/*
* MIPS emulation for QEMU - main translation routines
*
* Copyright (c) 2004-2005 Jocelyn Mayer
* Copyright (c) 2006 Marius Groeger (FPU operations)
* Copyright (c) 2006 Thiemo Seufer (MIPS32R2 support)
* Copyright (c) 2009 CodeSourcery (MIPS16 and microMIPS support)
* Copyright (c) 2012 Jia Liu & Dongxue Zhang (MIPS ASE DSP support)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internal.h"
#include "disas/disas.h"
#include "exec/exec-all.h"
#include "tcg-op.h"
#include "exec/cpu_ldst.h"
#include "hw/mips/cpudevs.h"
#include "exec/helper-proto.h"
#include "exec/helper-gen.h"
#include "hw/semihosting/semihost.h"
#include "target/mips/trace.h"
#include "trace-tcg.h"
#include "exec/translator.h"
#include "exec/log.h"
#include "qemu/qemu-print.h"
#define MIPS_DEBUG_DISAS 0
/* MIPS major opcodes */
#define MASK_OP_MAJOR(op) (op & (0x3F << 26))
enum {
/* indirect opcode tables */
OPC_SPECIAL = (0x00 << 26),
OPC_REGIMM = (0x01 << 26),
OPC_CP0 = (0x10 << 26),
OPC_CP1 = (0x11 << 26),
OPC_CP2 = (0x12 << 26),
OPC_CP3 = (0x13 << 26),
OPC_SPECIAL2 = (0x1C << 26),
OPC_SPECIAL3 = (0x1F << 26),
/* arithmetic with immediate */
OPC_ADDI = (0x08 << 26),
OPC_ADDIU = (0x09 << 26),
OPC_SLTI = (0x0A << 26),
OPC_SLTIU = (0x0B << 26),
/* logic with immediate */
OPC_ANDI = (0x0C << 26),
OPC_ORI = (0x0D << 26),
OPC_XORI = (0x0E << 26),
OPC_LUI = (0x0F << 26),
/* arithmetic with immediate */
OPC_DADDI = (0x18 << 26),
OPC_DADDIU = (0x19 << 26),
/* Jump and branches */
OPC_J = (0x02 << 26),
OPC_JAL = (0x03 << 26),
OPC_BEQ = (0x04 << 26), /* Unconditional if rs = rt = 0 (B) */
OPC_BEQL = (0x14 << 26),
OPC_BNE = (0x05 << 26),
OPC_BNEL = (0x15 << 26),
OPC_BLEZ = (0x06 << 26),
OPC_BLEZL = (0x16 << 26),
OPC_BGTZ = (0x07 << 26),
OPC_BGTZL = (0x17 << 26),
OPC_JALX = (0x1D << 26),
OPC_DAUI = (0x1D << 26),
/* Load and stores */
OPC_LDL = (0x1A << 26),
OPC_LDR = (0x1B << 26),
OPC_LB = (0x20 << 26),
OPC_LH = (0x21 << 26),
OPC_LWL = (0x22 << 26),
OPC_LW = (0x23 << 26),
OPC_LWPC = OPC_LW | 0x5,
OPC_LBU = (0x24 << 26),
OPC_LHU = (0x25 << 26),
OPC_LWR = (0x26 << 26),
OPC_LWU = (0x27 << 26),
OPC_SB = (0x28 << 26),
OPC_SH = (0x29 << 26),
OPC_SWL = (0x2A << 26),
OPC_SW = (0x2B << 26),
OPC_SDL = (0x2C << 26),
OPC_SDR = (0x2D << 26),
OPC_SWR = (0x2E << 26),
OPC_LL = (0x30 << 26),
OPC_LLD = (0x34 << 26),
OPC_LD = (0x37 << 26),
OPC_LDPC = OPC_LD | 0x5,
OPC_SC = (0x38 << 26),
OPC_SCD = (0x3C << 26),
OPC_SD = (0x3F << 26),
/* Floating point load/store */
OPC_LWC1 = (0x31 << 26),
OPC_LWC2 = (0x32 << 26),
OPC_LDC1 = (0x35 << 26),
OPC_LDC2 = (0x36 << 26),
OPC_SWC1 = (0x39 << 26),
OPC_SWC2 = (0x3A << 26),
OPC_SDC1 = (0x3D << 26),
OPC_SDC2 = (0x3E << 26),
/* Compact Branches */
OPC_BLEZALC = (0x06 << 26),
OPC_BGEZALC = (0x06 << 26),
OPC_BGEUC = (0x06 << 26),
OPC_BGTZALC = (0x07 << 26),
OPC_BLTZALC = (0x07 << 26),
OPC_BLTUC = (0x07 << 26),
OPC_BOVC = (0x08 << 26),
OPC_BEQZALC = (0x08 << 26),
OPC_BEQC = (0x08 << 26),
OPC_BLEZC = (0x16 << 26),
OPC_BGEZC = (0x16 << 26),
OPC_BGEC = (0x16 << 26),
OPC_BGTZC = (0x17 << 26),
OPC_BLTZC = (0x17 << 26),
OPC_BLTC = (0x17 << 26),
OPC_BNVC = (0x18 << 26),
OPC_BNEZALC = (0x18 << 26),
OPC_BNEC = (0x18 << 26),
OPC_BC = (0x32 << 26),
OPC_BEQZC = (0x36 << 26),
OPC_JIC = (0x36 << 26),
OPC_BALC = (0x3A << 26),
OPC_BNEZC = (0x3E << 26),
OPC_JIALC = (0x3E << 26),
/* MDMX ASE specific */
OPC_MDMX = (0x1E << 26),
/* MSA ASE, same as MDMX */
OPC_MSA = OPC_MDMX,
/* Cache and prefetch */
OPC_CACHE = (0x2F << 26),
OPC_PREF = (0x33 << 26),
/* PC-relative address computation / loads */
OPC_PCREL = (0x3B << 26),
};
/* PC-relative address computation / loads */
#define MASK_OPC_PCREL_TOP2BITS(op) (MASK_OP_MAJOR(op) | (op & (3 << 19)))
#define MASK_OPC_PCREL_TOP5BITS(op) (MASK_OP_MAJOR(op) | (op & (0x1f << 16)))
enum {
/* Instructions determined by bits 19 and 20 */
OPC_ADDIUPC = OPC_PCREL | (0 << 19),
R6_OPC_LWPC = OPC_PCREL | (1 << 19),
OPC_LWUPC = OPC_PCREL | (2 << 19),
/* Instructions determined by bits 16 ... 20 */
OPC_AUIPC = OPC_PCREL | (0x1e << 16),
OPC_ALUIPC = OPC_PCREL | (0x1f << 16),
/* Other */
R6_OPC_LDPC = OPC_PCREL | (6 << 18),
};
/* MIPS special opcodes */
#define MASK_SPECIAL(op) MASK_OP_MAJOR(op) | (op & 0x3F)
enum {
/* Shifts */
OPC_SLL = 0x00 | OPC_SPECIAL,
/* NOP is SLL r0, r0, 0 */
/* SSNOP is SLL r0, r0, 1 */
/* EHB is SLL r0, r0, 3 */
OPC_SRL = 0x02 | OPC_SPECIAL, /* also ROTR */
OPC_ROTR = OPC_SRL | (1 << 21),
OPC_SRA = 0x03 | OPC_SPECIAL,
OPC_SLLV = 0x04 | OPC_SPECIAL,
OPC_SRLV = 0x06 | OPC_SPECIAL, /* also ROTRV */
OPC_ROTRV = OPC_SRLV | (1 << 6),
OPC_SRAV = 0x07 | OPC_SPECIAL,
OPC_DSLLV = 0x14 | OPC_SPECIAL,
OPC_DSRLV = 0x16 | OPC_SPECIAL, /* also DROTRV */
OPC_DROTRV = OPC_DSRLV | (1 << 6),
OPC_DSRAV = 0x17 | OPC_SPECIAL,
OPC_DSLL = 0x38 | OPC_SPECIAL,
OPC_DSRL = 0x3A | OPC_SPECIAL, /* also DROTR */
OPC_DROTR = OPC_DSRL | (1 << 21),
OPC_DSRA = 0x3B | OPC_SPECIAL,
OPC_DSLL32 = 0x3C | OPC_SPECIAL,
OPC_DSRL32 = 0x3E | OPC_SPECIAL, /* also DROTR32 */
OPC_DROTR32 = OPC_DSRL32 | (1 << 21),
OPC_DSRA32 = 0x3F | OPC_SPECIAL,
/* Multiplication / division */
OPC_MULT = 0x18 | OPC_SPECIAL,
OPC_MULTU = 0x19 | OPC_SPECIAL,
OPC_DIV = 0x1A | OPC_SPECIAL,
OPC_DIVU = 0x1B | OPC_SPECIAL,
OPC_DMULT = 0x1C | OPC_SPECIAL,
OPC_DMULTU = 0x1D | OPC_SPECIAL,
OPC_DDIV = 0x1E | OPC_SPECIAL,
OPC_DDIVU = 0x1F | OPC_SPECIAL,
/* 2 registers arithmetic / logic */
OPC_ADD = 0x20 | OPC_SPECIAL,
OPC_ADDU = 0x21 | OPC_SPECIAL,
OPC_SUB = 0x22 | OPC_SPECIAL,
OPC_SUBU = 0x23 | OPC_SPECIAL,
OPC_AND = 0x24 | OPC_SPECIAL,
OPC_OR = 0x25 | OPC_SPECIAL,
OPC_XOR = 0x26 | OPC_SPECIAL,
OPC_NOR = 0x27 | OPC_SPECIAL,
OPC_SLT = 0x2A | OPC_SPECIAL,
OPC_SLTU = 0x2B | OPC_SPECIAL,
OPC_DADD = 0x2C | OPC_SPECIAL,
OPC_DADDU = 0x2D | OPC_SPECIAL,
OPC_DSUB = 0x2E | OPC_SPECIAL,
OPC_DSUBU = 0x2F | OPC_SPECIAL,
/* Jumps */
OPC_JR = 0x08 | OPC_SPECIAL, /* Also JR.HB */
OPC_JALR = 0x09 | OPC_SPECIAL, /* Also JALR.HB */
/* Traps */
OPC_TGE = 0x30 | OPC_SPECIAL,
OPC_TGEU = 0x31 | OPC_SPECIAL,
OPC_TLT = 0x32 | OPC_SPECIAL,
OPC_TLTU = 0x33 | OPC_SPECIAL,
OPC_TEQ = 0x34 | OPC_SPECIAL,
OPC_TNE = 0x36 | OPC_SPECIAL,
/* HI / LO registers load & stores */
OPC_MFHI = 0x10 | OPC_SPECIAL,
OPC_MTHI = 0x11 | OPC_SPECIAL,
OPC_MFLO = 0x12 | OPC_SPECIAL,
OPC_MTLO = 0x13 | OPC_SPECIAL,
/* Conditional moves */
OPC_MOVZ = 0x0A | OPC_SPECIAL,
OPC_MOVN = 0x0B | OPC_SPECIAL,
OPC_SELEQZ = 0x35 | OPC_SPECIAL,
OPC_SELNEZ = 0x37 | OPC_SPECIAL,
OPC_MOVCI = 0x01 | OPC_SPECIAL,
/* Special */
OPC_PMON = 0x05 | OPC_SPECIAL, /* unofficial */
OPC_SYSCALL = 0x0C | OPC_SPECIAL,
OPC_BREAK = 0x0D | OPC_SPECIAL,
OPC_SPIM = 0x0E | OPC_SPECIAL, /* unofficial */
OPC_SYNC = 0x0F | OPC_SPECIAL,
OPC_SPECIAL28_RESERVED = 0x28 | OPC_SPECIAL,
OPC_SPECIAL29_RESERVED = 0x29 | OPC_SPECIAL,
OPC_SPECIAL39_RESERVED = 0x39 | OPC_SPECIAL,
OPC_SPECIAL3D_RESERVED = 0x3D | OPC_SPECIAL,
};
/*
* R6 Multiply and Divide instructions have the same opcode
* and function field as legacy OPC_MULT[U]/OPC_DIV[U]
*/
#define MASK_R6_MULDIV(op) (MASK_SPECIAL(op) | (op & (0x7ff)))
enum {
R6_OPC_MUL = OPC_MULT | (2 << 6),
R6_OPC_MUH = OPC_MULT | (3 << 6),
R6_OPC_MULU = OPC_MULTU | (2 << 6),
R6_OPC_MUHU = OPC_MULTU | (3 << 6),
R6_OPC_DIV = OPC_DIV | (2 << 6),
R6_OPC_MOD = OPC_DIV | (3 << 6),
R6_OPC_DIVU = OPC_DIVU | (2 << 6),
R6_OPC_MODU = OPC_DIVU | (3 << 6),
R6_OPC_DMUL = OPC_DMULT | (2 << 6),
R6_OPC_DMUH = OPC_DMULT | (3 << 6),
R6_OPC_DMULU = OPC_DMULTU | (2 << 6),
R6_OPC_DMUHU = OPC_DMULTU | (3 << 6),
R6_OPC_DDIV = OPC_DDIV | (2 << 6),
R6_OPC_DMOD = OPC_DDIV | (3 << 6),
R6_OPC_DDIVU = OPC_DDIVU | (2 << 6),
R6_OPC_DMODU = OPC_DDIVU | (3 << 6),
R6_OPC_CLZ = 0x10 | OPC_SPECIAL,
R6_OPC_CLO = 0x11 | OPC_SPECIAL,
R6_OPC_DCLZ = 0x12 | OPC_SPECIAL,
R6_OPC_DCLO = 0x13 | OPC_SPECIAL,
R6_OPC_SDBBP = 0x0e | OPC_SPECIAL,
OPC_LSA = 0x05 | OPC_SPECIAL,
OPC_DLSA = 0x15 | OPC_SPECIAL,
};
/* Multiplication variants of the vr54xx. */
#define MASK_MUL_VR54XX(op) MASK_SPECIAL(op) | (op & (0x1F << 6))
enum {
OPC_VR54XX_MULS = (0x03 << 6) | OPC_MULT,
OPC_VR54XX_MULSU = (0x03 << 6) | OPC_MULTU,
OPC_VR54XX_MACC = (0x05 << 6) | OPC_MULT,
OPC_VR54XX_MACCU = (0x05 << 6) | OPC_MULTU,
OPC_VR54XX_MSAC = (0x07 << 6) | OPC_MULT,
OPC_VR54XX_MSACU = (0x07 << 6) | OPC_MULTU,
OPC_VR54XX_MULHI = (0x09 << 6) | OPC_MULT,
OPC_VR54XX_MULHIU = (0x09 << 6) | OPC_MULTU,
OPC_VR54XX_MULSHI = (0x0B << 6) | OPC_MULT,
OPC_VR54XX_MULSHIU = (0x0B << 6) | OPC_MULTU,
OPC_VR54XX_MACCHI = (0x0D << 6) | OPC_MULT,
OPC_VR54XX_MACCHIU = (0x0D << 6) | OPC_MULTU,
OPC_VR54XX_MSACHI = (0x0F << 6) | OPC_MULT,
OPC_VR54XX_MSACHIU = (0x0F << 6) | OPC_MULTU,
};
/* REGIMM (rt field) opcodes */
#define MASK_REGIMM(op) MASK_OP_MAJOR(op) | (op & (0x1F << 16))
enum {
OPC_BLTZ = (0x00 << 16) | OPC_REGIMM,
OPC_BLTZL = (0x02 << 16) | OPC_REGIMM,
OPC_BGEZ = (0x01 << 16) | OPC_REGIMM,
OPC_BGEZL = (0x03 << 16) | OPC_REGIMM,
OPC_BLTZAL = (0x10 << 16) | OPC_REGIMM,
OPC_BLTZALL = (0x12 << 16) | OPC_REGIMM,
OPC_BGEZAL = (0x11 << 16) | OPC_REGIMM,
OPC_BGEZALL = (0x13 << 16) | OPC_REGIMM,
OPC_TGEI = (0x08 << 16) | OPC_REGIMM,
OPC_TGEIU = (0x09 << 16) | OPC_REGIMM,
OPC_TLTI = (0x0A << 16) | OPC_REGIMM,
OPC_TLTIU = (0x0B << 16) | OPC_REGIMM,
OPC_TEQI = (0x0C << 16) | OPC_REGIMM,
OPC_TNEI = (0x0E << 16) | OPC_REGIMM,
OPC_SIGRIE = (0x17 << 16) | OPC_REGIMM,
OPC_SYNCI = (0x1F << 16) | OPC_REGIMM,
OPC_DAHI = (0x06 << 16) | OPC_REGIMM,
OPC_DATI = (0x1e << 16) | OPC_REGIMM,
};
/* Special2 opcodes */
#define MASK_SPECIAL2(op) MASK_OP_MAJOR(op) | (op & 0x3F)
enum {
/* Multiply & xxx operations */
OPC_MADD = 0x00 | OPC_SPECIAL2,
OPC_MADDU = 0x01 | OPC_SPECIAL2,
OPC_MUL = 0x02 | OPC_SPECIAL2,
OPC_MSUB = 0x04 | OPC_SPECIAL2,
OPC_MSUBU = 0x05 | OPC_SPECIAL2,
/* Loongson 2F */
OPC_MULT_G_2F = 0x10 | OPC_SPECIAL2,
OPC_DMULT_G_2F = 0x11 | OPC_SPECIAL2,
OPC_MULTU_G_2F = 0x12 | OPC_SPECIAL2,
OPC_DMULTU_G_2F = 0x13 | OPC_SPECIAL2,
OPC_DIV_G_2F = 0x14 | OPC_SPECIAL2,
OPC_DDIV_G_2F = 0x15 | OPC_SPECIAL2,
OPC_DIVU_G_2F = 0x16 | OPC_SPECIAL2,
OPC_DDIVU_G_2F = 0x17 | OPC_SPECIAL2,
OPC_MOD_G_2F = 0x1c | OPC_SPECIAL2,
OPC_DMOD_G_2F = 0x1d | OPC_SPECIAL2,
OPC_MODU_G_2F = 0x1e | OPC_SPECIAL2,
OPC_DMODU_G_2F = 0x1f | OPC_SPECIAL2,
/* Misc */
OPC_CLZ = 0x20 | OPC_SPECIAL2,
OPC_CLO = 0x21 | OPC_SPECIAL2,
OPC_DCLZ = 0x24 | OPC_SPECIAL2,
OPC_DCLO = 0x25 | OPC_SPECIAL2,
/* Special */
OPC_SDBBP = 0x3F | OPC_SPECIAL2,
};
/* Special3 opcodes */
#define MASK_SPECIAL3(op) MASK_OP_MAJOR(op) | (op & 0x3F)
enum {
OPC_EXT = 0x00 | OPC_SPECIAL3,
OPC_DEXTM = 0x01 | OPC_SPECIAL3,
OPC_DEXTU = 0x02 | OPC_SPECIAL3,
OPC_DEXT = 0x03 | OPC_SPECIAL3,
OPC_INS = 0x04 | OPC_SPECIAL3,
OPC_DINSM = 0x05 | OPC_SPECIAL3,
OPC_DINSU = 0x06 | OPC_SPECIAL3,
OPC_DINS = 0x07 | OPC_SPECIAL3,
OPC_FORK = 0x08 | OPC_SPECIAL3,
OPC_YIELD = 0x09 | OPC_SPECIAL3,
OPC_BSHFL = 0x20 | OPC_SPECIAL3,
OPC_DBSHFL = 0x24 | OPC_SPECIAL3,
OPC_RDHWR = 0x3B | OPC_SPECIAL3,
/* Loongson 2E */
OPC_MULT_G_2E = 0x18 | OPC_SPECIAL3,
OPC_MULTU_G_2E = 0x19 | OPC_SPECIAL3,
OPC_DIV_G_2E = 0x1A | OPC_SPECIAL3,
OPC_DIVU_G_2E = 0x1B | OPC_SPECIAL3,
OPC_DMULT_G_2E = 0x1C | OPC_SPECIAL3,
OPC_DMULTU_G_2E = 0x1D | OPC_SPECIAL3,
OPC_DDIV_G_2E = 0x1E | OPC_SPECIAL3,
OPC_DDIVU_G_2E = 0x1F | OPC_SPECIAL3,
OPC_MOD_G_2E = 0x22 | OPC_SPECIAL3,
