/* * SH4 emulation * * Copyright (c) 2005 Samuel Tardieu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #ifndef SH4_CPU_H #define SH4_CPU_H #include "cpu-qom.h" #include "exec/cpu-defs.h" /* CPU Subtypes */ #define SH_CPU_SH7750 (1 << 0) #define SH_CPU_SH7750S (1 << 1) #define SH_CPU_SH7750R (1 << 2) #define SH_CPU_SH7751 (1 << 3) #define SH_CPU_SH7751R (1 << 4) #define SH_CPU_SH7785 (1 << 5) #define SH_CPU_SH7750_ALL (SH_CPU_SH7750 | SH_CPU_SH7750S | SH_CPU_SH7750R) #define SH_CPU_SH7751_ALL (SH_CPU_SH7751 | SH_CPU_SH7751R) #define SR_MD 30 #define SR_RB 29 #define SR_BL 28 #define SR_FD 15 #define SR_M 9 #define SR_Q 8 #define SR_I3 7 #define SR_I2 6 #define SR_I1 5 #define SR_I0 4 #define SR_S 1 #define SR_T 0 #define FPSCR_MASK (0x003fffff) #define FPSCR_FR (1 << 21) #define FPSCR_SZ (1 << 20) #define FPSCR_PR (1 << 19) #define FPSCR_DN (1 << 18) #define FPSCR_CAUSE_MASK (0x3f << 12) #define FPSCR_CAUSE_SHIFT (12) #define FPSCR_CAUSE_E (1 << 17) #define FPSCR_CAUSE_V (1 << 16) #define FPSCR_CAUSE_Z (1 << 15) #define FPSCR_CAUSE_O (1 << 14) #define FPSCR_CAUSE_U (1 << 13) #define FPSCR_CAUSE_I (1 << 12) #define FPSCR_ENABLE_MASK (0x1f << 7) #define FPSCR_ENABLE_SHIFT (7) #define FPSCR_ENABLE_V (1 << 11) #define FPSCR_ENABLE_Z (1 << 10) #define FPSCR_ENABLE_O (1 << 9) #define FPSCR_ENABLE_U (1 << 8) #define FPSCR_ENABLE_I (1 << 7) #define FPSCR_FLAG_MASK (0x1f << 2) #define FPSCR_FLAG_SHIFT (2) #define FPSCR_FLAG_V (1 << 6) #define FPSCR_FLAG_Z (1 << 5) #define FPSCR_FLAG_O (1 << 4) #define FPSCR_FLAG_U (1 << 3) #define FPSCR_FLAG_I (1 << 2) #define FPSCR_RM_MASK (0x03 << 0) #define FPSCR_RM_NEAREST (0 << 0) #define FPSCR_RM_ZERO (1 << 0) #define DELAY_SLOT_MASK 0x7 #define DELAY_SLOT (1 << 0) #define DELAY_SLOT_CONDITIONAL (1 << 1) #define DELAY_SLOT_RTE (1 << 2) #define TB_FLAG_PENDING_MOVCA (1 << 3) #define TB_FLAG_UNALIGN (1 << 4) #define GUSA_SHIFT 4 #ifdef CONFIG_USER_ONLY #define GUSA_EXCLUSIVE (1 << 12) #define GUSA_MASK ((0xff << GUSA_SHIFT) | GUSA_EXCLUSIVE) #else /* Provide dummy versions of the above to allow tests against tbflags to be elided while avoiding ifdefs. */ #define GUSA_EXCLUSIVE 0 #define GUSA_MASK 0 #endif #define TB_FLAG_ENVFLAGS_MASK (DELAY_SLOT_MASK | GUSA_MASK) typedef struct tlb_t { uint32_t vpn; /* virtual page number */ uint32_t ppn; /* physical page number */ uint32_t size; /* mapped page size in bytes */ uint8_t asid; /* address space identifier */ uint8_t v:1; /* validity */ uint8_t sz:2; /* page size */ uint8_t sh:1; /* share status */ uint8_t c:1; /* cacheability */ uint8_t pr:2; /* protection key */ uint8_t d:1; /* dirty */ uint8_t wt:1; /* write through */ uint8_t sa:3; /* space attribute (PCMCIA) */ uint8_t tc:1; /* timing control */ } tlb_t; #define UTLB_SIZE 64 #define ITLB_SIZE 4 #define TARGET_INSN_START_EXTRA_WORDS 1 enum sh_features { SH_FEATURE_SH4A = 1, SH_FEATURE_BCR3_AND_BCR4 = 2, }; typedef struct memory_content { uint32_t address; uint32_t value; struct memory_content *next; } memory_content; typedef struct CPUArchState { uint32_t flags; /* general execution flags */ uint32_t gregs[24]; /* general registers */ float32 fregs[32]; /* floating point registers */ uint32_t sr; /* status register (with T split out) */ uint32_t sr_m; /* M bit of status register */ uint32_t sr_q; /* Q bit of status register */ uint32_t sr_t; /* T bit of status register */ uint32_t ssr; /* saved status register */ uint32_t spc; /* saved program counter */ uint32_t gbr; /* global base register */ uint32_t vbr; /* vector base register */ uint32_t sgr; /* saved global register 15 */ uint32_t