/* * QEMU RISC-V Native Debug Support * * Copyright (c) 2022 Wind River Systems, Inc. * * Author: * Bin Meng * * This provides the native debug support via the Trigger Module, as defined * in the RISC-V Debug Specification: * https://github.com/riscv/riscv-debug-spec/raw/master/riscv-debug-stable.pdf * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qapi/error.h" #include "cpu.h" #include "trace.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "sysemu/cpu-timers.h" /* * The following M-mode trigger CSRs are implemented: * * - tselect * - tdata1 * - tdata2 * - tdata3 * - tinfo * * The following triggers are initialized by default: * * Index | Type | tdata mapping | Description * ------+------+------------------------+------------ * 0 | 2 | tdata1, tdata2 | Address / Data Match * 1 | 2 | tdata1, tdata2 | Address / Data Match */ /* tdata availability of a trigger */ typedef bool tdata_avail[TDATA_NUM]; static tdata_avail tdata_mapping[TRIGGER_TYPE_NUM] = { [TRIGGER_TYPE_NO_EXIST] = { false, false, false }, [TRIGGER_TYPE_AD_MATCH] = { true, true, true }, [TRIGGER_TYPE_INST_CNT] = { true, false, true }, [TRIGGER_TYPE_INT] = { true, true, true }, [TRIGGER_TYPE_EXCP] = { true, true, true }, [TRIGGER_TYPE_AD_MATCH6] = { true, true, true }, [TRIGGER_TYPE_EXT_SRC] = { true, false, false }, [TRIGGER_TYPE_UNAVAIL] = { true, true, true } }; /* only breakpoint size 1/2/4/8 supported */ static int access_size[SIZE_NUM] = { [SIZE_ANY] = 0, [SIZE_1B] = 1, [SIZE_2B] = 2, [SIZE_4B] = 4, [SIZE_6B] = -1, [SIZE_8B] = 8, [6 ... 15] = -1, }; static inline target_ulong extract_trigger_type(CPURISCVState *env, target_ulong tdata1) { switch (riscv_cpu_mxl(env)) { case MXL_RV32: return extract32(tdata1, 28, 4); case MXL_RV64: case MXL_RV128: return extract64(tdata1, 60, 4); default: g_assert_not_reached(); } } static inline target_ulong get_trigger_type(CPURISCVState *env, target_ulong trigger_index) { return extract_trigger_type(env, env->tdata1[trigger_index]); } static trigger_action_t get_trigger_action(CPURISCVState *env, target_ulong trigger_index) { target_ulong tdata1 = env->tdata1[trigger_index]; int trigger_type = get_trigger_type(env, trigger_index); trigger_action_t action = DBG_ACTION_NONE; switch (trigger_type) { case TRIGGER_TYPE_AD_MATCH: action = (tdata1 & TYPE2_ACTION) >> 12; break; case TRIGGER_TYPE_AD_MATCH6: action = (tdata1 & TYPE6_ACTION) >> 12; break; case TRIGGER_TYPE_INST_CNT: case TRIGGER_TYPE_INT: case TRIGGER_TYPE_EXCP: case TRIGGER_TYPE_EXT_SRC: qemu_log_mask(LOG_UNIMP, "trigger type: %d is not supported\n", trigger_type); break; case TRIGGER_TYPE_NO_EXIST: case TRIGGER_TYPE_UNAVAIL: qemu_log_mask(LOG_GUEST_ERROR, "trigger type: %d does not exit\n", trigger_type); break; default: g_assert_not_reached(); } return action; } static inline target_ulong build_tdata1(CPURISCVState *env, trigger_type_t type, bool dmode, target_ulong data) { target_ulong tdata1; switch (riscv_cpu_mxl(env)) { case MXL_RV32: tdata1 = RV32_TYPE(type) | (dmode ? RV32_DMODE : 0) | (data & RV32_DATA_MASK); break; case MXL_RV64: case MXL_RV128: tdata1 = RV64_TYPE(type) | (dmode ? RV64_DMODE : 0) | (data & RV64_DATA_MASK); break; default: g_assert_not_reached(); } return tdata1; } bool tdata_available(CPURISCVState *env, int tdata_index) { int trigger_type = get_trigger_type(env, env->trigger_cur); if (unlikely(tdata_index >= TDATA_NUM)) { return false; } return tdata_mapping[trigger_type][tdata_index]; } target_ulong tselect_csr_read(CPURISCVState *env) { return