OPC_MODU_G_2E = 0x23 | OPC_SPECIAL3,
OPC_DMOD_G_2E = 0x26 | OPC_SPECIAL3,
OPC_DMODU_G_2E = 0x27 | OPC_SPECIAL3,
/* MIPS DSP Load */
OPC_LX_DSP = 0x0A | OPC_SPECIAL3,
/* MIPS DSP Arithmetic */
OPC_ADDU_QB_DSP = 0x10 | OPC_SPECIAL3,
OPC_ADDU_OB_DSP = 0x14 | OPC_SPECIAL3,
OPC_ABSQ_S_PH_DSP = 0x12 | OPC_SPECIAL3,
OPC_ABSQ_S_QH_DSP = 0x16 | OPC_SPECIAL3,
/* OPC_ADDUH_QB_DSP is same as OPC_MULT_G_2E. */
/* OPC_ADDUH_QB_DSP = 0x18 | OPC_SPECIAL3, */
OPC_CMPU_EQ_QB_DSP = 0x11 | OPC_SPECIAL3,
OPC_CMPU_EQ_OB_DSP = 0x15 | OPC_SPECIAL3,
/* MIPS DSP GPR-Based Shift Sub-class */
OPC_SHLL_QB_DSP = 0x13 | OPC_SPECIAL3,
OPC_SHLL_OB_DSP = 0x17 | OPC_SPECIAL3,
/* MIPS DSP Multiply Sub-class insns */
/* OPC_MUL_PH_DSP is same as OPC_ADDUH_QB_DSP. */
/* OPC_MUL_PH_DSP = 0x18 | OPC_SPECIAL3, */
OPC_DPA_W_PH_DSP = 0x30 | OPC_SPECIAL3,
OPC_DPAQ_W_QH_DSP = 0x34 | OPC_SPECIAL3,
/* DSP Bit/Manipulation Sub-class */
OPC_INSV_DSP = 0x0C | OPC_SPECIAL3,
OPC_DINSV_DSP = 0x0D | OPC_SPECIAL3,
/* MIPS DSP Append Sub-class */
OPC_APPEND_DSP = 0x31 | OPC_SPECIAL3,
OPC_DAPPEND_DSP = 0x35 | OPC_SPECIAL3,
/* MIPS DSP Accumulator and DSPControl Access Sub-class */
OPC_EXTR_W_DSP = 0x38 | OPC_SPECIAL3,
OPC_DEXTR_W_DSP = 0x3C | OPC_SPECIAL3,
/* EVA */
OPC_LWLE = 0x19 | OPC_SPECIAL3,
OPC_LWRE = 0x1A | OPC_SPECIAL3,
OPC_CACHEE = 0x1B | OPC_SPECIAL3,
OPC_SBE = 0x1C | OPC_SPECIAL3,
OPC_SHE = 0x1D | OPC_SPECIAL3,
OPC_SCE = 0x1E | OPC_SPECIAL3,
OPC_SWE = 0x1F | OPC_SPECIAL3,
OPC_SWLE = 0x21 | OPC_SPECIAL3,
OPC_SWRE = 0x22 | OPC_SPECIAL3,
OPC_PREFE = 0x23 | OPC_SPECIAL3,
OPC_LBUE = 0x28 | OPC_SPECIAL3,
OPC_LHUE = 0x29 | OPC_SPECIAL3,
OPC_LBE = 0x2C | OPC_SPECIAL3,
OPC_LHE = 0x2D | OPC_SPECIAL3,
OPC_LLE = 0x2E | OPC_SPECIAL3,
OPC_LWE = 0x2F | OPC_SPECIAL3,
/* R6 */
R6_OPC_PREF = 0x35 | OPC_SPECIAL3,
R6_OPC_CACHE = 0x25 | OPC_SPECIAL3,
R6_OPC_LL = 0x36 | OPC_SPECIAL3,
R6_OPC_SC = 0x26 | OPC_SPECIAL3,
R6_OPC_LLD = 0x37 | OPC_SPECIAL3,
R6_OPC_SCD = 0x27 | OPC_SPECIAL3,
};
/* BSHFL opcodes */
#define MASK_BSHFL(op) MASK_SPECIAL3(op) | (op & (0x1F << 6))
enum {
OPC_WSBH = (0x02 << 6) | OPC_BSHFL,
OPC_SEB = (0x10 << 6) | OPC_BSHFL,
OPC_SEH = (0x18 << 6) | OPC_BSHFL,
OPC_ALIGN = (0x08 << 6) | OPC_BSHFL, /* 010.bp (010.00 to 010.11) */
OPC_ALIGN_1 = (0x09 << 6) | OPC_BSHFL,
OPC_ALIGN_2 = (0x0A << 6) | OPC_BSHFL,
OPC_ALIGN_3 = (0x0B << 6) | OPC_BSHFL,
OPC_BITSWAP = (0x00 << 6) | OPC_BSHFL /* 00000 */
};
/* DBSHFL opcodes */
#define MASK_DBSHFL(op) MASK_SPECIAL3(op) | (op & (0x1F << 6))
enum {
OPC_DSBH = (0x02 << 6) | OPC_DBSHFL,
OPC_DSHD = (0x05 << 6) | OPC_DBSHFL,
OPC_DALIGN = (0x08 << 6) | OPC_DBSHFL, /* 01.bp (01.000 to 01.111) */
OPC_DALIGN_1 = (0x09 << 6) | OPC_DBSHFL,
OPC_DALIGN_2 = (0x0A << 6) | OPC_DBSHFL,
OPC_DALIGN_3 = (0x0B << 6) | OPC_DBSHFL,
OPC_DALIGN_4 = (0x0C << 6) | OPC_DBSHFL,
OPC_DALIGN_5 = (0x0D << 6) | OPC_DBSHFL,
OPC_DALIGN_6 = (0x0E << 6) | OPC_DBSHFL,
OPC_DALIGN_7 = (0x0F << 6) | OPC_DBSHFL,
OPC_DBITSWAP = (0x00 << 6) | OPC_DBSHFL, /* 00000 */
};
/* MIPS DSP REGIMM opcodes */
enum {
OPC_BPOSGE32 = (0x1C << 16) | OPC_REGIMM,
OPC_BPOSGE64 = (0x1D << 16) | OPC_REGIMM,
};
#define MASK_LX(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
/* MIPS DSP Load */
enum {
OPC_LBUX = (0x06 << 6) | OPC_LX_DSP,
OPC_LHX = (0x04 << 6) | OPC_LX_DSP,
OPC_LWX = (0x00 << 6) | OPC_LX_DSP,
OPC_LDX = (0x08 << 6) | OPC_LX_DSP,
};
#define MASK_ADDU_QB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP Arithmetic Sub-class */
OPC_ADDQ_PH = (0x0A << 6) | OPC_ADDU_QB_DSP,
OPC_ADDQ_S_PH = (0x0E << 6) | OPC_ADDU_QB_DSP,
OPC_ADDQ_S_W = (0x16 << 6) | OPC_ADDU_QB_DSP,
OPC_ADDU_QB = (0x00 << 6) | OPC_ADDU_QB_DSP,
OPC_ADDU_S_QB = (0x04 << 6) | OPC_ADDU_QB_DSP,
OPC_ADDU_PH = (0x08 << 6) | OPC_ADDU_QB_DSP,
OPC_ADDU_S_PH = (0x0C << 6) | OPC_ADDU_QB_DSP,
OPC_SUBQ_PH = (0x0B << 6) | OPC_ADDU_QB_DSP,
OPC_SUBQ_S_PH = (0x0F << 6) | OPC_ADDU_QB_DSP,
OPC_SUBQ_S_W = (0x17 << 6) | OPC_ADDU_QB_DSP,
OPC_SUBU_QB = (0x01 << 6) | OPC_ADDU_QB_DSP,
OPC_SUBU_S_QB = (0x05 << 6) | OPC_ADDU_QB_DSP,
OPC_SUBU_PH = (0x09 << 6) | OPC_ADDU_QB_DSP,
OPC_SUBU_S_PH = (0x0D << 6) | OPC_ADDU_QB_DSP,
OPC_ADDSC = (0x10 << 6) | OPC_ADDU_QB_DSP,
OPC_ADDWC = (0x11 << 6) | OPC_ADDU_QB_DSP,
OPC_MODSUB = (0x12 << 6) | OPC_ADDU_QB_DSP,
OPC_RADDU_W_QB = (0x14 << 6) | OPC_ADDU_QB_DSP,
/* MIPS DSP Multiply Sub-class insns */
OPC_MULEU_S_PH_QBL = (0x06 << 6) | OPC_ADDU_QB_DSP,
OPC_MULEU_S_PH_QBR = (0x07 << 6) | OPC_ADDU_QB_DSP,
OPC_MULQ_RS_PH = (0x1F << 6) | OPC_ADDU_QB_DSP,
OPC_MULEQ_S_W_PHL = (0x1C << 6) | OPC_ADDU_QB_DSP,
OPC_MULEQ_S_W_PHR = (0x1D << 6) | OPC_ADDU_QB_DSP,
OPC_MULQ_S_PH = (0x1E << 6) | OPC_ADDU_QB_DSP,
};
#define OPC_ADDUH_QB_DSP OPC_MULT_G_2E
#define MASK_ADDUH_QB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP Arithmetic Sub-class */
OPC_ADDUH_QB = (0x00 << 6) | OPC_ADDUH_QB_DSP,
OPC_ADDUH_R_QB = (0x02 << 6) | OPC_ADDUH_QB_DSP,
OPC_ADDQH_PH = (0x08 << 6) | OPC_ADDUH_QB_DSP,
OPC_ADDQH_R_PH = (0x0A << 6) | OPC_ADDUH_QB_DSP,
OPC_ADDQH_W = (0x10 << 6) | OPC_ADDUH_QB_DSP,
OPC_ADDQH_R_W = (0x12 << 6) | OPC_ADDUH_QB_DSP,
OPC_SUBUH_QB = (0x01 << 6) | OPC_ADDUH_QB_DSP,
OPC_SUBUH_R_QB = (0x03 << 6) | OPC_ADDUH_QB_DSP,
OPC_SUBQH_PH = (0x09 << 6) | OPC_ADDUH_QB_DSP,
OPC_SUBQH_R_PH = (0x0B << 6) | OPC_ADDUH_QB_DSP,
OPC_SUBQH_W = (0x11 << 6) | OPC_ADDUH_QB_DSP,
OPC_SUBQH_R_W = (0x13 << 6) | OPC_ADDUH_QB_DSP,
/* MIPS DSP Multiply Sub-class insns */
OPC_MUL_PH = (0x0C << 6) | OPC_ADDUH_QB_DSP,
OPC_MUL_S_PH = (0x0E << 6) | OPC_ADDUH_QB_DSP,
OPC_MULQ_S_W = (0x16 << 6) | OPC_ADDUH_QB_DSP,
OPC_MULQ_RS_W = (0x17 << 6) | OPC_ADDUH_QB_DSP,
};
#define MASK_ABSQ_S_PH(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP Arithmetic Sub-class */
OPC_ABSQ_S_QB = (0x01 << 6) | OPC_ABSQ_S_PH_DSP,
OPC_ABSQ_S_PH = (0x09 << 6) | OPC_ABSQ_S_PH_DSP,
OPC_ABSQ_S_W = (0x11 << 6) | OPC_ABSQ_S_PH_DSP,
OPC_PRECEQ_W_PHL = (0x0C << 6) | OPC_ABSQ_S_PH_DSP,
OPC_PRECEQ_W_PHR = (0x0D << 6) | OPC_ABSQ_S_PH_DSP,
OPC_PRECEQU_PH_QBL = (0x04 << 6) | OPC_ABSQ_S_PH_DSP,
OPC_PRECEQU_PH_QBR = (0x05 << 6) | OPC_ABSQ_S_PH_DSP,
OPC_PRECEQU_PH_QBLA = (0x06 << 6) | OPC_ABSQ_S_PH_DSP,
OPC_PRECEQU_PH_QBRA = (0x07 << 6) | OPC_ABSQ_S_PH_DSP,
OPC_PRECEU_PH_QBL = (0x1C << 6) | OPC_ABSQ_S_PH_DSP,
OPC_PRECEU_PH_QBR = (0x1D << 6) | OPC_ABSQ_S_PH_DSP,
OPC_PRECEU_PH_QBLA = (0x1E << 6) | OPC_ABSQ_S_PH_DSP,
OPC_PRECEU_PH_QBRA = (0x1F << 6) | OPC_ABSQ_S_PH_DSP,
/* DSP Bit/Manipulation Sub-class */
OPC_BITREV = (0x1B << 6) | OPC_ABSQ_S_PH_DSP,
OPC_REPL_QB = (0x02 << 6) | OPC_ABSQ_S_PH_DSP,
OPC_REPLV_QB = (0x03 << 6) | OPC_ABSQ_S_PH_DSP,
OPC_REPL_PH = (0x0A << 6) | OPC_ABSQ_S_PH_DSP,
OPC_REPLV_PH = (0x0B << 6) | OPC_ABSQ_S_PH_DSP,
};
#define MASK_CMPU_EQ_QB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP Arithmetic Sub-class */
OPC_PRECR_QB_PH = (0x0D << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_PRECRQ_QB_PH = (0x0C << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_PRECR_SRA_PH_W = (0x1E << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_PRECR_SRA_R_PH_W = (0x1F << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_PRECRQ_PH_W = (0x14 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_PRECRQ_RS_PH_W = (0x15 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_PRECRQU_S_QB_PH = (0x0F << 6) | OPC_CMPU_EQ_QB_DSP,
/* DSP Compare-Pick Sub-class */
OPC_CMPU_EQ_QB = (0x00 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_CMPU_LT_QB = (0x01 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_CMPU_LE_QB = (0x02 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_CMPGU_EQ_QB = (0x04 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_CMPGU_LT_QB = (0x05 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_CMPGU_LE_QB = (0x06 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_CMPGDU_EQ_QB = (0x18 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_CMPGDU_LT_QB = (0x19 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_CMPGDU_LE_QB = (0x1A << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_CMP_EQ_PH = (0x08 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_CMP_LT_PH = (0x09 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_CMP_LE_PH = (0x0A << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_PICK_QB = (0x03 << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_PICK_PH = (0x0B << 6) | OPC_CMPU_EQ_QB_DSP,
OPC_PACKRL_PH = (0x0E << 6) | OPC_CMPU_EQ_QB_DSP,
};
#define MASK_SHLL_QB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP GPR-Based Shift Sub-class */
OPC_SHLL_QB = (0x00 << 6) | OPC_SHLL_QB_DSP,
OPC_SHLLV_QB = (0x02 << 6) | OPC_SHLL_QB_DSP,
OPC_SHLL_PH = (0x08 << 6) | OPC_SHLL_QB_DSP,
OPC_SHLLV_PH = (0x0A << 6) | OPC_SHLL_QB_DSP,
OPC_SHLL_S_PH = (0x0C << 6) | OPC_SHLL_QB_DSP,
OPC_SHLLV_S_PH = (0x0E << 6) | OPC_SHLL_QB_DSP,
OPC_SHLL_S_W = (0x14 << 6) | OPC_SHLL_QB_DSP,
OPC_SHLLV_S_W = (0x16 << 6) | OPC_SHLL_QB_DSP,
OPC_SHRL_QB = (0x01 << 6) | OPC_SHLL_QB_DSP,
OPC_SHRLV_QB = (0x03 << 6) | OPC_SHLL_QB_DSP,
OPC_SHRL_PH = (0x19 << 6) | OPC_SHLL_QB_DSP,
OPC_SHRLV_PH = (0x1B << 6) | OPC_SHLL_QB_DSP,
OPC_SHRA_QB = (0x04 << 6) | OPC_SHLL_QB_DSP,
OPC_SHRA_R_QB = (0x05 << 6) | OPC_SHLL_QB_DSP,
OPC_SHRAV_QB = (0x06 << 6) | OPC_SHLL_QB_DSP,
OPC_SHRAV_R_QB = (0x07 << 6) | OPC_SHLL_QB_DSP,
OPC_SHRA_PH = (0x09 << 6) | OPC_SHLL_QB_DSP,
OPC_SHRAV_PH = (0x0B << 6) | OPC_SHLL_QB_DSP,
OPC_SHRA_R_PH = (0x0D << 6) | OPC_SHLL_QB_DSP,
OPC_SHRAV_R_PH = (0x0F << 6) | OPC_SHLL_QB_DSP,
OPC_SHRA_R_W = (0x15 << 6) | OPC_SHLL_QB_DSP,
OPC_SHRAV_R_W = (0x17 << 6) | OPC_SHLL_QB_DSP,
};
#define MASK_DPA_W_PH(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP Multiply Sub-class insns */
OPC_DPAU_H_QBL = (0x03 << 6) | OPC_DPA_W_PH_DSP,
OPC_DPAU_H_QBR = (0x07 << 6) | OPC_DPA_W_PH_DSP,
OPC_DPSU_H_QBL = (0x0B << 6) | OPC_DPA_W_PH_DSP,
OPC_DPSU_H_QBR = (0x0F << 6) | OPC_DPA_W_PH_DSP,
OPC_DPA_W_PH = (0x00 << 6) | OPC_DPA_W_PH_DSP,
OPC_DPAX_W_PH = (0x08 << 6) | OPC_DPA_W_PH_DSP,
OPC_DPAQ_S_W_PH = (0x04 << 6) | OPC_DPA_W_PH_DSP,
OPC_DPAQX_S_W_PH = (0x18 << 6) | OPC_DPA_W_PH_DSP,
OPC_DPAQX_SA_W_PH = (0x1A << 6) | OPC_DPA_W_PH_DSP,
OPC_DPS_W_PH = (0x01 << 6) | OPC_DPA_W_PH_DSP,
OPC_DPSX_W_PH = (0x09 << 6) | OPC_DPA_W_PH_DSP,
OPC_DPSQ_S_W_PH = (0x05 << 6) | OPC_DPA_W_PH_DSP,
OPC_DPSQX_S_W_PH = (0x19 << 6) | OPC_DPA_W_PH_DSP,
OPC_DPSQX_SA_W_PH = (0x1B << 6) | OPC_DPA_W_PH_DSP,
OPC_MULSAQ_S_W_PH = (0x06 << 6) | OPC_DPA_W_PH_DSP,
OPC_DPAQ_SA_L_W = (0x0C << 6) | OPC_DPA_W_PH_DSP,
OPC_DPSQ_SA_L_W = (0x0D << 6) | OPC_DPA_W_PH_DSP,
OPC_MAQ_S_W_PHL = (0x14 << 6) | OPC_DPA_W_PH_DSP,
OPC_MAQ_S_W_PHR = (0x16 << 6) | OPC_DPA_W_PH_DSP,
OPC_MAQ_SA_W_PHL = (0x10 << 6) | OPC_DPA_W_PH_DSP,
OPC_MAQ_SA_W_PHR = (0x12 << 6) | OPC_DPA_W_PH_DSP,
OPC_MULSA_W_PH = (0x02 << 6) | OPC_DPA_W_PH_DSP,
};
#define MASK_INSV(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* DSP Bit/Manipulation Sub-class */
OPC_INSV = (0x00 << 6) | OPC_INSV_DSP,
};
#define MASK_APPEND(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP Append Sub-class */
OPC_APPEND = (0x00 << 6) | OPC_APPEND_DSP,
OPC_PREPEND = (0x01 << 6) | OPC_APPEND_DSP,
OPC_BALIGN = (0x10 << 6) | OPC_APPEND_DSP,
};
#define MASK_EXTR_W(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP Accumulator and DSPControl Access Sub-class */