dbr; /* debug base register */ uint32_t pc; /* program counter */ uint32_t delayed_pc; /* target of delayed branch */ uint32_t delayed_cond; /* condition of delayed branch */ uint32_t mach; /* multiply and accumulate high */ uint32_t macl; /* multiply and accumulate low */ uint32_t pr; /* procedure register */ uint32_t fpscr; /* floating point status/control register */ uint32_t fpul; /* floating point communication register */ /* float point status register */ float_status fp_status; /* Those belong to the specific unit (SH7750) but are handled here */ uint32_t mmucr; /* MMU control register */ uint32_t pteh; /* page table entry high register */ uint32_t ptel; /* page table entry low register */ uint32_t ptea; /* page table entry assistance register */ uint32_t ttb; /* translation table base register */ uint32_t tea; /* TLB exception address register */ uint32_t tra; /* TRAPA exception register */ uint32_t expevt; /* exception event register */ uint32_t intevt; /* interrupt event register */ tlb_t itlb[ITLB_SIZE]; /* instruction translation table */ tlb_t utlb[UTLB_SIZE]; /* unified translation table */ /* LDST = LOCK_ADDR != -1. */ uint32_t lock_addr; uint32_t lock_value; /* Fields up to this point are cleared by a CPU reset */ struct {} end_reset_fields; /* Fields from here on are preserved over CPU reset. */ int id; /* CPU model */ /* The features that we should emulate. See sh_features above. */ uint32_t features; void *intc_handle; int in_sleep; /* SR_BL ignored during sleep */ memory_content *movcal_backup; memory_content **movcal_backup_tail; } CPUSH4State; /** * SuperHCPU: * @env: #CPUSH4State * * A SuperH CPU. */ struct ArchCPU { /*< private >*/ CPUState parent_obj; /*< public >*/ CPUNegativeOffsetState neg; CPUSH4State env; }; void superh_cpu_dump_state(CPUState *cpu, FILE *f, int flags); hwaddr superh_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); int superh_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); int superh_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); void superh_cpu_do_unaligned_access(CPUState *cpu, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) QEMU_NORETURN; void sh4_translate_init(void); void sh4_cpu_list(void); #if !defined(CONFIG_USER_ONLY) bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr); void superh_cpu_do_interrupt(CPUState *cpu); bool superh_cpu_exec_interrupt(CPUState *cpu, int int_req); void cpu_sh4_invalidate_tlb(CPUSH4State *s); uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr); void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr, uint32_t mem_value); uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s, hwaddr addr); void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr, uint32_t mem_value); uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr); void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr, uint32_t mem_value); uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s, hwaddr addr); void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr, uint32_t mem_value); #endif int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr); void cpu_load_tlb(CPUSH4State * env); #define SUPERH_CPU_TYPE_SUFFIX "-" TYPE_SUPERH_CPU #define SUPERH_CPU_TYPE_NAME(model) model SUPERH_CPU_TYPE_SUFFIX #define CPU_RESOLVING_TYPE TYPE_SUPERH_CPU #define cpu_list sh4_cpu_list /* MMU modes definitions */ #define MMU_USER_IDX 1 static inline int cpu_mmu_index (CPUSH4State *env, bool ifetch) { /* The instruction in a RTE delay slot is fetched in privileged mode, but executed in user mode. */ if (ifetch && (env->flags & DELAY_SLOT_RTE)) { return 0; } else { return (env->sr & (1u << SR_MD)) == 0 ? 