/* * RISC-V emulation for qemu: main translation routines. * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "cpu.h" #include "tcg/tcg-op.h" #include "disas/disas.h" #include "exec/cpu_ldst.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "exec/helper-gen.h" #include "exec/translator.h" #include "exec/log.h" #include "semihosting/semihost.h" #include "instmap.h" #include "internals.h" /* global register indices */ static TCGv cpu_gpr[32], cpu_gprh[32], cpu_pc, cpu_vl, cpu_vstart; static TCGv_i64 cpu_fpr[32]; /* assume F and D extensions */ static TCGv load_res; static TCGv load_val; /* globals for PM CSRs */ static TCGv pm_mask; static TCGv pm_base; #include "exec/gen-icount.h" /* * If an operation is being performed on less than TARGET_LONG_BITS, * it may require the inputs to be sign- or zero-extended; which will * depend on the exact operation being performed. */ typedef enum { EXT_NONE, EXT_SIGN, EXT_ZERO, } DisasExtend; typedef struct DisasContext { DisasContextBase base; /* pc_succ_insn points to the instruction following base.pc_next */ target_ulong pc_succ_insn; target_ulong priv_ver; RISCVMXL misa_mxl_max; RISCVMXL xl; uint32_t misa_ext; uint32_t opcode; uint32_t mstatus_fs; uint32_t mstatus_vs; uint32_t mstatus_hs_fs; uint32_t mstatus_hs_vs; uint32_t mem_idx; /* Remember the rounding mode encoded in the previous fp instruction, which we have already installed into env->fp_status. Or -1 for no previous fp instruction. Note that we exit the TB when writing to any system register, which includes CSR_FRM, so we do not have to reset this known value. */ int frm; RISCVMXL ol; bool virt_inst_excp; bool virt_enabled; const RISCVCPUConfig *cfg_ptr; bool hlsx; /* vector extension */ bool vill; /* * Encode LMUL to lmul as follows: * LMUL vlmul lmul * 1 000 0 * 2 001 1 * 4 010 2 * 8 011 3 * - 100 - * 1/8 101 -3 * 1/4 110 -2 * 1/2 111 -1 */ int8_t lmul; uint8_t sew; uint8_t vta; uint8_t vma; bool cfg_vta_all_1s; target_ulong vstart; bool vl_eq_vlmax; uint8_t ntemp; CPUState *cs; TCGv zero; /* Space for 3 operands plus 1 extra for address computation. */ TCGv temp[4]; /* Space for 4 operands(1 dest and <=3 src) for float point computation */ TCGv_i64 ftemp[4]; uint8_t nftemp; /* PointerMasking extension */ bool pm_mask_enabled; bool pm_base_enabled; /* Use icount trigger for native debug */ bool itrigger; /* FRM is known to contain a valid value. */ bool frm_valid; /* TCG of the current insn_start */ TCGOp *insn_start; } DisasContext; static inline bool has_ext(DisasContext *ctx, uint32_t ext) { return ctx->misa_ext & ext; } static bool always_true_p(DisasContext *ctx __attribute__((__unused__))) { return true; } static bool has_xthead_p(DisasContext *ctx __attribute__((__unused__))) { return ctx->cfg_ptr->ext_xtheadba || ctx->cfg_ptr->ext_xtheadbb || ctx->cfg_ptr->ext_xtheadbs || ctx->cfg_ptr->ext_xtheadcmo || ctx->cfg_ptr->ext_xtheadcondmov || ctx->cfg_ptr->ext_xtheadfmemidx || ctx->cfg_ptr->ext_xtheadfmv || ctx->cfg_ptr->ext_xtheadmac || ctx->cfg_ptr->ext_xtheadmemidx || ctx->cfg_ptr->ext_xtheadmempair || ctx->cfg_ptr->ext_xtheadsync; } #define MATERIALISE_EXT_PREDICATE(ext) \ static bool has_ ## ext ## _p(DisasContext *ctx) \ { \ return ctx->cfg_ptr->ext_ ## ext ; \ } MATERIALISE_EXT_PREDICATE(XVentanaCondOps); #ifdef TARGET_RISCV32 #define get_xl(ctx) MXL_RV32 #elif defined(CONFIG_USER_ONLY) #define get_xl(ctx) MXL_RV64 #else #define get_xl(ctx) ((ctx)->xl) #endif /* The word size for this machine mode. */ static inline int __attribute__((unused)) get_xlen(DisasContext *ctx) { return 16 << get_xl(ctx); } /* The operation length, as opposed to the xlen. */ #ifdef TARGET_RISCV32 #define get_ol(ctx) MXL_RV32 #else #define get_ol(ctx) ((ctx)->ol) #endif static inline int get_olen(DisasContext *ctx) { return 16 << get_ol(ctx); } /* The maximum register length */ #ifdef TARGET_RISCV32 #define get_xl_max(ctx) MXL_RV32 #else #define