OPC_EXTR_W = (0x00 << 6) | OPC_EXTR_W_DSP,
OPC_EXTR_R_W = (0x04 << 6) | OPC_EXTR_W_DSP,
OPC_EXTR_RS_W = (0x06 << 6) | OPC_EXTR_W_DSP,
OPC_EXTR_S_H = (0x0E << 6) | OPC_EXTR_W_DSP,
OPC_EXTRV_S_H = (0x0F << 6) | OPC_EXTR_W_DSP,
OPC_EXTRV_W = (0x01 << 6) | OPC_EXTR_W_DSP,
OPC_EXTRV_R_W = (0x05 << 6) | OPC_EXTR_W_DSP,
OPC_EXTRV_RS_W = (0x07 << 6) | OPC_EXTR_W_DSP,
OPC_EXTP = (0x02 << 6) | OPC_EXTR_W_DSP,
OPC_EXTPV = (0x03 << 6) | OPC_EXTR_W_DSP,
OPC_EXTPDP = (0x0A << 6) | OPC_EXTR_W_DSP,
OPC_EXTPDPV = (0x0B << 6) | OPC_EXTR_W_DSP,
OPC_SHILO = (0x1A << 6) | OPC_EXTR_W_DSP,
OPC_SHILOV = (0x1B << 6) | OPC_EXTR_W_DSP,
OPC_MTHLIP = (0x1F << 6) | OPC_EXTR_W_DSP,
OPC_WRDSP = (0x13 << 6) | OPC_EXTR_W_DSP,
OPC_RDDSP = (0x12 << 6) | OPC_EXTR_W_DSP,
};
#define MASK_ABSQ_S_QH(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP Arithmetic Sub-class */
OPC_PRECEQ_L_PWL = (0x14 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEQ_L_PWR = (0x15 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEQ_PW_QHL = (0x0C << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEQ_PW_QHR = (0x0D << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEQ_PW_QHLA = (0x0E << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEQ_PW_QHRA = (0x0F << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEQU_QH_OBL = (0x04 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEQU_QH_OBR = (0x05 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEQU_QH_OBLA = (0x06 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEQU_QH_OBRA = (0x07 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEU_QH_OBL = (0x1C << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEU_QH_OBR = (0x1D << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEU_QH_OBLA = (0x1E << 6) | OPC_ABSQ_S_QH_DSP,
OPC_PRECEU_QH_OBRA = (0x1F << 6) | OPC_ABSQ_S_QH_DSP,
OPC_ABSQ_S_OB = (0x01 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_ABSQ_S_PW = (0x11 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_ABSQ_S_QH = (0x09 << 6) | OPC_ABSQ_S_QH_DSP,
/* DSP Bit/Manipulation Sub-class */
OPC_REPL_OB = (0x02 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_REPL_PW = (0x12 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_REPL_QH = (0x0A << 6) | OPC_ABSQ_S_QH_DSP,
OPC_REPLV_OB = (0x03 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_REPLV_PW = (0x13 << 6) | OPC_ABSQ_S_QH_DSP,
OPC_REPLV_QH = (0x0B << 6) | OPC_ABSQ_S_QH_DSP,
};
#define MASK_ADDU_OB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP Multiply Sub-class insns */
OPC_MULEQ_S_PW_QHL = (0x1C << 6) | OPC_ADDU_OB_DSP,
OPC_MULEQ_S_PW_QHR = (0x1D << 6) | OPC_ADDU_OB_DSP,
OPC_MULEU_S_QH_OBL = (0x06 << 6) | OPC_ADDU_OB_DSP,
OPC_MULEU_S_QH_OBR = (0x07 << 6) | OPC_ADDU_OB_DSP,
OPC_MULQ_RS_QH = (0x1F << 6) | OPC_ADDU_OB_DSP,
/* MIPS DSP Arithmetic Sub-class */
OPC_RADDU_L_OB = (0x14 << 6) | OPC_ADDU_OB_DSP,
OPC_SUBQ_PW = (0x13 << 6) | OPC_ADDU_OB_DSP,
OPC_SUBQ_S_PW = (0x17 << 6) | OPC_ADDU_OB_DSP,
OPC_SUBQ_QH = (0x0B << 6) | OPC_ADDU_OB_DSP,
OPC_SUBQ_S_QH = (0x0F << 6) | OPC_ADDU_OB_DSP,
OPC_SUBU_OB = (0x01 << 6) | OPC_ADDU_OB_DSP,
OPC_SUBU_S_OB = (0x05 << 6) | OPC_ADDU_OB_DSP,
OPC_SUBU_QH = (0x09 << 6) | OPC_ADDU_OB_DSP,
OPC_SUBU_S_QH = (0x0D << 6) | OPC_ADDU_OB_DSP,
OPC_SUBUH_OB = (0x19 << 6) | OPC_ADDU_OB_DSP,
OPC_SUBUH_R_OB = (0x1B << 6) | OPC_ADDU_OB_DSP,
OPC_ADDQ_PW = (0x12 << 6) | OPC_ADDU_OB_DSP,
OPC_ADDQ_S_PW = (0x16 << 6) | OPC_ADDU_OB_DSP,
OPC_ADDQ_QH = (0x0A << 6) | OPC_ADDU_OB_DSP,
OPC_ADDQ_S_QH = (0x0E << 6) | OPC_ADDU_OB_DSP,
OPC_ADDU_OB = (0x00 << 6) | OPC_ADDU_OB_DSP,
OPC_ADDU_S_OB = (0x04 << 6) | OPC_ADDU_OB_DSP,
OPC_ADDU_QH = (0x08 << 6) | OPC_ADDU_OB_DSP,
OPC_ADDU_S_QH = (0x0C << 6) | OPC_ADDU_OB_DSP,
OPC_ADDUH_OB = (0x18 << 6) | OPC_ADDU_OB_DSP,
OPC_ADDUH_R_OB = (0x1A << 6) | OPC_ADDU_OB_DSP,
};
#define MASK_CMPU_EQ_OB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* DSP Compare-Pick Sub-class */
OPC_CMP_EQ_PW = (0x10 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMP_LT_PW = (0x11 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMP_LE_PW = (0x12 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMP_EQ_QH = (0x08 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMP_LT_QH = (0x09 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMP_LE_QH = (0x0A << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMPGDU_EQ_OB = (0x18 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMPGDU_LT_OB = (0x19 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMPGDU_LE_OB = (0x1A << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMPGU_EQ_OB = (0x04 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMPGU_LT_OB = (0x05 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMPGU_LE_OB = (0x06 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMPU_EQ_OB = (0x00 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMPU_LT_OB = (0x01 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_CMPU_LE_OB = (0x02 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_PACKRL_PW = (0x0E << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_PICK_OB = (0x03 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_PICK_PW = (0x13 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_PICK_QH = (0x0B << 6) | OPC_CMPU_EQ_OB_DSP,
/* MIPS DSP Arithmetic Sub-class */
OPC_PRECR_OB_QH = (0x0D << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_PRECR_SRA_QH_PW = (0x1E << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_PRECR_SRA_R_QH_PW = (0x1F << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_PRECRQ_OB_QH = (0x0C << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_PRECRQ_PW_L = (0x1C << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_PRECRQ_QH_PW = (0x14 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_PRECRQ_RS_QH_PW = (0x15 << 6) | OPC_CMPU_EQ_OB_DSP,
OPC_PRECRQU_S_OB_QH = (0x0F << 6) | OPC_CMPU_EQ_OB_DSP,
};
#define MASK_DAPPEND(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* DSP Append Sub-class */
OPC_DAPPEND = (0x00 << 6) | OPC_DAPPEND_DSP,
OPC_PREPENDD = (0x03 << 6) | OPC_DAPPEND_DSP,
OPC_PREPENDW = (0x01 << 6) | OPC_DAPPEND_DSP,
OPC_DBALIGN = (0x10 << 6) | OPC_DAPPEND_DSP,
};
#define MASK_DEXTR_W(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP Accumulator and DSPControl Access Sub-class */
OPC_DMTHLIP = (0x1F << 6) | OPC_DEXTR_W_DSP,
OPC_DSHILO = (0x1A << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTP = (0x02 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTPDP = (0x0A << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTPDPV = (0x0B << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTPV = (0x03 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTR_L = (0x10 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTR_R_L = (0x14 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTR_RS_L = (0x16 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTR_W = (0x00 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTR_R_W = (0x04 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTR_RS_W = (0x06 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTR_S_H = (0x0E << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTRV_L = (0x11 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTRV_R_L = (0x15 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTRV_RS_L = (0x17 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTRV_S_H = (0x0F << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTRV_W = (0x01 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTRV_R_W = (0x05 << 6) | OPC_DEXTR_W_DSP,
OPC_DEXTRV_RS_W = (0x07 << 6) | OPC_DEXTR_W_DSP,
OPC_DSHILOV = (0x1B << 6) | OPC_DEXTR_W_DSP,
};
#define MASK_DINSV(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* DSP Bit/Manipulation Sub-class */
OPC_DINSV = (0x00 << 6) | OPC_DINSV_DSP,
};
#define MASK_DPAQ_W_QH(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP Multiply Sub-class insns */
OPC_DMADD = (0x19 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DMADDU = (0x1D << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DMSUB = (0x1B << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DMSUBU = (0x1F << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DPA_W_QH = (0x00 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DPAQ_S_W_QH = (0x04 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DPAQ_SA_L_PW = (0x0C << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DPAU_H_OBL = (0x03 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DPAU_H_OBR = (0x07 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DPS_W_QH = (0x01 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DPSQ_S_W_QH = (0x05 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DPSQ_SA_L_PW = (0x0D << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DPSU_H_OBL = (0x0B << 6) | OPC_DPAQ_W_QH_DSP,
OPC_DPSU_H_OBR = (0x0F << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MAQ_S_L_PWL = (0x1C << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MAQ_S_L_PWR = (0x1E << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MAQ_S_W_QHLL = (0x14 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MAQ_SA_W_QHLL = (0x10 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MAQ_S_W_QHLR = (0x15 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MAQ_SA_W_QHLR = (0x11 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MAQ_S_W_QHRL = (0x16 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MAQ_SA_W_QHRL = (0x12 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MAQ_S_W_QHRR = (0x17 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MAQ_SA_W_QHRR = (0x13 << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MULSAQ_S_L_PW = (0x0E << 6) | OPC_DPAQ_W_QH_DSP,
OPC_MULSAQ_S_W_QH = (0x06 << 6) | OPC_DPAQ_W_QH_DSP,
};
#define MASK_SHLL_OB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6)))
enum {
/* MIPS DSP GPR-Based Shift Sub-class */
OPC_SHLL_PW = (0x10 << 6) | OPC_SHLL_OB_DSP,
OPC_SHLL_S_PW = (0x14 << 6) | OPC_SHLL_OB_DSP,
OPC_SHLLV_OB = (0x02 << 6) | OPC_SHLL_OB_DSP,
OPC_SHLLV_PW = (0x12 << 6) | OPC_SHLL_OB_DSP,
OPC_SHLLV_S_PW = (0x16 << 6) | OPC_SHLL_OB_DSP,
OPC_SHLLV_QH = (0x0A << 6) | OPC_SHLL_OB_DSP,
OPC_SHLLV_S_QH = (0x0E << 6) | OPC_SHLL_OB_DSP,
OPC_SHRA_PW = (0x11 << 6) | OPC_SHLL_OB_DSP,
OPC_SHRA_R_PW = (0x15 << 6) | OPC_SHLL_OB_DSP,
OPC_SHRAV_OB = (0x06 << 6) | OPC_SHLL_OB_DSP,
OPC_SHRAV_R_OB = (0x07 << 6) | OPC_SHLL_OB_DSP,
OPC_SHRAV_PW = (0x13 << 6) | OPC_SHLL_OB_DSP,
OPC_SHRAV_R_PW = (0x17 << 6) | OPC_SHLL_OB_DSP,
OPC_SHRAV_QH = (0x0B << 6) | OPC_SHLL_OB_DSP,
OPC_SHRAV_R_QH = (0x0F << 6) | OPC_SHLL_OB_DSP,
OPC_SHRLV_OB = (0x03 << 6) | OPC_SHLL_OB_DSP,
OPC_SHRLV_QH = (0x1B << 6) | OPC_SHLL_OB_DSP,
OPC_SHLL_OB = (0x00 << 6) | OPC_SHLL_OB_DSP,
OPC_SHLL_QH = (0x08 << 6) | OPC_SHLL_OB_DSP,
OPC_SHLL_S_QH = (0x0C << 6) | OPC_SHLL_OB_DSP,
OPC_SHRA_OB = (0x04 << 6) | OPC_SHLL_OB_DSP,
OPC_SHRA_R_OB = (0x05 << 6) | OPC_SHLL_OB_DSP,
OPC_SHRA_QH = (0x09 << 6) | OPC_SHLL_OB_DSP,
OPC_SHRA_R_QH = (0x0D << 6) | OPC_SHLL_OB_DSP,
OPC_SHRL_OB = (0x01 << 6) | OPC_SHLL_OB_DSP,
OPC_SHRL_QH = (0x19 << 6) | OPC_SHLL_OB_DSP,
};
/* Coprocessor 0 (rs field) */
#define MASK_CP0(op) MASK_OP_MAJOR(op) | (op & (0x1F << 21))