env->trigger_cur; } void tselect_csr_write(CPURISCVState *env, target_ulong val) { if (val < RV_MAX_TRIGGERS) { env->trigger_cur = val; } } static target_ulong tdata1_validate(CPURISCVState *env, target_ulong val, trigger_type_t t) { uint32_t type, dmode; target_ulong tdata1; switch (riscv_cpu_mxl(env)) { case MXL_RV32: type = extract32(val, 28, 4); dmode = extract32(val, 27, 1); tdata1 = RV32_TYPE(t); break; case MXL_RV64: case MXL_RV128: type = extract64(val, 60, 4); dmode = extract64(val, 59, 1); tdata1 = RV64_TYPE(t); break; default: g_assert_not_reached(); } if (type != t) { qemu_log_mask(LOG_GUEST_ERROR, "ignoring type write to tdata1 register\n"); } if (dmode != 0) { qemu_log_mask(LOG_UNIMP, "debug mode is not supported\n"); } return tdata1; } static inline void warn_always_zero_bit(target_ulong val, target_ulong mask, const char *msg) { if (val & mask) { qemu_log_mask(LOG_UNIMP, "%s bit is always zero\n", msg); } } static target_ulong textra_validate(CPURISCVState *env, target_ulong tdata3) { target_ulong mhvalue, mhselect; target_ulong mhselect_new; target_ulong textra; const uint32_t mhselect_no_rvh[8] = { 0, 0, 0, 0, 4, 4, 4, 4 }; switch (riscv_cpu_mxl(env)) { case MXL_RV32: mhvalue = get_field(tdata3, TEXTRA32_MHVALUE); mhselect = get_field(tdata3, TEXTRA32_MHSELECT); /* Validate unimplemented (always zero) bits */ warn_always_zero_bit(tdata3, (target_ulong)TEXTRA32_SBYTEMASK, "sbytemask"); warn_always_zero_bit(tdata3, (target_ulong)TEXTRA32_SVALUE, "svalue"); warn_always_zero_bit(tdata3, (target_ulong)TEXTRA32_SSELECT, "sselect"); break; case MXL_RV64: case MXL_RV128: mhvalue = get_field(tdata3, TEXTRA64_MHVALUE); mhselect = get_field(tdata3, TEXTRA64_MHSELECT); /* Validate unimplemented (always zero) bits */ warn_always_zero_bit(tdata3, (target_ulong)TEXTRA64_SBYTEMASK, "sbytemask"); warn_always_zero_bit(tdata3, (target_ulong)TEXTRA64_SVALUE, "svalue"); warn_always_zero_bit(tdata3, (target_ulong)TEXTRA64_SSELECT, "sselect"); break; default: g_assert_not_reached(); } /* Validate mhselect. */ mhselect_new = mhselect_no_rvh[mhselect]; if (mhselect != mhselect_new) { qemu_log_mask(LOG_UNIMP, "mhselect only supports 0 or 4 for now\n"); } /* Write legal values into textra */ textra = 0; switch (riscv_cpu_mxl(env)) { case MXL_RV32: textra = set_field(textra, TEXTRA32_MHVALUE, mhvalue); textra = set_field(textra, TEXTRA32_MHSELECT, mhselect_new); break; case MXL_RV64: case MXL_RV128: textra = set_field(textra, TEXTRA64_MHVALUE, mhvalue); textra = set_field(textra, TEXTRA64_MHSELECT, mhselect_new); break; default: g_assert_not_reached(); } return textra; } static void do_trigger_action(CPURISCVState *env, target_ulong trigger_index) { trigger_action_t action = get_trigger_action(env, trigger_index); switch (action) { case DBG_ACTION_NONE: break; case DBG_ACTION_BP: riscv_raise_exception(env, RISCV_EXCP_BREAKPOINT, 0); break; case DBG_ACTION_DBG_MODE: case DBG_ACTION_TRACE0: case DBG_ACTION_TRACE1: case DBG_ACTION_TRACE2: case DBG_ACTION_TRACE3: case DBG_ACTION_EXT_DBG0: case DBG_ACTION_EXT_DBG1: qemu_log_mask(LOG_UNIMP, "action: %d is not supported\n", action); break; default: g_assert_not_reached(); } } /* * Check the privilege level of specific trigger matches CPU's current privilege * level. */ static bool trigger_priv_match(CPURISCVState *env, trigger_type_t type, int trigger_index) { target_ulong ctrl = env->tdata1[trigger_index]; switch (type) { case TRIGGER_TYPE_AD_MATCH: /* type 2 trigger cannot be fired in VU/VS mode */ if (env->virt_enabled) { return false; } /* check U/S/M bit against current privilege level */ if ((ctrl >> 3) & BIT(env->priv)) { return true; } break; case TRIGGER_TYPE_AD_MATCH6: if (env->virt_enabled) { /* check VU/VS bit against current privilege level */ if ((ctrl >> 23) & BIT(env->priv)) { return true; } } else { /* check U/S/M bit against current privilege level */ if ((ctrl >> 3) & BIT(env->priv)) { return true; } } break; case TRIGGER_TYPE_INST_CNT: if (env->virt_enabled) { /* check VU/VS bit against current privilege level */ if ((ctrl >> 25) & BIT(env->priv)) { return true; } } else { /* check U/S/M bit against current privilege level */ if ((ctrl >> 6) & BIT(env->priv)) { return true; } } break; case TRIGGER_TYPE_INT: case TRIGGER_TYPE_EXCP: case TRIGGER_TYPE_EXT_SRC: qemu_log_mask(LOG_UNIMP, "trigger type: %d is not supported\n", type); break; case TRIGGER_TYPE_NO_EXIST: case TRIGGER_TYPE_UNAVAIL: qemu_log_mask(LOG_GUEST_ERROR, "trigger type: %d does not exist\n", type); break; default: g_assert_not_reached(); } return false; } static bool trigger_textra_match(CPURISCVState *env, trigger_type_t type, int trigger_index) { target_ulong textra = env->tdata3[trigger_index]; target_ulong mhvalue, mhselect; if (type < TRIGGER_TYPE_AD_MATCH || type > TRIGGER_TYPE_AD_MATCH6) { /* textra checking is only applicable when type is 2, 3, 4, 5, or 6 */ return true; } switch (riscv_cpu_mxl(env)) { case MXL_RV32: mhvalue = get_field(textra, TEXTRA32_MHVALUE); mhselect = get_field(textra, TEXTRA32_MHSELECT); break; case MXL_RV64: case MXL_RV128: mhvalue = get_field(textra, TEXTRA64_MHVALUE); mhselect = get_field(textra, TEXTRA64_MHSELECT); break; default: g_assert_not_reached(); } /* Check mhvalue and mhselect. */ switch (mhselect) { case MHSELECT_IGNORE: break; case MHSELECT_MCONTEXT: /* Match if the low bits of mcontext/hcontext equal mhvalue. */ if (mhvalue != env->mcontext) { return false; } break; default: break; } return true; } /* Common matching conditions for all types of the triggers. */ static bool trigger_common_match(CPURISCVState *env, trigger_type_t type, int trigger_index) { return trigger_priv_match(env, type, trigger_index) && trigger_textra_match(env, type, trigger_index); } /* type 2 trigger */ static uint32_t type2_breakpoint_size(CPURISCVState *env, target_ulong ctrl) { uint32_t sizelo, sizehi = 0; if (riscv_cpu_mxl(env) == MXL_RV64) { sizehi = extract32(ctrl, 21, 2); } sizelo = extract32(ctrl, 16, 2); return (sizehi << 2) | sizelo; } static inline bool type2_breakpoint_enabled(target_ulong ctrl) { bool mode = !!(ctrl & (TYPE2_U | TYPE2_S | TYPE2_M)); bool rwx = !!(ctrl & (TYPE2_LOAD | TYPE2_STORE | TYPE2_EXEC)); return mode && rwx; } static target_ulong type2_mcontrol_validate(CPURISCVState *env, target_ulong ctrl) { target_ulong val; uint32_t size; /* validate the generic part first */ val = tdata1_validate(env, ctrl, TRIGGER_TYPE_AD_MATCH); /* validate unimplemented (always zero) bits */ warn_always_zero_bit(ctrl, TYPE2_MATCH, "match"); warn_always_zero_bit(ctrl, TYPE2_CHAIN, "chain"); warn_always_zero_bit(ctrl, TYPE2_ACTION, "action"); warn_always_zero_bit(ctrl, TYPE2_TIMING, "timing"); warn_always_zero_bit(ctrl, TYPE2_SELECT, "select"); warn_always_zero_bit(ctrl, TYPE2_HIT, "hit"); /* validate size encoding */ size = type2_breakpoint_size(env, ctrl); if (access_size[size] == -1) { qemu_log_mask(LOG_UNIMP, "access size %d is not supported, using " "SIZE_ANY\n", size); } else { val |= (ctrl & TYPE2_SIZELO); if (riscv_cpu_mxl(env) == MXL_RV64) { val |= (ctrl & TYPE2_SIZEHI); } } /* keep the mode and attribute bits */ val |= (ctrl & (TYPE2_U | TYPE2_S | TYPE2_M | TYPE2_LOAD | TYPE2_STORE | TYPE2_EXEC)); return val; } static void type2_breakpoint_insert(CPURISCVState *env, target_ulong index) { target_ulong ctrl = env->tdata1[index]; target_ulong addr = env->tdata2[index]; bool enabled = type2_breakpoint_enabled(ctrl); CPUState *cs = env_cpu(env); int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; uint32_t size; if (!enabled) { return; } if (ctrl & TYPE2_EXEC) { cpu_breakpoint_insert(cs, addr, flags, &env->cpu_breakpoint[index]); } if (ctrl & TYPE2_LOAD) { flags |= BP_MEM_READ; } if (ctrl & TYPE2_STORE) { flags |= BP_MEM_WRITE; } if (flags & BP_MEM_ACCESS) { size = type2_breakpoint_size(env, ctrl); if (size != 0) { cpu_watchpoint_insert(cs, addr, size, flags, &env->cpu_watchpoint[index]); } else { cpu_watchpoint_insert(cs, addr, 8, flags, &env->cpu_watchpoint[index]); } } } static void type2_breakpoint_remove(CPURISCVState *env, target_ulong index) { CPUState *cs = env_cpu(env); if (env->cpu_breakpoint[index]) { cpu_breakpoint_remove_by_ref(cs, env->cpu_breakpoint[index]); env->cpu_breakpoint[index] = NULL; } if (env->cpu_watchpoint[index]) { cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[index]); env->cpu_watchpoint[index] = NULL; } } static void type2_reg_write(CPURISCVState *env, target_ulong index, int tdata_index, target_ulong val) { target_ulong new_val; switch (tdata_index) { case TDATA1: new_val = type2_mcontrol_validate(env, val); if (new_val != env->tdata1[index]) { env->tdata1[index] = new_val; type2_breakpoint_remove(env, index); type2_breakpoint_insert(env, index); } break; case TDATA2: if (val != env->tdata2[index]) { env->tdata2[index] = val; type2_breakpoint_remove(env, index); type2_breakpoint_insert(env, index); } break; case TDATA3: env->tdata3[index] = textra_validate(env, val); break; default: g_assert_not_reached(); } return; } /* type 6 trigger */ static inline bool type6_breakpoint_enabled(target_ulong ctrl) { bool mode = !!(ctrl & (TYPE6_VU | TYPE6_VS | TYPE6_U | TYPE6_S | TYPE6_M)); bool rwx = !!(ctrl & (TYPE6_LOAD | TYPE6_STORE | TYPE6_EXEC)); return mode && rwx; } static target_ulong type6_mcontrol6_validate(CPURISCVState *env, target_ulong ctrl) { target_ulong val; uint32_t size; /* validate the generic part first */ val = tdata1_validate(env, ctrl, TRIGGER_TYPE_AD_MATCH6); /* validate unimplemented (always zero) bits */ warn_always_zero_bit(ctrl, TYPE6_MATCH, "match"); warn_always_zero_bit(ctrl, TYPE6_CHAIN, "chain"); warn_always_zero_bit(ctrl, TYPE6_ACTION, "action"); warn_always_zero_bit(ctrl, TYPE6_TIMING, "timing"); warn_always_zero_bit(ctrl, TYPE6_SELECT, "select"); warn_always_zero_bit(ctrl, TYPE6_HIT, "hit"); /* validate size encoding */ size = extract32(ctrl, 16, 4); if (access_size[size] == -1) { qemu_log_mask(LOG_UNIMP, "access size %d is not supported, using " "SIZE_ANY\n", size); } else { val |= (ctrl & TYPE6_SIZE); } /* keep the mode and attribute bits */ val |= (ctrl & (TYPE6_VU | TYPE6_VS | TYPE6_U | TYPE6_S | TYPE6_M | TYPE6_LOAD | TYPE6_STORE | TYPE6_EXEC)); return val; } static void type6_breakpoint_insert(CPURISCVState *env, target_ulong index) { target_ulong ctrl = env->tdata1[index]; target_ulong addr = env->tdata2[index]; bool enabled = type6_breakpoint_enabled(ctrl); CPUState *cs = env_cpu(env); int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; uint32_t size; if (!enabled) { return; } if (ctrl & TYPE6_EXEC) { cpu_breakpoint_insert(cs, addr, flags, &env->cpu_breakpoint[index]); } if (ctrl & TYPE6_LOAD) { flags |= BP_MEM_READ; } if (ctrl & TYPE6_STORE) { flags |= BP_MEM_WRITE; } if (flags & BP_MEM_ACCESS) { size = extract32(ctrl, 16, 4); if (size != 0) { cpu_watchpoint_insert(cs, addr, size, flags, &env->cpu_watchpoint[index]); } else { cpu_watchpoint_insert(cs, addr, 8, flags, &env->cpu_watchpoint[index]); } } } static void type6_breakpoint_remove(CPURISCVState *env, target_ulong index) { type2_breakpoint_remove(env, index); } static void type6_reg_write(CPURISCVState *env, target_ulong index, int tdata_index, target_ulong val) { target_ulong new_val; switch (tdata_index) { case TDATA1: new_val = type6_mcontrol6_validate(env, val); if (new_val != env->tdata1[index]) { env->tdata1[index] = new_val; type6_breakpoint_remove(env, index); type6_breakpoint_insert(env, index); } break; case TDATA2: if (val != env->tdata2[index]) { env->tdata2[index] = val; type6_breakpoint_remove(env, index); type6_breakpoint_insert(env, index); } break; case TDATA3: env->tdata3[index] = textra_validate(env, val); break; default: g_assert_not_reached(); } return; } /* icount trigger type */ static inline int itrigger_get_count(CPURISCVState *env, int index) { return get_field(env->tdata1[index], ITRIGGER_COUNT); } static inline void itrigger_set_count(CPURISCVState *env, int index, int value) { env->tdata1[index] = set_field(env->tdata1[index], ITRIGGER_COUNT, value); } static bool check_itrigger_priv(CPURISCVState *env, int index) { target_ulong tdata1 = env->tdata1[index]; if (env->virt_enabled) { /* check VU/VS bit against current privilege level */ return (get_field(tdata1, ITRIGGER_VS) == env->priv) || (get_field(tdata1, ITRIGGER_VU) == env->priv); } else { /* check U/S/M bit against current privilege level */ return (get_field(tdata1, ITRIGGER_M) == env->priv) || (get_field(tdata1, ITRIGGER_S) == env->priv) || (get_field(tdata1, ITRIGGER_U) == env->priv); } } bool riscv_itrigger_enabled(CPURISCVState *env) { int count; for (int i = 0; i < RV_MAX_TRIGGERS; i++) { if (get_trigger_type(env, i) != TRIGGER_TYPE_INST_CNT) { continue; } if (check_itrigger_priv(env, i)) { continue; } count = itrigger_get_count(env, i); if (!count) { continue; } return true; } return false; } void helper_itrigger_match(CPURISCVState *env) { int count; for (int i = 0; i < RV_MAX_TRIGGERS; i++) { if (get_trigger_type(env, i) != TRIGGER_TYPE_INST_CNT) { continue; } if (!trigger_common_match(env, TRIGGER_TYPE_INST_CNT, i)) { continue; } count = itrigger_get_count(env, i); if (!count) { continue; } itrigger_set_count(env, i, count--); if (!count) { env->itrigger_enabled = riscv_itrigger_enabled(env); do_trigger_action(env, i); } } } static void riscv_itrigger_update_count(CPURISCVState *env) { int count, executed; /* * Record last icount, so that we can evaluate the executed instructions * since last privilege mode change or timer expire. */ int64_t last_icount = env->last_icount, current_icount; current_icount = env->last_icount = icount_get_raw(); for (int i = 0; i < RV_MAX_TRIGGERS; i++) { if (get_trigger_type(env, i) != TRIGGER_TYPE_INST_CNT) { continue; } count = itrigger_get_count(env, i); if (!count) { continue; } /* * Only when privilege is changed or itrigger timer expires, * the count field in itrigger tdata1 register is updated. * And the count field in itrigger only contains remaining value. */ if (check_itrigger_priv(env, i)) { /* * If itrigger enabled