get_xl_max(ctx) ((ctx)->misa_mxl_max) #endif /* * RISC-V requires NaN-boxing of narrower width floating point values. * This applies when a 32-bit value is assigned to a 64-bit FP register. * For consistency and simplicity, we nanbox results even when the RVD * extension is not present. */ static void gen_nanbox_s(TCGv_i64 out, TCGv_i64 in) { tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(32, 32)); } static void gen_nanbox_h(TCGv_i64 out, TCGv_i64 in) { tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(16, 48)); } /* * A narrow n-bit operation, where n < FLEN, checks that input operands * are correctly Nan-boxed, i.e., all upper FLEN - n bits are 1. * If so, the least-significant bits of the input are used, otherwise the * input value is treated as an n-bit canonical NaN (v2.2 section 9.2). * * Here, the result is always nan-boxed, even the canonical nan. */ static void gen_check_nanbox_h(TCGv_i64 out, TCGv_i64 in) { TCGv_i64 t_max = tcg_const_i64(0xffffffffffff0000ull); TCGv_i64 t_nan = tcg_const_i64(0xffffffffffff7e00ull); tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan); tcg_temp_free_i64(t_max); tcg_temp_free_i64(t_nan); } static void gen_check_nanbox_s(TCGv_i64 out, TCGv_i64 in) { TCGv_i64 t_max = tcg_constant_i64(0xffffffff00000000ull); TCGv_i64 t_nan = tcg_constant_i64(0xffffffff7fc00000ull); tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan); } static void decode_save_opc(DisasContext *ctx) { assert(ctx->insn_start != NULL); tcg_set_insn_start_param(ctx->insn_start, 1, ctx->opcode); ctx->insn_start = NULL; } static void gen_set_pc_imm(DisasContext *ctx, target_ulong dest) { if (get_xl(ctx) == MXL_RV32) { dest = (int32_t)dest; } tcg_gen_movi_tl(cpu_pc, dest); } static void gen_set_pc(DisasContext *ctx, TCGv dest) { if (get_xl(ctx) == MXL_RV32) { tcg_gen_ext32s_tl(cpu_pc, dest); } else { tcg_gen_mov_tl(cpu_pc, dest); } } static void generate_exception(DisasContext *ctx, int excp) { gen_set_pc_imm(ctx, ctx->base.pc_next); gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp)); ctx->base.is_jmp = DISAS_NORETURN; } static void gen_exception_illegal(DisasContext *ctx) { tcg_gen_st_i32(tcg_constant_i32(ctx->opcode), cpu_env, offsetof(CPURISCVState, bins)); if (ctx->virt_inst_excp) { generate_exception(ctx, RISCV_EXCP_VIRT_INSTRUCTION_FAULT); } else { generate_exception(ctx, RISCV_EXCP_ILLEGAL_INST); } } static void gen_exception_inst_addr_mis(DisasContext *ctx) { tcg_gen_st_tl(cpu_pc, cpu_env, offsetof(CPURISCVState, badaddr)); generate_exception(ctx, RISCV_EXCP_INST_ADDR_MIS); } static void lookup_and_goto_ptr(DisasContext *ctx) { #ifndef CONFIG_USER_ONLY if (ctx->itrigger) { gen_helper_itrigger_match(cpu_env); } #endif tcg_gen_lookup_and_goto_ptr(); } static void exit_tb(DisasContext *ctx) { #ifndef CONFIG_USER_ONLY if (ctx->itrigger) { gen_helper_itrigger_match(cpu_env); } #endif tcg_gen_exit_tb(NULL, 0); } static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) { /* * Under itrigger, instruction executes one by one like singlestep, * direct block chain benefits will be small. */ if (translator_use_goto_tb(&ctx->base, dest) && !ctx->itrigger) { tcg_gen_goto_tb(n); gen_set_pc_imm(ctx, dest); tcg_gen_exit_tb(ctx->base.tb, n); } else { gen_set_pc_imm(ctx, dest); lookup_and_goto_ptr(ctx); } } /* * Wrappers for getting reg values. * * The $zero register does not have cpu_gpr[0] allocated -- we supply the * constant zero as a source, and an uninitialized sink as destination. * * Further, we may provide an extension for word operations. */ static TCGv temp_new(DisasContext *ctx) { assert(ctx->ntemp < ARRAY_SIZE(ctx->temp)); return ctx->temp[ctx->ntemp++] = tcg_temp_new(); } static TCGv get_gpr(DisasContext *ctx, int reg_num, DisasExtend ext) { TCGv t; if (reg_num == 0) { return ctx->zero; } switch (get_ol(ctx)) { case MXL_RV32: switch (ext) { case EXT_NONE: break; case EXT_SIGN: t = temp_new(ctx); tcg_gen_ext32s_tl(t, cpu_gpr[reg_num]); return