enum {
OPC_MFC0 = (0x00 << 21) | OPC_CP0,
OPC_DMFC0 = (0x01 << 21) | OPC_CP0,
OPC_MFHC0 = (0x02 << 21) | OPC_CP0,
OPC_MTC0 = (0x04 << 21) | OPC_CP0,
OPC_DMTC0 = (0x05 << 21) | OPC_CP0,
OPC_MTHC0 = (0x06 << 21) | OPC_CP0,
OPC_MFTR = (0x08 << 21) | OPC_CP0,
OPC_RDPGPR = (0x0A << 21) | OPC_CP0,
OPC_MFMC0 = (0x0B << 21) | OPC_CP0,
OPC_MTTR = (0x0C << 21) | OPC_CP0,
OPC_WRPGPR = (0x0E << 21) | OPC_CP0,
OPC_C0 = (0x10 << 21) | OPC_CP0,
OPC_C0_1 = (0x11 << 21) | OPC_CP0,
OPC_C0_2 = (0x12 << 21) | OPC_CP0,
OPC_C0_3 = (0x13 << 21) | OPC_CP0,
OPC_C0_4 = (0x14 << 21) | OPC_CP0,
OPC_C0_5 = (0x15 << 21) | OPC_CP0,
OPC_C0_6 = (0x16 << 21) | OPC_CP0,
OPC_C0_7 = (0x17 << 21) | OPC_CP0,
OPC_C0_8 = (0x18 << 21) | OPC_CP0,
OPC_C0_9 = (0x19 << 21) | OPC_CP0,
OPC_C0_A = (0x1A << 21) | OPC_CP0,
OPC_C0_B = (0x1B << 21) | OPC_CP0,
OPC_C0_C = (0x1C << 21) | OPC_CP0,
OPC_C0_D = (0x1D << 21) | OPC_CP0,
OPC_C0_E = (0x1E << 21) | OPC_CP0,
OPC_C0_F = (0x1F << 21) | OPC_CP0,
};
/* MFMC0 opcodes */
#define MASK_MFMC0(op) MASK_CP0(op) | (op & 0xFFFF)
enum {
OPC_DMT = 0x01 | (0 << 5) | (0x0F << 6) | (0x01 << 11) | OPC_MFMC0,
OPC_EMT = 0x01 | (1 << 5) | (0x0F << 6) | (0x01 << 11) | OPC_MFMC0,
OPC_DVPE = 0x01 | (0 << 5) | OPC_MFMC0,
OPC_EVPE = 0x01 | (1 << 5) | OPC_MFMC0,
OPC_DI = (0 << 5) | (0x0C << 11) | OPC_MFMC0,
OPC_EI = (1 << 5) | (0x0C << 11) | OPC_MFMC0,
OPC_DVP = 0x04 | (0 << 3) | (1 << 5) | (0 << 11) | OPC_MFMC0,
OPC_EVP = 0x04 | (0 << 3) | (0 << 5) | (0 << 11) | OPC_MFMC0,
};
/* Coprocessor 0 (with rs == C0) */
#define MASK_C0(op) MASK_CP0(op) | (op & 0x3F)
enum {
OPC_TLBR = 0x01 | OPC_C0,
OPC_TLBWI = 0x02 | OPC_C0,
OPC_TLBINV = 0x03 | OPC_C0,
OPC_TLBINVF = 0x04 | OPC_C0,
OPC_TLBWR = 0x06 | OPC_C0,
OPC_TLBP = 0x08 | OPC_C0,
OPC_RFE = 0x10 | OPC_C0,
OPC_ERET = 0x18 | OPC_C0,
OPC_DERET = 0x1F | OPC_C0,
OPC_WAIT = 0x20 | OPC_C0,
};
/* Coprocessor 1 (rs field) */
#define MASK_CP1(op) MASK_OP_MAJOR(op) | (op & (0x1F << 21))
/* Values for the fmt field in FP instructions */
enum {
/* 0 - 15 are reserved */
FMT_S = 16, /* single fp */
FMT_D = 17, /* double fp */
FMT_E = 18, /* extended fp */
FMT_Q = 19, /* quad fp */
FMT_W = 20, /* 32-bit fixed */
FMT_L = 21, /* 64-bit fixed */
FMT_PS = 22, /* paired single fp */
/* 23 - 31 are reserved */
};
enum {
OPC_MFC1 = (0x00 << 21) | OPC_CP1,
OPC_DMFC1 = (0x01 << 21) | OPC_CP1,
OPC_CFC1 = (0x02 << 21) | OPC_CP1,
OPC_MFHC1 = (0x03 << 21) | OPC_CP1,
OPC_MTC1 = (0x04 << 21) | OPC_CP1,
OPC_DMTC1 = (0x05 << 21) | OPC_CP1,
OPC_CTC1 = (0x06 << 21) | OPC_CP1,
OPC_MTHC1 = (0x07 << 21) | OPC_CP1,
OPC_BC1 = (0x08 << 21) | OPC_CP1, /* bc */
OPC_BC1ANY2 = (0x09 << 21) | OPC_CP1,
OPC_BC1ANY4 = (0x0A << 21) | OPC_CP1,
OPC_BZ_V = (0x0B << 21) | OPC_CP1,
OPC_BNZ_V = (0x0F << 21) | OPC_CP1,
OPC_S_FMT = (FMT_S << 21) | OPC_CP1,
OPC_D_FMT = (FMT_D << 21) | OPC_CP1,
OPC_E_FMT = (FMT_E << 21) | OPC_CP1,
OPC_Q_FMT = (FMT_Q << 21) | OPC_CP1,
OPC_W_FMT = (FMT_W << 21) | OPC_CP1,
OPC_L_FMT = (FMT_L << 21) | OPC_CP1,
OPC_PS_FMT = (FMT_PS << 21) | OPC_CP1,
OPC_BC1EQZ = (0x09 << 21) | OPC_CP1,
OPC_BC1NEZ = (0x0D << 21) | OPC_CP1,
OPC_BZ_B = (0x18 << 21) | OPC_CP1,
OPC_BZ_H = (0x19 << 21) | OPC_CP1,
OPC_BZ_W = (0x1A << 21) | OPC_CP1,
OPC_BZ_D = (0x1B << 21) | OPC_CP1,
OPC_BNZ_B = (0x1C << 21) | OPC_CP1,
OPC_BNZ_H = (0x1D << 21) | OPC_CP1,
OPC_BNZ_W = (0x1E << 21) | OPC_CP1,
OPC_BNZ_D = (0x1F << 21) | OPC_CP1,
};
#define MASK_CP1_FUNC(op) MASK_CP1(op) | (op & 0x3F)
#define MASK_BC1(op) MASK_CP1(op) | (op & (0x3 << 16))
enum {
OPC_BC1F = (0x00 << 16) | OPC_BC1,
OPC_BC1T = (0x01 << 16) | OPC_BC1,
OPC_BC1FL = (0x02 << 16) | OPC_BC1,
OPC_BC1TL = (0x03 << 16) | OPC_BC1,
};
enum {
OPC_BC1FANY2 = (0x00 << 16) | OPC_BC1ANY2,
OPC_BC1TANY2 = (0x01 << 16) | OPC_BC1ANY2,
};
enum {
OPC_BC1FANY4 = (0x00 << 16) | OPC_BC1ANY4,
OPC_BC1TANY4 = (0x01 << 16) | OPC_BC1ANY4,
};
#define MASK_CP2(op) MASK_OP_MAJOR(op) | (op & (0x1F << 21))
enum {
OPC_MFC2 = (0x00 << 21) | OPC_CP2,
OPC_DMFC2 = (0x01 << 21) | OPC_CP2,
OPC_CFC2 = (0x02 << 21) | OPC_CP2,
OPC_MFHC2 = (0x03 << 21) | OPC_CP2,
OPC_MTC2 = (0x04 << 21) | OPC_CP2,
OPC_DMTC2 = (0x05 << 21) | OPC_CP2,
OPC_CTC2 = (0x06 << 21) | OPC_CP2,
OPC_MTHC2 = (0x07 << 21) | OPC_CP2,
OPC_BC2 = (0x08 << 21) | OPC_CP2,
OPC_BC2EQZ = (0x09 << 21) | OPC_CP2,
OPC_BC2NEZ = (0x0D << 21) | OPC_CP2,
};
#define MASK_LMI(op) (MASK_OP_MAJOR(op) | (op & (0x1F << 21)) | (op & 0x1F))
enum {
OPC_PADDSH = (24 << 21) | (0x00) | OPC_CP2,
OPC_PADDUSH = (25 << 21) | (0x00) | OPC_CP2,
OPC_PADDH = (26 << 21) | (0x00) | OPC_CP2,
OPC_PADDW = (27 << 21) | (0x00) | OPC_CP2,
OPC_PADDSB = (28 << 21) | (0x00) | OPC_CP2,
OPC_PADDUSB = (29 << 21) | (0x00) | OPC_CP2,
OPC_PADDB = (30 << 21) | (0x00) | OPC_CP2,
OPC_PADDD = (31 << 21) | (0x00) | OPC_CP2,
OPC_PSUBSH = (24 << 21) | (0x01) | OPC_CP2,
OPC_PSUBUSH = (25 << 21) | (0x01) | OPC_CP2,
OPC_PSUBH = (26 << 21) | (0x01) | OPC_CP2,
OPC_PSUBW = (27 << 21) | (0x01) | OPC_CP2,
OPC_PSUBSB = (28 << 21) | (0x01) | OPC_CP2,
OPC_PSUBUSB = (29 << 21) | (0x01) | OPC_CP2,
OPC_PSUBB = (30 << 21) | (0x01) | OPC_CP2,
OPC_PSUBD = (31 << 21) | (0x01) | OPC_CP2,
OPC_PSHUFH = (24 << 21) | (0x02) | OPC_CP2,
OPC_PACKSSWH = (25 << 21) | (0x02) | OPC_CP2,
OPC_PACKSSHB = (26 << 21) | (0x02) | OPC_CP2,
OPC_PACKUSHB = (27 << 21) | (0x02) | OPC_CP2,
OPC_XOR_CP2 = (28 << 21) | (0x02) | OPC_CP2,
OPC_NOR_CP2 = (29 << 21) | (0x02) | OPC_CP2,
OPC_AND_CP2 = (30 << 21) | (0x02) | OPC_CP2,
OPC_PANDN = (31 << 21) | (0x02) | OPC_CP2,
OPC_PUNPCKLHW = (24 << 21) | (0x03) | OPC_CP2,
OPC_PUNPCKHHW = (25 << 21) | (0x03) | OPC_CP2,
OPC_PUNPCKLBH = (26 << 21) | (0x03) | OPC_CP2,
OPC_PUNPCKHBH = (27 << 21) | (0x03) | OPC_CP2,
OPC_PINSRH_0 = (28 << 21) | (0x03) | OPC_CP2,
OPC_PINSRH_1 = (29 << 21) | (0x03) | OPC_CP2,
OPC_PINSRH_2 = (30 << 21) | (0x03) | OPC_CP2,
OPC_PINSRH_3 = (31 << 21) | (0x03) | OPC_CP2,
OPC_PAVGH = (24 << 21) | (0x08) | OPC_CP2,
OPC_PAVGB = (25 << 21) | (0x08) | OPC_CP2,
OPC_PMAXSH = (26 << 21) | (0x08) | OPC_CP2,
OPC_PMINSH = (27 << 21) | (0x08) | OPC_CP2,
OPC_PMAXUB = (28 << 21) | (0x08) | OPC_CP2,
OPC_PMINUB = (29 << 21) | (0x08) | OPC_CP2,
OPC_PCMPEQW = (24 << 21) | (0x09) | OPC_CP2,
OPC_PCMPGTW = (25 << 21) | (0x09) | OPC_CP2,
OPC_PCMPEQH = (26 << 21) | (0x09) | OPC_CP2,
OPC_PCMPGTH = (27 << 21) | (0x09) | OPC_CP2,
OPC_PCMPEQB = (28 << 21) | (0x09) | OPC_CP2,
OPC_PCMPGTB = (29 << 21) | (0x09) | OPC_CP2,
OPC_PSLLW = (24 << 21) | (0x0A) | OPC_CP2,
OPC_PSLLH = (25 << 21) | (0x0A) | OPC_CP2,
OPC_PMULLH = (26 << 21) | (0x0A) | OPC_CP2,
OPC_PMULHH = (27 << 21) | (0x0A) | OPC_CP2,
OPC_PMULUW = (28 << 21) | (0x0A) | OPC_CP2,
OPC_PMULHUH = (29 << 21) | (0x0A) | OPC_CP2,
OPC_PSRLW = (24 << 21) | (0x0B) | OPC_CP2,
OPC_PSRLH = (25 << 21) | (0x0B) | OPC_CP2,
OPC_PSRAW = (26 << 21) | (0x0B) | OPC_CP2,
OPC_PSRAH = (27 << 21) | (0x0B) | OPC_CP2,
OPC_PUNPCKLWD = (28 << 21) | (0x0B) | OPC_CP2,
OPC_PUNPCKHWD = (29 << 21) | (0x0B) | OPC_CP2,
OPC_ADDU_CP2 = (24 << 21) | (0x0C) | OPC_CP2,
OPC_OR_CP2 = (25 << 21) | (0x0C) | OPC_CP2,
OPC_ADD_CP2 = (26 << 21) | (0x0C) | OPC_CP2,
OPC_DADD_CP2 = (27 << 21) | (0x0C) | OPC_CP2,
OPC_SEQU_CP2 = (28 << 21) | (0x0C) | OPC_CP2,
OPC_SEQ_CP2 = (29 << 21) | (0x0C) | OPC_CP2,
OPC_SUBU_CP2 = (24 << 21) | (0x0D) | OPC_CP2,
OPC_PASUBUB = (25 << 21) | (0x0D) | OPC_CP2,
OPC_SUB_CP2 = (26 << 21) | (0x0D) | OPC_CP2,
OPC_DSUB_CP2 = (27 << 21) | (0x0D) | OPC_CP2,
OPC_SLTU_CP2 = (28 << 21) | (0x0D) | OPC_CP2,
OPC_SLT_CP2 = (29 << 21) | (0x0D) | OPC_CP2,
OPC_SLL_CP2 = (24 << 21) | (0x0E) | OPC_CP2,
OPC_DSLL_CP2 = (25 << 21) | (0x0E) | OPC_CP2,
OPC_PEXTRH = (26 << 21) | (0x0E) | OPC_CP2,
OPC_PMADDHW = (27 << 21) | (0x0E) | OPC_CP2,
OPC_SLEU_CP2 = (28 << 21) | (0x0E) | OPC_CP2,
OPC_SLE_CP2 = (29 << 21) | (0x0E) | OPC_CP2,
OPC_SRL_CP2 = (24 << 21) | (0x0F) | OPC_CP2,
OPC_DSRL_CP2 = (25 << 21) | (0x0F) | OPC_CP2,
OPC_SRA_CP2 = (26 << 21) | (0x0F) | OPC_CP2,
OPC_DSRA_CP2 = (27 << 21) | (0x0F) | OPC_CP2,
OPC_BIADD = (28 << 21) | (0x0F) | OPC_CP2,
OPC_PMOVMSKB = (29 << 21) | (0x0F) | OPC_CP2,
};
#define MASK_CP3(op) MASK_OP_MAJOR(op) | (op & 0x3F)
enum {
OPC_LWXC1 = 0x00 | OPC_CP3,
OPC_LDXC1 = 0x01 | OPC_CP3,
OPC_LUXC1 = 0x05 | OPC_CP3,
OPC_SWXC1 = 0x08 | OPC_CP3,
OPC_SDXC1 = 0x09 | OPC_CP3,
OPC_SUXC1 = 0x0D | OPC_CP3,
OPC_PREFX = 0x0F | OPC_CP3,
OPC_ALNV_PS = 0x1E | OPC_CP3,
OPC_MADD_S = 0x20 | OPC_CP3,
OPC_MADD_D = 0x21 | OPC_CP3,
OPC_MADD_PS = 0x26 | OPC_CP3,
OPC_MSUB_S = 0x28 | OPC_CP3,
OPC_MSUB_D = 0x29 | OPC_CP3,
OPC_MSUB_PS = 0x2E | OPC_CP3,
OPC_NMADD_S = 0x30 | OPC_CP3,
OPC_NMADD_D = 0x31 | OPC_CP3,
OPC_NMADD_PS= 0x36 | OPC_CP3,
OPC_NMSUB_S = 0x38 | OPC_CP3,
OPC_NMSUB_D = 0x39 | OPC_CP3,
OPC_NMSUB_PS= 0x3E | OPC_CP3,
};
/* MSA Opcodes */
#define MASK_MSA_MINOR(op) (MASK_OP_MAJOR(op) | (op & 0x3F))
enum {
OPC_MSA_I8_00 = 0x00 | OPC_MSA,
OPC_MSA_I8_01 = 0x01 | OPC_MSA,
OPC_MSA_I8_02 = 0x02 | OPC_MSA,
OPC_MSA_I5_06 = 0x06 | OPC_MSA,
OPC_MSA_I5_07 = 0x07 | OPC_MSA,
OPC_MSA_BIT_09 = 0x09 | OPC_MSA,
OPC_MSA_BIT_0A = 0x0A | OPC_MSA,
OPC_MSA_3R_0D = 0x0D | OPC_MSA,
OPC_MSA_3R_0E = 0x0E | OPC_MSA,
OPC_MSA_3R_0F = 0x0F | OPC_MSA,
OPC_MSA_3R_10 = 0x10 | OPC_MSA,
OPC_MSA_3R_11 = 0x11 | OPC_MSA,
OPC_MSA_3R_12 = 0x12 | OPC_MSA,
OPC_MSA_3R_13 = 0x13 | OPC_MSA,
OPC_MSA_3R_14 = 0x14 | OPC_MSA,
OPC_MSA_3R_15 = 0x15 | OPC_MSA,
OPC_MSA_ELM = 0x19 | OPC_MSA,
OPC_MSA_3RF_1A = 0x1A | OPC_MSA,
OPC_MSA_3RF_1B = 0x1B | OPC_MSA,
OPC_MSA_3RF_1C = 0x1C | OPC_MSA,
OPC_MSA_VEC = 0x1E | OPC_MSA,
/* MI10 instruction */
OPC_LD_B = (0x20) | OPC_MSA,
OPC_LD_H = (0x21) | OPC_MSA,
OPC_LD_W = (0x22) | OPC_MSA,
OPC_LD_D = (0x23) | OPC_MSA,
OPC_ST_B = (0x24) | OPC_MSA,
OPC_ST_H = (0x25) | OPC_MSA,
OPC_ST_W = (0x26) | OPC_MSA,
OPC_ST_D = (0x27) | OPC_MSA,
};
enum {
/* I5 instruction df(bits 22..21) = _b, _h, _w, _d */
OPC_ADDVI_df = (0x0 << 23) | OPC_MSA_I5_06,
OPC_CEQI_df = (0x0 << 23) | OPC_MSA_I5_07,
OPC_SUBVI_df = (0x1 << 23) | OPC_MSA_I5_06,
OPC_MAXI_S_df = (0x2 << 23) | OPC_MSA_I5_06,
OPC_CLTI_S_df = (0x2 << 23) | OPC_MSA_I5_07,
OPC_MAXI_U_df = (0x3 << 23) | OPC_MSA_I5_06,
OPC_CLTI_U_df = (0x3 << 23) | OPC_MSA_I5_07,
OPC_MINI_S_df = (0x4 << 23) | OPC_MSA_I5_06,
OPC_CLEI_S_df = (0x4 << 23) | OPC_MSA_I5_07,
OPC_MINI_U_df = (0x5 << 23) | OPC_MSA_I5_06,
OPC_CLEI_U_df = (0x5 << 23) | OPC_MSA_I5_07,
OPC_LDI_df = (0x6 << 23) | OPC_MSA_I5_07,
/* I8 instruction */
OPC_ANDI_B = (0x0 << 24) | OPC_MSA_I8_00,
OPC_BMNZI_B = (0x0 << 24) | OPC_MSA_I8_01,
OPC_SHF_B = (0x0 << 24) | OPC_MSA_I8_02,
OPC_ORI_B = (0x1 << 24) | OPC_MSA_I8_00,
OPC_BMZI_B = (0x1 << 24) | OPC_MSA_I8_01,
OPC_SHF_H = (0x1 << 24) | OPC_MSA_I8_02,
OPC_NORI_B = (0x2 << 24) | OPC_MSA_I8_00,
OPC_BSELI_B = (0x2 << 24) | OPC_MSA_I8_01,
OPC_SHF_W = (0x2 << 24) | OPC_MSA_I8_02,
OPC_XORI_B = (0x3 << 24) | OPC_MSA_I8_00,
/* VEC/2R/2RF instruction */
OPC_AND_V = (0x00 << 21) | OPC_MSA_VEC,
OPC_OR_V = (0x01 << 21) | OPC_MSA_VEC,
OPC_NOR_V = (0x02 << 21) | OPC_MSA_VEC,
OPC_XOR_V = (0x03 << 21) | OPC_MSA_VEC,
OPC_BMNZ_V = (0x04 << 21) | OPC_MSA_VEC,
OPC_BMZ_V = (0x05 << 21) | OPC_MSA_VEC,
OPC_BSEL_V = (0x06 << 21) | OPC_MSA_VEC,
OPC_MSA_2R = (0x18 << 21) | OPC_MSA_VEC,
OPC_MSA_2RF = (0x19 << 21) | OPC_MSA_VEC,
/* 2R instruction df(bits 17..16) = _b, _h, _w, _d */
OPC_FILL_df = (0x00 << 18) | OPC_MSA_2R,
