/* * RISC-V implementation of KVM hooks * * Copyright (c) 2020 Huawei Technologies Co., Ltd * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include #include #include "qemu/timer.h" #include "qemu/error-report.h" #include "qemu/main-loop.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "sysemu/kvm_int.h" #include "cpu.h" #include "trace.h" #include "hw/pci/pci.h" #include "exec/memattrs.h" #include "exec/address-spaces.h" #include "hw/boards.h" #include "hw/irq.h" #include "qemu/log.h" #include "hw/loader.h" #include "kvm_riscv.h" #include "sbi_ecall_interface.h" #include "chardev/char-fe.h" #include "migration/migration.h" #include "sysemu/runstate.h" static uint64_t kvm_riscv_reg_id(CPURISCVState *env, uint64_t type, uint64_t idx) { uint64_t id = KVM_REG_RISCV | type | idx; switch (riscv_cpu_mxl(env)) { case MXL_RV32: id |= KVM_REG_SIZE_U32; break; case MXL_RV64: id |= KVM_REG_SIZE_U64; break; default: g_assert_not_reached(); } return id; } #define RISCV_CORE_REG(env, name) kvm_riscv_reg_id(env, KVM_REG_RISCV_CORE, \ KVM_REG_RISCV_CORE_REG(name)) #define RISCV_CSR_REG(env, name) kvm_riscv_reg_id(env, KVM_REG_RISCV_CSR, \ KVM_REG_RISCV_CSR_REG(name)) #define RISCV_TIMER_REG(env, name) kvm_riscv_reg_id(env, KVM_REG_RISCV_TIMER, \ KVM_REG_RISCV_TIMER_REG(name)) #define RISCV_FP_F_REG(env, idx) kvm_riscv_reg_id(env, KVM_REG_RISCV_FP_F, idx) #define RISCV_FP_D_REG(env, idx) kvm_riscv_reg_id(env, KVM_REG_RISCV_FP_D, idx) #define KVM_RISCV_GET_CSR(cs, env, csr, reg) \ do { \ int ret = kvm_get_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \ if (ret) { \ return ret; \ } \ } while (0) #define KVM_RISCV_SET_CSR(cs, env, csr, reg) \ do { \ int ret = kvm_set_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \ if (ret) { \ return ret; \ } \ } while (0) #define KVM_RISCV_GET_TIMER(cs, env, name, reg) \ do { \ int ret = kvm_get_one_reg(cs, RISCV_TIMER_REG(env, name), ®); \ if (ret) { \ abort(); \ } \ } while (0) #define KVM_RISCV_SET_TIMER(cs, env, name, reg) \ do { \ int ret = kvm_set_one_reg(cs, RISCV_TIMER_REG(env, name), ®); \ if (ret) { \ abort(); \ } \ } while (0) static int kvm_riscv_get_regs_core(CPUState *cs) { int ret = 0; int i; target_ulong reg; CPURISCVState *env = &RISCV_CPU(cs)->env; ret = kvm_get_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®); if (ret) { return ret; } env->pc = reg; for (i = 1; i < 32; i++) { uint64_t id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CORE, i); ret = kvm_get_one_reg(cs, id, ®); if (ret) { return ret; } env->gpr[i] = reg; } return ret; } static int kvm_riscv_put_regs_core(CPUState *cs) { int ret = 0; int i; target_ulong reg; CPURISCVState *env = &RISCV_CPU(cs)->env; reg = env->pc; ret = kvm_set_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®); if (ret) { return ret; } for (i = 1; i < 32; i++) { uint64_t id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CORE, i); reg = env->gpr[i]; ret = kvm_set_one_reg(cs, id, ®); if (ret) { return ret; } } return ret; } static int kvm_riscv_get_regs_csr(CPUState *cs) { int ret = 0; CPURISCVState *env = &RISCV_CPU(cs)->env; KVM_RISCV_GET_CSR(cs, env, sstatus, env->mstatus); KVM_RISCV_GET_CSR(cs, env, sie, env->mie); KVM_RISCV_GET_CSR(cs, env, stvec, env->stvec); KVM_RISCV_GET_CSR(cs, env, sscratch, env->sscratch); KVM_RISCV_GET_CSR(cs, env, sepc, env->sepc); KVM_RISCV_GET_CSR(cs, env, scause, env->scause); KVM_RISCV_GET_CSR(cs, env, stval, env->stval); KVM_RISCV_GET_CSR(cs, env, sip, env->mip); KVM_RISCV_GET_CSR(cs, env, satp, env->satp); return ret; } static int kvm_riscv_put_regs_csr(CPUState *cs) { int ret = 0; CPURISCVState *env = &RISCV_CPU(cs)->env; KVM_RISCV_SET_CSR(cs, env, sstatus, env->mstatus); KVM_RISCV_SET_CSR(cs, env, sie, env->mie); KVM_RISCV_SET_CSR(cs, env, stvec, env->stvec); KVM_RISCV_SET_CSR(cs, env, sscratch, env->sscratch); KVM_RISCV_SET_CSR(cs, env, sepc, env->sepc); KVM_RISCV_SET_CSR(cs, env, scause, env->scause); KVM_RISCV_SET_CSR(cs, env, stval, env->stval); KVM_RISCV_SET_CSR(cs, env, sip, env->mip); KVM_RISCV_SET_CSR(cs, env, satp, env->satp); return