in this privilege mode, the number of * executed instructions since last privilege change * should be reduced from current itrigger count. */ executed = current_icount - last_icount; itrigger_set_count(env, i, count - executed); if (count == executed) { do_trigger_action(env, i); } } else { /* * If itrigger is not enabled in this privilege mode, * the number of executed instructions will be discard and * the count field in itrigger will not change. */ timer_mod(env->itrigger_timer[i], current_icount + count); } } } static void riscv_itrigger_timer_cb(void *opaque) { riscv_itrigger_update_count((CPURISCVState *)opaque); } void riscv_itrigger_update_priv(CPURISCVState *env) { riscv_itrigger_update_count(env); } static target_ulong itrigger_validate(CPURISCVState *env, target_ulong ctrl) { target_ulong val; /* validate the generic part first */ val = tdata1_validate(env, ctrl, TRIGGER_TYPE_INST_CNT); /* validate unimplemented (always zero) bits */ warn_always_zero_bit(ctrl, ITRIGGER_ACTION, "action"); warn_always_zero_bit(ctrl, ITRIGGER_HIT, "hit"); warn_always_zero_bit(ctrl, ITRIGGER_PENDING, "pending"); /* keep the mode and attribute bits */ val |= ctrl & (ITRIGGER_VU | ITRIGGER_VS | ITRIGGER_U | ITRIGGER_S | ITRIGGER_M | ITRIGGER_COUNT); return val; } static void itrigger_reg_write(CPURISCVState *env, target_ulong index, int tdata_index, target_ulong val) { target_ulong new_val; switch (tdata_index) { case TDATA1: /* set timer for icount */ new_val = itrigger_validate(env, val); if (new_val != env->tdata1[index]) { env->tdata1[index] = new_val; if (icount_enabled()) { env->last_icount = icount_get_raw(); /* set the count to timer */ timer_mod(env->itrigger_timer[index], env->last_icount + itrigger_get_count(env, index)); } else { env->itrigger_enabled = riscv_itrigger_enabled(env); } } break; case TDATA2: qemu_log_mask(LOG_UNIMP, "tdata2 is not supported for icount trigger\n"); break; case TDATA3: env->tdata3[index] = textra_validate(env, val); break; default: g_assert_not_reached(); } return; } static int itrigger_get_adjust_count(CPURISCVState *env) { int count = itrigger_get_count(env, env->trigger_cur), executed; if ((count != 0) && check_itrigger_priv(env, env->trigger_cur)) { executed = icount_get_raw() - env->last_icount; count += executed; } return count; } target_ulong tdata_csr_read(CPURISCVState *env, int tdata_index) { int trigger_type; switch (tdata_index) { case TDATA1: trigger_type = extract_trigger_type(env, env->tdata1[env->trigger_cur]); if ((trigger_type == TRIGGER_TYPE_INST_CNT) && icount_enabled()) { return deposit64(env->tdata1[env->trigger_cur], 10, 14, itrigger_get_adjust_count(env)); } return env->tdata1[env->trigger_cur]; case TDATA2: return env->tdata2[env->trigger_cur]; case TDATA3: return env->tdata3[env->trigger_cur]; default: g_assert_not_reached(); } } void tdata_csr_write(CPURISCVState *env, int tdata_index, target_ulong val) { int trigger_type; if (tdata_index == TDATA1) { trigger_type = extract_trigger_type(env, val); } else { trigger_type = get_trigger_type(env, env->trigger_cur); } switch (trigger_type) { case TRIGGER_TYPE_AD_MATCH: type2_reg_write(env, env->trigger_cur, tdata_index, val); break; case TRIGGER_TYPE_AD_MATCH6: type6_reg_write(env, env->trigger_cur, tdata_index, val); break; case TRIGGER_TYPE_INST_CNT: itrigger_reg_write(env, env->trigger_cur, tdata_index, val); break; case TRIGGER_TYPE_INT: case TRIGGER_TYPE_EXCP: case TRIGGER_TYPE_EXT_SRC: qemu_log_mask(LOG_UNIMP, "trigger type: %d is