OPC_PCNT_df = (0x01 << 18) | OPC_MSA_2R,
OPC_NLOC_df = (0x02 << 18) | OPC_MSA_2R,
OPC_NLZC_df = (0x03 << 18) | OPC_MSA_2R,
/* 2RF instruction df(bit 16) = _w, _d */
OPC_FCLASS_df = (0x00 << 17) | OPC_MSA_2RF,
OPC_FTRUNC_S_df = (0x01 << 17) | OPC_MSA_2RF,
OPC_FTRUNC_U_df = (0x02 << 17) | OPC_MSA_2RF,
OPC_FSQRT_df = (0x03 << 17) | OPC_MSA_2RF,
OPC_FRSQRT_df = (0x04 << 17) | OPC_MSA_2RF,
OPC_FRCP_df = (0x05 << 17) | OPC_MSA_2RF,
OPC_FRINT_df = (0x06 << 17) | OPC_MSA_2RF,
OPC_FLOG2_df = (0x07 << 17) | OPC_MSA_2RF,
OPC_FEXUPL_df = (0x08 << 17) | OPC_MSA_2RF,
OPC_FEXUPR_df = (0x09 << 17) | OPC_MSA_2RF,
OPC_FFQL_df = (0x0A << 17) | OPC_MSA_2RF,
OPC_FFQR_df = (0x0B << 17) | OPC_MSA_2RF,
OPC_FTINT_S_df = (0x0C << 17) | OPC_MSA_2RF,
OPC_FTINT_U_df = (0x0D << 17) | OPC_MSA_2RF,
OPC_FFINT_S_df = (0x0E << 17) | OPC_MSA_2RF,
OPC_FFINT_U_df = (0x0F << 17) | OPC_MSA_2RF,
/* 3R instruction df(bits 22..21) = _b, _h, _w, d */
OPC_SLL_df = (0x0 << 23) | OPC_MSA_3R_0D,
OPC_ADDV_df = (0x0 << 23) | OPC_MSA_3R_0E,
OPC_CEQ_df = (0x0 << 23) | OPC_MSA_3R_0F,
OPC_ADD_A_df = (0x0 << 23) | OPC_MSA_3R_10,
OPC_SUBS_S_df = (0x0 << 23) | OPC_MSA_3R_11,
OPC_MULV_df = (0x0 << 23) | OPC_MSA_3R_12,
OPC_DOTP_S_df = (0x0 << 23) | OPC_MSA_3R_13,
OPC_SLD_df = (0x0 << 23) | OPC_MSA_3R_14,
OPC_VSHF_df = (0x0 << 23) | OPC_MSA_3R_15,
OPC_SRA_df = (0x1 << 23) | OPC_MSA_3R_0D,
OPC_SUBV_df = (0x1 << 23) | OPC_MSA_3R_0E,
OPC_ADDS_A_df = (0x1 << 23) | OPC_MSA_3R_10,
OPC_SUBS_U_df = (0x1 << 23) | OPC_MSA_3R_11,
OPC_MADDV_df = (0x1 << 23) | OPC_MSA_3R_12,
OPC_DOTP_U_df = (0x1 << 23) | OPC_MSA_3R_13,
OPC_SPLAT_df = (0x1 << 23) | OPC_MSA_3R_14,
OPC_SRAR_df = (0x1 << 23) | OPC_MSA_3R_15,
OPC_SRL_df = (0x2 << 23) | OPC_MSA_3R_0D,
OPC_MAX_S_df = (0x2 << 23) | OPC_MSA_3R_0E,
OPC_CLT_S_df = (0x2 << 23) | OPC_MSA_3R_0F,
OPC_ADDS_S_df = (0x2 << 23) | OPC_MSA_3R_10,
OPC_SUBSUS_U_df = (0x2 << 23) | OPC_MSA_3R_11,
OPC_MSUBV_df = (0x2 << 23) | OPC_MSA_3R_12,
OPC_DPADD_S_df = (0x2 << 23) | OPC_MSA_3R_13,
OPC_PCKEV_df = (0x2 << 23) | OPC_MSA_3R_14,
OPC_SRLR_df = (0x2 << 23) | OPC_MSA_3R_15,
OPC_BCLR_df = (0x3 << 23) | OPC_MSA_3R_0D,
OPC_MAX_U_df = (0x3 << 23) | OPC_MSA_3R_0E,
OPC_CLT_U_df = (0x3 << 23) | OPC_MSA_3R_0F,
OPC_ADDS_U_df = (0x3 << 23) | OPC_MSA_3R_10,
OPC_SUBSUU_S_df = (0x3 << 23) | OPC_MSA_3R_11,
OPC_DPADD_U_df = (0x3 << 23) | OPC_MSA_3R_13,
OPC_PCKOD_df = (0x3 << 23) | OPC_MSA_3R_14,
OPC_BSET_df = (0x4 << 23) | OPC_MSA_3R_0D,
OPC_MIN_S_df = (0x4 << 23) | OPC_MSA_3R_0E,
OPC_CLE_S_df = (0x4 << 23) | OPC_MSA_3R_0F,
OPC_AVE_S_df = (0x4 << 23) | OPC_MSA_3R_10,
OPC_ASUB_S_df = (0x4 << 23) | OPC_MSA_3R_11,
OPC_DIV_S_df = (0x4 << 23) | OPC_MSA_3R_12,
OPC_DPSUB_S_df = (0x4 << 23) | OPC_MSA_3R_13,
OPC_ILVL_df = (0x4 << 23) | OPC_MSA_3R_14,
OPC_HADD_S_df = (0x4 << 23) | OPC_MSA_3R_15,
OPC_BNEG_df = (0x5 << 23) | OPC_MSA_3R_0D,
OPC_MIN_U_df = (0x5 << 23) | OPC_MSA_3R_0E,
OPC_CLE_U_df = (0x5 << 23) | OPC_MSA_3R_0F,
OPC_AVE_U_df = (0x5 << 23) | OPC_MSA_3R_10,
OPC_ASUB_U_df = (0x5 << 23) | OPC_MSA_3R_11,
OPC_DIV_U_df = (0x5 << 23) | OPC_MSA_3R_12,
OPC_DPSUB_U_df = (0x5 << 23) | OPC_MSA_3R_13,
OPC_ILVR_df = (0x5 << 23) | OPC_MSA_3R_14,
OPC_HADD_U_df = (0x5 << 23) | OPC_MSA_3R_15,
OPC_BINSL_df = (0x6 << 23) | OPC_MSA_3R_0D,
OPC_MAX_A_df = (0x6 << 23) | OPC_MSA_3R_0E,
OPC_AVER_S_df = (0x6 << 23) | OPC_MSA_3R_10,
OPC_MOD_S_df = (0x6 << 23) | OPC_MSA_3R_12,
OPC_ILVEV_df = (0x6 << 23) | OPC_MSA_3R_14,
OPC_HSUB_S_df = (0x6 << 23) | OPC_MSA_3R_15,
OPC_BINSR_df = (0x7 << 23) | OPC_MSA_3R_0D,
OPC_MIN_A_df = (0x7 << 23) | OPC_MSA_3R_0E,
OPC_AVER_U_df = (0x7 << 23) | OPC_MSA_3R_10,
OPC_MOD_U_df = (0x7 << 23) | OPC_MSA_3R_12,
OPC_ILVOD_df = (0x7 << 23) | OPC_MSA_3R_14,
OPC_HSUB_U_df = (0x7 << 23) | OPC_MSA_3R_15,
/* ELM instructions df(bits 21..16) = _b, _h, _w, _d */
OPC_SLDI_df = (0x0 << 22) | (0x00 << 16) | OPC_MSA_ELM,
OPC_CTCMSA = (0x0 << 22) | (0x3E << 16) | OPC_MSA_ELM,
OPC_SPLATI_df = (0x1 << 22) | (0x00 << 16) | OPC_MSA_ELM,
OPC_CFCMSA = (0x1 << 22) | (0x3E << 16) | OPC_MSA_ELM,
OPC_COPY_S_df = (0x2 << 22) | (0x00 << 16) | OPC_MSA_ELM,
OPC_MOVE_V = (0x2 << 22) | (0x3E << 16) | OPC_MSA_ELM,
OPC_COPY_U_df = (0x3 << 22) | (0x00 << 16) | OPC_MSA_ELM,
OPC_INSERT_df = (0x4 << 22) | (0x00 << 16) | OPC_MSA_ELM,
OPC_INSVE_df = (0x5 << 22) | (0x00 << 16) | OPC_MSA_ELM,
/* 3RF instruction _df(bit 21) = _w, _d */
OPC_FCAF_df = (0x0 << 22) | OPC_MSA_3RF_1A,
OPC_FADD_df = (0x0 << 22) | OPC_MSA_3RF_1B,
OPC_FCUN_df = (0x1 << 22) | OPC_MSA_3RF_1A,
OPC_FSUB_df = (0x1 << 22) | OPC_MSA_3RF_1B,
OPC_FCOR_df = (0x1 << 22) | OPC_MSA_3RF_1C,
OPC_FCEQ_df = (0x2 << 22) | OPC_MSA_3RF_1A,
OPC_FMUL_df = (0x2 << 22) | OPC_MSA_3RF_1B,
OPC_FCUNE_df = (0x2 << 22) | OPC_MSA_3RF_1C,
OPC_FCUEQ_df = (0x3 << 22) | OPC_MSA_3RF_1A,
OPC_FDIV_df = (0x3 << 22) | OPC_MSA_3RF_1B,
OPC_FCNE_df = (0x3 << 22) | OPC_MSA_3RF_1C,
OPC_FCLT_df = (0x4 << 22) | OPC_MSA_3RF_1A,
OPC_FMADD_df = (0x4 << 22) | OPC_MSA_3RF_1B,
OPC_MUL_Q_df = (0x4 << 22) | OPC_MSA_3RF_1C,
OPC_FCULT_df = (0x5 << 22) | OPC_MSA_3RF_1A,
OPC_FMSUB_df = (0x5 << 22) | OPC_MSA_3RF_1B,
OPC_MADD_Q_df = (0x5 << 22) | OPC_MSA_3RF_1C,
OPC_FCLE_df = (0x6 << 22) | OPC_MSA_3RF_1A,
OPC_MSUB_Q_df = (0x6 << 22) | OPC_MSA_3RF_1C,
OPC_FCULE_df = (0x7 << 22) | OPC_MSA_3RF_1A,
OPC_FEXP2_df = (0x7 << 22) | OPC_MSA_3RF_1B,
OPC_FSAF_df = (0x8 << 22) | OPC_MSA_3RF_1A,
OPC_FEXDO_df = (0x8 << 22) | OPC_MSA_3RF_1B,
OPC_FSUN_df = (0x9 << 22) | OPC_MSA_3RF_1A,
OPC_FSOR_df = (0x9 << 22) | OPC_MSA_3RF_1C,
OPC_FSEQ_df = (0xA << 22) | OPC_MSA_3RF_1A,
OPC_FTQ_df = (0xA << 22) | OPC_MSA_3RF_1B,
OPC_FSUNE_df = (0xA << 22) | OPC_MSA_3RF_1C,
OPC_FSUEQ_df = (0xB << 22) | OPC_MSA_3RF_1A,
OPC_FSNE_df = (0xB << 22) | OPC_MSA_3RF_1C,
OPC_FSLT_df = (0xC << 22) | OPC_MSA_3RF_1A,
OPC_FMIN_df = (0xC << 22) | OPC_MSA_3RF_1B,
OPC_MULR_Q_df = (0xC << 22) | OPC_MSA_3RF_1C,
OPC_FSULT_df = (0xD << 22) | OPC_MSA_3RF_1A,
OPC_FMIN_A_df = (0xD << 22) | OPC_MSA_3RF_1B,
OPC_MADDR_Q_df = (0xD << 22) | OPC_MSA_3RF_1C,
OPC_FSLE_df = (0xE << 22) | OPC_MSA_3RF_1A,
OPC_FMAX_df = (0xE << 22) | OPC_MSA_3RF_1B,
OPC_MSUBR_Q_df = (0xE << 22) | OPC_MSA_3RF_1C,
OPC_FSULE_df = (0xF << 22) | OPC_MSA_3RF_1A,
OPC_FMAX_A_df = (0xF << 22) | OPC_MSA_3RF_1B,
/* BIT instruction df(bits 22..16) = _B _H _W _D */
OPC_SLLI_df = (0x0 << 23) | OPC_MSA_BIT_09,
OPC_SAT_S_df = (0x0 << 23) | OPC_MSA_BIT_0A,
OPC_SRAI_df = (0x1 << 23) | OPC_MSA_BIT_09,
OPC_SAT_U_df = (0x1 << 23) | OPC_MSA_BIT_0A,
OPC_SRLI_df = (0x2 << 23) | OPC_MSA_BIT_09,
OPC_SRARI_df = (0x2 << 23) | OPC_MSA_BIT_0A,
OPC_BCLRI_df = (0x3 << 23) | OPC_MSA_BIT_09,
OPC_SRLRI_df = (0x3 << 23) | OPC_MSA_BIT_0A,
OPC_BSETI_df = (0x4 << 23) | OPC_MSA_BIT_09,
OPC_BNEGI_df = (0x5 << 23) | OPC_MSA_BIT_09,
OPC_BINSLI_df = (0x6 << 23) | OPC_MSA_BIT_09,
OPC_BINSRI_df = (0x7 << 23) | OPC_MSA_BIT_09,
};
/*
*
* AN OVERVIEW OF MXU EXTENSION INSTRUCTION SET
* ============================================
*
*
* MXU (full name: MIPS eXtension/enhanced Unit) is a SIMD extension of MIPS32
* instructions set. It is designed to fit the needs of signal, graphical and
* video processing applications. MXU instruction set is used in Xburst family
* of microprocessors by Ingenic.
*
* MXU unit contains 17 registers called X0-X16. X0 is always zero, and X16 is
* the control register.
*
*
* The notation used in MXU assembler mnemonics
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* Register operands:
*
* XRa, XRb, XRc, XRd - MXU registers
* Rb, Rc, Rd, Rs, Rt - general purpose MIPS registers
*
* Non-register operands:
*
* aptn1 - 1-bit accumulate add/subtract pattern
* aptn2 - 2-bit accumulate add/subtract pattern
* eptn2 - 2-bit execute add/subtract pattern
* optn2 - 2-bit operand pattern
* optn3 - 3-bit operand pattern
* sft4 - 4-bit shift amount
* strd2 - 2-bit stride amount
*
* Prefixes:
*
* Level of parallelism: Operand size:
* S - single operation at a time 32 - word
* D - two operations in parallel 16 - half word
* Q - four operations in parallel 8 - byte
*
* Operations:
*
* ADD - Add or subtract
* ADDC - Add with carry-in
* ACC - Accumulate
* ASUM - Sum together then accumulate (add or subtract)
* ASUMC - Sum together then accumulate (add or subtract) with carry-in
* AVG - Average between 2 operands
* ABD - Absolute difference
* ALN - Align data
* AND - Logical bitwise 'and' operation
* CPS - Copy sign
* EXTR - Extract bits
* I2M - Move from GPR register to MXU register
* LDD - Load data from memory to XRF
* LDI - Load data from memory to XRF (and increase the address base)
* LUI - Load unsigned immediate
* MUL - Multiply
* MULU - Unsigned multiply
* MADD - 64-bit operand add 32x32 product
* MSUB - 64-bit operand subtract 32x32 product
* MAC - Multiply and accumulate (add or subtract)
* MAD - Multiply and add or subtract
* MAX - Maximum between 2 operands
* MIN - Minimum between 2 operands
* M2I - Move from MXU register to GPR register
* MOVZ - Move if zero
* MOVN - Move if non-zero
* NOR - Logical bitwise 'nor' operation
* OR - Logical bitwise 'or' operation
* STD - Store data from XRF to memory
* SDI - Store data from XRF to memory (and increase the address base)
* SLT - Set of less than comparison
* SAD - Sum of absolute differences
* SLL - Logical shift left
* SLR - Logical shift right
* SAR - Arithmetic shift right
* SAT - Saturation
* SFL - Shuffle
* SCOP - Calculate x’s scope (-1, means x<0; 0, means x==0; 1, means x>0)
* XOR - Logical bitwise 'exclusive or' operation
*
* Suffixes:
*
* E - Expand results
* F - Fixed point multiplication
* L - Low part result
* R - Doing rounding
* V - Variable instead of immediate
* W - Combine above L and V
*
*
* The list of MXU instructions grouped by functionality
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* Load/Store instructions Multiplication instructions
* ----------------------- ---------------------------
*
* S32LDD XRa, Rb, s12 S32MADD XRa, XRd, Rs, Rt
* S32STD XRa, Rb, s12 S32MADDU XRa, XRd, Rs, Rt
* S32LDDV XRa, Rb, rc, strd2 S32MSUB XRa, XRd, Rs, Rt
* S32STDV XRa, Rb, rc, strd2 S32MSUBU XRa, XRd, Rs, Rt
* S32LDI XRa, Rb, s12 S32MUL XRa, XRd, Rs, Rt
* S32SDI XRa, Rb, s12 S32MULU XRa, XRd, Rs, Rt
* S32LDIV XRa, Rb, rc, strd2 D16MUL XRa, XRb, XRc, XRd, optn2
* S32SDIV XRa, Rb, rc, strd2 D16MULE XRa, XRb, XRc, optn2
* S32LDDR XRa, Rb, s12 D16MULF XRa, XRb, XRc, optn2
* S32STDR XRa, Rb, s12 D16MAC XRa, XRb, XRc, XRd, aptn2, optn2
* S32LDDVR XRa, Rb, rc, strd2 D16MACE XRa, XRb, XRc, XRd, aptn2, optn2
* S32STDVR XRa, Rb, rc, strd2 D16MACF XRa, XRb, XRc, XRd, aptn2, optn2
* S32LDIR XRa, Rb, s12 D16MADL XRa, XRb, XRc, XRd, aptn2, optn2
* S32SDIR XRa, Rb, s12 S16MAD XRa, XRb, XRc, XRd, aptn1, optn2
* S32LDIVR XRa, Rb, rc, strd2 Q8MUL XRa, XRb, XRc, XRd
* S32SDIVR XRa, Rb, rc, strd2 Q8MULSU XRa, XRb, XRc, XRd
* S16LDD XRa, Rb, s10, eptn2 Q8MAC XRa, XRb, XRc, XRd, aptn2
* S16STD XRa, Rb, s10, eptn2 Q8MACSU XRa, XRb, XRc, XRd, aptn2
* S16LDI XRa, Rb, s10, eptn2 Q8MADL XRa, XRb, XRc, XRd, aptn2
* S16SDI XRa, Rb, s10, eptn2
* S8LDD XRa, Rb, s8, eptn3
* S8STD XRa, Rb, s8, eptn3 Addition and subtraction instructions
* S8LDI XRa, Rb, s8, eptn3 -------------------------------------
* S8SDI XRa, Rb, s8, eptn3
* LXW Rd, Rs, Rt, strd2 D32ADD XRa, XRb, XRc, XRd, eptn2
