_OP3(0x02)) #define LDSH (INSN_OP(3) | INSN_OP3(0x0a)) #define LDUW (INSN_OP(3) | INSN_OP3(0x00)) #define LDSW (INSN_OP(3) | INSN_OP3(0x08)) #define LDX (INSN_OP(3) | INSN_OP3(0x0b)) #define STB (INSN_OP(3) | INSN_OP3(0x05)) #define STH (INSN_OP(3) | INSN_OP3(0x06)) #define STW (INSN_OP(3) | INSN_OP3(0x04)) #define STX (INSN_OP(3) | INSN_OP3(0x0e)) #define LDUBA (INSN_OP(3) | INSN_OP3(0x11)) #define LDSBA (INSN_OP(3) | INSN_OP3(0x19)) #define LDUHA (INSN_OP(3) | INSN_OP3(0x12)) #define LDSHA (INSN_OP(3) | INSN_OP3(0x1a)) #define LDUWA (INSN_OP(3) | INSN_OP3(0x10)) #define LDSWA (INSN_OP(3) | INSN_OP3(0x18)) #define LDXA (INSN_OP(3) | INSN_OP3(0x1b)) #define STBA (INSN_OP(3) | INSN_OP3(0x15)) #define STHA (INSN_OP(3) | INSN_OP3(0x16)) #define STWA (INSN_OP(3) | INSN_OP3(0x14)) #define STXA (INSN_OP(3) | INSN_OP3(0x1e)) #ifndef ASI_PRIMARY_LITTLE #define ASI_PRIMARY_LITTLE 0x88 #endif #define LDUH_LE (LDUHA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define LDSH_LE (LDSHA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define LDUW_LE (LDUWA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define LDSW_LE (LDSWA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define LDX_LE (LDXA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define STH_LE (STHA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define STW_LE (STWA | INSN_ASI(ASI_PRIMARY_LITTLE)) #define STX_LE (STXA | INSN_ASI(ASI_PRIMARY_LITTLE)) static inline int check_fit_tl(tcg_target_long val, unsigned int bits) { return (val << ((sizeof(tcg_target_long) * 8 - bits)) >> (sizeof(tcg_target_long) * 8 - bits)) == val; } static inline int check_fit_i32(uint32_t val, unsigned int bits) { return ((val << (32 - bits)) >> (32 - bits)) == val; } static void patch_reloc(uint8_t *code_ptr, int type, tcg_target_long value, tcg_target_long addend) { uint32_t insn; value += addend; switch (type) { case R_SPARC_32: if (value != (uint32_t)value) { tcg_abort(); } *(uint32_t *)code_ptr = value; break; case R_SPARC_WDISP16: value -= (long)code_ptr; if (!check_fit_tl(value >> 2, 16)) { tcg_abort(); } insn = *(uint32_t *)code_ptr; insn &= ~INSN_OFF16(-1); insn |= INSN_OFF16(value); *(uint32_t *)code_ptr = insn; break; case R_SPARC_WDISP19: value -= (long)code_ptr; if (!check_fit_tl(value >> 2, 19)) { tcg_abort(); } insn = *(uint32_t *)code_ptr; insn &= ~INSN_OFF19(-1); insn |= INSN_OFF19(value); *(uint32_t *)code_ptr = insn; break; default: tcg_abort(); } } /* parse target specific constraints */ static int target_parse_constraint(TCGArgConstraint *ct, const char **pct_str) { const char *ct_str; ct_str = *pct_str; switch (ct_str[0]) { case 'r': ct->ct |= TCG_CT_REG; tcg_regset_set32(ct->u.regs, 0, 0xffffffff); break; case 'L': /* qemu_ld/st constraint */ ct->ct |= TCG_CT_REG; tcg_regset_set32(ct->u.regs, 0, 0xffffffff); // Helper args tcg_regset_reset_reg(ct->u.regs, TCG_REG_O0); tcg_regset_reset_reg(ct->u.regs, TCG_REG_O1); tcg_regset_reset_reg(ct->u.regs, TCG_REG_O2); break; case 'I': ct->ct |= TCG_CT_CONST_S11; break; case 'J': ct->ct |= TCG_CT_CONST_S13; break; case 'Z': ct->ct |= TCG_CT_CONST_ZERO; break; default: return -1; } ct_str++; *pct_str = ct_str; return 0; } /* test if a constant matches the constraint */ static inline int tcg_target_const_match(tcg_target_long val, const TCGArgConstraint *arg_ct) { int ct = arg_ct->ct; if (ct & TCG_CT_CONST) { return 1; } else if ((ct & TCG_CT_CONST_ZERO) && val == 0) { return 1; } else if ((ct & TCG_CT_CONST_S11) && check_fit_tl(val, 11)) { return 1; } else if ((ct & TCG_CT_CONST_S13) && check_fit_tl(val, 13)) { return 1; } else { return 0; } } static inline void tcg_out_arith(TCGContext *s, int rd, int rs1, int rs2, int op) { tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_RS2(rs2)); } static inline void tcg_out_arithi(TCGContext *s, int rd, int rs1, uint32_t offset, int op) { tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_IMM13(offset)); } static void tcg_out_arithc(TCGContext *s, int rd, int rs1, int val2, int val2const, int op) { tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | (val2const ? INSN_IMM13(val2) : INSN_RS2(val2))); } static inline void tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) { if (ret != arg) { tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR); } } static inline void tcg_out_sethi(TCGContext *s, int ret, uint32_t arg) { tcg_out32(s, SETHI | INSN_RD(ret) | ((arg & 0xfffffc00) >> 10)); } static inline void tcg_out_movi_imm13(TCGContext *s, int ret, uint32_t arg) { tcg_out_arithi(s, ret, TCG_REG_G0, arg, ARITH_OR); } static inline void tcg_out_movi_imm32(TCGContext *s, int ret, uint32_t arg) { if (check_fit_tl(arg, 13)) tcg_out_movi_imm13(s, ret, arg); else { tcg_out_sethi(s, ret, arg); if (arg & 0x3ff) tcg_out_arithi(s, ret, ret, arg & 0x3ff, ARITH_OR); } } static inline void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret, tcg_target_long arg) { /* All 32-bit constants, as well as 64-bit constants with no high bits set go through movi_imm32. */ if (TCG_TARGET_REG_BITS == 32 || type == TCG_TYPE_I32 || (arg & ~(tcg_target_long)0xffffffff) == 