/* * PowerPC gdb server stub * * Copyright (c) 2003-2005 Fabrice Bellard * Copyright (c) 2013 SUSE LINUX Products GmbH * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/gdbstub.h" #include "gdbstub/helpers.h" #include "internal.h" static int ppc_gdb_register_len_apple(int n) { switch (n) { case 0 ... 31: /* gprs */ return 8; case 32 ... 63: /* fprs */ return 8; case 64 ... 95: return 16; case 64 + 32: /* nip */ case 65 + 32: /* msr */ case 67 + 32: /* lr */ case 68 + 32: /* ctr */ case 70 + 32: /* fpscr */ return 8; case 66 + 32: /* cr */ case 69 + 32: /* xer */ return 4; default: return 0; } } static int ppc_gdb_register_len(int n) { switch (n) { case 0 ... 31: /* gprs */ return sizeof(target_ulong); case 66: /* cr */ case 69: /* xer */ return 4; case 64: /* nip */ case 65: /* msr */ case 67: /* lr */ case 68: /* ctr */ return sizeof(target_ulong); default: return 0; } } /* * We need to present the registers to gdb in the "current" memory * ordering. For user-only mode we get this for free; * TARGET_BIG_ENDIAN is set to the proper ordering for the * binary, and cannot be changed. For system mode, * TARGET_BIG_ENDIAN is always set, and we must check the current * mode of the chip to see if we're running in little-endian. */ void ppc_maybe_bswap_register(CPUPPCState *env, uint8_t *mem_buf, int len) { #ifndef CONFIG_USER_ONLY if (!FIELD_EX64(env->msr, MSR, LE)) { /* do nothing */ } else if (len == 4) { bswap32s((uint32_t *)mem_buf); } else if (len == 8) { bswap64s((uint64_t *)mem_buf); } else if (len == 16) { bswap128s((Int128 *)mem_buf); } else { g_assert_not_reached(); } #endif } /* * Old gdb always expects FP registers. Newer (xml-aware) gdb only * expects whatever the target description contains. Due to a * historical mishap the FP registers appear in between core integer * regs and PC, MSR, CR, and so forth. We hack round this by giving * the FP regs zero size when talking to a newer gdb. */ int ppc_cpu_gdb_read_register(CPUState *cs, GByteArray *buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; uint8_t *mem_buf; int r = ppc_gdb_register_len(n); if (!r) { return r; } if (n < 32) { /* gprs */ gdb_get_regl(buf, env->gpr[n]); } else { switch (n) { case 64: gdb_get_regl(buf, env->nip); break; case 65: gdb_get_regl(buf, env->msr); break; case 66: { uint32_t cr = ppc_get_cr(env); gdb_get_reg32(buf, cr); break; } case 67: gdb_get_regl(buf, env->lr); break; case 68: gdb_get_regl(buf, env->ctr); break; case 69: gdb_get_reg32(buf, cpu_read_xer(env)); break; } } mem_buf = buf->data + buf->len - r; ppc_maybe_bswap_register(env, mem_buf, r); return r; } int ppc_cpu_gdb_read_register_apple(CPUState *cs, GByteArray *buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; uint8_t *mem_buf; int r = ppc_gdb_register_len_apple(n); if (!r) { return r; } if (n < 32) { /* gprs */ gdb_get_reg64(buf, env->gpr[n]); } else if (n < 64) { /* fprs */ gdb_get_reg64(buf, *cpu_fpr_ptr(env, n - 32)); } else if (n < 96) { /* Altivec */ gdb_get_reg64(buf, n - 64); gdb_get_reg64(buf, 0); } else { switch (n) { case 64 + 32: gdb_get_reg64(buf, env->nip); break; case 65 + 32: gdb_get_reg64(buf, env->msr); break; case 66 + 32: { uint32_t cr = ppc_get_cr(env); gdb_get_reg32(buf, cr); break; } case 67 + 32: gdb_get_reg64(buf, env->lr); break; case 68 + 32: gdb_get_reg64(buf, env->ctr); break; case 69 + 32: gdb_get_reg32(buf, cpu_read_xer(env)); break; case 70 + 32: gdb_get_reg64(buf, env->fpscr); break; } } mem_buf = buf->data + buf->len - r; ppc_maybe_bswap_register(env, mem_buf, r); return r; } int ppc_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; int r = ppc_gdb_register_len(n); if (!r) { return r; } ppc_maybe_bswap_register(env, mem_buf, r); if (n < 32) { /* gprs */ env->gpr[n] = ldtul_p(mem_buf); } else if (n < 64) { /* fprs */ *cpu_fpr_ptr(env, n - 32) = ldq_p(mem_buf); } else { switch (n) { case 64: env->nip = ldtul_p(mem_buf); break; case 65: ppc_store_msr(env, ldtul_p(mem_buf)); break; case 66: { uint32_t cr = ldl_p(mem_buf); ppc_set_cr(env, cr); break; } case 67: env->lr = ldtul_p(mem_buf); break; case 68: env->ctr = ldtul_p(mem_buf); break; case 69: cpu_write_xer(env, ldl_p(mem_buf)); break; case 70: /* fpscr */ ppc_store_fpscr(env, ldtul_p(mem_buf)); break; } } return r; } int ppc_cpu_gdb_write_register_apple(CPUState *cs, uint8_t *mem_buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; int r = ppc_gdb_register_len_apple(n); if (!r) { return r; } ppc_maybe_bswap_register(env, mem_buf, r); if (n < 32) { /* gprs */ env->gpr[n] = ldq_p(mem_buf); } else if (n < 64) { /* fprs */ *cpu_fpr_ptr(env, n - 32) = ldq_p(mem_buf); } else { switch (n) { case 64 + 32: env->nip = ldq_p(mem_buf); break; case 65 + 32: ppc_store_msr(env, ldq_p(mem_buf)); break; case 66 + 32: { uint32_t cr = ldl_p(mem_buf); ppc_set_cr(env, cr); break; } case 67 + 32: env->lr = ldq_p(mem_buf); break; case 68 + 32: env->ctr = ldq_p(mem_buf); break; case 69 + 32: cpu_write_xer(env, ldl_p(mem_buf)); break; case 70 + 32: /* fpscr */ ppc_store_fpscr(env, ldq_p(mem_buf)); break; } } return r; } #ifndef CONFIG_USER_ONLY static void gdb_gen_spr_feature(CPUState *cs) { PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; GDBFeatureBuilder builder; unsigned int num_regs = 0; int i; if (pcc->gdb_spr.xml) { return; } gdb_feature_builder_init(&builder, &pcc->gdb_spr, "org.qemu.power.spr", "power-spr.xml", cs->gdb_num_regs); for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) { ppc_spr_t *spr = &env->spr_cb[i]; if (!spr->name) { continue; } gdb_feature_builder_append_reg(&builder, g_ascii_strdown(spr->name, -1), TARGET_LONG_BITS, num_regs, "int", "spr"); /* * GDB identifies registers based on the order they are * presented in the XML. These ids will not match QEMU's * representation (which follows the PowerISA). * * Store the position of the current register description so * we can make the correspondence later. */ spr->gdb_id = num_regs; num_regs++; } gdb_feature_builder_end(&builder); } #endif #if !defined(CONFIG_USER_ONLY) static int gdb_find_spr_idx(CPUPPCState *env, int n) { int i; for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) { ppc_spr_t *spr = &env->spr_cb[i]; if (spr->name && spr->gdb_id == n) { return i; } } return -1; } static int gdb_get_spr_reg(CPUState *cs, GByteArray *buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; int reg; int len; reg = gdb_find_spr_idx(env, n); if (reg < 0) { return 0; } len = TARGET_LONG_SIZE; /* Handle those SPRs that are not part of the env->spr[] array */ target_ulong val; switch (reg) { #if defined(TARGET_PPC64) case SPR_CFAR: val = env->cfar; break; #endif case SPR_HDEC: val = cpu_ppc_load_hdecr(env); break; case SPR_TBL: val = cpu_ppc_load_tbl(env); break; case SPR_TBU: val = cpu_ppc_load_tbu(env); break; case SPR_DECR: val = cpu_ppc_load_decr(env); break; default: val = env->spr[reg]; } gdb_get_regl(buf, val); ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, len), len); return len; } static int gdb_set_spr_reg(CPUState *cs, uint8_t *mem_buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; int reg; int len; reg = gdb_find_spr_idx(env, n); if (reg < 0) { return 0; } len = TARGET_LONG_SIZE; ppc_maybe_bswap_register(env, mem_buf, len); /* Handle those SPRs that are not part of the env->spr[] array */ target_ulong val = ldn_p(mem_buf, len); switch (reg) { #if defined(TARGET_PPC64) case SPR_CFAR: env->cfar = val; break; #endif default: env->spr[reg] = val; } return len; } #endif static int gdb_get_float_reg(CPUState *cs, GByteArray *buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; uint8_t *mem_buf; if (n < 32) { gdb_get_reg64(buf, *cpu_fpr_ptr(env, n)); mem_buf = gdb_get_reg_ptr(buf, 8); ppc_maybe_bswap_register(env, mem_buf, 8); return 8; } if (n == 32) { gdb_get_reg32(buf, env->fpscr); mem_buf = gdb_get_reg_ptr(buf, 4); ppc_maybe_bswap_register(env, mem_buf, 4); return 4; } return 0; } static int gdb_set_float_reg(CPUState *cs, uint8_t *mem_buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; if (n < 32) { ppc_maybe_bswap_register(env, mem_buf, 8); *cpu_fpr_ptr(env, n) = ldq_p(mem_buf); return 8; } if (n == 32) { ppc_maybe_bswap_register(env, mem_buf, 4); ppc_store_fpscr(env, ldl_p(mem_buf)); return 4; } return 0; } static int gdb_get_avr_reg(CPUState *cs, GByteArray *buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; uint8_t *mem_buf; if (n < 32) { ppc_avr_t *avr = cpu_avr_ptr(env, n); gdb_get_reg128(buf, avr->VsrD(0), avr->VsrD(1)); mem_buf = gdb_get_reg_ptr(buf, 16); ppc_maybe_bswap_register(env, mem_buf, 16); return 16; } if (n == 32) { gdb_get_reg32(buf, ppc_get_vscr(env)); mem_buf = gdb_get_reg_ptr(buf, 4); ppc_maybe_bswap_register(env, mem_buf, 4); return 4; } if (n == 33) { gdb_get_reg32(buf, (uint32_t)env->spr[SPR_VRSAVE]); mem_buf = gdb_get_reg_ptr(buf, 4); ppc_maybe_bswap_register(env, mem_buf, 4); return 4; } return 0; } static int gdb_set_avr_reg(CPUState *cs, uint8_t *mem_buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; if (n < 32) { ppc_avr_t *avr = cpu_avr_ptr(env, n); ppc_maybe_bswap_register(env, mem_buf, 16); avr->VsrD(0) = ldq_p(mem_buf); avr->VsrD(1) = ldq_p(mem_buf + 8); return 16; } if (n == 32) { ppc_maybe_bswap_register(env, mem_buf, 4); ppc_store_vscr(env, ldl_p(mem_buf)); return 4; } if (n == 33) { ppc_maybe_bswap_register(env, mem_buf, 4); env->spr[SPR_VRSAVE] = (target_ulong)ldl_p(mem_buf); return 4; } return 0; } static int gdb_get_spe_reg(CPUState *cs, GByteArray *buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; if (n < 32) { #if defined(TARGET_PPC64) gdb_get_reg32(buf, env->gpr[n] >> 32); ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 4), 4); #else gdb_get_reg32(buf, env->gprh[n]); #endif return 4; } if (n == 32) { gdb_get_reg64(buf, env->spe_acc); ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 8), 8); return 8; } if (n == 33) { gdb_get_reg32(buf, env->spe_fscr); ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 4), 4); return 4; } return 0; } static int gdb_set_spe_reg(CPUState *cs, uint8_t *mem_buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; if (n < 32) { #if defined(TARGET_PPC64) target_ulong lo = (uint32_t)env->gpr[n]; target_ulong hi; ppc_maybe_bswap_register(env, mem_buf, 4); hi = (target_ulong)ldl_p(mem_buf) << 32; env->gpr[n] = lo | hi; #else env->gprh[n] = ldl_p(mem_buf); #endif return 4; } if (n == 32) { ppc_maybe_bswap_register(env, mem_buf, 8); env->spe_acc = ldq_p(mem_buf); return 8; } if (n == 33) { ppc_maybe_bswap_register(env, mem_buf, 4); env->spe_fscr = ldl_p(mem_buf); return 4; } return 0; } static int gdb_get_vsx_reg(CPUState *cs, GByteArray *buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; if (n < 32) { gdb_get_reg64(buf, *cpu_vsrl_ptr(env, n)); ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 8), 8); return 8; } return 0; } static int gdb_set_vsx_reg(CPUState *cs, uint8_t *mem_buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; if (n < 32) { ppc_maybe_bswap_register(env, mem_buf, 8); *cpu_vsrl_ptr(env, n) = ldq_p(mem_buf); return 8; } return 0; } const gchar *ppc_gdb_arch_name(CPUState *cs) { #if defined(TARGET_PPC64) return "powerpc:common64"; #else return "powerpc:common"; #endif } void ppc_gdb_init(CPUState *cs, PowerPCCPUClass *pcc) { if (pcc->insns_flags & PPC_FLOAT) { gdb_register_coprocessor(cs, gdb_get_float_reg, gdb_set_float_reg, gdb_find_static_feature("power-fpu.xml"), 0); } if (pcc->insns_flags & PPC_ALTIVEC) { gdb_register_coprocessor(cs, gdb_get_avr_reg, gdb_set_avr_reg, gdb_find_static_feature("power-altivec.xml"), 0); } if (pcc->insns_flags & PPC_SPE) { gdb_register_coprocessor(cs, gdb_get_spe_reg, gdb_set_spe_reg, gdb_find_static_feature("power-spe.xml"), 0); } if (pcc->insns_flags2 & PPC2_VSX) { gdb_register_coprocessor(cs, gdb_get_vsx_reg, gdb_set_vsx_reg, gdb_find_static_feature("power-vsx.xml"), 0); } #ifndef CONFIG_USER_ONLY gdb_gen_spr_feature(cs); gdb_register_coprocessor(cs, gdb_get_spr_reg, gdb_set_spr_reg, &pcc->gdb_spr, 0); #endif }