* LXH Rd, Rs, Rt, strd2 D32ADDC XRa, XRb, XRc, XRd
* LXHU Rd, Rs, Rt, strd2 D32ACC XRa, XRb, XRc, XRd, eptn2
* LXB Rd, Rs, Rt, strd2 D32ACCM XRa, XRb, XRc, XRd, eptn2
* LXBU Rd, Rs, Rt, strd2 D32ASUM XRa, XRb, XRc, XRd, eptn2
* S32CPS XRa, XRb, XRc
* Q16ADD XRa, XRb, XRc, XRd, eptn2, optn2
* Comparison instructions Q16ACC XRa, XRb, XRc, XRd, eptn2
* ----------------------- Q16ACCM XRa, XRb, XRc, XRd, eptn2
* D16ASUM XRa, XRb, XRc, XRd, eptn2
* S32MAX XRa, XRb, XRc D16CPS XRa, XRb,
* S32MIN XRa, XRb, XRc D16AVG XRa, XRb, XRc
* S32SLT XRa, XRb, XRc D16AVGR XRa, XRb, XRc
* S32MOVZ XRa, XRb, XRc Q8ADD XRa, XRb, XRc, eptn2
* S32MOVN XRa, XRb, XRc Q8ADDE XRa, XRb, XRc, XRd, eptn2
* D16MAX XRa, XRb, XRc Q8ACCE XRa, XRb, XRc, XRd, eptn2
* D16MIN XRa, XRb, XRc Q8ABD XRa, XRb, XRc
* D16SLT XRa, XRb, XRc Q8SAD XRa, XRb, XRc, XRd
* D16MOVZ XRa, XRb, XRc Q8AVG XRa, XRb, XRc
* D16MOVN XRa, XRb, XRc Q8AVGR XRa, XRb, XRc
* Q8MAX XRa, XRb, XRc D8SUM XRa, XRb, XRc, XRd
* Q8MIN XRa, XRb, XRc D8SUMC XRa, XRb, XRc, XRd
* Q8SLT XRa, XRb, XRc
* Q8SLTU XRa, XRb, XRc
* Q8MOVZ XRa, XRb, XRc Shift instructions
* Q8MOVN XRa, XRb, XRc ------------------
*
* D32SLL XRa, XRb, XRc, XRd, sft4
* Bitwise instructions D32SLR XRa, XRb, XRc, XRd, sft4
* -------------------- D32SAR XRa, XRb, XRc, XRd, sft4
* D32SARL XRa, XRb, XRc, sft4
* S32NOR XRa, XRb, XRc D32SLLV XRa, XRb, Rb
* S32AND XRa, XRb, XRc D32SLRV XRa, XRb, Rb
* S32XOR XRa, XRb, XRc D32SARV XRa, XRb, Rb
* S32OR XRa, XRb, XRc D32SARW XRa, XRb, XRc, Rb
* Q16SLL XRa, XRb, XRc, XRd, sft4
* Q16SLR XRa, XRb, XRc, XRd, sft4
* Miscellaneous instructions Q16SAR XRa, XRb, XRc, XRd, sft4
* ------------------------- Q16SLLV XRa, XRb, Rb
* Q16SLRV XRa, XRb, Rb
* S32SFL XRa, XRb, XRc, XRd, optn2 Q16SARV XRa, XRb, Rb
* S32ALN XRa, XRb, XRc, Rb
* S32ALNI XRa, XRb, XRc, s3
* S32LUI XRa, s8, optn3 Move instructions
* S32EXTR XRa, XRb, Rb, bits5 -----------------
* S32EXTRV XRa, XRb, Rs, Rt
* Q16SCOP XRa, XRb, XRc, XRd S32M2I XRa, Rb
* Q16SAT XRa, XRb, XRc S32I2M XRa, Rb
*
*
* The opcode organization of MXU instructions
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* The bits 31..26 of all MXU instructions are equal to 0x1C (also referred
* as opcode SPECIAL2 in the base MIPS ISA). The organization and meaning of
* other bits up to the instruction level is as follows:
*
* bits
* 05..00
*
* ┌─ 000000 ─ OPC_MXU_S32MADD
* ├─ 000001 ─ OPC_MXU_S32MADDU
* ├─ 000010 ─ (non-MXU OPC_MUL)
* │
* │ 20..18
* ├─ 000011 ─ OPC_MXU__POOL00 ─┬─ 000 ─ OPC_MXU_S32MAX
* │ ├─ 001 ─ OPC_MXU_S32MIN
* │ ├─ 010 ─ OPC_MXU_D16MAX
* │ ├─ 011 ─ OPC_MXU_D16MIN
* │ ├─ 100 ─ OPC_MXU_Q8MAX
* │ ├─ 101 ─ OPC_MXU_Q8MIN
* │ ├─ 110 ─ OPC_MXU_Q8SLT
* │ └─ 111 ─ OPC_MXU_Q8SLTU
* ├─ 000100 ─ OPC_MXU_S32MSUB
* ├─ 000101 ─ OPC_MXU_S32MSUBU 20..18
* ├─ 000110 ─ OPC_MXU__POOL01 ─┬─ 000 ─ OPC_MXU_S32SLT
* │ ├─ 001 ─ OPC_MXU_D16SLT
* │ ├─ 010 ─ OPC_MXU_D16AVG
* │ ├─ 011 ─ OPC_MXU_D16AVGR
* │ ├─ 100 ─ OPC_MXU_Q8AVG
* │ ├─ 101 ─ OPC_MXU_Q8AVGR
* │ └─ 111 ─ OPC_MXU_Q8ADD
* │
* │ 20..18
* ├─ 000111 ─ OPC_MXU__POOL02 ─┬─ 000 ─ OPC_MXU_S32CPS
* │ ├─ 010 ─ OPC_MXU_D16CPS
* │ ├─ 100 ─ OPC_MXU_Q8ABD
* │ └─ 110 ─ OPC_MXU_Q16SAT
* ├─ 001000 ─ OPC_MXU_D16MUL
* │ 25..24
* ├─ 001001 ─ OPC_MXU__POOL03 ─┬─ 00 ─ OPC_MXU_D16MULF
* │ └─ 01 ─ OPC_MXU_D16MULE
* ├─ 001010 ─ OPC_MXU_D16MAC
* ├─ 001011 ─ OPC_MXU_D16MACF
* ├─ 001100 ─ OPC_MXU_D16MADL
* ├─ 001101 ─ OPC_MXU_S16MAD
* ├─ 001110 ─ OPC_MXU_Q16ADD
* ├─ 001111 ─ OPC_MXU_D16MACE 23
* │ ┌─ 0 ─ OPC_MXU_S32LDD
* ├─ 010000 ─ OPC_MXU__POOL04 ─┴─ 1 ─ OPC_MXU_S32LDDR
* │
* │ 23
* ├─ 010001 ─ OPC_MXU__POOL05 ─┬─ 0 ─ OPC_MXU_S32STD
* │ └─ 1 ─ OPC_MXU_S32STDR
* │
* │ 13..10
* ├─ 010010 ─ OPC_MXU__POOL06 ─┬─ 0000 ─ OPC_MXU_S32LDDV
* │ └─ 0001 ─ OPC_MXU_S32LDDVR
* │
* │ 13..10
* ├─ 010011 ─ OPC_MXU__POOL07 ─┬─ 0000 ─ OPC_MXU_S32STDV
* │ └─ 0001 ─ OPC_MXU_S32STDVR
* │
* │ 23
* ├─ 010100 ─ OPC_MXU__POOL08 ─┬─ 0 ─ OPC_MXU_S32LDI
* │ └─ 1 ─ OPC_MXU_S32LDIR
* │
* │ 23
* ├─ 010101 ─ OPC_MXU__POOL09 ─┬─ 0 ─ OPC_MXU_S32SDI
* │ └─ 1 ─ OPC_MXU_S32SDIR
* │
* │ 13..10
* ├─ 010110 ─ OPC_MXU__POOL10 ─┬─ 0000 ─ OPC_MXU_S32LDIV
* │ └─ 0001 ─ OPC_MXU_S32LDIVR
* │
* │ 13..10
* ├─ 010111 ─ OPC_MXU__POOL11 ─┬─ 0000 ─ OPC_MXU_S32SDIV
* │ └─ 0001 ─ OPC_MXU_S32SDIVR
* ├─ 011000 ─ OPC_MXU_D32ADD
* │ 23..22
* MXU ├─ 011001 ─ OPC_MXU__POOL12 ─┬─ 00 ─ OPC_MXU_D32ACC
* opcodes ─┤ ├─ 01 ─ OPC_MXU_D32ACCM
* │ └─ 10 ─ OPC_MXU_D32ASUM
* ├─ 011010 ─
* │ 23..22
* ├─ 011011 ─ OPC_MXU__POOL13 ─┬─ 00 ─ OPC_MXU_Q16ACC
* │ ├─ 01 ─ OPC_MXU_Q16ACCM
* │ └─ 10 ─ OPC_MXU_Q16ASUM
* │
* │ 23..22
* ├─ 011100 ─ OPC_MXU__POOL14 ─┬─ 00 ─ OPC_MXU_Q8ADDE
* │ ├─ 01 ─ OPC_MXU_D8SUM
* ├─ 011101 ─ OPC_MXU_Q8ACCE └─ 10 ─ OPC_MXU_D8SUMC
* ├─ 011110 ─
* ├─ 011111 ─
* ├─ 100000 ─ (overlaps with CLZ)
* ├─ 100001 ─ (overlaps with CLO)
* ├─ 100010 ─ OPC_MXU_S8LDD
* ├─ 100011 ─ OPC_MXU_S8STD 15..14
* ├─ 100100 ─ OPC_MXU_S8LDI ┌─ 00 ─ OPC_MXU_S32MUL
* ├─ 100101 ─ OPC_MXU_S8SDI ├─ 00 ─ OPC_MXU_S32MULU
* │ ├─ 00 ─ OPC_MXU_S32EXTR
* ├─ 100110 ─ OPC_MXU__POOL15 ─┴─ 00 ─ OPC_MXU_S32EXTRV
* │
* │ 20..18
* ├─ 100111 ─ OPC_MXU__POOL16 ─┬─ 000 ─ OPC_MXU_D32SARW
* │ ├─ 001 ─ OPC_MXU_S32ALN
* │ ├─ 010 ─ OPC_MXU_S32ALNI
* │ ├─ 011 ─ OPC_MXU_S32LUI
* │ ├─ 100 ─ OPC_MXU_S32NOR
* │ ├─ 101 ─ OPC_MXU_S32AND
* │ ├─ 110 ─ OPC_MXU_S32OR
* │ └─ 111 ─ OPC_MXU_S32XOR
* │
* │ 7..5
* ├─ 101000 ─ OPC_MXU__POOL17 ─┬─ 000 ─ OPC_MXU_LXB
* │ ├─ 001 ─ OPC_MXU_LXH
* ├─ 101001 ─ ├─ 011 ─ OPC_MXU_LXW
* ├─ 101010 ─ OPC_MXU_S16LDD ├─ 100 ─ OPC_MXU_LXBU
* ├─ 101011 ─ OPC_MXU_S16STD └─ 101 ─ OPC_MXU_LXHU
* ├─ 101100 ─ OPC_MXU_S16LDI
* ├─ 101101 ─ OPC_MXU_S16SDI
* ├─ 101110 ─ OPC_MXU_S32M2I
* ├─ 101111 ─ OPC_MXU_S32I2M
* ├─ 110000 ─ OPC_MXU_D32SLL
* ├─ 110001 ─ OPC_MXU_D32SLR 20..18
* ├─ 110010 ─ OPC_MXU_D32SARL ┌─ 000 ─ OPC_MXU_D32SLLV
* ├─ 110011 ─ OPC_MXU_D32SAR ├─ 001 ─ OPC_MXU_D32SLRV
* ├─ 110100 ─ OPC_MXU_Q16SLL ├─ 010 ─ OPC_MXU_D32SARV
* ├─ 110101 ─ OPC_MXU_Q16SLR ├─ 011 ─ OPC_MXU_Q16SLLV
* │ ├─ 100 ─ OPC_MXU_Q16SLRV
* ├─ 110110 ─ OPC_MXU__POOL18 ─┴─ 101 ─ OPC_MXU_Q16SARV
* │
* ├─ 110111 ─ OPC_MXU_Q16SAR
* │ 23..22
* ├─ 111000 ─ OPC_MXU__POOL19 ─┬─ 00 ─ OPC_MXU_Q8MUL
* │ └─ 01 ─ OPC_MXU_Q8MULSU
* │
* │ 20..18
* ├─ 111001 ─ OPC_MXU__POOL20 ─┬─ 000 ─ OPC_MXU_Q8MOVZ
* │ ├─ 001 ─ OPC_MXU_Q8MOVN
* │ ├─ 010 ─ OPC_MXU_D16MOVZ
* │ ├─ 011 ─ OPC_MXU_D16MOVN
* │ ├─ 100 ─ OPC_MXU_S32MOVZ
* │ └─ 101 ─ OPC_MXU_S32MOVN
* │
* │ 23..22
* ├─ 111010 ─ OPC_MXU__POOL21 ─┬─ 00 ─ OPC_MXU_Q8MAC
* │ └─ 10 ─ OPC_MXU_Q8MACSU
* ├─ 111011 ─ OPC_MXU_Q16SCOP
* ├─ 111100 ─ OPC_MXU_Q8MADL
* ├─ 111101 ─ OPC_MXU_S32SFL
* ├─ 111110 ─ OPC_MXU_Q8SAD
* └─ 111111 ─ (overlaps with SDBBP)
*
*
* Compiled after:
*
* "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
* Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
*/
enum {
OPC_MXU_S32MADD = 0x00,
OPC_MXU_S32MADDU = 0x01,
OPC__MXU_MUL = 0x02,
OPC_MXU__POOL00 = 0x03,
OPC_MXU_S32MSUB = 0x04,
OPC_MXU_S32MSUBU = 0x05,
OPC_MXU__POOL01 = 0x06,
OPC_MXU__POOL02 = 0x07,
OPC_MXU_D16MUL = 0x08,
OPC_MXU__POOL03 = 0x09,
OPC_MXU_D16MAC = 0x0A,
OPC_MXU_D16MACF = 0x0B,
OPC_MXU_D16MADL = 0x0C,
OPC_MXU_S16MAD = 0x0D,
OPC_MXU_Q16ADD = 0x0E,
OPC_MXU_D16MACE = 0x0F,
OPC_MXU__POOL04 = 0x10,
OPC_MXU__POOL05 = 0x11,
OPC_MXU__POOL06 = 0x12,
OPC_MXU__POOL07 = 0x13,
OPC_MXU__POOL08 = 0x14,
OPC_MXU__POOL09 = 0x15,
OPC_MXU__POOL10 = 0x16,
OPC_MXU__POOL11 = 0x17,
OPC_MXU_D32ADD = 0x18,
OPC_MXU__POOL12 = 0x19,
/* not assigned 0x1A */
OPC_MXU__POOL13 = 0x1B,
OPC_MXU__POOL14 = 0x1C,
OPC_MXU_Q8ACCE = 0x1D,
/* not assigned 0x1E */
/* not assigned 0x1F */
/* not assigned 0x20 */
/* not assigned 0x21 */
OPC_MXU_S8LDD = 0x22,
OPC_MXU_S8STD = 0x23,
OPC_MXU_S8LDI = 0x24,
OPC_MXU_S8SDI = 0x25,
OPC_MXU__POOL15 = 0x26,
OPC_MXU__POOL16 = 0x27,
OPC_MXU__POOL17 = 0x28,
/* not assigned 0x29 */
OPC_MXU_S16LDD = 0x2A,
OPC_MXU_S16STD = 0x2B,
OPC_MXU_S16LDI = 0x2C,
OPC_MXU_S16SDI = 0x2D,
OPC_MXU_S32M2I = 0x2E,
OPC_MXU_S32I2M = 0x2F,
OPC_MXU_D32SLL = 0x30,
OPC_MXU_D32SLR = 0x31,
OPC_MXU_D32SARL = 0x32,
OPC_MXU_D32SAR = 0x33,
OPC_MXU_Q16SLL = 0x34,
OPC_MXU_Q16SLR = 0x35,
OPC_MXU__POOL18 = 0x36,
OPC_MXU_Q16SAR = 0x37,
OPC_MXU__POOL19 = 0x38,
OPC_MXU__POOL20 = 0x39,
OPC_MXU__POOL21 = 0x3A,
OPC_MXU_Q16SCOP = 0x3B,
OPC_MXU_Q8MADL = 0x3C,
OPC_MXU_S32SFL = 0x3D,
OPC_MXU_Q8SAD = 0x3E,
/* not assigned 0x3F */
};
/*
* MXU pool 00
*/
enum {
OPC_MXU_S32MAX = 0x00,
OPC_MXU_S32MIN = 0x01,
OPC_MXU_D16MAX = 0x02,
OPC_MXU_D16MIN = 0x03,
OPC_MXU_Q8MAX = 0x04,
OPC_MXU_Q8MIN = 0x05,
OPC_MXU_Q8SLT = 0x06,
OPC_MXU_Q8SLTU = 0x07,
};
/*
* MXU pool 01
*/
enum {
OPC_MXU_S32SLT = 0x00,
OPC_MXU_D16SLT = 0x01,
OPC_MXU_D16AVG = 0x02,
OPC_MXU_D16AVGR = 0x03,
OPC_MXU_Q8AVG = 0x04,
OPC_MXU_Q8AVGR = 0x05,
OPC_MXU_Q8ADD = 0x07,
};
/*
* MXU pool 02
*/
enum {
OPC_MXU_S32CPS = 0x00,
OPC_MXU_D16CPS = 0x02,
OPC_MXU_Q8ABD = 0x04,
OPC_MXU_Q16SAT = 0x06,
};
/*
* MXU pool 03
*/
enum {
OPC_MXU_D16MULF = 0x00,
OPC_MXU_D16MULE = 0x01,
};
/*
* MXU pool 04
*/
enum {
OPC_MXU_S32LDD = 0x00,
OPC_MXU_S32LDDR = 0x01,
};
/*
* MXU pool 05
*/
enum {
OPC_MXU_S32STD = 0x00,
OPC_MXU_S32STDR = 0x01,
};
/*
* MXU pool 06
*/
enum {
OPC_MXU_S32LDDV = 0x00,
OPC_MXU_S32LDDVR = 0x01,
};
/*
* MXU pool 07
*/
enum {
OPC_MXU_S32STDV = 0x00,
OPC_MXU_S32STDVR = 0x01,
};
/*
* MXU pool 08
*/
enum {
OPC_MXU_S32LDI = 0x00,
OPC_MXU_S32LDIR = 0x01,
};
/*
* MXU pool 09
*/
enum {
OPC_MXU_S32SDI = 0x00,
OPC_MXU_S32SDIR = 0x01,
};
/*
* MXU pool 10
*/
enum {
OPC_MXU_S32LDIV = 0x00,
OPC_MXU_S32LDIVR = 0x01,
};
/*
* MXU pool 11
*/
enum {
OPC_MXU_S32SDIV = 0x00,
OPC_MXU_S32SDIVR = 0x01,
};
/*
* MXU pool 12
*/
enum {
OPC_MXU_D32ACC = 0x00,
OPC_MXU_D32ACCM = 0x01,
OPC_MXU_D32ASUM = 0x02,
};
/*
* MXU pool 13
*/
enum {
OPC_MXU_Q16ACC = 0x00,
OPC_MXU_Q16ACCM = 0x01,
OPC_MXU_Q16ASUM = 0x02,
};
/*
* MXU pool 14
*/
enum {
OPC_MXU_Q8ADDE = 0x00,
OPC_MXU_D8SUM = 0x01,
OPC_MXU_D8SUMC = 0x02,
};
/*
* MXU pool 15
*/
enum {
OPC_MXU_S32MUL = 0x00,
OPC_MXU_S32MULU = 0x01,
OPC_MXU_S32EXTR = 0x02,
OPC_MXU_S32EXTRV = 0x03,
};
/*
* MXU pool 16
*/
enum {
OPC_MXU_D32SARW = 0x00,
OPC_MXU_S32ALN = 0x01,
OPC_MXU_S32ALNI = 0x02,
OPC_MXU_S32LUI = 0x03,
OPC_MXU_S32NOR = 0x04,
OPC_MXU_S32AND = 0x05,
OPC_MXU_S32OR = 0x06,
OPC_MXU_S32XOR = 0x07,
};
/*
* MXU pool 17
*/
enum {
OPC_MXU_LXB = 0x00,
OPC_MXU_LXH = 0x01,
OPC_MXU_LXW = 0x03,
OPC_MXU_LXBU = 0x04,
OPC_MXU_LXHU = 0x05,
};
/*
* MXU pool 18
*/
enum {
OPC_MXU_D32SLLV = 0x00,
OPC_MXU_D32SLRV = 0x01,
OPC_MXU_D32SARV = 0x03,
OPC_MXU_Q16SLLV = 0x04,
OPC_MXU_Q16SLRV = 0x05,
OPC_MXU_Q16SARV = 0x07,
};
/*
* MXU pool 19
*/
enum {
OPC_MXU_Q8MUL = 0x00,
OPC_MXU_Q8MULSU = 0x01,
};
/*
* MXU pool 20
*/
enum {
OPC_MXU_Q8MOVZ = 0x00,
OPC_MXU_Q8MOVN = 0x01,
OPC_MXU_D16MOVZ = 0x02,
OPC_MXU_D16MOVN = 0x03,
OPC_MXU_S32MOVZ = 0x04,
OPC_MXU_S32MOVN = 0x05,
};
/*
* MXU pool 21
*/
enum {
OPC_MXU_Q8MAC = 0x00,
OPC_MXU_Q8MACSU = 0x01,
};
/*
* Overview of the TX79-specific instruction set
* =============================================
*
* The R5900 and the C790 have 128-bit wide GPRs, where the upper 64 bits
* are only used by the specific quadword (128-bit) LQ/SQ load/store
* instructions and certain multimedia instructions (MMIs). These MMIs
* configure the 128-bit data path as two 64-bit, four 32-bit, eight 16-bit
* or sixteen 8-bit paths.