0) { tcg_out_movi_imm32(s, ret, arg); } else if (check_fit_tl(arg, 13)) { /* A 13-bit constant sign-extended to 64-bits. */ tcg_out_movi_imm13(s, ret, arg); } else if (check_fit_tl(arg, 32)) { /* A 32-bit constant sign-extended to 64-bits. */ tcg_out_sethi(s, ret, ~arg); tcg_out_arithi(s, ret, ret, (arg & 0x3ff) | -0x400, ARITH_XOR); } else { tcg_out_movi_imm32(s, ret, arg >> (TCG_TARGET_REG_BITS / 2)); tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX); tcg_out_movi_imm32(s, TCG_REG_T2, arg); tcg_out_arith(s, ret, ret, TCG_REG_T2, ARITH_OR); } } static inline void tcg_out_ldst_rr(TCGContext *s, int data, int a1, int a2, int op) { tcg_out32(s, op | INSN_RD(data) | INSN_RS1(a1) | INSN_RS2(a2)); } static inline void tcg_out_ldst(TCGContext *s, int ret, int addr, int offset, int op) { if (check_fit_tl(offset, 13)) { tcg_out32(s, op | INSN_RD(ret) | INSN_RS1(addr) | INSN_IMM13(offset)); } else { tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, offset); tcg_out_ldst_rr(s, ret, addr, TCG_REG_T1, op); } } static inline void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, tcg_target_long arg2) { tcg_out_ldst(s, ret, arg1, arg2, (type == TCG_TYPE_I32 ? LDUW : LDX)); } static inline void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, tcg_target_long arg2) { tcg_out_ldst(s, arg, arg1, arg2, (type == TCG_TYPE_I32 ? STW : STX)); } static inline void tcg_out_ld_ptr(TCGContext *s, int ret, tcg_target_long arg) { if (!check_fit_tl(arg, 10)) { tcg_out_movi(s, TCG_TYPE_PTR, ret, arg & ~0x3ff); } tcg_out_ld(s, TCG_TYPE_PTR, ret, ret, arg & 0x3ff); } static inline void tcg_out_sety(TCGContext *s, int rs) { tcg_out32(s, WRY | INSN_RS1(TCG_REG_G0) | INSN_RS2(rs)); } static inline void tcg_out_rdy(TCGContext *s, int rd) { tcg_out32(s, RDY | INSN_RD(rd)); } static inline void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val) { if (val != 0) { if (check_fit_tl(val, 13)) tcg_out_arithi(s, reg, reg, val, ARITH_ADD); else { tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, val); tcg_out_arith(s, reg, reg, TCG_REG_T1, ARITH_ADD); } } } static inline void tcg_out_andi(TCGContext *s, int rd, int rs, tcg_target_long val) { if (val != 0) { if (check_fit_tl(val, 13)) tcg_out_arithi(s, rd, rs, val, ARITH_AND); else { tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_T1, val); tcg_out_arith(s, rd, rs, TCG_REG_T1, ARITH_AND); } } } static void tcg_out_div32(TCGContext *s, int rd, int rs1, int val2, int val2const, int uns) { /* Load Y with the sign/zero extension of RS1 to 64-bits. */ if (uns) { tcg_out_sety(s, TCG_REG_G0); } else { tcg_out_arithi(s, TCG_REG_T1, rs1, 31, SHIFT_SRA); tcg_out_sety(s, TCG_REG_T1); } tcg_out_arithc(s, rd, rs1, val2, val2const, uns ? ARITH_UDIV : ARITH_SDIV); } static inline void tcg_out_nop(TCGContext *s) { tcg_out_sethi(s, TCG_REG_G0, 0); } static const uint8_t tcg_cond_to_bcond[] = { [TCG_COND_EQ] = COND_E, [TCG_COND_NE] = COND_NE, [TCG_COND_LT] = COND_L, [TCG_COND_GE] = COND_GE, [TCG_COND_LE] = COND_LE, [TCG_COND_GT] = COND_G, [TCG_COND_LTU] = COND_CS, [TCG_COND_GEU] = COND_CC, [TCG_COND_LEU] = COND_LEU, [TCG_COND_GTU] = COND_GU, }; static const uint8_t tcg_cond_to_rcond[] = { [TCG_COND_EQ] = RCOND_Z, [TCG_COND_NE] = RCOND_NZ, [TCG_COND_LT] = RCOND_LZ, [TCG_COND_GT] = RCOND_GZ, [TCG_COND_LE] = RCOND_LEZ, [TCG_COND_GE] = RCOND_GEZ }; static void tcg_out_bpcc0(TCGContext *s, int scond, int flags, int off19) { tcg_out32(s, INSN_OP(0) | INSN_OP2(1) | INSN_COND(scond) | flags | off19); } static void tcg_out_bpcc(TCGContext *s, int scond, int flags, int label) { TCGLabel *l = &s->labels[label]; int off19; if (l->has_value) { off19 = INSN_OFF19(l->u.value - (unsigned long)s->code_ptr); } else { /* Make sure to preserve destinations during retranslation. */ off19 = *(uint32_t *)s->code_ptr & INSN_OFF19(-1); tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP19, label, 0); } tcg_out_bpcc0(s, scond, flags, off19); } static void tcg_out_cmp(TCGContext *s, TCGArg c1, TCGArg c2, int c2const) { tcg_out_arithc(s, TCG_REG_G0, c1, c2, c2const, ARITH_SUBCC); } static void tcg_out_brcond_i32(TCGContext *s, TCGCond cond, TCGArg arg1, TCGArg arg2, int const_arg2, int label) { tcg_out_cmp(s, arg1, arg2, const_arg2); tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_ICC | BPCC_PT, label); tcg_out_nop(s); } static void tcg_out_movcc(TCGContext *s, TCGCond cond, int cc, TCGArg ret, TCGArg v1, int v1const) { tcg_out32(s, ARITH_MOVCC | cc | INSN_RD(ret) | INSN_RS1(tcg_cond_to_bcond[cond]) | (v1const ? INSN_IMM11(v1) : INSN_RS2(v1))); } static void tcg_out_movcond_i32(TCGContext *s, TCGCond cond, TCGArg ret, TCGArg c1, TCGArg c2, int c2const, TCGArg v1, int v1const) { tcg_out_cmp(s, c1, c2, c2const); tcg_out_movcc(s, cond, MOVCC_ICC, ret, v1, v1const); } #if TCG_TARGET_REG_BITS == 64 static void tcg_out_brcond_i64(TCGContext *s, TCGCond cond, TCGArg arg1, TCGArg arg2, int const_arg2, int label) { /* For 64-bit signed comparisons vs zero, we can avoid the compare. */ if (arg2 == 0 && !is_unsigned_cond(cond)) { TCGLabel *l = &s->labels[label]; int off16; if (l->has_value) { off16 = INSN_OFF16(l->u.value - (unsigned long)s->code_ptr); } else { /* Make sure to preserve destinations during retranslation. */ off16 = *(uint32_t *)s->code_ptr & INSN_OFF16(-1); tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP16, label, 0); } tcg_out32(s, INSN_OP(0) | INSN_OP2(3) | BPR_PT | INSN_RS1(arg1) | INSN_COND(tcg_cond_to_rcond[cond]) | off16); } else { tcg_out_cmp(s, arg1, arg2, const_arg2); tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_XCC | BPCC_PT, label); } tcg_out_nop(s); } static void tcg_out_movcond_i64(TCGContext *s, TCGCond cond, TCGArg ret, TCGArg c1, TCGArg c2, int c2const, TCGArg v1, int v1const) { tcg_out_cmp(s, c1, c2, c2const); tcg_out_movcc(s, cond, MOVCC_XCC, ret, v1, v1const); } #else static void tcg_out_brcond2_i32(TCGContext *s, TCGCond cond, TCGArg al, TCGArg ah, TCGArg bl, int blconst, TCGArg bh, int bhconst, int label_dest) { int scond, label_next = gen_new_label(); tcg_out_cmp(s, ah, bh, bhconst); /* Note that we fill one of the delay slots with the second compare. */ switch (cond) { case TCG_COND_EQ: tcg_out_bpcc(s, COND_NE, BPCC_ICC | BPCC_PT, label_next); tcg_out_cmp(s, al, bl, blconst); tcg_out_bpcc(s, COND_E, BPCC_ICC | BPCC_PT, label_dest); break; case TCG_COND_NE: tcg_out_bpcc(s, COND_NE, BPCC_ICC | BPCC_PT, label_dest); tcg_out_cmp(s, al, bl, blconst); tcg_out_bpcc(s, COND_NE, BPCC_ICC | BPCC_PT, label_dest); break; default: scond = tcg_cond_to_bcond[tcg_high_cond(cond)]; tcg_out_bpcc(s, scond, BPCC_ICC | BPCC_PT, label_dest); tcg_out_nop(s); tcg_out_bpcc(s, COND_NE, BPCC_ICC | BPCC_PT, label_next); tcg_out_cmp(s, al, bl, blconst); scond = tcg_cond_to_bcond[tcg_unsigned_cond(cond)]; tcg_out_bpcc(s, scond, BPCC_ICC | BPCC_PT, label_dest); break; } tcg_out_nop(s); tcg_out_label(s, label_next, s->code_ptr); } #endif static void tcg_out_setcond_i32(TCGContext *s, TCGCond cond, TCGArg ret, TCGArg c1, TCGArg c2, int c2const) { /* For 32-bit comparisons, we can play games with ADDX/SUBX. */ switch (cond) { case TCG_COND_LTU: case TCG_COND_GEU: /* The result of the comparison is in the carry bit. */ break; case TCG_COND_EQ: case TCG_COND_NE: /* For equality, we can transform to inequality vs zero. */ if (c2 != 0) { tcg_out_arithc(s, ret, c1, c2, c2const, ARITH_XOR); } c1 = TCG_REG_G0, c2 = ret, c2const = 0; cond = (cond == TCG_COND_EQ ? TCG_COND_GEU : TCG_COND_LTU); break; case TCG_COND_GTU: case TCG_COND_LEU: /* If we don't need to load a constant into a register, we can swap the operands on GTU/LEU. There's no benefit to loading the constant into a temporary register. */ if (!c2const || c2 == 0) { TCGArg t = c1; c1 = c2; c2 = t; c2const = 0; cond = tcg_swap_cond(cond); break; } /* FALLTHRU */ default: tcg_out_cmp(s, c1, c2, c2const); tcg_out_movi_imm13(s, ret, 0); tcg_out_movcc(s, cond, MOVCC_ICC, ret, 1, 1); return; } tcg_out_cmp(s, c1, c2, c2const); if (cond == TCG_COND_LTU) { tcg_out_arithi(s, ret, TCG_REG_G0, 0, ARITH_ADDX); } else { tcg_out_arithi(s, ret, TCG_REG_G0, -1, ARITH_SUBX); } } #if TCG_TARGET_REG_BITS == 64 static void tcg_out_setcond_i64(TCGContext *s, TCGCond cond, TCGArg ret, TCGArg c1, TCGArg c2, int c2const) { tcg_out_cmp(s, c1, c2, c2const); tcg_out_movi_imm13(s, ret, 0); tcg_out_movcc(s, cond, MOVCC_XCC, ret, 1, 1); } #else static void tcg_out_setcond2_i32(TCGContext *s, TCGCond cond, TCGArg ret, TCGArg al, TCGArg ah, TCGArg bl, int blconst, TCGArg bh, int bhconst) { int tmp = TCG_REG_T1; /* Note that the low parts are fully consumed before tmp is set. */ if (ret != ah && (bhconst || ret != bh)) { tmp = ret; } switch (cond) { case TCG_COND_EQ: case TCG_COND_NE: if (bl == 0 && bh == 0) { if (cond == TCG_COND_EQ) { tcg_out_arith(s, TCG_REG_G0, al, ah, ARITH_ORCC); tcg_out_movi(s, TCG_TYPE_I32, ret, 1); } else { tcg_out_arith(s, ret, al, ah, ARITH_ORCC); } } else { tcg_out_setcond_i32(s, cond, tmp, al, bl, blconst); tcg_out_cmp(s, ah, bh, bhconst); tcg_out_mov(s, TCG_TYPE_I32, ret, tmp); } tcg_out_movcc(s, TCG_COND_NE, MOVCC_ICC, ret, cond == TCG_COND_NE, 1); break; default: /* <= : ah < bh | (ah == bh && al <= bl) */ tcg_out_setcond_i32(s, tcg_unsigned_cond(cond), tmp, al, bl, blconst); tcg_out_cmp(s, ah, bh, bhconst); tcg_out_mov(s, TCG_TYPE_I32, ret, tmp); tcg_out_movcc(s, TCG_COND_NE, MOVCC_ICC, ret, 0, 1); tcg_out_movcc(s, tcg_high_cond(cond), MOVCC_ICC, ret, 1, 1); break; } } static void tcg_out_addsub2(TCGContext *s, TCGArg rl, TCGArg rh, TCGArg al, TCGArg ah, TCGArg bl, int blconst, TCGArg bh, int bhconst, int opl, int oph) { TCGArg tmp = TCG_REG_T1; /* Note that the low parts are fully consumed before tmp is set. */ if (rl != ah && (bhconst || rl != bh)) { tmp = rl; } tcg_out_arithc(s, tmp, al, bl, blconst, opl); tcg_out_arithc(s, rh, ah, bh, bhconst, oph); tcg_out_mov(s, TCG_TYPE_I32, rl, tmp); } #endif /* Generate global QEMU prologue and epilogue code */ static void tcg_target_qemu_prologue(TCGContext *s) { int tmp_buf_size, frame_size; /* The TCG temp buffer is at the top of the frame, immediately below the frame pointer. */ tmp_buf_size = CPU_TEMP_BUF_NLONGS * (int)sizeof(long); tcg_set_frame(s, TCG_REG_I6, TCG_TARGET_STACK_BIAS - tmp_buf_size, tmp_buf_size); /* TCG_TARGET_CALL_STACK_OFFSET includes the stack bias, but is otherwise the minimal frame usable by callees. */ frame_size = TCG_TARGET_CALL_STACK_OFFSET - TCG_TARGET_STACK_BIAS; frame_size += TCG_STATIC_CALL_ARGS_SIZE + tmp_buf_size; frame_size += TCG_TARGET_STACK_ALIGN - 1; frame_size &= -TCG_TARGET_STACK_ALIGN; tcg_out32(s, SAVE | INSN_RD(TCG_REG_O6) | INSN_RS1(TCG_REG_O6) | INSN_IMM13(-frame_size)); #ifdef CONFIG_USE_GUEST_BASE if (GUEST_BASE != 0) { tcg_out_movi(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, GUEST_BASE); tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG); } #endif tcg_out32(s, JMPL | INSN_RD(TCG_REG_G0) | INSN_RS1(TCG_REG_I1) | INSN_RS2(TCG_REG_G0)); /* delay slot */ tcg_out_nop(s); /* No epilogue required. We issue ret + restore directly in the TB. */ } #if defined(CONFIG_SOFTMMU) #include "../../softmmu_defs.h" /* helper signature: helper_ld_mmu(CPUState *env, target_ulong addr, int mmu_idx) */ static const void * const qemu_ld_helpers[4] = { helper_ldb_mmu, helper_ldw_mmu, helper_ldl_mmu, helper_ldq_mmu, }; /* helper signature: helper_st_mmu(CPUState *env, target_ulong addr, uintxx_t val, int mmu_idx) */ static const void * const qemu_st_helpers[4] = { helper_stb_mmu, helper_stw_mmu, helper_stl_mmu, helper_stq_mmu, }; /* Perform the TLB load and compare. Inputs: ADDRLO_IDX contains the index into ARGS of the low part of the address; the high part of the address is at ADDR_LOW_IDX+1. MEM_INDEX and S_BITS are the memory context and log2 size of the load. WHICH is the offset into the CPUTLBEntry structure of the slot to read. This should be offsetof addr_read or addr_write. The result of the TLB comparison is in %[ix]cc. The sanitized address is in the returned register, maybe %o0. The TLB addend is in %o1. */ static int tcg_out_tlb_load(TCGContext *s, int addrlo_idx, int mem_index, int s_bits, const TCGArg *args, int which) { const int addrlo = args[addrlo_idx]; const int r0 = TCG_REG_O0; const int r1 = TCG_REG_O1; const int r2 = TCG_REG_O2; int addr = addrlo; int tlb_ofs; if (TCG_TARGET_REG_BITS == 32 && TARGET_LONG_BITS == 64) { /* Assemble the 64-bit address in R0. */ tcg_out_arithi(s, r0, addrlo, 0, SHIFT_SRL); tcg_out_arithi(s, r1, args[addrlo_idx + 1], 32, SHIFT_SLLX); tcg_out_arith(s, r0, r0, r1, ARITH_OR); } /* Shift the page number down to tlb-entry. */ tcg_out_arithi(s, r1, addrlo, TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS, SHIFT_SRL); /* Mask out the page offset, except for the required alignment. */ tcg_out_andi(s, r0, addr, TARGET_PAGE_MASK | ((1 << s_bits) - 1)); /* Compute tlb index, modulo tlb size. */ tcg_out_andi(s, r1, r1, (CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS); /* Relative to the current ENV. */ tcg_out_arith(s, r1, TCG_AREG0, r1, ARITH_ADD); /* Find a base address that can load both tlb comparator and addend. */ tlb_ofs = offsetof(CPUArchState, tlb_table[mem_index][0]); if (!check_fit_tl(tlb_ofs + sizeof(CPUTLBEntry), 13)) { tcg_out_addi(s, r1, tlb_ofs); tlb_ofs = 0; } /* Load the tlb comparator and the addend. */ tcg_out_ld(s, TCG_TYPE_TL, r2, r1, tlb_ofs + which); tcg_out_ld(s, TCG_TYPE_PTR, r1, r1, tlb_ofs+offsetof(CPUTLBEntry, addend)); /* subcc arg0, arg2, %g0 */ tcg_out_cmp(s, r0, r2, 0); /* If the guest address must be zero-extended, do so now. */ if (TCG_TARGET_REG_BITS == 64 && TARGET_LONG_BITS == 32) { tcg_out_arithi(s, r0, addrlo, 0, SHIFT_SRL); return r0; } return addrlo; } #endif /* CONFIG_SOFTMMU */ static const int qemu_ld_opc[8] = { #ifdef TARGET_WORDS_BIGENDIAN LDUB, LDUH, LDUW, LDX, LDSB, LDSH, LDSW, LDX #else LDUB, LDUH_LE, LDUW_LE, LDX_LE, LDSB, LDSH_LE, LDSW_LE, LDX_LE #endif }; static const int qemu_st_opc[4] = { #ifdef TARGET_WORDS_BIGENDIAN STB, STH, STW, STX #else STB, STH_LE, STW_LE, STX_LE #endif }; static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, int sizeop) { int addrlo_idx = 1, datalo, datahi, addr_reg; #if defined(CONFIG_SOFTMMU) int memi_idx, memi, s_bits, n; uint32_t *label_ptr[2]; #endif datahi = datalo = args[0]; if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) { datahi = args[1]; addrlo_idx = 2; } #if defined(CONFIG_SOFTMMU) memi_idx = addrlo_idx + 1 + (TARGET_LONG_BITS > TCG_TARGET_REG_BITS); memi = args[memi_idx]; s_bits = sizeop & 3; addr_reg = tcg_out_tlb_load(s, addrlo_idx, memi, s_bits, args, offsetof(CPUTLBEntry, addr_read)); if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) { int reg64; /* bne,pn %[xi]cc, label0 */ label_ptr[0] = (uint32_t *)s->code_ptr; tcg_out_bpcc0(s, COND_NE, BPCC_PN | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0); /* TLB Hit. */ /* Load all 64-bits into an O/G register. */ reg64 = (datalo < 16 ? datalo : TCG_REG_O0); tcg_out_ldst_rr(s, reg64, addr_reg, TCG_REG_O1, qemu_ld_opc[sizeop]); /* Move the two 32-bit pieces into the destination registers. */ tcg_out_arithi(s, datahi, reg64, 32, SHIFT_SRLX); if (reg64 != datalo) { tcg_out_mov(s, TCG_TYPE_I32, datalo, reg64); } /* b,a,pt label1 */ label_ptr[1] = (uint32_t *)s->code_ptr; tcg_out_bpcc0(s, COND_A, BPCC_A | BPCC_PT, 0); } else { /* The fast path is exactly one insn. Thus