t; case EXT_ZERO: t = temp_new(ctx); tcg_gen_ext32u_tl(t, cpu_gpr[reg_num]); return t; default: g_assert_not_reached(); } break; case MXL_RV64: case MXL_RV128: break; default: g_assert_not_reached(); } return cpu_gpr[reg_num]; } static TCGv get_gprh(DisasContext *ctx, int reg_num) { assert(get_xl(ctx) == MXL_RV128); if (reg_num == 0) { return ctx->zero; } return cpu_gprh[reg_num]; } static TCGv dest_gpr(DisasContext *ctx, int reg_num) { if (reg_num == 0 || get_olen(ctx) < TARGET_LONG_BITS) { return temp_new(ctx); } return cpu_gpr[reg_num]; } static TCGv dest_gprh(DisasContext *ctx, int reg_num) { if (reg_num == 0) { return temp_new(ctx); } return cpu_gprh[reg_num]; } static void gen_set_gpr(DisasContext *ctx, int reg_num, TCGv t) { if (reg_num != 0) { switch (get_ol(ctx)) { case MXL_RV32: tcg_gen_ext32s_tl(cpu_gpr[reg_num], t); break; case MXL_RV64: case MXL_RV128: tcg_gen_mov_tl(cpu_gpr[reg_num], t); break; default: g_assert_not_reached(); } if (get_xl_max(ctx) == MXL_RV128) { tcg_gen_sari_tl(cpu_gprh[reg_num], cpu_gpr[reg_num], 63); } } } static void gen_set_gpri(DisasContext *ctx, int reg_num, target_long imm) { if (reg_num != 0) { switch (get_ol(ctx)) { case MXL_RV32: tcg_gen_movi_tl(cpu_gpr[reg_num], (int32_t)imm); break; case MXL_RV64: case MXL_RV128: tcg_gen_movi_tl(cpu_gpr[reg_num], imm); break; default: g_assert_not_reached(); } if (get_xl_max(ctx) == MXL_RV128) { tcg_gen_movi_tl(cpu_gprh[reg_num], -(imm < 0)); } } } static void gen_set_gpr128(DisasContext *ctx, int reg_num, TCGv rl, TCGv rh) { assert(get_ol(ctx) == MXL_RV128); if (reg_num != 0) { tcg_gen_mov_tl(cpu_gpr[reg_num], rl); tcg_gen_mov_tl(cpu_gprh[reg_num], rh); } } static TCGv_i64 ftemp_new(DisasContext *ctx) { assert(ctx->nftemp < ARRAY_SIZE(ctx->ftemp)); return ctx->ftemp[ctx->nftemp++] = tcg_temp_new_i64(); } static TCGv_i64 get_fpr_hs(DisasContext *ctx, int reg_num) { if (!ctx->cfg_ptr->ext_zfinx) { return cpu_fpr[reg_num]; } if (reg_num == 0) { return tcg_constant_i64(0); } switch (get_xl(ctx)) { case MXL_RV32: #ifdef TARGET_RISCV32 { TCGv_i64 t = ftemp_new(ctx); tcg_gen_ext_i32_i64(t, cpu_gpr[reg_num]); return t; } #else /* fall through */ case MXL_RV64: return cpu_gpr[reg_num]; #endif default: g_assert_not_reached(); } } static TCGv_i64 get_fpr_d(DisasContext *ctx, int reg_num) { if (!ctx->cfg_ptr->ext_zfinx) { return cpu_fpr[reg_num]; } if (reg_num == 0) { return tcg_constant_i64(0); } switch (get_xl(ctx)) { case MXL_RV32: { TCGv_i64 t = ftemp_new(ctx); tcg_gen_concat_tl_i64(t, cpu_gpr[reg_num], cpu_gpr[reg_num + 1]); return t; } #ifdef TARGET_RISCV64 case MXL_RV64: return cpu_gpr[reg_num]; #endif default: g_assert_not_reached(); } } static TCGv_i64 dest_fpr(DisasContext *ctx, int reg_num) { if (!ctx->cfg_ptr->ext_zfinx) { return cpu_fpr[reg_num]; } if (reg_num == 0) { return ftemp_new(ctx); } switch (get_xl(ctx)) { case MXL_RV32: return ftemp_new(ctx); #ifdef TARGET_RISCV64 case MXL_RV64: return cpu_gpr[reg_num]; #endif default: g_assert_not_reached(); } } /* assume t is nanboxing (for normal) or sign-extended (for zfinx) */ static void gen_set_fpr_hs(DisasContext *ctx, int reg_num, TCGv_i64 t) { if (!ctx->cfg_ptr->ext_zfinx) { tcg_gen_mov_i64(cpu_fpr[reg_num], t); return; } if (reg_num != 0) { switch (get_xl(ctx)) { case MXL_RV32: #ifdef TARGET_RISCV32 tcg_gen_extrl_i64_i32(cpu_gpr[reg_num], t); break; #else /* fall through */ case MXL_RV64: tcg_gen_mov_i64(cpu_gpr[reg_num], t); break; #endif default: g_assert_not_reached(); } } } static void gen_set_fpr_d(DisasContext *ctx, int reg_num, TCGv_i64 t) { if (!ctx->cfg_ptr->ext_zfinx) { tcg_gen_mov_i64(cpu_fpr[reg_num], t); return; } if (reg_num != 0) { switch (get_xl(ctx)) { case MXL_RV32: #ifdef TARGET_RISCV32 tcg_gen_extr_i64_i32(cpu_gpr[reg_num], cpu_gpr[reg_num + 1], t); break; #else tcg_gen_ext32s_i64(cpu_gpr[reg_num], t); tcg_gen_sari_i64(cpu_gpr[reg_num + 1], t, 32); break; case MXL_RV64: tcg_gen_mov_i64(cpu_gpr[reg_num], t); break; #endif default: g_assert_not_reached(); } } } static void gen_jal(DisasContext *ctx, int rd, target_ulong imm) { target_ulong next_pc; /* check misaligned: */ next_pc = ctx->base.pc_next + imm; if (!has_ext(ctx, RVC)) { if ((next_pc & 0x3) != 0) { gen_exception_inst_addr_mis(ctx); return; } } gen_set_gpri(ctx, rd, ctx->pc_succ_insn); gen_goto_tb(ctx, 0, ctx->base.pc_next + imm); /* must use this for safety */ ctx->base.is_jmp = DISAS_NORETURN; } /* Compute a canonical address from a register plus offset. */ static TCGv get_address(DisasContext *ctx, int rs1, int imm) { TCGv addr = temp_new(ctx); TCGv src1 = get_gpr(ctx, rs1, EXT_NONE); tcg_gen_addi_tl(addr, src1, imm); if (ctx->pm_mask_enabled) { tcg_gen_andc_tl(addr, addr, pm_mask); } else if (get_xl(ctx) == MXL_RV32) { tcg_gen_ext32u_tl(addr, addr); } if (ctx->pm_base_enabled) { tcg_gen_or_tl(addr, addr, pm_base); } return addr; } /* Compute a canonical address from a register plus reg offset. */ static TCGv get_address_indexed(DisasContext *ctx, int rs1, TCGv offs) { TCGv addr = temp_new(ctx); TCGv src1 = get_gpr(ctx, rs1, EXT_NONE); tcg_gen_add_tl(addr, src1, offs); if (ctx->pm_mask_enabled) { tcg_gen_andc_tl(addr, addr, pm_mask); } else if (get_xl(ctx) == MXL_RV32) { tcg_gen_ext32u_tl(addr, addr); } if (ctx->pm_base_enabled) { tcg_gen_or_tl(addr, addr, pm_base); } return addr; } #ifndef CONFIG_USER_ONLY /* The states of mstatus_fs are: * 0 = disabled, 1 = initial, 2 = clean, 3 = dirty * We will have already diagnosed disabled state, * and need to turn initial/clean into dirty. */ static void mark_fs_dirty(DisasContext *ctx) { TCGv tmp; if (!has_ext(ctx, RVF)) { return; } if (ctx->mstatus_fs != MSTATUS_FS) { /* Remember the state change for the rest of the TB. */ ctx->mstatus_fs = MSTATUS_FS; tmp = tcg_temp_new(); tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS); tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); tcg_temp_free(tmp); } if (ctx->virt_enabled && ctx->mstatus_hs_fs != MSTATUS_FS) { /* Remember the stage change for the rest of the TB. */ ctx->mstatus_hs_fs = MSTATUS_FS; tmp = tcg_temp_new(); tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS); tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); tcg_temp_free(tmp); } } #else static inline void mark_fs_dirty(DisasContext *ctx) { } #endif #ifndef CONFIG_USER_ONLY /* The states of mstatus_vs are: * 0 = disabled, 1 = initial, 2 = clean, 3 = dirty * We will have already diagnosed disabled state, * and need to turn initial/clean into dirty. */ static void mark_vs_dirty(DisasContext *ctx) { TCGv tmp; if (ctx->mstatus_vs != MSTATUS_VS) { /* Remember the state change for the rest of the TB. */ ctx->mstatus_vs = MSTATUS_VS; tmp = tcg_temp_new(); tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS); tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); tcg_temp_free(tmp); } if (ctx->virt_enabled && ctx->mstatus_hs_vs != MSTATUS_VS) { /* Remember the stage change for the rest of the TB. */ ctx->mstatus_hs_vs = MSTATUS_VS; tmp = tcg_temp_new(); tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS); tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); tcg_temp_free(tmp); } } #else static inline void mark_vs_dirty(DisasContext *ctx) { } #endif static void gen_set_rm(DisasContext *ctx, int rm) { if (ctx->frm == rm) { return; } ctx->frm = rm; if (rm == RISCV_FRM_DYN) { /* The helper will return only if frm valid. */ ctx->frm_valid = true; } /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */ decode_save_opc(ctx); gen_helper_set_rounding_mode(cpu_env, tcg_constant_i32(rm)); } static void gen_set_rm_chkfrm(DisasContext *ctx, int rm) { if (ctx->frm == rm && ctx->frm_valid) { return; } ctx->frm = rm; ctx->frm_valid = true; /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */ decode_save_opc(ctx); gen_helper_set_rounding_mode_chkfrm(cpu_env, tcg_constant_i32(rm)); } static