1 : 0; } } #include "exec/cpu-all.h" /* MMU control register */ #define MMUCR 0x1F000010 #define MMUCR_AT (1<<0) #define MMUCR_TI (1<<2) #define MMUCR_SV (1<<8) #define MMUCR_URC_BITS (6) #define MMUCR_URC_OFFSET (10) #define MMUCR_URC_SIZE (1 << MMUCR_URC_BITS) #define MMUCR_URC_MASK (((MMUCR_URC_SIZE) - 1) << MMUCR_URC_OFFSET) static inline int cpu_mmucr_urc (uint32_t mmucr) { return ((mmucr & MMUCR_URC_MASK) >> MMUCR_URC_OFFSET); } /* PTEH : Page Translation Entry High register */ #define PTEH_ASID_BITS (8) #define PTEH_ASID_SIZE (1 << PTEH_ASID_BITS) #define PTEH_ASID_MASK (PTEH_ASID_SIZE - 1) #define cpu_pteh_asid(pteh) ((pteh) & PTEH_ASID_MASK) #define PTEH_VPN_BITS (22) #define PTEH_VPN_OFFSET (10) #define PTEH_VPN_SIZE (1 << PTEH_VPN_BITS) #define PTEH_VPN_MASK (((PTEH_VPN_SIZE) - 1) << PTEH_VPN_OFFSET) static inline int cpu_pteh_vpn (uint32_t pteh) { return ((pteh & PTEH_VPN_MASK) >> PTEH_VPN_OFFSET); } /* PTEL : Page Translation Entry Low register */ #define PTEL_V (1 << 8) #define cpu_ptel_v(ptel) (((ptel) & PTEL_V) >> 8) #define PTEL_C (1 << 3) #define cpu_ptel_c(ptel) (((ptel) & PTEL_C) >> 3) #define PTEL_D (1 << 2) #define cpu_ptel_d(ptel) (((ptel) & PTEL_D) >> 2) #define PTEL_SH (1 << 1) #define cpu_ptel_sh(ptel)(((ptel) & PTEL_SH) >> 1) #define PTEL_WT (1 << 0) #define cpu_ptel_wt(ptel) ((ptel) & PTEL_WT) #define PTEL_SZ_HIGH_OFFSET (7) #define PTEL_SZ_HIGH (1 << PTEL_SZ_HIGH_OFFSET) #define PTEL_SZ_LOW_OFFSET (4) #define PTEL_SZ_LOW (1 << PTEL_SZ_LOW_OFFSET) static inline int cpu_ptel_sz (uint32_t ptel) { int sz; sz = (ptel & PTEL_SZ_HIGH) >> PTEL_SZ_HIGH_OFFSET; sz <<= 1; sz |= (ptel & PTEL_SZ_LOW) >> PTEL_SZ_LOW_OFFSET; return sz; } #define PTEL_PPN_BITS (19) #define PTEL_PPN_OFFSET (10) #define PTEL_PPN_SIZE (1 << PTEL_PPN_BITS) #define PTEL_PPN_MASK (((PTEL_PPN_SIZE) - 1) << PTEL_PPN_OFFSET) static inline int cpu_ptel_ppn (uint32_t ptel) { return ((ptel & PTEL_PPN_MASK) >> PTEL_PPN_OFFSET); } #define PTEL_PR_BITS (2) #define PTEL_PR_OFFSET (5) #define PTEL_PR_SIZE (1 << PTEL_PR_BITS) #define PTEL_PR_MASK (((PTEL_PR_SIZE) - 1) << PTEL_PR_OFFSET) static inline int cpu_ptel_pr (uint32_t ptel) { return ((ptel & PTEL_PR_MASK) >> PTEL_PR_OFFSET); } /* PTEA : Page Translation Entry Assistance register */ #define PTEA_SA_BITS (3) #define PTEA_SA_SIZE (1 << PTEA_SA_BITS) #define PTEA_SA_MASK (PTEA_SA_SIZE - 1) #define cpu_ptea_sa(ptea) ((ptea) & PTEA_SA_MASK) #define PTEA_TC (1 << 3) #define cpu_ptea_tc(ptea) (((ptea) & PTEA_TC) >> 3) static inline target_ulong cpu_read_sr(CPUSH4State *env) { return env->sr | (env->sr_m << SR_M) | (env->sr_q << SR_Q) | (env->sr_t << SR_T); } static inline void cpu_write_sr(CPUSH4State *env, target_ulong sr) { env->sr_m = (sr >> SR_M) & 1; env->sr_q = (sr >> SR_Q) & 1; env->sr_t = (sr >> SR_T) & 1; env->sr = sr & ~((1u << SR_M) | (1u << SR_Q) | (1u << SR_T)); } static inline void cpu_get_tb_cpu_state(CPUSH4State *env, target_ulong *pc, target_ulong *cs_base, uint32_t *flags) { *pc = env->pc; /* For a gUSA region, notice the end of the region. */ *cs_base = env->flags & GUSA_MASK ? env->gregs[0] : 0; *flags = env->flags /* TB_FLAG_ENVFLAGS_MASK: bits 0-2, 4-12 */ | (env->fpscr & (FPSCR_FR | FPSCR_SZ | FPSCR_PR)) /* Bits 19-21 */ | (env->sr & ((1u << SR_MD) | (1u << SR_RB))) /* Bits 29-30 */ | (env->sr & (1u << SR_FD)) /* Bit 15 */ | (env->movcal_backup ? TB_FLAG_PENDING_MOVCA : 0); /* Bit 3 */ #ifdef CONFIG_USER_ONLY *flags |= TB_FLAG_UNALIGN * !env_cpu(env)->prctl_unalign_sigbus; #endif } #endif /* SH4_CPU_H */