we can perform the entire TLB Hit in the (annulled) delay slot of the branch over the TLB Miss case. */ /* beq,a,pt %[xi]cc, label0 */ label_ptr[0] = NULL; label_ptr[1] = (uint32_t *)s->code_ptr; tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0); /* delay slot */ tcg_out_ldst_rr(s, datalo, addr_reg, TCG_REG_O1, qemu_ld_opc[sizeop]); } /* TLB Miss. */ if (label_ptr[0]) { *label_ptr[0] |= INSN_OFF19((unsigned long)s->code_ptr - (unsigned long)label_ptr[0]); } n = 0; tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[n++], TCG_AREG0); if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) { tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++], args[addrlo_idx + 1]); } tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++], args[addrlo_idx]); /* qemu_ld_helper[s_bits](arg0, arg1) */ tcg_out32(s, CALL | ((((tcg_target_ulong)qemu_ld_helpers[s_bits] - (tcg_target_ulong)s->code_ptr) >> 2) & 0x3fffffff)); /* delay slot */ tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[n], memi); n = tcg_target_call_oarg_regs[0]; /* datalo = sign_extend(arg0) */ switch (sizeop) { case 0 | 4: /* Recall that SRA sign extends from bit 31 through bit 63. */ tcg_out_arithi(s, datalo, n, 24, SHIFT_SLL); tcg_out_arithi(s, datalo, datalo, 24, SHIFT_SRA); break; case 1 | 4: tcg_out_arithi(s, datalo, n, 16, SHIFT_SLL); tcg_out_arithi(s, datalo, datalo, 16, SHIFT_SRA); break; case 2 | 4: tcg_out_arithi(s, datalo, n, 0, SHIFT_SRA); break; case 3: if (TCG_TARGET_REG_BITS == 32) { tcg_out_mov(s, TCG_TYPE_REG, datahi, n); tcg_out_mov(s, TCG_TYPE_REG, datalo, n + 1); break; } /* FALLTHRU */ case 0: case 1: case 2: default: /* mov */ tcg_out_mov(s, TCG_TYPE_REG, datalo, n); break; } *label_ptr[1] |= INSN_OFF19((unsigned long)s->code_ptr - (unsigned long)label_ptr[1]); #else addr_reg = args[addrlo_idx]; if (TCG_TARGET_REG_BITS == 64 && TARGET_LONG_BITS == 32) { tcg_out_arithi(s, TCG_REG_T1, addr_reg, 0, SHIFT_SRL); addr_reg = TCG_REG_T1; } if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) { int reg64 = (datalo < 16 ? datalo : TCG_REG_O0); tcg_out_ldst_rr(s, reg64, addr_reg, (GUEST_BASE ? TCG_GUEST_BASE_REG : TCG_REG_G0), qemu_ld_opc[sizeop]); tcg_out_arithi(s, datahi, reg64, 32, SHIFT_SRLX); if (reg64 != datalo) { tcg_out_mov(s, TCG_TYPE_I32, datalo, reg64); } } else { tcg_out_ldst_rr(s, datalo, addr_reg, (GUEST_BASE ? TCG_GUEST_BASE_REG : TCG_REG_G0), qemu_ld_opc[sizeop]); } #endif /* CONFIG_SOFTMMU */ } static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, int sizeop) { int addrlo_idx = 1, datalo, datahi, addr_reg; #if defined(CONFIG_SOFTMMU) int memi_idx, memi, n, datafull; uint32_t *label_ptr; #endif datahi = datalo = args[0]; if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) { datahi = args[1]; addrlo_idx = 2; } #if defined(CONFIG_SOFTMMU) memi_idx = addrlo_idx + 1 + (TARGET_LONG_BITS > TCG_TARGET_REG_BITS); memi = args[memi_idx]; addr_reg = tcg_out_tlb_load(s, addrlo_idx, memi, sizeop, args, offsetof(CPUTLBEntry, addr_write)); datafull = datalo; if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) { /* Reconstruct the full 64-bit value. */ tcg_out_arithi(s, TCG_REG_T1, datalo, 0, SHIFT_SRL); tcg_out_arithi(s, TCG_REG_O2, datahi, 32, SHIFT_SLLX); tcg_out_arith(s, TCG_REG_O2, TCG_REG_T1, TCG_REG_O2, ARITH_OR); datafull = TCG_REG_O2; } /* The fast path is exactly one insn. Thus we can perform the entire TLB Hit in the (annulled) delay slot of the branch over TLB Miss. */ /* beq,a,pt %[xi]cc, label0 */ label_ptr = (uint32_t *)s->code_ptr; tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0); /* delay slot */ tcg_out_ldst_rr(s, datafull, addr_reg, TCG_REG_O1, qemu_st_opc[sizeop]); /* TLB Miss. */ n = 0; tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[n++], TCG_AREG0); if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) { tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++], args[addrlo_idx + 1]); } tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++], args[addrlo_idx]); if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) { tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++], datahi); } tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++], datalo); /* qemu_st_helper[s_bits](arg0, arg1, arg2) */ tcg_out32(s, CALL | ((((tcg_target_ulong)qemu_st_helpers[sizeop] - (tcg_target_ulong)s->code_ptr) >> 2) & 0x3fffffff)); /* delay slot */ tcg_out_movi(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n], memi); *label_ptr |= INSN_OFF19((unsigned long)s->code_ptr - (unsigned long)label_ptr); #else addr_reg = args[addrlo_idx]; if (TCG_TARGET_REG_BITS == 64 && TARGET_LONG_BITS == 32) { tcg_out_arithi(s, TCG_REG_T1, addr_reg, 0, SHIFT_SRL); addr_reg = TCG_REG_T1; } if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) { tcg_out_arithi(s, TCG_REG_T1, datalo, 0, SHIFT_SRL); tcg_out_arithi(s, TCG_REG_O2, datahi, 32, SHIFT_SLLX); tcg_out_arith(s, TCG_REG_O2, TCG_REG_T1, TCG_REG_O2, ARITH_OR); datalo = TCG_REG_O2; } tcg_out_ldst_rr(s, datalo, addr_reg, (GUEST_BASE ? TCG_GUEST_BASE_REG : TCG_REG_G0), qemu_st_opc[sizeop]); #endif /* CONFIG_SOFTMMU */ } static inline