int ex_plus_1(DisasContext *ctx, int nf) { return nf + 1; } #define EX_SH(amount) \ static int ex_shift_##amount(DisasContext *ctx, int imm) \ { \ return imm << amount; \ } EX_SH(1) EX_SH(2) EX_SH(3) EX_SH(4) EX_SH(12) #define REQUIRE_EXT(ctx, ext) do { \ if (!has_ext(ctx, ext)) { \ return false; \ } \ } while (0) #define REQUIRE_32BIT(ctx) do { \ if (get_xl(ctx) != MXL_RV32) { \ return false; \ } \ } while (0) #define REQUIRE_64BIT(ctx) do { \ if (get_xl(ctx) != MXL_RV64) { \ return false; \ } \ } while (0) #define REQUIRE_128BIT(ctx) do { \ if (get_xl(ctx) != MXL_RV128) { \ return false; \ } \ } while (0) #define REQUIRE_64_OR_128BIT(ctx) do { \ if (get_xl(ctx) == MXL_RV32) { \ return false; \ } \ } while (0) #define REQUIRE_EITHER_EXT(ctx, A, B) do { \ if (!ctx->cfg_ptr->ext_##A && \ !ctx->cfg_ptr->ext_##B) { \ return false; \ } \ } while (0) static int ex_rvc_register(DisasContext *ctx, int reg) { return 8 + reg; } static int ex_rvc_shiftli(DisasContext *ctx, int imm) { /* For RV128 a shamt of 0 means a shift by 64. */ if (get_ol(ctx) == MXL_RV128) { imm = imm ? imm : 64; } return imm; } static int ex_rvc_shiftri(DisasContext *ctx, int imm) { /* * For RV128 a shamt of 0 means a shift by 64, furthermore, for right * shifts, the shamt is sign-extended. */ if (get_ol(ctx) == MXL_RV128) { imm = imm | (imm & 32) << 1; imm = imm ? imm : 64; } return imm; } /* Include the auto-generated decoder for 32 bit insn */ #include "decode-insn32.c.inc" static bool gen_logic_imm_fn(DisasContext *ctx, arg_i *a, void (*func)(TCGv, TCGv, target_long)) { TCGv dest = dest_gpr(ctx, a->rd); TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE); func(dest, src1, a->imm); if (get_xl(ctx) == MXL_RV128) { TCGv src1h = get_gprh(ctx, a->rs1); TCGv desth = dest_gprh(ctx, a->rd); func(desth, src1h, -(a->imm < 0)); gen_set_gpr128(ctx, a->rd, dest, desth); } else { gen_set_gpr(ctx, a->rd, dest); } return true; } static bool gen_logic(DisasContext *ctx, arg_r *a, void (*func)(TCGv, TCGv, TCGv)) { TCGv dest = dest_gpr(ctx, a->rd); TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE); TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE); func(dest, src1, src2); if (get_xl(ctx) == MXL_RV128) { TCGv src1h = get_gprh(ctx, a->rs1); TCGv src2h = get_gprh(ctx, a->rs2); TCGv desth = dest_gprh(ctx, a->rd); func(desth, src1h, src2h); gen_set_gpr128(ctx, a->rd, dest, desth); } else { gen_set_gpr(ctx, a->rd, dest); } return true; } static bool gen_arith_imm_fn(DisasContext *ctx, arg_i *a, DisasExtend ext, void (*func)(TCGv, TCGv, target_long), void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long)) { TCGv dest = dest_gpr(ctx, a->rd); TCGv src1 = get_gpr(ctx, a->rs1, ext); if (get_ol(ctx) < MXL_RV128) { func(dest, src1, a->imm); gen_set_gpr(ctx, a->rd, dest); } else { if (f128 == NULL) { return false; } TCGv src1h = get_gprh(ctx, a->rs1); TCGv desth = dest_gprh(ctx, a->rd); f128(dest, desth, src1, src1h, a->imm); gen_set_gpr128(ctx, a->rd, dest, desth); } return true; } static bool gen_arith_imm_tl(DisasContext *ctx, arg_i *a, DisasExtend ext, void (*func)(TCGv, TCGv, TCGv), void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) { TCGv dest = dest_gpr(ctx, a->rd); TCGv src1 = get_gpr(ctx, a->rs1, ext); TCGv src2 = tcg_constant_tl(a->imm); if (get_ol(ctx) < MXL_RV128) { func(dest, src1, src2); gen_set_gpr(ctx, a->rd, dest); } else { if (f128 == NULL) { return false; } TCGv src1h = get_gprh(ctx, a->rs1); TCGv src2h = tcg_constant_tl(-(a->imm < 0)); TCGv desth = dest_gprh(ctx, a->rd); f128(dest, desth, src1, src1h, src2, src2h); gen_set_gpr128(ctx, a->rd, dest, desth); } return true; } static bool gen_arith(DisasContext *ctx, arg_r *a, DisasExtend ext, void (*func)(TCGv, TCGv, TCGv), void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) { TCGv dest = dest_gpr(ctx, a->rd); TCGv src1 = get_gpr(ctx, a->rs1, ext); TCGv src2 = get_gpr(ctx, a->rs2, ext); if (get_ol(ctx) < MXL_RV128) { func(dest, src1, src2); gen_set_gpr(ctx, a->rd, dest); } else { if (f128 == NULL) { return false; } TCGv src1h = get_gprh(ctx, a->rs1); TCGv src2h = get_gprh(ctx, a->rs2); TCGv desth = dest_gprh(ctx, a->rd); f128(dest, desth, src1, src1h, src2, src2h); gen_set_gpr128(ctx, a->rd, dest, desth); } return true; } static bool gen_arith_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext, void (*f_tl)(TCGv, TCGv, TCGv), void (*f_32)(TCGv, TCGv, TCGv), void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) { int olen = get_olen(ctx); if (olen != TARGET_LONG_BITS) { if (olen == 32) { f_tl = f_32; } else if (olen != 128) { g_assert_not_reached(); } } return gen_arith(ctx, a, ext, f_tl, f_128); } static bool gen_shift_imm_fn(DisasContext *ctx, arg_shift *a, DisasExtend ext, void (*func)(TCGv, TCGv, target_long), void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long)) { TCGv dest, src1; int max_len = get_olen(ctx); if (a->shamt >= max_len) { return false; } dest = dest_gpr(ctx, a->rd); src1 = get_gpr(ctx, a->rs1, ext); if (max_len < 128) { func(dest, src1, a->shamt); gen_set_gpr(ctx, a->rd, dest); } else { TCGv src1h = get_gprh(ctx, a->rs1); TCGv desth = dest_gprh(ctx, a->rd); if (f128 == NULL) { return false; } f128(dest, desth, src1, src1h, a->shamt); gen_set_gpr128(ctx, a->rd, dest, desth); } return true; } static bool gen_shift_imm_fn_per_ol(DisasContext *ctx, arg_shift *a, DisasExtend ext, void (*f_tl)(TCGv, TCGv, target_long), void (*f_32)(TCGv, TCGv, target_long), void (*f_128)(TCGv, TCGv, TCGv, TCGv, target_long)) { int olen = get_olen(ctx); if (olen != TARGET_LONG_BITS) { if (olen == 32) { f_tl = f_32; } else if (olen != 128) { g_assert_not_reached(); } } return gen_shift_imm_fn(ctx, a, ext, f_tl, f_128); } static bool gen_shift_imm_tl(DisasContext *ctx, arg_shift *a, DisasExtend ext, void (*func)(TCGv, TCGv, TCGv)) { TCGv dest, src1, src2; int max_len = get_olen(ctx); if (a->shamt >= max_len) { return false; } dest = dest_gpr(ctx, a->rd); src1 = get_gpr(ctx, a->rs1, ext); src2 = tcg_constant_tl(a->shamt); func(dest, src1, src2); gen_set_gpr(ctx, a->rd, dest); return true; } static bool gen_shift(DisasContext *ctx, arg_r *a, DisasExtend ext, void (*func)(TCGv, TCGv, TCGv), void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv)) { TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE); TCGv ext2 = tcg_temp_new(); int max_len = get_olen(ctx); tcg_gen_andi_tl(ext2, src2, max_len - 1); TCGv dest = dest_gpr(ctx, a->rd); TCGv src1 = get_gpr(ctx, a->rs1, ext); if (max_len < 128) { func(dest, src1, ext2); gen_set_gpr(ctx, a->rd, dest); } else { TCGv src1h = get_gprh(ctx, a->rs1); TCGv desth = dest_gprh(ctx, a->rd); if (f128 == NULL) { return false; } f128(dest, desth, src1, src1h, ext2); gen_set_gpr128(ctx, a->rd, dest, desth); } tcg_temp_free(ext2); return true; } static bool gen_shift_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext, void (*f_tl)(TCGv, TCGv, TCGv), void (*f_32)(TCGv, TCGv, TCGv), void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv)) { int olen = get_olen(ctx); if (olen != TARGET_LONG_BITS) { if (olen == 32) { f_tl = f_32; } else if (olen != 128) { g_assert_not_reached(); } } return gen_shift(ctx, a, ext, f_tl, f_128); } static bool gen_unary(DisasContext *ctx, arg_r2 *a, DisasExtend ext, void (*func)(TCGv, TCGv)) { TCGv dest = dest_gpr(ctx, a->rd); TCGv src1 = get_gpr(ctx, a->rs1, ext); func(dest, src1); gen_set_gpr(ctx, a->rd, dest); return true; } static bool gen_unary_per_ol(DisasContext *ctx, arg_r2 *a, DisasExtend ext, void (*f_tl)(TCGv, TCGv), void (*f_32)(TCGv, TCGv)) { int olen = get_olen(ctx); if (olen != TARGET_LONG_BITS) { if (olen == 32) { f_tl = f_32; } else { g_assert_not_reached(); } } return gen_unary(ctx, a, ext, f_tl); } static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc) { DisasContext *ctx = container_of(dcbase, DisasContext, base); CPUState *cpu = ctx->cs; CPURISCVState *env = cpu->env_ptr; return cpu_ldl_code(env, pc); } /* Include insn module translation function */ #include "insn_trans/trans_rvi.c.inc" #include "insn_trans/trans_rvm.c.inc" #include "insn_trans/trans_rva.c.inc" #include "insn_trans/trans_rvf.c.inc" #include "insn_trans/trans_rvd.c.inc" #include "insn_trans/trans_rvh.c.inc" #include "insn_trans/trans_rvv.c.inc" #include "insn_trans/trans_rvb.c.inc" #include "insn_trans/trans_rvzawrs.c.inc" #include "insn_trans/trans_rvzfh.c.inc" #include "insn_trans/trans_rvk.c.inc" #include "insn_trans/trans_privileged.c.inc" #include "insn_trans/trans_svinval.c.inc" #include "decode-xthead.c.inc" #include "insn_trans/trans_xthead.c.inc" #include "insn_trans/trans_xventanacondops.c.inc" /* Include the auto-generated decoder for 16 bit insn */ #include "decode-insn16.c.inc" /* Include decoders for factored-out extensions */ #include "decode-XVentanaCondOps.c.inc" /* The specification allows for longer insns, but not supported by qemu. */ #define MAX_INSN_LEN 4 static inline int insn_len(uint16_t first_word) { return (first_word & 3) == 3 ? 4 : 2; } static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode) { /* * A table with predicate (i.e., guard) functions and decoder functions * that are tested in-order until a decoder matches onto the opcode. */ static const struct { bool (*guard_func)(DisasContext *); bool (*decode_func)(DisasContext *, uint32_t); } decoders[] = { { always_true_p, decode_insn32 }, { has_xthead_p, decode_xthead }, { has_XVentanaCondOps_p, decode_XVentanaCodeOps }, }; ctx->virt_inst_excp = false; /* Check for compressed insn */ if (insn_len(opcode) == 2) { ctx->opcode = opcode; ctx->pc_succ_insn = ctx->base.pc_next + 2; if (has_ext(ctx, RVC) && decode_insn16(ctx, opcode)) { return; } } else { uint32_t opcode32 = opcode; opcode32 = deposit32(opcode32, 16, 16, translator_lduw(env, &ctx->base, ctx->base.pc_next + 2)); ctx->opcode = opcode32; ctx->pc_succ_insn = ctx->base.pc_next + 4; for (size_t i = 0; i < ARRAY_SIZE(decoders); ++i) { if (decoders[i].guard_func(ctx) && decoders[i].decode_func(ctx, opcode32)) { return; } } } gen_exception_illegal(ctx); } static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) { DisasContext *ctx = container_of(dcbase, DisasContext, base); CPURISCVState *env = cs->env_ptr; RISCVCPU *cpu = RISCV_CPU(cs); uint32_t tb_flags = ctx->base.tb->flags; ctx->pc_succ_insn = ctx->base.pc_first; ctx->mem_idx = FIELD_EX32(tb_flags, TB_FLAGS, MEM_IDX); ctx->mstatus_fs = tb_flags & TB_FLAGS_MSTATUS_FS; ctx->mstatus_vs = tb_flags & TB_FLAGS_MSTATUS_VS; ctx->priv_ver = env->priv_ver; #if !defined(CONFIG_USER_ONLY) if (riscv_has_ext(env, RVH)) { ctx->virt_enabled = riscv_cpu_virt_enabled(env); } else { ctx->virt_enabled = false; } #else ctx->virt_enabled = false; #endif ctx->misa_ext = env->misa_ext; ctx->frm = -1; /* unknown rounding mode */ ctx->cfg_ptr = &(cpu->cfg); ctx->mstatus_hs_fs = FIELD_EX32(tb_flags, TB_FLAGS, MSTATUS_HS_FS); ctx->mstatus_hs_vs = FIELD_EX32(tb_flags, TB_FLAGS, MSTATUS_HS_VS); ctx->hlsx = FIELD_EX32(tb_flags, TB_FLAGS, HLSX); ctx->vill = FIELD_EX32(tb_flags, TB_FLAGS, VILL); ctx->sew = FIELD_EX32(tb_flags, TB_FLAGS, SEW); ctx->lmul = sextract32(FIELD_EX32(tb_flags, TB_FLAGS, LMUL), 0, 3); ctx->vta = FIELD_EX32(tb_flags, TB_FLAGS, VTA) && cpu->cfg.rvv_ta_all_1s; ctx->vma = FIELD_EX32(tb_flags, TB_FLAGS, VMA) && cpu->cfg.rvv_ma_all_1s; ctx->cfg_vta_all_1s = cpu->cfg.rvv_ta_all_1s; ctx->vstart = env->vstart; ctx->vl_eq_vlmax = FIELD_EX32(tb_flags, TB_FLAGS, VL_EQ_VLMAX); ctx->misa_mxl_max = env->misa_mxl_max; ctx->xl = FIELD_EX32(tb_flags, TB_FLAGS, XL); ctx->cs = cs; ctx->ntemp = 0; memset(ctx->temp, 0, sizeof(ctx->temp)); ctx->nftemp = 0; memset(ctx->ftemp, 0, sizeof(ctx->ftemp)); ctx->pm_mask_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_MASK_ENABLED); ctx->pm_base_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_BASE_ENABLED); ctx->itrigger = FIELD_EX32(tb_flags, TB_FLAGS, ITRIGGER); ctx->zero = tcg_constant_tl(0); ctx->virt_inst_excp = false; } static void riscv_tr_tb_start(DisasContextBase *db, CPUState *cpu) { } static void riscv_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *ctx = container_of(dcbase, DisasContext, base); tcg_gen_insn_start(ctx->base.pc_next, 0); ctx->insn_start = tcg_last_op(); } static void riscv_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *ctx = container_of(dcbase, DisasContext, base); CPURISCVState *env = cpu->env_ptr; uint16_t opcode16 = translator_lduw(env, &ctx->base, ctx->base.pc_next); int i; ctx->ol = ctx->xl; decode_opc(env, ctx, opcode16); ctx->base.pc_next = ctx->pc_succ_insn; for (i = ctx->ntemp - 1; i >= 0; --i) { tcg_temp_free(ctx->temp[i]); ctx->temp[i] = NULL; } ctx->ntemp = 0; for (i = ctx->nftemp - 1; i >= 0; --i) { tcg_temp_free_i64(ctx->ftemp[i]); ctx->ftemp[i] = NULL; } ctx->nftemp = 0; /* Only the first insn within a TB is allowed to cross a page boundary. */ if (ctx->base.is_jmp == DISAS_NEXT) { if (ctx->itrigger || !is_same_page(&ctx->base, ctx->base.pc_next)) { ctx->base.is_jmp = DISAS_TOO_MANY; } else { unsigned page_ofs = ctx->base.pc_next & ~TARGET_PAGE_MASK; if (page_ofs > TARGET_PAGE_SIZE - MAX_INSN_LEN) { uint16_t next_insn = cpu_lduw_code(env, ctx->base.pc_next); int len = insn_len(next_insn); if (!is_same_page(&ctx->base, ctx->base.pc_next + len)) { ctx->base.is_jmp = DISAS_TOO_MANY; } } } } } static void riscv_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *ctx = container_of(dcbase, DisasContext, base); switch (ctx->base.is_jmp) { case DISAS_TOO_MANY: gen_goto_tb(ctx, 0, ctx->base.pc_next); break; case DISAS_NORETURN: break; default: g_assert_not_reached(); } } static void riscv_tr_disas_log(const DisasContextBase *dcbase, CPUState *cpu, FILE *logfile) { #ifndef CONFIG_USER_ONLY RISCVCPU *rvcpu = RISCV_CPU(cpu); CPURISCVState *env = &rvcpu->env; #endif fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first)); #ifndef CONFIG_USER_ONLY fprintf(logfile, "Priv: "TARGET_FMT_ld"; Virt: "TARGET_FMT_ld"\n", env->priv, env->virt); #endif target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size); } static const TranslatorOps riscv_tr_ops = { .init_disas_context = riscv_tr_init_disas_context, .tb_start = riscv_tr_tb_start, .insn_start = riscv_tr_insn_start, .translate_insn = riscv_tr_translate_insn, .tb_stop = riscv_tr_tb_stop, .disas_log = riscv_tr_disas_log, }; void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns, target_ulong pc, void *host_pc) { DisasContext ctx; translator_loop(cs, tb, max_insns, pc, host_pc, &riscv_tr_ops, &ctx.base); } void riscv_translate_init(void) { int i; /* * cpu_gpr[0] is a placeholder for the zero register. Do not use it. * Use the gen_set_gpr and get_gpr helper functions when accessing regs, * unless you specifically block reads/writes to reg 0. */ cpu_gpr[0] = NULL; cpu_gprh[0] = NULL; for (i = 1; i < 32; i++) { cpu_gpr[i] = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, gpr[i]), riscv_int_regnames[i]); cpu_gprh[i] = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, gprh[i]), riscv_int_regnamesh[i]); } for (i = 0; i < 32; i++) { cpu_fpr[i] = tcg_global_mem_new_i64(cpu_env, offsetof(CPURISCVState, fpr[i]), riscv_fpr_regnames[i]); } cpu_pc = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, pc), "pc"); cpu_vl = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vl), "vl"); cpu_vstart = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vstart), "vstart"); load_res = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_res), "load_res"); load_val = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_val), "load_val"); /* Assign PM CSRs to tcg globals */ pm_mask = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmmask), "pmmask"); pm_base = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmbase), "pmbase"); }