*
* Reference:
*
* The Toshiba TX System RISC TX79 Core Architecture manual,
* https://wiki.qemu.org/File:C790.pdf
*
* Three-Operand Multiply and Multiply-Add (4 instructions)
* --------------------------------------------------------
* MADD [rd,] rs, rt Multiply/Add
* MADDU [rd,] rs, rt Multiply/Add Unsigned
* MULT [rd,] rs, rt Multiply (3-operand)
* MULTU [rd,] rs, rt Multiply Unsigned (3-operand)
*
* Multiply Instructions for Pipeline 1 (10 instructions)
* ------------------------------------------------------
* MULT1 [rd,] rs, rt Multiply Pipeline 1
* MULTU1 [rd,] rs, rt Multiply Unsigned Pipeline 1
* DIV1 rs, rt Divide Pipeline 1
* DIVU1 rs, rt Divide Unsigned Pipeline 1
* MADD1 [rd,] rs, rt Multiply-Add Pipeline 1
* MADDU1 [rd,] rs, rt Multiply-Add Unsigned Pipeline 1
* MFHI1 rd Move From HI1 Register
* MFLO1 rd Move From LO1 Register
* MTHI1 rs Move To HI1 Register
* MTLO1 rs Move To LO1 Register
*
* Arithmetic (19 instructions)
* ----------------------------
* PADDB rd, rs, rt Parallel Add Byte
* PSUBB rd, rs, rt Parallel Subtract Byte
* PADDH rd, rs, rt Parallel Add Halfword
* PSUBH rd, rs, rt Parallel Subtract Halfword
* PADDW rd, rs, rt Parallel Add Word
* PSUBW rd, rs, rt Parallel Subtract Word
* PADSBH rd, rs, rt Parallel Add/Subtract Halfword
* PADDSB rd, rs, rt Parallel Add with Signed Saturation Byte
* PSUBSB rd, rs, rt Parallel Subtract with Signed Saturation Byte
* PADDSH rd, rs, rt Parallel Add with Signed Saturation Halfword
* PSUBSH rd, rs, rt Parallel Subtract with Signed Saturation Halfword
* PADDSW rd, rs, rt Parallel Add with Signed Saturation Word
* PSUBSW rd, rs, rt Parallel Subtract with Signed Saturation Word
* PADDUB rd, rs, rt Parallel Add with Unsigned saturation Byte
* PSUBUB rd, rs, rt Parallel Subtract with Unsigned saturation Byte
* PADDUH rd, rs, rt Parallel Add with Unsigned saturation Halfword
* PSUBUH rd, rs, rt Parallel Subtract with Unsigned saturation Halfword
* PADDUW rd, rs, rt Parallel Add with Unsigned saturation Word
* PSUBUW rd, rs, rt Parallel Subtract with Unsigned saturation Word
*
* Min/Max (4 instructions)
* ------------------------
* PMAXH rd, rs, rt Parallel Maximum Halfword
* PMINH rd, rs, rt Parallel Minimum Halfword
* PMAXW rd, rs, rt Parallel Maximum Word
* PMINW rd, rs, rt Parallel Minimum Word
*
* Absolute (2 instructions)
* -------------------------
* PABSH rd, rt Parallel Absolute Halfword
* PABSW rd, rt Parallel Absolute Word
*
* Logical (4 instructions)
* ------------------------
* PAND rd, rs, rt Parallel AND
* POR rd, rs, rt Parallel OR
* PXOR rd, rs, rt Parallel XOR
* PNOR rd, rs, rt Parallel NOR
*
* Shift (9 instructions)
* ----------------------
* PSLLH rd, rt, sa Parallel Shift Left Logical Halfword
* PSRLH rd, rt, sa Parallel Shift Right Logical Halfword
* PSRAH rd, rt, sa Parallel Shift Right Arithmetic Halfword
* PSLLW rd, rt, sa Parallel Shift Left Logical Word
* PSRLW rd, rt, sa Parallel Shift Right Logical Word
* PSRAW rd, rt, sa Parallel Shift Right Arithmetic Word
* PSLLVW rd, rt, rs Parallel Shift Left Logical Variable Word
* PSRLVW rd, rt, rs Parallel Shift Right Logical Variable Word
* PSRAVW rd, rt, rs Parallel Shift Right Arithmetic Variable Word
*
* Compare (6 instructions)
* ------------------------
* PCGTB rd, rs, rt Parallel Compare for Greater Than Byte
* PCEQB rd, rs, rt Parallel Compare for Equal Byte
* PCGTH rd, rs, rt Parallel Compare for Greater Than Halfword
* PCEQH rd, rs, rt Parallel Compare for Equal Halfword
* PCGTW rd, rs, rt Parallel Compare for Greater Than Word
* PCEQW rd, rs, rt Parallel Compare for Equal Word
*
* LZC (1 instruction)
* -------------------
* PLZCW rd, rs Parallel Leading Zero or One Count Word
*
* Quadword Load and Store (2 instructions)
* ----------------------------------------
* LQ rt, offset(base) Load Quadword
* SQ rt, offset(base) Store Quadword
*
* Multiply and Divide (19 instructions)
* -------------------------------------
* PMULTW rd, rs, rt Parallel Multiply Word
* PMULTUW rd, rs, rt Parallel Multiply Unsigned Word
* PDIVW rs, rt Parallel Divide Word
* PDIVUW rs, rt Parallel Divide Unsigned Word
* PMADDW rd, rs, rt Parallel Multiply-Add Word
* PMADDUW rd, rs, rt Parallel Multiply-Add Unsigned Word
* PMSUBW rd, rs, rt Parallel Multiply-Subtract Word
* PMULTH rd, rs, rt Parallel Multiply Halfword
* PMADDH rd, rs, rt Parallel Multiply-Add Halfword
* PMSUBH rd, rs, rt Parallel Multiply-Subtract Halfword
* PHMADH rd, rs, rt Parallel Horizontal Multiply-Add Halfword
* PHMSBH rd, rs, rt Parallel Horizontal Multiply-Subtract Halfword
* PDIVBW rs, rt Parallel Divide Broadcast Word
* PMFHI rd Parallel Move From HI Register
* PMFLO rd Parallel Move From LO Register
* PMTHI rs Parallel Move To HI Register
* PMTLO rs Parallel Move To LO Register
* PMFHL rd Parallel Move From HI/LO Register
* PMTHL rs Parallel Move To HI/LO Register
*
* Pack/Extend (11 instructions)
* -----------------------------
* PPAC5 rd, rt Parallel Pack to 5 bits
* PPACB rd, rs, rt Parallel Pack to Byte
* PPACH rd, rs, rt Parallel Pack to Halfword
* PPACW rd, rs, rt Parallel Pack to Word
* PEXT5 rd, rt Parallel Extend Upper from 5 bits
* PEXTUB rd, rs, rt Parallel Extend Upper from Byte
* PEXTLB rd, rs, rt Parallel Extend Lower from Byte
* PEXTUH rd, rs, rt Parallel Extend Upper from Halfword
* PEXTLH rd, rs, rt Parallel Extend Lower from Halfword
* PEXTUW rd, rs, rt Parallel Extend Upper from Word
* PEXTLW rd, rs, rt Parallel Extend Lower from Word
*
* Others (16 instructions)
* ------------------------
* PCPYH rd, rt Parallel Copy Halfword
* PCPYLD rd, rs, rt Parallel Copy Lower Doubleword
* PCPYUD rd, rs, rt Parallel Copy Upper Doubleword
* PREVH rd, rt Parallel Reverse Halfword
* PINTH rd, rs, rt Parallel Interleave Halfword
* PINTEH rd, rs, rt Parallel Interleave Even Halfword
* PEXEH rd, rt Parallel Exchange Even Halfword
* PEXCH rd, rt Parallel Exchange Center Halfword
* PEXEW rd, rt Parallel Exchange Even Word
* PEXCW rd, rt Parallel Exchange Center Word
* QFSRV rd, rs, rt Quadword Funnel Shift Right Variable
* MFSA rd Move from Shift Amount Register
* MTSA rs Move to Shift Amount Register
* MTSAB rs, immediate Move Byte Count to Shift Amount Register
* MTSAH rs, immediate Move Halfword Count to Shift Amount Register
* PROT3W rd, rt Parallel Rotate 3 Words
*
* MMI (MultiMedia Instruction) encodings
* ======================================
*
* MMI instructions encoding table keys:
*
* * This code is reserved for future use. An attempt to execute it
* causes a Reserved Instruction exception.
* % This code indicates an instruction class. The instruction word
* must be further decoded by examining additional tables that show
* the values for other instruction fields.
* # This code is reserved for the unsupported instructions DMULT,
* DMULTU, DDIV, DDIVU, LL, LLD, SC, SCD, LWC2 and SWC2. An attempt
* to execute it causes a Reserved Instruction exception.
*
* MMI instructions encoded by opcode field (MMI, LQ, SQ):
*
* 31 26 0
* +--------+----------------------------------------+
* | opcode | |
* +--------+----------------------------------------+
*
* opcode bits 28..26
* bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
* 31..29 | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
* -------+-------+-------+-------+-------+-------+-------+-------+-------
* 0 000 |SPECIAL| REGIMM| J | JAL | BEQ | BNE | BLEZ | BGTZ
* 1 001 | ADDI | ADDIU | SLTI | SLTIU | ANDI | ORI | XORI | LUI
* 2 010 | COP0 | COP1 | * | * | BEQL | BNEL | BLEZL | BGTZL
* 3 011 | DADDI | DADDIU| LDL | LDR | MMI% | * | LQ | SQ
* 4 100 | LB | LH | LWL | LW | LBU | LHU | LWR | LWU
* 5 101 | SB | SH | SWL | SW | SDL | SDR | SWR | CACHE
* 6 110 | # | LWC1 | # | PREF | # | LDC1 | # | LD
* 7 111 | # | SWC1 | # | * | # | SDC1 | # | SD
*/
enum {
MMI_OPC_CLASS_MMI = 0x1C << 26, /* Same as OPC_SPECIAL2 */
MMI_OPC_LQ = 0x1E << 26, /* Same as OPC_MSA */
MMI_OPC_SQ = 0x1F << 26, /* Same as OPC_SPECIAL3 */
};
/*
* MMI instructions with opcode field = MMI:
*
* 31 26 5 0
* +--------+-------------------------------+--------+
* | MMI | |function|
* +--------+-------------------------------+--------+
*
* function bits 2..0
* bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
* 5..3 | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
* -------+-------+-------+-------+-------+-------+-------+-------+-------
* 0 000 | MADD | MADDU | * | * | PLZCW | * | * | *
* 1 001 | MMI0% | MMI2% | * | * | * | * | * | *
* 2 010 | MFHI1 | MTHI1 | MFLO1 | MTLO1 | * | * | * | *
* 3 011 | MULT1 | MULTU1| DIV1 | DIVU1 | * | * | * | *
* 4 100 | MADD1 | MADDU1| * | * | * | * | * | *
* 5 101 | MMI1% | MMI3% | * | * | * | * | * | *
* 6 110 | PMFHL | PMTHL | * | * | PSLLH | * | PSRLH | PSRAH
* 7 111 | * | * | * | * | PSLLW | * | PSRLW | PSRAW
*/
#define MASK_MMI(op) (MASK_OP_MAJOR(op) | ((op) & 0x3F))
enum {
MMI_OPC_MADD = 0x00 | MMI_OPC_CLASS_MMI, /* Same as OPC_MADD */
MMI_OPC_MADDU = 0x01 | MMI_OPC_CLASS_MMI, /* Same as OPC_MADDU */
MMI_OPC_PLZCW = 0x04 | MMI_OPC_CLASS_MMI,
MMI_OPC_CLASS_MMI0 = 0x08 | MMI_OPC_CLASS_MMI,
MMI_OPC_CLASS_MMI2 = 0x09 | MMI_OPC_CLASS_MMI,
MMI_OPC_MFHI1 = 0x10 | MMI_OPC_CLASS_MMI, /* Same minor as OPC_MFHI */
MMI_OPC_MTHI1 = 0x11 | MMI_OPC_CLASS_MMI, /* Same minor as OPC_MTHI */
MMI_OPC_MFLO1 = 0x12 | MMI_OPC_CLASS_MMI, /* Same minor as OPC_MFLO */
MMI_OPC_MTLO1 = 0x13 | MMI_OPC_CLASS_MMI, /* Same minor as OPC_MTLO */
MMI_OPC_MULT1 = 0x18 | MMI_OPC_CLASS_MMI, /* Same minor as OPC_MULT */
MMI_OPC_MULTU1 = 0x19 | MMI_OPC_CLASS_MMI, /* Same min. as OPC_MULTU */
MMI_OPC_DIV1 = 0x1A | MMI_OPC_CLASS_MMI, /* Same minor as OPC_DIV */
MMI_OPC_DIVU1 = 0x1B | MMI_OPC_CLASS_MMI, /* Same minor as OPC_DIVU */
MMI_OPC_MADD1 = 0x20 | MMI_OPC_CLASS_MMI,
MMI_OPC_MADDU1 = 0x21 | MMI_OPC_CLASS_MMI,
MMI_OPC_CLASS_MMI1 = 0x28 | MMI_OPC_CLASS_MMI,
MMI_OPC_CLASS_MMI3 = 0x29 | MMI_OPC_CLASS_MMI,
MMI_OPC_PMFHL = 0x30 | MMI_OPC_CLASS_MMI,
MMI_OPC_PMTHL = 0x31 | MMI_OPC_CLASS_MMI,
MMI_OPC_PSLLH = 0x34 | MMI_OPC_CLASS_MMI,
MMI_OPC_PSRLH = 0x36 | MMI_OPC_CLASS_MMI,
MMI_OPC_PSRAH = 0x37 | MMI_OPC_CLASS_MMI,
MMI_OPC_PSLLW = 0x3C | MMI_OPC_CLASS_MMI,
MMI_OPC_PSRLW = 0x3E | MMI_OPC_CLASS_MMI,
MMI_OPC_PSRAW = 0x3F | MMI_OPC_CLASS_MMI,
};
/*
* MMI instructions with opcode field = MMI and bits 5..0 = MMI0:
*
* 31 26 10 6 5 0
* +--------+----------------------+--------+--------+
* | MMI | |function| MMI0 |
* +--------+----------------------+--------+--------+
*
* function bits 7..6
* bits | 0 | 1 | 2 | 3
* 10..8 | 00 | 01 | 10 | 11
* -------+-------+-------+-------+-------
* 0 000 | PADDW | PSUBW | PCGTW | PMAXW
* 1 001 | PADDH | PSUBH | PCGTH | PMAXH
* 2 010 | PADDB | PSUBB | PCGTB | *
* 3 011 | * | * | * | *
* 4 100 | PADDSW| PSUBSW| PEXTLW| PPACW
* 5 101 | PADDSH| PSUBSH| PEXTLH| PPACH
* 6 110 | PADDSB| PSUBSB| PEXTLB| PPACB
* 7 111 | * | * | PEXT5 | PPAC5
*/
#define MASK_MMI0(op) (MASK_OP_MAJOR(op) | ((op) & 0x7FF))
enum {
MMI_OPC_0_PADDW = (0x00 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PSUBW = (0x01 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PCGTW = (0x02 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PMAXW = (0x03 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PADDH = (0x04 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PSUBH = (0x05 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PCGTH = (0x06 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PMAXH = (0x07 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PADDB = (0x08 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PSUBB = (0x09 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PCGTB = (0x0A << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PADDSW = (0x10 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PSUBSW = (0x11 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PEXTLW = (0x12 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PPACW = (0x13 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PADDSH = (0x14 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PSUBSH = (0x15 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PEXTLH = (0x16 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PPACH = (0x17 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PADDSB = (0x18 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PSUBSB = (0x19 << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PEXTLB = (0x1A << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PPACB = (0x1B << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PEXT5 = (0x1E << 6) | MMI_OPC_CLASS_MMI0,
MMI_OPC_0_PPAC5 = (0x1F << 6) | MMI_OPC_CLASS_MMI0,
};
/*
* MMI instructions with opcode field = MMI and bits 5..0 = MMI1:
*
* 31 26 10 6 5 0
* +--------+----------------------+--------+--------+
* | MMI | |function| MMI1 |
* +--------+----------------------+--------+--------+
*
* function bits 7..6
* bits | 0 | 1 | 2 | 3
* 10..8 | 00 | 01 | 10 | 11
* -------+-------+-------+-------+-------
* 0 000 | * | PABSW | PCEQW | PMINW
* 1 001 | PADSBH| PABSH | PCEQH | PMINH
* 2 010 | * | * | PCEQB | *
* 3 011 | * | * | * | *
* 4 100 | PADDUW| PSUBUW| PEXTUW| *
* 5 101 | PADDUH| PSUBUH| PEXTUH| *
* 6 110 | PADDUB| PSUBUB| PEXTUB| QFSRV
* 7 111 | * | * | * | *
*/
#define MASK_MMI1(op) (MASK_OP_MAJOR(op) | ((op) & 0x7FF))
enum {
MMI_OPC_1_PABSW = (0x01 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PCEQW = (0x02 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PMINW = (0x03 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PADSBH = (0x04 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PABSH = (0x05 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PCEQH = (0x06 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PMINH = (0x07 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PCEQB = (0x0A << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PADDUW = (0x10 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PSUBUW = (0x11 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PEXTUW = (0x12 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PADDUH = (0x14 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PSUBUH = (0x15 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PEXTUH = (0x16 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PADDUB = (0x18 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PSUBUB = (0x19 << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_PEXTUB = (0x1A << 6) | MMI_OPC_CLASS_MMI1,
MMI_OPC_1_QFSRV = (0x1B << 6) | MMI_OPC_CLASS_MMI1,
};
/*
* MMI instructions with opcode field = MMI and bits 5..0 = MMI2:
*
* 31 26 10 6 5 0
* +--------+----------------------+--------+--------+
* | MMI | |function| MMI2 |
* +--------+----------------------+--------+--------+
*
* function bits 7..6
* bits | 0 | 1 | 2 | 3
* 10..8 | 00 | 01 | 10 | 11
* -------+-------+-------+-------+-------
* 0 000 | PMADDW| * | PSLLVW| PSRLVW
* 1 001 | PMSUBW| * | * | *
* 2 010 | PMFHI | PMFLO | PINTH | *
* 3 011 | PMULTW| PDIVW | PCPYLD| *
* 4 100 | PMADDH| PHMADH| PAND | PXOR
* 5 101 | PMSUBH| PHMSBH| * | *
* 6 110 | * | * | PEXEH | PREVH
* 7 111 | PMULTH| PDIVBW| PEXEW | PROT3W
*/
#define MASK_MMI2(op) (MASK_OP_MAJOR(op) | ((op) & 0x7FF))
enum {
MMI_OPC_2_PMADDW = (0x00 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PSLLVW = (0x02 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PSRLVW = (0x03 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PMSUBW = (0x04 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PMFHI = (0x08 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PMFLO = (0x09 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PINTH = (0x0A << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PMULTW = (0x0C << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PDIVW = (0x0D << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PCPYLD = (0x0E << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PMADDH = (0x10 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PHMADH = (0x11 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PAND = (0x12 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PXOR = (0x13 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PMSUBH = (0x14 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PHMSBH = (0x15 << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PEXEH = (0x1A << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PREVH = (0x1B << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PMULTH = (0x1C << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PDIVBW = (0x1D << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PEXEW = (0x1E << 6) | MMI_OPC_CLASS_MMI2,
MMI_OPC_2_PROT3W = (0x1F << 6) | MMI_OPC_CLASS_MMI2,
};
/*
* MMI instructions with opcode field = MMI and bits 5..0 = MMI3:
*
* 31 26 10 6 5 0