void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, const int *const_args) { int c; switch (opc) { case INDEX_op_exit_tb: tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_I0, args[0]); tcg_out32(s, JMPL | INSN_RD(TCG_REG_G0) | INSN_RS1(TCG_REG_I7) | INSN_IMM13(8)); tcg_out32(s, RESTORE | INSN_RD(TCG_REG_G0) | INSN_RS1(TCG_REG_G0) | INSN_RS2(TCG_REG_G0)); break; case INDEX_op_goto_tb: if (s->tb_jmp_offset) { /* direct jump method */ uint32_t old_insn = *(uint32_t *)s->code_ptr; s->tb_jmp_offset[args[0]] = s->code_ptr - s->code_buf; /* Make sure to preserve links during retranslation. */ tcg_out32(s, CALL | (old_insn & ~INSN_OP(-1))); } else { /* indirect jump method */ tcg_out_ld_ptr(s, TCG_REG_T1, (tcg_target_long)(s->tb_next + args[0])); tcg_out32(s, JMPL | INSN_RD(TCG_REG_G0) | INSN_RS1(TCG_REG_T1) | INSN_RS2(TCG_REG_G0)); } tcg_out_nop(s); s->tb_next_offset[args[0]] = s->code_ptr - s->code_buf; break; case INDEX_op_call: if (const_args[0]) { tcg_out32(s, CALL | ((((tcg_target_ulong)args[0] - (tcg_target_ulong)s->code_ptr) >> 2) & 0x3fffffff)); } else { tcg_out_ld_ptr(s, TCG_REG_T1, (tcg_target_long)(s->tb_next + args[0])); tcg_out32(s, JMPL | INSN_RD(TCG_REG_O7) | INSN_RS1(TCG_REG_T1) | INSN_RS2(TCG_REG_G0)); } /* delay slot */ tcg_out_nop(s); break; case INDEX_op_br: tcg_out_bpcc(s, COND_A, BPCC_PT, args[0]); tcg_out_nop(s); break; case INDEX_op_movi_i32: tcg_out_movi(s, TCG_TYPE_I32, args[0], (uint32_t)args[1]); break; #if TCG_TARGET_REG_BITS == 64 #define OP_32_64(x) \ glue(glue(case INDEX_op_, x), _i32): \ glue(glue(case INDEX_op_, x), _i64) #else #define OP_32_64(x) \ glue(glue(case INDEX_op_, x), _i32) #endif OP_32_64(ld8u): tcg_out_ldst(s, args[0], args[1], args[2], LDUB); break; OP_32_64(ld8s): tcg_out_ldst(s, args[0], args[1], args[2], LDSB); break; OP_32_64(ld16u): tcg_out_ldst(s, args[0], args[1], args[2], LDUH); break; OP_32_64(ld16s): tcg_out_ldst(s, args[0], args[1], args[2], LDSH); break; case INDEX_op_ld_i32: #if TCG_TARGET_REG_BITS == 64 case INDEX_op_ld32u_i64: #endif tcg_out_ldst(s, args[0], args[1], args[2], LDUW); break; OP_32_64(st8): tcg_out_ldst(s, args[0], args[1], args[2], STB); break; OP_32_64(st16): tcg_out_ldst(s, args[0], args[1], args[2], STH); break; case INDEX_op_st_i32: #if TCG_TARGET_REG_BITS == 64 case INDEX_op_st32_i64: #endif tcg_out_ldst(s, args[0], args[1], args[2], STW); break; OP_32_64(add): c = ARITH_ADD; goto gen_arith; OP_32_64(sub): c = ARITH_SUB; goto gen_arith; OP_32_64(and): c = ARITH_AND; goto gen_arith; OP_32_64(andc): c = ARITH_ANDN; goto gen_arith; OP_32_64(or): c = ARITH_OR; goto gen_arith; OP_32_64(orc): c = ARITH_ORN; goto gen_arith; OP_32_64(xor): c = ARITH_XOR; goto gen_arith; case INDEX_op_shl_i32: c = SHIFT_SLL; do_shift32: /* Limit immediate shift count lest we create an illegal insn. */ tcg_out_arithc(s, args[0], args[1], args[2] & 31, const_args[2], c); break; case INDEX_op_shr_i32: c = SHIFT_SRL; goto do_shift32; case INDEX_op_sar_i32: c = SHIFT_SRA; goto do_shift32; case INDEX_op_mul_i32: c = ARITH_UMUL; goto gen_arith; OP_32_64(neg): c = ARITH_SUB; goto gen_arith1; OP_32_64(not): c = ARITH_ORN; goto gen_arith1; case INDEX_op_div_i32: tcg_out_div32(s, args[0], args[1], args[2], const_args[2], 0); break; case INDEX_op_divu_i32: tcg_out_div32(s, args[0], args[1], args[2], const_args[2], 1); break; case INDEX_op_rem_i32: case INDEX_op_remu_i32: tcg_out_div32(s, TCG_REG_T1, args[1], args[2], const_args[2], opc == INDEX_op_remu_i32); tcg_out_arithc(s, TCG_REG_T1, TCG_REG_T1, args[2], const_args[2], ARITH_UMUL); tcg_out_arith(s, args[0], args[1], TCG_REG_T1, ARITH_SUB); break; case INDEX_op_brcond_i32: tcg_out_brcond_i32(s, args[2], args[0], args[1], const_args[1], args[3]); break; case INDEX_op_setcond_i32: tcg_out_setcond_i32(s, args[3], args[0], args[1], args[2], const_args[2]); break; case INDEX_op_movcond_i32: tcg_out_movcond_i32(s, args[5], args[0], args[1], args[2], const_args[2], args[3], const_args[3]); break; #if TCG_TARGET_REG_BITS == 32 case INDEX_op_brcond2_i32: tcg_out_brcond2_i32(s, args[4], args[0], args[1], args[2], const_args[2], args[3], const_args[3], args[5]); break; case INDEX_op_setcond2_i32: tcg_out_setcond2_i32(s, args[5], args[0], args[1], args[2], args[3], const_args[3], args[4], const_args[4]); break; case INDEX_op_add2_i32: tcg_out_addsub2(s, args[0], args[1], args[2], args[3], args[4], const_args[4], args[5], const_args[5], ARITH_ADDCC, ARITH_ADDX); break; case INDEX_op_sub2_i32: tcg_out_addsub2(s, args[0], args[1], args[2], args[3], args[4], const_args[4], args[5], const_args[5], ARITH_SUBCC, ARITH_SUBX); break; case INDEX_op_mulu2_i32: tcg_out_arithc(s, args[0], args[2], args[3], const_args[3], ARITH_UMUL); tcg_out_rdy(s, args[1]); break; #endif case INDEX_op_qemu_ld8u: tcg_out_qemu_ld(s, args, 0); break; case INDEX_op_qemu_ld8s: tcg_out_qemu_ld(s, args, 0 | 4); break; case INDEX_op_qemu_ld16u: tcg_out_qemu_ld(s, args, 1); break; case INDEX_op_qemu_ld16s: tcg_out_qemu_ld(s, args, 1 | 4); break; case INDEX_op_qemu_ld32: #if TCG_TARGET_REG_BITS == 64 case INDEX_op_qemu_ld32u: #endif tcg_out_qemu_ld(s, args, 2); break; #if