ret; } static int kvm_riscv_get_regs_fp(CPUState *cs) { int ret = 0; int i; CPURISCVState *env = &RISCV_CPU(cs)->env; if (riscv_has_ext(env, RVD)) { uint64_t reg; for (i = 0; i < 32; i++) { ret = kvm_get_one_reg(cs, RISCV_FP_D_REG(env, i), ®); if (ret) { return ret; } env->fpr[i] = reg; } return ret; } if (riscv_has_ext(env, RVF)) { uint32_t reg; for (i = 0; i < 32; i++) { ret = kvm_get_one_reg(cs, RISCV_FP_F_REG(env, i), ®); if (ret) { return ret; } env->fpr[i] = reg; } return ret; } return ret; } static int kvm_riscv_put_regs_fp(CPUState *cs) { int ret = 0; int i; CPURISCVState *env = &RISCV_CPU(cs)->env; if (riscv_has_ext(env, RVD)) { uint64_t reg; for (i = 0; i < 32; i++) { reg = env->fpr[i]; ret = kvm_set_one_reg(cs, RISCV_FP_D_REG(env, i), ®); if (ret) { return ret; } } return ret; } if (riscv_has_ext(env, RVF)) { uint32_t reg; for (i = 0; i < 32; i++) { reg = env->fpr[i]; ret = kvm_set_one_reg(cs, RISCV_FP_F_REG(env, i), ®); if (ret) { return ret; } } return ret; } return ret; } static void kvm_riscv_get_regs_timer(CPUState *cs) { CPURISCVState *env = &RISCV_CPU(cs)->env; if (env->kvm_timer_dirty) { return; } KVM_RISCV_GET_TIMER(cs, env, time, env->kvm_timer_time); KVM_RISCV_GET_TIMER(cs, env, compare, env->kvm_timer_compare); KVM_RISCV_GET_TIMER(cs, env, state, env->kvm_timer_state); KVM_RISCV_GET_TIMER(cs, env, frequency, env->kvm_timer_frequency); env->kvm_timer_dirty = true; } static void kvm_riscv_put_regs_timer(CPUState *cs) { uint64_t reg; CPURISCVState *env = &RISCV_CPU(cs)->env; if (!env->kvm_timer_dirty) { return; } KVM_RISCV_SET_TIMER(cs, env, time, env->kvm_timer_time); KVM_RISCV_SET_TIMER(cs, env, compare, env->kvm_timer_compare); /* * To set register of RISCV_TIMER_REG(state) will occur a error from KVM * on env->kvm_timer_state == 0, It's better to adapt in KVM, but it * doesn't matter that adaping in QEMU now. * TODO If KVM changes, adapt here. */ if (env->kvm_timer_state) { KVM_RISCV_SET_TIMER(cs, env, state, env->kvm_timer_state); } /* * For now, migration will not work between Hosts with different timer * frequency. Therefore, we should check whether they are the same here * during the migration. */ if (migration_is_running(migrate_get_current()->state)) { KVM_RISCV_GET_TIMER(cs, env, frequency, reg); if (reg != env->kvm_timer_frequency) { error_report("Dst Hosts timer frequency != Src Hosts"); } } env->kvm_timer_dirty = false; } typedef struct KVMScratchCPU { int kvmfd; int vmfd; int cpufd; } KVMScratchCPU; /* * Heavily inspired by kvm_arm_create_scratch_host_vcpu() * from target/arm/kvm.c. */ static bool kvm_riscv_create_scratch_vcpu(KVMScratchCPU *scratch) { int kvmfd = -1, vmfd = -1, cpufd = -1; kvmfd = qemu_open_old("/dev/kvm", O_RDWR); if (kvmfd < 0) { goto err; } do { vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); } while (vmfd == -1 && errno == EINTR); if (vmfd < 0) { goto err; } cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); if (cpufd < 0) { goto err; } scratch->kvmfd = kvmfd; scratch->vmfd = vmfd; scratch->cpufd = cpufd; return true; err: if (cpufd >= 0) { close(cpufd); } if (vmfd >= 0) { close(vmfd); } if (kvmfd >= 0) { close(kvmfd); } return false; } static void kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU *scratch) { close(scratch->cpufd); close(scratch->vmfd); close(scratch->kvmfd); } static void kvm_riscv_init_machine_ids(RISCVCPU *cpu, KVMScratchCPU *kvmcpu) { CPURISCVState *env = &cpu->env; struct kvm_one_reg reg; int ret; reg.id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CONFIG, KVM_REG_RISCV_CONFIG_REG(mvendorid)); reg.addr = (uint64_t)&cpu->cfg.mvendorid; ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); if (ret != 0) { error_report("Unable to retrieve mvendorid from host, error %d", ret); } } void kvm_riscv_init_user_properties(Object *cpu_obj) { RISCVCPU *cpu = RISCV_CPU(cpu_obj); KVMScratchCPU kvmcpu; if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) { return; } kvm_riscv_init_machine_ids(cpu, &kvmcpu); kvm_riscv_destroy_scratch_vcpu(&kvmcpu); } const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_LAST_INFO }; int kvm_arch_get_registers(CPUState *cs) { int ret = 0; ret = kvm_riscv_get_regs_core(cs); if (ret) { return ret; } ret = kvm_riscv_get_regs_csr(cs); if (ret) { return ret; } ret = kvm_riscv_get_regs_fp(cs); if (ret) { return ret; } return ret; } int kvm_arch_put_registers(CPUState *cs, int level) { int ret = 0; ret = kvm_riscv_put_regs_core(cs); if (ret) { return ret; } ret = kvm_riscv_put_regs_csr(cs); if (ret) { return ret; } ret = kvm_riscv_put_regs_fp(cs); if (ret) { return ret; } return ret; } int kvm_arch_release_virq_post(int virq) { return 0; } int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, uint64_t address, uint32_t data, PCIDevice *dev) { return 0; } int kvm_arch_destroy_vcpu(CPUState *cs) { return 0; } unsigned long kvm_arch_vcpu_id(CPUState *cpu) { return cpu->cpu_index; } static void kvm_riscv_vm_state_change(void *opaque, bool running, RunState state) { CPUState *cs = opaque; if (running) { kvm_riscv_put_regs_timer(cs); } else { kvm_riscv_get_regs_timer(cs); } } void kvm_arch_init_irq_routing(KVMState *s) { } int kvm_arch_init_vcpu(CPUState *cs) { int ret = 0; target_ulong isa; RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; uint64_t id; qemu_add_vm_change_state_handler(kvm_riscv_vm_state_change, cs); id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CONFIG, KVM_REG_RISCV_CONFIG_REG(isa)); ret = kvm_get_one_reg(cs, id, &isa); if (ret) { return ret; } env->misa_ext = isa; return ret; } int kvm_arch_msi_data_to_gsi(uint32_t data) { abort(); } int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, int vector, PCIDevice *dev) { return 0; } int kvm_arch_init(MachineState *ms, KVMState *s) { return 0; } int kvm_arch_irqchip_create(KVMState *s) { return 0; } int kvm_arch_process_async_events(CPUState *cs) { return 0; } void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) { } MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) { return MEMTXATTRS_UNSPECIFIED; } bool kvm_arch_stop_on_emulation_error(CPUState *cs) { return true; } static int kvm_riscv_handle_sbi(CPUState *cs, struct kvm_run *run) { int ret = 0; unsigned char ch; switch (run->riscv_sbi.extension_id) { case SBI_EXT_0_1_CONSOLE_PUTCHAR: ch = run->riscv_sbi.args[0]; qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch)); break; case SBI_EXT_0_1_CONSOLE_GETCHAR: ret = qemu_chr_fe_read_all(serial_hd(0)->be, &ch, sizeof(ch)); if (ret == sizeof(ch)) { run->riscv_sbi.ret[0] = ch; } else { run->riscv_sbi.ret[0] = -1; } ret = 0; break; default: qemu_log_mask(LOG_UNIMP, "%s: un-handled SBI EXIT, specific reasons is %lu\n", __func__, run->riscv_sbi.extension_id); ret = -1; break; } return ret; } int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) { int ret = 0; switch (run->exit_reason) { case KVM_EXIT_RISCV_SBI: ret = kvm_riscv_handle_sbi(cs, run); break; default: qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", __func__, run->exit_reason); ret = -1; break; } return ret; } void kvm_riscv_reset_vcpu(RISCVCPU *cpu) { CPURISCVState *env = &cpu->env; if (!kvm_enabled()) { return; } env->pc = cpu->env.kernel_addr; env->gpr[10] = kvm_arch_vcpu_id(CPU(cpu)); /* a0 */ env->gpr[11] = cpu->env.fdt_addr; /* a1 */ env->satp = 0; } void kvm_riscv_set_irq(RISCVCPU *cpu, int irq, int level) { int ret; unsigned virq = level ? KVM_INTERRUPT_SET : KVM_INTERRUPT_UNSET; if (irq != IRQ_S_EXT) { perror("kvm riscv set irq != IRQ_S_EXT\n"); abort(); } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); if (ret < 0) { perror("Set irq failed"); abort(); } } bool kvm_arch_cpu_check_are_resettable(void) { return true; } void kvm_arch_accel_class_init(ObjectClass *oc) { }