not supported\n", trigger_type); break; case TRIGGER_TYPE_NO_EXIST: case TRIGGER_TYPE_UNAVAIL: qemu_log_mask(LOG_GUEST_ERROR, "trigger type: %d does not exit\n", trigger_type); break; default: g_assert_not_reached(); } } target_ulong tinfo_csr_read(CPURISCVState *env) { /* assume all triggers support the same types of triggers */ return BIT(TRIGGER_TYPE_AD_MATCH) | BIT(TRIGGER_TYPE_AD_MATCH6); } void riscv_cpu_debug_excp_handler(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; if (cs->watchpoint_hit) { if (cs->watchpoint_hit->flags & BP_CPU) { do_trigger_action(env, DBG_ACTION_BP); } } else { if (cpu_breakpoint_test(cs, env->pc, BP_CPU)) { do_trigger_action(env, DBG_ACTION_BP); } } } bool riscv_cpu_debug_check_breakpoint(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; CPUBreakpoint *bp; target_ulong ctrl; target_ulong pc; int trigger_type; int i; QTAILQ_FOREACH(bp, &cs->breakpoints, entry) { for (i = 0; i < RV_MAX_TRIGGERS; i++) { trigger_type = get_trigger_type(env, i); if (!trigger_common_match(env, trigger_type, i)) { continue; } switch (trigger_type) { case TRIGGER_TYPE_AD_MATCH: ctrl = env->tdata1[i]; pc = env->tdata2[i]; if ((ctrl & TYPE2_EXEC) && (bp->pc == pc)) { env->badaddr = pc; return true; } break; case TRIGGER_TYPE_AD_MATCH6: ctrl = env->tdata1[i]; pc = env->tdata2[i]; if ((ctrl & TYPE6_EXEC) && (bp->pc == pc)) { env->badaddr = pc; return true; } break; default: /* other trigger types are not supported or irrelevant */ break; } } } return false; } bool riscv_cpu_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; target_ulong ctrl; target_ulong addr; int trigger_type; int flags; int i; for (i = 0; i < RV_MAX_TRIGGERS; i++) { trigger_type = get_trigger_type(env, i); if (!trigger_common_match(env, trigger_type, i)) { continue; } switch (trigger_type) { case TRIGGER_TYPE_AD_MATCH: ctrl = env->tdata1[i]; addr = env->tdata2[i]; flags = 0; if (ctrl & TYPE2_LOAD) { flags |= BP_MEM_READ; } if (ctrl & TYPE2_STORE) { flags |= BP_MEM_WRITE; } if ((wp->flags & flags) && (wp->vaddr == addr)) { return true; } break; case TRIGGER_TYPE_AD_MATCH6: ctrl = env->tdata1[i]; addr = env->tdata2[i]; flags = 0; if (ctrl & TYPE6_LOAD) { flags |= BP_MEM_READ; } if (ctrl & TYPE6_STORE) { flags |= BP_MEM_WRITE; } if ((wp->flags & flags) && (wp->vaddr == addr)) { return true; } break; default: /* other trigger types are not supported */ break; } } return false; } void riscv_trigger_realize(CPURISCVState *env) { int i; for (i = 0; i < RV_MAX_TRIGGERS; i++) { env->itrigger_timer[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL, riscv_itrigger_timer_cb, env); } } void riscv_trigger_reset_hold(CPURISCVState *env) { target_ulong tdata1 = build_tdata1(env, TRIGGER_TYPE_AD_MATCH, 0, 0); int i; /* init to type 2 triggers */ for (i = 0; i < RV_MAX_TRIGGERS; i++) { /* * type = TRIGGER_TYPE_AD_MATCH * dmode = 0 (both debug and M-mode can write tdata) * maskmax = 0 (unimplemented, always 0) * sizehi = 0 (match against any size, RV64 only) * hit = 0 (unimplemented, always 0) * select = 0 (always 0, perform match on address) * timing = 0 (always 0, trigger before instruction) * sizelo = 0 (match against any size) * action = 0 (always 0, raise a breakpoint exception) * chain = 0 (unimplemented, always 0) * match = 0 (always 0, when any compare value equals tdata2) */ env->tdata1[i] = tdata1; env->tdata2[i] = 0; env->tdata3[i] = 0; env->cpu_breakpoint[i] = NULL; env->cpu_watchpoint[i] = NULL; timer_del(env->itrigger_timer[i]); } env->mcontext = 0; }