/* * QEMU RISC-V CPU * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * Copyright (c) 2017-2018 SiFive, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/qemu-print.h" #include "qemu/ctype.h" #include "qemu/log.h" #include "cpu.h" #include "internals.h" #include "exec/exec-all.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "fpu/softfloat-helpers.h" #include "sysemu/kvm.h" #include "kvm_riscv.h" /* RISC-V CPU definitions */ static const char riscv_exts[26] = "IEMAFDQCLBJTPVNSUHKORWXYZG"; const char * const riscv_int_regnames[] = { "x0/zero", "x1/ra", "x2/sp", "x3/gp", "x4/tp", "x5/t0", "x6/t1", "x7/t2", "x8/s0", "x9/s1", "x10/a0", "x11/a1", "x12/a2", "x13/a3", "x14/a4", "x15/a5", "x16/a6", "x17/a7", "x18/s2", "x19/s3", "x20/s4", "x21/s5", "x22/s6", "x23/s7", "x24/s8", "x25/s9", "x26/s10", "x27/s11", "x28/t3", "x29/t4", "x30/t5", "x31/t6" }; const char * const riscv_int_regnamesh[] = { "x0h/zeroh", "x1h/rah", "x2h/sph", "x3h/gph", "x4h/tph", "x5h/t0h", "x6h/t1h", "x7h/t2h", "x8h/s0h", "x9h/s1h", "x10h/a0h", "x11h/a1h", "x12h/a2h", "x13h/a3h", "x14h/a4h", "x15h/a5h", "x16h/a6h", "x17h/a7h", "x18h/s2h", "x19h/s3h", "x20h/s4h", "x21h/s5h", "x22h/s6h", "x23h/s7h", "x24h/s8h", "x25h/s9h", "x26h/s10h", "x27h/s11h", "x28h/t3h", "x29h/t4h", "x30h/t5h", "x31h/t6h" }; const char * const riscv_fpr_regnames[] = { "f0/ft0", "f1/ft1", "f2/ft2", "f3/ft3", "f4/ft4", "f5/ft5", "f6/ft6", "f7/ft7", "f8/fs0", "f9/fs1", "f10/fa0", "f11/fa1", "f12/fa2", "f13/fa3", "f14/fa4", "f15/fa5", "f16/fa6", "f17/fa7", "f18/fs2", "f19/fs3", "f20/fs4", "f21/fs5", "f22/fs6", "f23/fs7", "f24/fs8", "f25/fs9", "f26/fs10", "f27/fs11", "f28/ft8", "f29/ft9", "f30/ft10", "f31/ft11" }; static const char * const riscv_excp_names[] = { "misaligned_fetch", "fault_fetch", "illegal_instruction", "breakpoint", "misaligned_load", "fault_load", "misaligned_store", "fault_store", "user_ecall", "supervisor_ecall", "hypervisor_ecall", "machine_ecall", "exec_page_fault", "load_page_fault", "reserved", "store_page_fault", "reserved", "reserved", "reserved", "reserved", "guest_exec_page_fault", "guest_load_page_fault", "reserved", "guest_store_page_fault", }; static const char * const riscv_intr_names[] = { "u_software", "s_software", "vs_software", "m_software", "u_timer", "s_timer", "vs_timer", "m_timer", "u_external", "s_external", "vs_external", "m_external", "reserved", "reserved", "reserved", "reserved" }; const char *riscv_cpu_get_trap_name(target_ulong cause, bool async) { if (async) { return (cause < ARRAY_SIZE(riscv_intr_names)) ? riscv_intr_names[cause] : "(unknown)"; } else { return (cause < ARRAY_SIZE(riscv_excp_names)) ? riscv_excp_names[cause] : "(unknown)"; } } static void set_misa(CPURISCVState *env, RISCVMXL mxl, uint32_t ext) { env->misa_mxl_max = env->misa_mxl = mxl; env->misa_ext_mask = env->misa_ext = ext; } static void set_priv_version(CPURISCVState *env, int priv_ver) { env->priv_ver = priv_ver; } static void set_vext_version(CPURISCVState *env, int vext_ver) { env->vext_ver = vext_ver; } static void set_feature(CPURISCVState *env, int feature) { env->features |= (1ULL << feature); } static void set_resetvec(CPURISCVState *env, target_ulong resetvec) { #ifndef CONFIG_USER_ONLY env->resetvec = resetvec; #endif } static void riscv_any_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; #if defined(TARGET_RISCV32) set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVD | RVC | RVU); #elif defined(TARGET_RISCV64) set_misa(env, MXL_RV64, RVI | RVM | RVA | RVF | RVD | RVC | RVU); #endif set_priv_version(env, PRIV_VERSION_1_11_0); } #if defined(TARGET_RISCV64) static void rv64_base_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; /* We set this in the realise function */ set_misa(env, MXL_RV64, 0); } static void rv64_sifive_u_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; set_misa(env, MXL_RV64, RVI | RVM | RVA | RVF | RVD | RVC | RVS | RVU); set_priv_version(env, PRIV_VERSION_1_10_0); } static void rv64_sifive_e_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; set_misa(env, MXL_RV64, RVI | RVM | RVA | RVC | RVU); set_priv_version(env, PRIV_VERSION_1_10_0); qdev_prop_set_bit(DEVICE(obj), "mmu", false); } static void rv128_base_cpu_init(Object *obj) { if (qemu_tcg_mttcg_enabled()) { /* Missing 128-bit aligned atomics */ error_report("128-bit RISC-V currently does not work with Multi " "Threaded TCG. Please use: -accel tcg,thread=single"); exit(EXIT_FAILURE); } CPURISCVState *env = &RISCV_CPU(obj)->env; /* We set this in the realise function */ set_misa(env, MXL_RV128, 0); } #else static void rv32_base_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; /* We set this in the realise function */ set_misa(env, MXL_RV32, 0); } static void rv32_sifive_u_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVD | RVC | RVS | RVU); set_priv_version(env, PRIV_VERSION_1_10_0); } static void rv32_sifive_e_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; set_misa(env, MXL_RV32, RVI | RVM | RVA | RVC | RVU); set_priv_version(env, PRIV_VERSION_1_10_0); qdev_prop_set_bit(DEVICE(obj), "mmu", false); } static void rv32_ibex_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; set_misa(env, MXL_RV32, RVI | RVM | RVC | RVU); set_priv_version(env, PRIV_VERSION_1_10_0); qdev_prop_set_bit(DEVICE(obj), "mmu", false); qdev_prop_set_bit(DEVICE(obj), "x-epmp", true); } static void rv32_imafcu_nommu_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVC | RVU); set_priv_version(env, PRIV_VERSION_1_10_0); set_resetvec(env, DEFAULT_RSTVEC); qdev_prop_set_bit(DEVICE(obj), "mmu", false); } #endif #if defined(CONFIG_KVM) static void riscv_host_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; #if defined(TARGET_RISCV32) set_misa(env, MXL_RV32, 0); #elif defined(TARGET_RISCV64) set_misa(env, MXL_RV64, 0); #endif } #endif static ObjectClass *riscv_cpu_class_by_name(const char *cpu_model) { ObjectClass *oc; char *typename; char **cpuname; cpuname = g_strsplit(cpu_model, ",", 1); typename = g_strdup_printf(RISCV_CPU_TYPE_NAME("%s"), cpuname[0]); oc = object_class_by_name(typename); g_strfreev(cpuname); g_free(typename); if (!oc || !object_class_dynamic_cast(oc, TYPE_RISCV_CPU) || object_class_is_abstract(oc)) { return NULL; } return oc; } static void riscv_cpu_dump_state(CPUState *cs, FILE *f, int flags) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; int i; #if !defined(CONFIG_USER_ONLY) if (riscv_has_ext(env, RVH)) { qemu_fprintf(f, " %s %d\n", "V = ", riscv_cpu_virt_enabled(env)); } #endif qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "pc ", env->pc); #ifndef CONFIG_USER_ONLY { static const int dump_csrs[] = { CSR_MHARTID, CSR_MSTATUS, CSR_MSTATUSH, CSR_HSTATUS, CSR_VSSTATUS, CSR_MIP, CSR_MIE, CSR_MIDELEG, CSR_HIDELEG, CSR_MEDELEG, CSR_HEDELEG, CSR_MTVEC, CSR_STVEC, CSR_VSTVEC, CSR_MEPC, CSR_SEPC, CSR_VSEPC, CSR_MCAUSE, CSR_SCAUSE, CSR_VSCAUSE, CSR_MTVAL, CSR_STVAL, CSR_HTVAL, CSR_MTVAL2, CSR_MSCRATCH, CSR_SSCRATCH, CSR_SATP, CSR_MMTE, CSR_UPMBASE, CSR_UPMMASK, CSR_SPMBASE, CSR_SPMMASK, CSR_MPMBASE, CSR_MPMMASK, }; for (int i = 0; i < ARRAY_SIZE(dump_csrs); ++i) { int csrno = dump_csrs[i]; target_ulong val = 0; RISCVException res = riscv_csrrw_debug(env, csrno, &val, 0, 0); /* * Rely on the smode, hmode, etc, predicates within csr.c * to do the filtering of the registers that are present. */ if (res == RISCV_EXCP_NONE) { qemu_fprintf(f, " %-8s " TARGET_FMT_lx "\n", csr_ops[csrno].name, val); } } } #endif for (i = 0; i < 32; i++) { qemu_fprintf(f, " %-8s " TARGET_FMT_lx, riscv_int_regnames[i], env->gpr[i]); if ((i & 3) == 3) { qemu_fprintf(f, "\n"); } } if (flags & CPU_DUMP_FPU) { for (i = 0; i < 32; i++) { qemu_fprintf(f, " %-8s %016" PRIx64, riscv_fpr_regnames[i], env->fpr[i]); if ((i & 3) == 3) { qemu_fprintf(f, "\n"); } } } } static void riscv_cpu_set_pc(CPUState *cs, vaddr value) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; env->pc = value; } static void riscv_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; env->pc = tb->pc; } static bool riscv_cpu_has_work(CPUState *cs) { #ifndef CONFIG_USER_ONLY RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; /* * Definition of the WFI instruction requires it to ignore the privilege * mode and delegation registers, but respect individual enables */ return (env->mip & env->mie) != 0; #else return true; #endif } void restore_state_to_opc(CPURISCVState *env, TranslationBlock *tb, target_ulong *data) { env->pc = data[0]; } static void riscv_cpu_reset(DeviceState *dev) { CPUState *cs = CPU(dev); RISCVCPU *cpu = RISCV_CPU(cs); RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cpu); CPURISCVState *env = &cpu->env; mcc->parent_reset(dev); #ifndef CONFIG_USER_ONLY env->misa_mxl = env->misa_mxl_max; env->priv = PRV_M; env->mstatus &= ~(MSTATUS_MIE | MSTATUS_MPRV); if (env->misa_mxl > MXL_RV32) { /* * The reset status of SXL/UXL is undefined, but mstatus is WARL * and we must ensure that the value after init is valid for read. */ env->mstatus = set_field(env->mstatus, MSTATUS64_SXL, env->misa_mxl); env->mstatus = set_field(env->mstatus, MSTATUS64_UXL, env->misa_mxl); } env->mcause = 0; env->pc = env->resetvec; env->two_stage_lookup = false; /* mmte is supposed to have pm.current hardwired to 1 */ env->mmte |= (PM_EXT_INITIAL | MMTE_M_PM_CURRENT); #endif cs->exception_index = RISCV_EXCP_NONE; env->load_res = -1; set_default_nan_mode(1, &env->fp_status); #ifndef CONFIG_USER_ONLY if (kvm_enabled()) { kvm_riscv_reset_vcpu(cpu); } #endif } static void riscv_cpu_disas_set_info(CPUState *s, disassemble_info *info) { RISCVCPU *cpu = RISCV_CPU(s); switch (riscv_cpu_mxl(&cpu->env)) { case MXL_RV32: info->print_insn = print_insn_riscv32; break; case MXL_RV64: info->print_insn = print_insn_riscv64; break; case MXL_RV128: info->print_insn = print_insn_riscv128; break; default: g_assert_not_reached(); } } static void riscv_cpu_realize(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); RISCVCPU *cpu = RISCV_CPU(dev); CPURISCVState *env = &cpu->env; RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(dev); int priv_version = 0; Error *local_err = NULL; cpu_exec_realizefn(cs, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } if (cpu->cfg.priv_spec) { if (!g_strcmp0(cpu->cfg.priv_spec, "v1.11.0")) { priv_version = PRIV_VERSION_1_11_0; } else if (!g_strcmp0(cpu->cfg.priv_spec, "v1.10.0")) { priv_version = PRIV_VERSION_1_10_0; } else { error_setg(errp, "Unsupported privilege spec version '%s'", cpu->cfg.priv_spec); return; } } if (priv_version) { set_priv_version(env, priv_version); } else if (!env->priv_ver) { set_priv_version(env, PRIV_VERSION_1_11_0); } if (cpu->cfg.mmu) { set_feature(env, RISCV_FEATURE_MMU); } if (cpu->cfg.pmp) { set_feature(env, RISCV_FEATURE_PMP); /* * Enhanced PMP should only be available * on harts with PMP support */ if (cpu->cfg.epmp) { set_feature(env, RISCV_FEATURE_EPMP); } } set_resetvec(env, cpu->cfg.resetvec); /* Validate that MISA_MXL is set properly. */ switch (env->misa_mxl_max) { #ifdef TARGET_RISCV64 case MXL_RV64: break; case MXL_RV128: break; #endif case MXL_RV32: break; default: g_assert_not_reached(); } assert(env->misa_mxl_max == env->misa_mxl); /* If only MISA_EXT is unset for misa, then set it from properties */ if (env->misa_ext == 0) { uint32_t ext = 0; /* Do some ISA extension error checking */ if (cpu->cfg.ext_i && cpu->cfg.ext_e) { error_setg(errp, "I and E extensions are incompatible"); return; } if (!cpu->cfg.ext_i && !cpu->cfg.ext_e) { error_setg(errp, "Either I or E extension must be set"); return; } if (cpu->cfg.ext_g && !(cpu->cfg.ext_i & cpu->cfg.ext_m & cpu->cfg.ext_a & cpu->cfg.ext_f & cpu->cfg.ext_d)) { warn_report("Setting G will also set IMAFD"); cpu->cfg.ext_i = true; cpu->cfg.ext_m = true; cpu->cfg.ext_a = true; cpu->cfg.ext_f = true; cpu->cfg.ext_d = true; } /* Set the ISA extensions, checks should have happened above */ if (cpu->cfg.ext_i) { ext |= RVI; } if (cpu->cfg.ext_e) { ext |= RVE; } if (cpu->cfg.ext_m) { ext |= RVM; } if (cpu->cfg.ext_a) { ext |= RVA; } if (cpu->cfg.ext_f) { ext |= RVF; } if (cpu->cfg.ext_d) { ext |= RVD; } if (cpu->cfg.ext_c) { ext |= RVC; } if (cpu->cfg.ext_s) { ext |= RVS; } if (cpu->cfg.ext_u) { ext |= RVU; } if (cpu->cfg.ext_h) { ext |= RVH; } if (cpu->cfg.ext_v) { int vext_version = VEXT_VERSION_1_00_0; ext |= RVV; if (!is_power_of_2(cpu->cfg.vlen)) { error_setg(errp, "Vector extension VLEN must be power of 2"); return; } if (cpu->cfg.vlen > RV_VLEN_MAX || cpu->cfg.vlen < 128) { error_setg(errp, "Vector extension implementation only supports VLEN " "in the range [128, %d]", RV_VLEN_MAX); return; } if (!is_power_of_2(cpu->cfg.elen)) { error_setg(errp, "Vector extension ELEN must be power of 2"); return; } if (cpu->cfg.elen > 64 || cpu->cfg.vlen < 8) { error_setg(errp, "Vector extension implementation only supports ELEN " "in the range [8, 64]"); return; } if (cpu->cfg.vext_spec) { if (!g_strcmp0(cpu->cfg.vext_spec, "v1.0")) { vext_version = VEXT_VERSION_1_00_0; } else { error_setg(errp, "Unsupported vector spec version '%s'", cpu->cfg.vext_spec); return; } } else { qemu_log("vector version is not specified, " "use the default value v1.0\n"); } set_vext_version(env, vext_version); } if ((cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) && !cpu->cfg.ext_f) { error_setg(errp, "Zve32f/Zve64f extension depends upon RVF."); return; } if (cpu->cfg.ext_j) { ext |= RVJ; } set_misa(env, env->misa_mxl, ext); } riscv_cpu_register_gdb_regs_for_features(cs); qemu_init_vcpu(cs); cpu_reset(cs); mcc->parent_realize(dev, errp); } #ifndef CONFIG_USER_ONLY static void riscv_cpu_set_irq(void *opaque, int irq, int level) { RISCVCPU *cpu = RISCV_CPU(opaque); switch (irq) { case IRQ_U_SOFT: case IRQ_S_SOFT: case IRQ_VS_SOFT: case IRQ_M_SOFT: case IRQ_U_TIMER: case IRQ_S_TIMER: case IRQ_VS_TIMER: case IRQ_M_TIMER: case IRQ_U_EXT: case IRQ_S_EXT: case IRQ_VS_EXT: case IRQ_M_EXT: if (kvm_enabled()) { kvm_riscv_set_irq(cpu, irq, level); } else { riscv_cpu_update_mip(cpu, 1 << irq, BOOL_TO_MASK(level)); } break; default: g_assert_not_reached(); } } #endif /* CONFIG_USER_ONLY */ static void riscv_cpu_init(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); cpu_set_cpustate_pointers(cpu); #ifndef CONFIG_USER_ONLY qdev_init_gpio_in(DEVICE(cpu), riscv_cpu_set_irq, 12); #endif /* CONFIG_USER_ONLY */ } static Property riscv_cpu_properties[] = { /* Defaults for standard extensions */ DEFINE_PROP_BOOL("i", RISCVCPU, cfg.ext_i, true), DEFINE_PROP_BOOL("e", RISCVCPU, cfg.ext_e, false), DEFINE_PROP_BOOL("g", RISCVCPU, cfg.ext_g, true), DEFINE_PROP_BOOL("m", RISCVCPU, cfg.ext_m, true), DEFINE_PROP_BOOL("a", RISCVCPU, cfg.ext_a, true), DEFINE_PROP_BOOL("f", RISCVCPU, cfg.ext_f, true), DEFINE_PROP_BOOL("d", RISCVCPU, cfg.ext_d, true), DEFINE_PROP_BOOL("c", RISCVCPU, cfg.ext_c, true), DEFINE_PROP_BOOL("s", RISCVCPU, cfg.ext_s, true), DEFINE_PROP_BOOL("u", RISCVCPU, cfg.ext_u, true), DEFINE_PROP_BOOL("v", RISCVCPU, cfg.ext_v, false), DEFINE_PROP_BOOL("h", RISCVCPU, cfg.ext_h, true), DEFINE_PROP_BOOL("Counters", RISCVCPU, cfg.ext_counters, true