TCG_TARGET_REG_BITS == 64 case INDEX_op_qemu_ld32s: tcg_out_qemu_ld(s, args, 2 | 4); break; #endif case INDEX_op_qemu_ld64: tcg_out_qemu_ld(s, args, 3); break; case INDEX_op_qemu_st8: tcg_out_qemu_st(s, args, 0); break; case INDEX_op_qemu_st16: tcg_out_qemu_st(s, args, 1); break; case INDEX_op_qemu_st32: tcg_out_qemu_st(s, args, 2); break; case INDEX_op_qemu_st64: tcg_out_qemu_st(s, args, 3); break; #if TCG_TARGET_REG_BITS == 64 case INDEX_op_movi_i64: tcg_out_movi(s, TCG_TYPE_I64, args[0], args[1]); break; case INDEX_op_ld32s_i64: tcg_out_ldst(s, args[0], args[1], args[2], LDSW); break; case INDEX_op_ld_i64: tcg_out_ldst(s, args[0], args[1], args[2], LDX); break; case INDEX_op_st_i64: tcg_out_ldst(s, args[0], args[1], args[2], STX); break; case INDEX_op_shl_i64: c = SHIFT_SLLX; do_shift64: /* Limit immediate shift count lest we create an illegal insn. */ tcg_out_arithc(s, args[0], args[1], args[2] & 63, const_args[2], c); break; case INDEX_op_shr_i64: c = SHIFT_SRLX; goto do_shift64; case INDEX_op_sar_i64: c = SHIFT_SRAX; goto do_shift64; case INDEX_op_mul_i64: c = ARITH_MULX; goto gen_arith; case INDEX_op_div_i64: c = ARITH_SDIVX; goto gen_arith; case INDEX_op_divu_i64: c = ARITH_UDIVX; goto gen_arith; case INDEX_op_rem_i64: case INDEX_op_remu_i64: tcg_out_arithc(s, TCG_REG_T1, args[1], args[2], const_args[2], opc == INDEX_op_rem_i64 ? ARITH_SDIVX : ARITH_UDIVX); tcg_out_arithc(s, TCG_REG_T1, TCG_REG_T1, args[2], const_args[2], ARITH_MULX); tcg_out_arith(s, args[0], args[1], TCG_REG_T1, ARITH_SUB); break; case INDEX_op_ext32s_i64: if (const_args[1]) { tcg_out_movi(s, TCG_TYPE_I64, args[0], (int32_t)args[1]); } else { tcg_out_arithi(s, args[0], args[1], 0, SHIFT_SRA); } break; case INDEX_op_ext32u_i64: if (const_args[1]) { tcg_out_movi_imm32(s, args[0], args[1]); } else { tcg_out_arithi(s, args[0], args[1], 0, SHIFT_SRL); } break; case INDEX_op_brcond_i64: tcg_out_brcond_i64(s, args[2], args[0], args[1], const_args[1], args[3]); break; case INDEX_op_setcond_i64: tcg_out_setcond_i64(s, args[3], args[0], args[1], args[2], const_args[2]); break; case INDEX_op_movcond_i64: tcg_out_movcond_i64(s, args[5], args[0], args[1], args[2], const_args[2], args[3], const_args[3]); break; #endif gen_arith: tcg_out_arithc(s, args[0], args[1], args[2], const_args[2], c); break; gen_arith1: tcg_out_arithc(s, args[0], TCG_REG_G0, args[1], const_args[1], c); break; default: fprintf(stderr, "unknown opcode 0x%x\n", opc); tcg_abort(); } } static const TCGTargetOpDef sparc_op_defs[] = { { INDEX_op_exit_tb, { } }, { INDEX_op_goto_tb, { } }, { INDEX_op_call, { "ri" } }, { INDEX_op_br, { } }, { INDEX_op_mov_i32, { "r", "r" } }, { INDEX_op_movi_i32, { "r" } }, { INDEX_op_ld8u_i32, { "r", "r" } }, { INDEX_op_ld8s_i32, { "r", "r" } }, { INDEX_op_ld16u_i32, { "r", "r" } }, { INDEX_op_ld16s_i32, { "r", "r" } }, { INDEX_op_ld_i32, { "r", "r" } }, { INDEX_op_st8_i32, { "rZ", "r" } }, { INDEX_op_st16_i32, { "rZ", "r" } }, { INDEX_op_st_i32, { "rZ", "r" } }, { INDEX_op_add_i32, { "r", "rZ", "rJ" } }, { INDEX_op_mul_i32, { "r", "rZ", "rJ" } }, { INDEX_op_div_i32, { "r", "rZ", "rJ" } }, { INDEX_op_divu_i32, { "r", "rZ", "rJ" } }, { INDEX_op_rem_i32, { "r", "rZ", "rJ" } }, { INDEX_op_remu_i32, { "r", "rZ", "rJ" } }, { INDEX_op_sub_i32, { "r", "rZ", "rJ" } }, { INDEX_op_and_i32, { "r", "rZ", "rJ" } }, { INDEX_op_andc_i32, { "r", "rZ", "rJ" } }, { INDEX_op_or_i32, { "r", "rZ", "rJ" } }, { INDEX_op_orc_i32, { "r", "rZ", "rJ" } }, { INDEX_op_xor_i32, { "r", "rZ", "rJ" } }, { INDEX_op_shl_i32, { "r", "rZ", "rJ" } }, { INDEX_op_shr_i32, { "r", "rZ", "rJ" } }, { INDEX_op_sar_i32, { "r", "rZ", "rJ" } }, { INDEX_op_neg_i32, { "r", "rJ" } }, { INDEX_op_not_i32, { "r", "rJ" } }, { INDEX_op_brcond_i32, { "rZ", "rJ" } }, { INDEX_op_setcond_i32, { "r", "rZ", "rJ" } }, { INDEX_op_movcond_i32, { "r", "rZ", "rJ", "rI", "0" } }, #if TCG_TARGET_REG_BITS == 32 { INDEX_op_brcond2_i32, { "rZ", "rZ", "rJ", "rJ" } }, { INDEX_op_setcond2_i32, { "r", "rZ", "rZ", "rJ", "rJ" } }, { INDEX_op_add2_i32, { "r", "r", "rZ", "rZ", "rJ", "rJ" } }, { INDEX_op_sub2_i32, { "r", "r", "rZ", "rZ", "rJ", "rJ" } }, { INDEX_op_mulu2_i32, { "r", "r", "rZ", "rJ" } }, #endif #if TCG_TARGET_REG_BITS == 64 { INDEX_op_mov_i64, { "r", "r" } }, { INDEX_op_movi_i64, { "r" } }, { INDEX_op_ld8u_i64, { "r", "r" } }, { INDEX_op_ld8s_i64, { "r", "r" } }, { INDEX_op_ld16u_i64, { "r", "r" } }, { INDEX_op_ld16s_i64, { "r", "r" } }, { INDEX_op_ld32u_i64, { "r", "r" } }, { INDEX_op_ld32s_i64, { "r", "r" } }, { INDEX_op_ld_i64, { "r", "r" } }, { INDEX_op_st8_i64, { "rZ", "r" } }, { INDEX_op_st16_i64, { "rZ", "r" } }, { INDEX_op_st32_i64, { "rZ", "r" } }, { INDEX_op_st_i64, { "rZ", "r" } }, { INDEX_op_add_i64, { "r", "rZ", "rJ" } }, { INDEX_op_mul_i64, { "r", "rZ", "rJ" } }, { INDEX_op_div_i64, { "r", "rZ", "rJ" } }, { INDEX_op_divu_i64, { "r", "rZ", "rJ" } }, { INDEX_op_rem_i64, { "r", "rZ", "rJ" } }, { INDEX_op_remu_i64, { "r", "rZ", "rJ" } }, { INDEX_op_sub_i64, { "r", "rZ", "rJ" } }, { INDEX_op_and_i64, { "r", "rZ", "rJ" } }, { INDEX_op_andc_i64, { "r", "rZ", "rJ" } }, { INDEX_op_or_i64, { "r", "rZ", "rJ" } }, { INDEX_op_orc_i64, { "r", "rZ", "rJ" } }, { INDEX_op_xor_i64, { "r", "rZ", "rJ" } }, { INDEX_op_shl_i64, { "r", "rZ", "rJ" } }, { INDEX_op_shr_i64, { "r", "rZ", "rJ" } }, { INDEX_op_sar_i64, { "r", "rZ", "rJ" } }, { INDEX_op_neg_i64, { "r", "rJ" } }, { INDEX_op_not_i64, { "r", "rJ" } }, { INDEX_op_ext32s_i64, { "r", "ri" } }, { INDEX_op_ext32u_i64, { "r", "ri" } }, { INDEX_op_brcond_i64, { "rZ", "rJ" } }, { INDEX_op_setcond_i64, { "r", "rZ", "rJ" } }, { INDEX_op_movcond_i64, { "r", "rZ", "rJ", "rI", "0" } }, #endif #if TCG_TARGET_REG_BITS == 64 { INDEX_op_qemu_ld8u, { "r", "L" } }, { INDEX_op_qemu_ld8s, { "r", "L" } }, { INDEX_op_qemu_ld16u, { "r", "L" } }, { INDEX_op_qemu_ld16s, { "r", "L" } }, { INDEX_op_qemu_ld32, { "r", "L" } }, { INDEX_op_qemu_ld32u, { "r", "L" } }, { INDEX_op_qemu_ld32s, { "r", "L" } }, { INDEX_op_qemu_ld64, { "r", "L" } }, { INDEX_op_qemu_st8, { "L", "L" } }, { INDEX_op_qemu_st16, { "L", "L" } }, { INDEX_op_qemu_st32, { "L", "L" } }, { INDEX_op_qemu_st64, { "L", "L" } }, #elif TARGET_LONG_BITS <= TCG_TARGET_REG_BITS { INDEX_op_qemu_ld8u, { "r", "L" } }, { INDEX_op_qemu_ld8s, { "r", "L" } }, { INDEX_op_qemu_ld16u, { "r", "L" } }, { INDEX_op_qemu_ld16s, { "r", "L" } }, { INDEX_op_qemu_ld32, { "r", "L" } }, { INDEX_op_qemu_ld64, { "r", "r", "L" } }, { INDEX_op_qemu_st8, { "L", "L" } }, { INDEX_op_qemu_st16, { "L", "L" } }, { INDEX_op_qemu_st32, { "L", "L" } }, { INDEX_op_qemu_st64, { "L", "L", "L" } }, #else { INDEX_op_qemu_ld8u, { "r", "L", "L" } }, { INDEX_op_qemu_ld8s, { "r", "L", "L" } }, { INDEX_op_qemu_ld16u, { "r", "L", "L" } }, { INDEX_op_qemu_ld16s, { "r", "L", "L" } }, { INDEX_op_qemu_ld32, { "r", "L", "L" } }, { INDEX_op_qemu_ld64, { "L", "L", "L", "L" } }, { INDEX_op_qemu_st8, { "L", "L", "L" } }, { INDEX_op_qemu_st16, { "L", "L", "L" } }, { INDEX_op_qemu_st32, { "L", "L", "L" } }, { INDEX_op_qemu_st64, { "L", "L", "L", "L" } }, #endif { -1 }, }; static void tcg_target_init(TCGContext *s) { tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I32], 0, 0xffffffff); #if TCG_TARGET_REG_BITS == 64 tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I64], 0, 0xffffffff); #endif tcg_regset_set32(tcg_target_call_clobber_regs, 0, (1 << TCG_REG_G1) | (1 << TCG_REG_G2) | (1 << TCG_REG_G3) | (1 << TCG_REG_G4) | (1 << TCG_REG_G5) | (1 << TCG_REG_G6) | (1 << TCG_REG_G7) | (1 << TCG_REG_O0) | (1 << TCG_REG_O1) | (1 << TCG_REG_O2) | (1 << TCG_REG_O3) | (1 << TCG_REG_O4) | (1 << TCG_REG_O5) | (1 << TCG_REG_O7)); tcg_regset_clear(s->reserved_regs); tcg_regset_set_reg(s->reserved_regs, TCG_REG_G0); /* zero */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_G6); /* reserved for os */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_G7); /* thread pointer */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_I6); /* frame pointer */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_I7); /* return address */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_O6); /* stack pointer */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_T1); /* for internal use */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_T2); /* for internal use */ tcg_add_target_add_op_defs(sparc_op_defs); } #if TCG_TARGET_REG_BITS == 64 # define ELF_HOST_MACHINE EM_SPARCV9 #else # define ELF_HOST_MACHINE EM_SPARC32PLUS # define ELF_HOST_FLAGS EF_SPARC_32PLUS #endif typedef struct { uint32_t len __attribute__((aligned((sizeof(void *))))); uint32_t id; uint8_t version; char augmentation[1]; uint8_t code_align; uint8_t data_align; uint8_t return_column; } DebugFrameCIE; typedef struct { uint32_t len __attribute__((aligned((sizeof(void *))))); uint32_t cie_offset; tcg_target_long func_start __attribute__((packed)); tcg_target_long func_len __attribute__((packed)); uint8_t def_cfa[TCG_TARGET_REG_BITS == 64 ? 4 : 2]; uint8_t win_save; uint8_t ret_save[3]; } DebugFrameFDE; typedef struct { DebugFrameCIE cie; DebugFrameFDE fde; } DebugFrame; static DebugFrame debug_frame = { .cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ .cie.id = -1, .cie.version = 1, .cie.code_align = 1, .cie.data_align = -sizeof(void *) & 0x7f, .cie.return_column = 15, /* o7 */ .fde.len = sizeof(DebugFrameFDE)-4, /* length after .len member */ .fde.def_cfa = { #if TCG_TARGET_REG_BITS == 64 12, 30, /* DW_CFA_def_cfa i6, 2047 */ (2047 & 0x7f) | 0x80, (2047 >> 7) #else 13, 30 /* DW_CFA_def_cfa_register i6 */ #endif }, .fde.win_save = 0x2d, /* DW_CFA_GNU_window_save */ .fde.ret_save = { 9, 15, 31 }, /* DW_CFA_register o7, i7 */ }; void tcg_register_jit(void *buf, size_t buf_size) { debug_frame.fde.func_start = (tcg_target_long) buf; debug_frame.fde.func_len = buf_size; tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); } void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) { uint32_t *ptr = (uint32_t *)jmp_addr; tcg_target_long disp = (tcg_target_long)(addr - jmp_addr) >> 2; /* We can reach the entire address space for 32-bit. For 64-bit the code_gen_buffer can't be larger than 2GB. */ if (TCG_TARGET_REG_BITS == 64 && !check_fit_tl(disp, 30)) { tcg_abort(); } *ptr = CALL | (disp & 0x3fffffff); flush_icache_range(jmp_addr, jmp_addr + 4); }