), DEFINE_PROP_BOOL("Zifencei", RISCVCPU, cfg.ext_ifencei, true), DEFINE_PROP_BOOL("Zicsr", RISCVCPU, cfg.ext_icsr, true), DEFINE_PROP_BOOL("Zfh", RISCVCPU, cfg.ext_zfh, false), DEFINE_PROP_BOOL("Zfhmin", RISCVCPU, cfg.ext_zfhmin, false), DEFINE_PROP_BOOL("Zve64f", RISCVCPU, cfg.ext_zve64f, false), DEFINE_PROP_BOOL("mmu", RISCVCPU, cfg.mmu, true), DEFINE_PROP_BOOL("pmp", RISCVCPU, cfg.pmp, true), DEFINE_PROP_STRING("priv_spec", RISCVCPU, cfg.priv_spec), DEFINE_PROP_STRING("vext_spec", RISCVCPU, cfg.vext_spec), DEFINE_PROP_UINT16("vlen", RISCVCPU, cfg.vlen, 128), DEFINE_PROP_UINT16("elen", RISCVCPU, cfg.elen, 64), DEFINE_PROP_BOOL("zba", RISCVCPU, cfg.ext_zba, true), DEFINE_PROP_BOOL("zbb", RISCVCPU, cfg.ext_zbb, true), DEFINE_PROP_BOOL("zbc", RISCVCPU, cfg.ext_zbc, true), DEFINE_PROP_BOOL("zbs", RISCVCPU, cfg.ext_zbs, true), /* These are experimental so mark with 'x-' */ DEFINE_PROP_BOOL("x-j", RISCVCPU, cfg.ext_j, false), /* ePMP 0.9.3 */ DEFINE_PROP_BOOL("x-epmp", RISCVCPU, cfg.epmp, false), DEFINE_PROP_UINT64("resetvec", RISCVCPU, cfg.resetvec, DEFAULT_RSTVEC), DEFINE_PROP_END_OF_LIST(), }; static gchar *riscv_gdb_arch_name(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; switch (riscv_cpu_mxl(env)) { case MXL_RV32: return g_strdup("riscv:rv32"); case MXL_RV64: case MXL_RV128: return g_strdup("riscv:rv64"); default: g_assert_not_reached(); } } static const char *riscv_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname) { RISCVCPU *cpu = RISCV_CPU(cs); if (strcmp(xmlname, "riscv-csr.xml") == 0) { return cpu->dyn_csr_xml; } else if (strcmp(xmlname, "riscv-vector.xml") == 0) { return cpu->dyn_vreg_xml; } return NULL; } #ifndef CONFIG_USER_ONLY #include "hw/core/sysemu-cpu-ops.h" static const struct SysemuCPUOps riscv_sysemu_ops = { .get_phys_page_debug = riscv_cpu_get_phys_page_debug, .write_elf64_note = riscv_cpu_write_elf64_note, .write_elf32_note = riscv_cpu_write_elf32_note, .legacy_vmsd = &vmstate_riscv_cpu, }; #endif #include "hw/core/tcg-cpu-ops.h" static const struct TCGCPUOps riscv_tcg_ops = { .initialize = riscv_translate_init, .synchronize_from_tb = riscv_cpu_synchronize_from_tb, #ifndef CONFIG_USER_ONLY .tlb_fill = riscv_cpu_tlb_fill, .cpu_exec_interrupt = riscv_cpu_exec_interrupt, .do_interrupt = riscv_cpu_do_interrupt, .do_transaction_failed = riscv_cpu_do_transaction_failed, .do_unaligned_access = riscv_cpu_do_unaligned_access, #endif /* !CONFIG_USER_ONLY */ }; static void riscv_cpu_class_init(ObjectClass *c, void *data) { RISCVCPUClass *mcc = RISCV_CPU_CLASS(c); CPUClass *cc = CPU_CLASS(c); DeviceClass *dc = DEVICE_CLASS(c); device_class_set_parent_realize(dc, riscv_cpu_realize, &mcc->parent_realize); device_class_set_parent_reset(dc, riscv_cpu_reset, &mcc->parent_reset); cc->class_by_name = riscv_cpu_class_by_name; cc->has_work = riscv_cpu_has_work; cc->dump_state = riscv_cpu_dump_state; cc->set_pc = riscv_cpu_set_pc; cc->gdb_read_register = riscv_cpu_gdb_read_register; cc->gdb_write_register = riscv_cpu_gdb_write_register; cc->gdb_num_core_regs = 33; #if defined(TARGET_RISCV32) cc->gdb_core_xml_file = "riscv-32bit-cpu.xml"; #elif defined(TARGET_RISCV64) cc->gdb_core_xml_file = "riscv-64bit-cpu.xml"; #endif cc->gdb_stop_before_watchpoint = true; cc->disas_set_info = riscv_cpu_disas_set_info; #ifndef CONFIG_USER_ONLY cc->sysemu_ops = &riscv_sysemu_ops; #endif cc->gdb_arch_name = riscv_gdb_arch_name; cc->gdb_get_dynamic_xml = riscv_gdb_get_dynamic_xml; cc->tcg_ops = &riscv_tcg_ops; device_class_set_props(dc, riscv_cpu_properties); } char *riscv_isa_string(RISCVCPU *cpu) { int i; const size_t maxlen = sizeof("rv128") + sizeof(riscv_exts) + 1; char *isa_str = g_new(char, maxlen); char *p = isa_str + snprintf(isa_str, maxlen, "rv%d", TARGET_LONG_BITS); for (i = 0; i < sizeof(riscv_exts); i++) { if (cpu->env.misa_ext & RV(riscv_exts[i])) { *p++ = qemu_tolower(riscv_exts[i]); } } *p = '\0'; return isa_str; } static gint riscv_cpu_list_compare(gconstpointer a, gconstpointer b) { ObjectClass *class_a = (ObjectClass *)a; ObjectClass *class_b = (ObjectClass *)b; const char *name_a, *name_b; name_a = object_class_get_name(class_a); name_b = object_class_get_name(class_b); return strcmp(name_a, name_b); } static void riscv_cpu_list_entry(gpointer data, gpointer user_data) { const char *typename = object_class_get_name(OBJECT_CLASS(data)); int len = strlen(typename) - strlen(RISCV_CPU_TYPE_SUFFIX); qemu_printf("%.*s\n", len, typename); } void riscv_cpu_list(void) { GSList *list; list = object_class_get_list(TYPE_RISCV_CPU, false); list = g_slist_sort(list, riscv_cpu_list_compare); g_slist_foreach(list, riscv_cpu_list_entry, NULL); g_slist_free(list); } #define DEFINE_CPU(type_name, initfn) \ { \ .name = type_name, \ .parent = TYPE_RISCV_CPU, \ .instance_init = initfn \ } static const TypeInfo riscv_cpu_type_infos[] = { { .name = TYPE_RISCV_CPU, .parent = TYPE_CPU, .instance_size = sizeof(RISCVCPU), .instance_align = __alignof__(RISCVCPU), .instance_init = riscv_cpu_init, .abstract = true, .class_size = sizeof(RISCVCPUClass), .class_init = riscv_cpu_class_init, }, DEFINE_CPU(TYPE_RISCV_CPU_ANY, riscv_any_cpu_init), #if defined(CONFIG_KVM) DEFINE_CPU(TYPE_RISCV_CPU_HOST, riscv_host_cpu_init), #endif #if defined(TARGET_RISCV32) DEFINE_CPU(TYPE_RISCV_CPU_BASE32, rv32_base_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_IBEX, rv32_ibex_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E31, rv32_sifive_e_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E34, rv32_imafcu_nommu_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_U34, rv32_sifive_u_cpu_init), #elif defined(TARGET_RISCV64) DEFINE_CPU(TYPE_RISCV_CPU_BASE64, rv64_base_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E51, rv64_sifive_e_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_U54, rv64_sifive_u_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SHAKTI_C, rv64_sifive_u_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_BASE128, rv128_base_cpu_init), #endif }; DEFINE_TYPES(riscv_cpu_type_infos)