* +--------+----------------------+--------+--------+
* | MMI | |function| MMI3 |
* +--------+----------------------+--------+--------+
*
* function bits 7..6
* bits | 0 | 1 | 2 | 3
* 10..8 | 00 | 01 | 10 | 11
* -------+-------+-------+-------+-------
* 0 000 |PMADDUW| * | * | PSRAVW
* 1 001 | * | * | * | *
* 2 010 | PMTHI | PMTLO | PINTEH| *
* 3 011 |PMULTUW| PDIVUW| PCPYUD| *
* 4 100 | * | * | POR | PNOR
* 5 101 | * | * | * | *
* 6 110 | * | * | PEXCH | PCPYH
* 7 111 | * | * | PEXCW | *
*/
#define MASK_MMI3(op) (MASK_OP_MAJOR(op) | ((op) & 0x7FF))
enum {
MMI_OPC_3_PMADDUW = (0x00 << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_PSRAVW = (0x03 << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_PMTHI = (0x08 << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_PMTLO = (0x09 << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_PINTEH = (0x0A << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_PMULTUW = (0x0C << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_PDIVUW = (0x0D << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_PCPYUD = (0x0E << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_POR = (0x12 << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_PNOR = (0x13 << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_PEXCH = (0x1A << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_PCPYH = (0x1B << 6) | MMI_OPC_CLASS_MMI3,
MMI_OPC_3_PEXCW = (0x1E << 6) | MMI_OPC_CLASS_MMI3,
};
/* global register indices */
static TCGv cpu_gpr[32], cpu_PC;
static TCGv cpu_HI[MIPS_DSP_ACC], cpu_LO[MIPS_DSP_ACC];
static TCGv cpu_dspctrl, btarget, bcond;
static TCGv cpu_lladdr, cpu_llval;
static TCGv_i32 hflags;
static TCGv_i32 fpu_fcr0, fpu_fcr31;
static TCGv_i64 fpu_f64[32];
static TCGv_i64 msa_wr_d[64];
#if defined(TARGET_MIPS64)
/* Upper halves of R5900's 128-bit registers: MMRs (multimedia registers) */
static TCGv_i64 cpu_mmr[32];
#endif
#if !defined(TARGET_MIPS64)
/* MXU registers */
static TCGv mxu_gpr[NUMBER_OF_MXU_REGISTERS - 1];
static TCGv mxu_CR;
#endif
#include "exec/gen-icount.h"
#define gen_helper_0e0i(name, arg) do { \
TCGv_i32 helper_tmp = tcg_const_i32(arg); \
gen_helper_##name(cpu_env, helper_tmp); \
tcg_temp_free_i32(helper_tmp); \
} while(0)
#define gen_helper_0e1i(name, arg1, arg2) do { \
TCGv_i32 helper_tmp = tcg_const_i32(arg2); \
gen_helper_##name(cpu_env, arg1, helper_tmp); \
tcg_temp_free_i32(helper_tmp); \
} while(0)
#define gen_helper_1e0i(name, ret, arg1) do { \
TCGv_i32 helper_tmp = tcg_const_i32(arg1); \
gen_helper_##name(ret, cpu_env, helper_tmp); \
tcg_temp_free_i32(helper_tmp); \
} while(0)
#define gen_helper_1e1i(name, ret, arg1, arg2) do { \
TCGv_i32 helper_tmp = tcg_const_i32(arg2); \
gen_helper_##name(ret, cpu_env, arg1, helper_tmp); \
tcg_temp_free_i32(helper_tmp); \
} while(0)
#define gen_helper_0e2i(name, arg1, arg2, arg3) do { \
TCGv_i32 helper_tmp = tcg_const_i32(arg3); \
gen_helper_##name(cpu_env, arg1, arg2, helper_tmp); \
tcg_temp_free_i32(helper_tmp); \
} while(0)
#define gen_helper_1e2i(name, ret, arg1, arg2, arg3) do { \
TCGv_i32 helper_tmp = tcg_const_i32(arg3); \
gen_helper_##name(ret, cpu_env, arg1, arg2, helper_tmp); \
tcg_temp_free_i32(helper_tmp); \
} while(0)
#define gen_helper_0e3i(name, arg1, arg2, arg3, arg4) do { \
TCGv_i32 helper_tmp = tcg_const_i32(arg4); \
gen_helper_##name(cpu_env, arg1, arg2, arg3, helper_tmp); \
tcg_temp_free_i32(helper_tmp); \
} while(0)
typedef struct DisasContext {
DisasContextBase base;
target_ulong saved_pc;
target_ulong page_start;
uint32_t opcode;
uint64_t insn_flags;
int32_t CP0_Config1;
int32_t CP0_Config2;
int32_t CP0_Config3;
int32_t CP0_Config5;
/* Routine used to access memory */
int mem_idx;
TCGMemOp default_tcg_memop_mask;
uint32_t hflags, saved_hflags;
target_ulong btarget;
bool ulri;
int kscrexist;
bool rxi;
int ie;
bool bi;
bool bp;
uint64_t PAMask;
bool mvh;
bool eva;
bool sc;
int CP0_LLAddr_shift;
bool ps;
bool vp;
bool cmgcr;
bool mrp;
bool nan2008;
bool abs2008;
bool saar;
} DisasContext;
#define DISAS_STOP DISAS_TARGET_0
#define DISAS_EXIT DISAS_TARGET_1
static const char * const regnames[] = {
"r0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
};
static const char * const regnames_HI[] = {
"HI0", "HI1", "HI2", "HI3",
};
static const char * const regnames_LO[] = {
"LO0", "LO1", "LO2", "LO3",
};
static const char * const fregnames[] = {
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
};
static const char * const msaregnames[] = {
"w0.d0", "w0.d1", "w1.d0", "w1.d1",
"w2.d0", "w2.d1", "w3.d0", "w3.d1",
"w4.d0", "w4.d1", "w5.d0", "w5.d1",
"w6.d0", "w6.d1", "w7.d0", "w7.d1",
"w8.d0", "w8.d1", "w9.d0", "w9.d1",
"w10.d0", "w10.d1", "w11.d0", "w11.d1",
"w12.d0", "w12.d1", "w13.d0", "w13.d1",
"w14.d0", "w14.d1", "w15.d0", "w15.d1",
"w16.d0", "w16.d1", "w17.d0", "w17.d1",
"w18.d0", "w18.d1", "w19.d0", "w19.d1",
"w20.d0", "w20.d1", "w21.d0", "w21.d1",
"w22.d0", "w22.d1", "w23.d0", "w23.d1",
"w24.d0", "w24.d1", "w25.d0", "w25.d1",
"w26.d0", "w26.d1", "w27.d0", "w27.d1",
"w28.d0", "w28.d1", "w29.d0", "w29.d1",
"w30.d0", "w30.d1", "w31.d0", "w31.d1",
};
#if !defined(TARGET_MIPS64)
static const char * const mxuregnames[] = {
"XR1", "XR2", "XR3", "XR4", "XR5", "XR6", "XR7", "XR8",
"XR9", "XR10", "XR11", "XR12", "XR13", "XR14", "XR15", "MXU_CR",
};
#endif
#define LOG_DISAS(...) \
do { \
if (MIPS_DEBUG_DISAS) { \
qemu_log_mask(CPU_LOG_TB_IN_ASM, ## __VA_ARGS__); \
} \
} while (0)
#define MIPS_INVAL(op) \
do { \
if (MIPS_DEBUG_DISAS) { \
qemu_log_mask(CPU_LOG_TB_IN_ASM, \
TARGET_FMT_lx ": %08x Invalid %s %03x %03x %03x\n", \
ctx->base.pc_next, ctx->opcode, op, \
ctx->opcode >> 26, ctx->opcode & 0x3F, \
((ctx->opcode >> 16) & 0x1F)); \
} \
} while (0)
/* General purpose registers moves. */
static inline void gen_load_gpr(TCGv t, int reg)
{
if (reg == 0) {
tcg_gen_movi_tl(t, 0);
} else {
tcg_gen_mov_tl(t, cpu_gpr[reg]);
}
}
static inline void gen_store_gpr(TCGv t, int reg)
{
if (reg != 0) {
tcg_gen_mov_tl(cpu_gpr[reg], t);
}
}
/* Moves to/from shadow registers. */
static inline void gen_load_srsgpr(int from, int to)
{
TCGv t0 = tcg_temp_new();
if (from == 0) {
tcg_gen_movi_tl(t0, 0);
} else {
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_ptr addr = tcg_temp_new_ptr();
tcg_gen_ld_i32(t2, cpu_env, offsetof(CPUMIPSState, CP0_SRSCtl));
tcg_gen_shri_i32(t2, t2, CP0SRSCtl_PSS);
tcg_gen_andi_i32(t2, t2, 0xf);
tcg_gen_muli_i32(t2, t2, sizeof(target_ulong) * 32);
tcg_gen_ext_i32_ptr(addr, t2);
tcg_gen_add_ptr(addr, cpu_env, addr);
tcg_gen_ld_tl(t0, addr, sizeof(target_ulong) * from);
tcg_temp_free_ptr(addr);
tcg_temp_free_i32(t2);
}
gen_store_gpr(t0, to);
tcg_temp_free(t0);
}
static inline void gen_store_srsgpr (int from, int to)
{
if (to != 0) {
TCGv t0 = tcg_temp_new();
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_ptr addr = tcg_temp_new_ptr();
gen_load_gpr(t0, from);
tcg_gen_ld_i32(t2, cpu_env, offsetof(CPUMIPSState, CP0_SRSCtl));
tcg_gen_shri_i32(t2, t2, CP0SRSCtl_PSS);
tcg_gen_andi_i32(t2, t2, 0xf);
tcg_gen_muli_i32(t2, t2, sizeof(target_ulong) * 32);
tcg_gen_ext_i32_ptr(addr, t2);
tcg_gen_add_ptr(addr, cpu_env, addr);
tcg_gen_st_tl(t0, addr, sizeof(target_ulong) * to);
tcg_temp_free_ptr(addr);
tcg_temp_free_i32(t2);
tcg_temp_free(t0);
}
}
#if !defined(TARGET_MIPS64)
/* MXU General purpose registers moves. */
static inline void gen_load_mxu_gpr(TCGv t, unsigned int reg)
{
if (reg == 0) {
tcg_gen_movi_tl(t, 0);
} else if (reg <= 15) {
tcg_gen_mov_tl(t, mxu_gpr[reg - 1]);
}
}
static inline void gen_store_mxu_gpr(TCGv t, unsigned int reg)
{
if (reg > 0 && reg <= 15) {
tcg_gen_mov_tl(mxu_gpr[reg - 1], t);
}
}
/* MXU control register moves. */
static inline void gen_load_mxu_cr(TCGv t)
{
tcg_gen_mov_tl(t, mxu_CR);
}
static inline void gen_store_mxu_cr(TCGv t)
{
/* TODO: Add handling of RW rules for MXU_CR. */
tcg_gen_mov_tl(mxu_CR, t);
}
#endif
/* Tests */
static inline void gen_save_pc(target_ulong pc)
{
tcg_gen_movi_tl(cpu_PC, pc);
}
static inline void save_cpu_state(DisasContext *ctx, int do_save_pc)
{
LOG_DISAS("hflags %08x saved %08x\n", ctx->hflags, ctx->saved_hflags);
if (do_save_pc && ctx->base.pc_next != ctx->saved_pc) {
gen_save_pc(ctx->base.pc_next);
ctx->saved_pc = ctx->base.pc_next;
}
if (ctx->hflags != ctx->saved_hflags) {
tcg_gen_movi_i32(hflags, ctx->hflags);
ctx->saved_hflags = ctx->hflags;
switch (ctx->hflags & MIPS_HFLAG_BMASK_BASE) {
case MIPS_HFLAG_BR:
break;
case MIPS_HFLAG_BC:
case MIPS_HFLAG_BL:
case MIPS_HFLAG_B:
tcg_gen_movi_tl(btarget, ctx->btarget);
break;
}
}
}
static inline void restore_cpu_state(CPUMIPSState *env, DisasContext *ctx)
{
ctx->saved_hflags = ctx->hflags;
switch (ctx->hflags & MIPS_HFLAG_BMASK_BASE) {
case MIPS_HFLAG_BR:
break;
case MIPS_HFLAG_BC:
case MIPS_HFLAG_BL:
case MIPS_HFLAG_B:
ctx->btarget = env->btarget;
break;
}
}
static inline void generate_exception_err(DisasContext *ctx, int excp, int err)
{
TCGv_i32 texcp = tcg_const_i32(excp);
TCGv_i32 terr = tcg_const_i32(err);
save_cpu_state(ctx, 1);
gen_helper_raise_exception_err(cpu_env, texcp, terr);
tcg_temp_free_i32(terr);
tcg_temp_free_i32(texcp);
ctx->base.is_jmp = DISAS_NORETURN;
}
static inline void generate_exception(DisasContext *ctx, int excp)
{
gen_helper_0e0i(raise_exception, excp);
}
static inline void generate_exception_end(DisasContext *ctx, int excp)
{
generate_exception_err(ctx, excp, 0);
}
/* Floating point register moves. */
static void gen_load_fpr32(DisasContext *ctx, TCGv_i32 t, int reg)
{
if (ctx->hflags & MIPS_HFLAG_FRE) {
generate_exception(ctx, EXCP_RI);
}
tcg_gen_extrl_i64_i32(t, fpu_f64[reg]);
}
static void gen_store_fpr32(DisasContext *ctx, TCGv_i32 t, int reg)
{
TCGv_i64 t64;
if (ctx->hflags & MIPS_HFLAG_FRE) {
generate_exception(ctx, EXCP_RI);
}
t64 = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(t64, t);
tcg_gen_deposit_i64(fpu_f64[reg], fpu_f64[reg], t64, 0, 32);
tcg_temp_free_i64(t64);
}
static void gen_load_fpr32h(DisasContext *ctx, TCGv_i32 t, int reg)
{
if (ctx->hflags & MIPS_HFLAG_F64) {
tcg_gen_extrh_i64_i32(t, fpu_f64[reg]);
} else {
gen_load_fpr32(ctx, t, reg | 1);
}
}
static void gen_store_fpr32h(DisasContext *ctx, TCGv_i32 t, int reg)
{
if (ctx->hflags & MIPS_HFLAG_F64) {
TCGv_i64 t64 = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(t64, t);
tcg_gen_deposit_i64(fpu_f64[reg], fpu_f64[reg], t64, 32, 32);
tcg_temp_free_i64(t64);
} else {
gen_store_fpr32(ctx, t, reg | 1);
}
}
static void gen_load_fpr64(DisasContext *ctx, TCGv_i64 t, int reg)
{
if (ctx->hflags & MIPS_HFLAG_F64) {
tcg_gen_mov_i64(t, fpu_f64[reg]);
} else {
tcg_gen_concat32_i64(t, fpu_f64[reg & ~1], fpu_f64[reg | 1]);
}
}
static void gen_store_fpr64(DisasContext *ctx, TCGv_i64 t, int reg)
{
if (ctx->hflags & MIPS_HFLAG_F64) {
tcg_gen_mov_i64(fpu_f64[reg], t);
} else {
TCGv_i64 t0;
tcg_gen_deposit_i64(fpu_f64[reg & ~1], fpu_f64[reg & ~1], t, 0, 32);
t0 = tcg_temp_new_i64();
tcg_gen_shri_i64(t0, t, 32);
tcg_gen_deposit_i64(fpu_f64[reg | 1], fpu_f64[reg | 1], t0, 0, 32);
tcg_temp_free_i64(t0);
}
}
static inline int get_fp_bit(int cc)
{
if (cc) {
return 24 + cc;
} else {
return 23;
}
}
/* Addresses computation */
static inline void gen_op_addr_add(DisasContext *ctx, TCGv ret, TCGv arg0,
TCGv arg1)
{
tcg_gen_add_tl(ret, arg0, arg1);
#if defined(TARGET_MIPS64)
if (ctx->hflags & MIPS_HFLAG_AWRAP) {
tcg_gen_ext32s_i64(ret, ret);
}
#endif
}
static inline void gen_op_addr_addi(DisasContext *ctx, TCGv ret, TCGv base,
target_long ofs)
{
tcg_gen_addi_tl(ret, base, ofs);
#if defined(TARGET_MIPS64)
if (ctx->hflags & MIPS_HFLAG_AWRAP) {
tcg_gen_ext32s_i64(ret, ret);
}
#endif
}
/* Addresses computation (translation time) */
static target_long addr_add(DisasContext *ctx, target_long base,
target_long offset)
{
target_long sum = base + offset;
#if defined(TARGET_MIPS64)
if (ctx->hflags & MIPS_HFLAG_AWRAP) {
sum = (int32_t)sum;
}
#endif
return sum;
}
/* Sign-extract the low 32-bits to a target_long. */
static inline void gen_move_low32(TCGv ret, TCGv_i64 arg)
{
#if defined(TARGET_MIPS64)
tcg_gen_ext32s_i64(ret, arg);
#else
tcg_gen_extrl_i64_i32(ret, arg);
#endif
}
/* Sign-extract the high 32-bits to a target_long. */
static inline void gen_move_high32(TCGv ret, TCGv_i64 arg)
{
#if defined(TARGET_MIPS64)
tcg_gen_sari_i64(ret, arg, 32);
#else
tcg_gen_extrh_i64_i32(ret, arg);
#endif
}
static inline void check_cp0_enabled(DisasContext *ctx)
{
if (unlikely(!(ctx->hflags & MIPS_HFLAG_CP0))) {
generate_exception_err(ctx, EXCP_CpU, 0);
}
}
static inline void check_cp1_enabled(DisasContext *ctx)
{
if (unlikely(!(ctx->hflags & MIPS_HFLAG_FPU))) {
generate_exception_err(ctx, EXCP_CpU, 1);
}
}
/*
* Verify that the processor is running with COP1X instructions enabled.
* This is associated with the nabla symbol in the MIPS32 and MIPS64
* opcode tables.
*/
static inline void check_cop1x(DisasContext *ctx)
{
if (unlikely(!(ctx->hflags & MIPS_HFLAG_COP1X))) {
generate_exception_end(ctx, EXCP_RI);
}
}
/*
* Verify that the processor is running with 64-bit floating-point
* operations enabled.
*/
static inline void check_cp1_64bitmode(DisasContext *ctx)
{
if (unlikely(~ctx->hflags & (MIPS_HFLAG_F64 | MIPS_HFLAG_COP1X))) {
generate_exception_end(ctx, EXCP_RI);
}
}
/*
* Verify if floating point register is valid; an operation is not defined
* if bit 0 of any register specification is set and the FR bit in the
* Status register equals zero, since the register numbers specify an
* even-odd pair of adjacent coprocessor general registers. When the FR bit
* in the Status register equals one, both even and odd register numbers
* are valid. This limitation exists only for 64 bit wide (d,l,ps) registers.
*
* Multiple 64 bit wide registers can be checked by calling
* gen_op_cp1_registers(freg1 | freg2 | ... | fregN);
*/
static inline void check_cp1_registers(DisasContext *ctx, int regs)
{
if (unlikely(!(ctx->hflags & MIPS_HFLAG_F64) && (regs & 1))) {
generate_exception_end(ctx, EXCP_RI);
}
}
/*
* Verify that the processor is running with DSP instructions enabled.
* This is enabled by CP0 Status register MX(24) bit.
*/
static inline void check_dsp(DisasContext *ctx)
{
if (unlikely(!(ctx->hflags & MIPS_HFLAG_DSP))) {
if (ctx->insn_flags & ASE_DSP) {
generate_exception_end(ctx, EXCP_DSPDIS);
} else {
generate_exception_end(ctx, EXCP_RI);
}
}
}
static inline void check_dsp_r2(DisasContext *ctx)
{
if (unlikely(!(ctx->hflags & MIPS_HFLAG_DSP_R2))) {
if (ctx->insn_flags & ASE_DSP) {
generate_exception_end(ctx, EXCP_DSPDIS);
} else {
generate_exception_end(ctx, EXCP_RI);
}
}
}
static inline void check_dsp_r3(DisasContext *ctx)
{
if (unlikely(!(ctx->hflags & MIPS_HFLAG_DSP_R3))) {
if (ctx->insn_flags & ASE_DSP) {
generate_exception_end(ctx, EXCP_DSPDIS);
} else {
generate_exception_end(ctx, EXCP_RI);
}
}
}
/*
* This code generates a "reserved instruction" exception if the
* CPU does not support the instruction set corresponding to flags.
*/
static inline void check_insn(DisasContext *ctx, uint64_t flags)
{
if (unlikely(!(ctx->insn_flags & flags))) {
generate_exception_end(ctx, EXCP_RI);
}
}
/*
* This code generates a "reserved instruction" exception if the
* CPU has corresponding flag set which indicates that the instruction
* has been removed.
*/
static inline void check_insn_opc_removed(DisasContext *ctx, uint64_t flags)
{
if (unlikely(ctx->insn_flags & flags)) {
generate_exception_end(ctx, EXCP_RI);
}
}
/*
* The Linux kernel traps certain reserved instruction exceptions to
* emulate the corresponding instructions. QEMU is the kernel in user
* mode, so those traps are emulated by accepting the instructions.
*
* A reserved instruction exception is generated for flagged CPUs if
* QEMU runs in system mode.
*/
static inline void check_insn_opc_user_only(DisasContext *ctx, uint64_t flags)
{
#ifndef CONFIG_USER_ONLY
check_insn_opc_removed(ctx, flags);
#endif
}
/*
* This code generates a "reserved instruction" exception if the
* CPU does not support 64-bit paired-single (PS) floating point data type.
*/
static inline void check_ps(DisasContext *ctx)
{
if (unlikely(!ctx->ps)) {
generate_exception(ctx, EXCP_RI);
}
check_cp1_64bitmode(ctx);
}
#ifdef TARGET_MIPS64
/*
* This code generates a "reserved instruction" exception if 64-bit
* instructions are not enabled.
*/
static inline void check_mips_64(DisasContext *ctx)
{
if (unlikely(!(ctx->hflags & MIPS_HFLAG_64))) {
generate_exception_end(ctx, EXCP_RI);
}
}
#endif
#ifndef CONFIG_USER_ONLY
static inline void check_mvh(DisasContext *ctx)
{
if (unlikely(!ctx->mvh)) {
generate_exception(ctx, EXCP_RI);
}
}
#endif
/*
* This code generates a "reserved instruction" exception if the
* Config5 XNP bit is set.
*/
static inline void check_xnp(DisasContext *ctx)
{
if (unlikely(ctx->CP0_Config5 & (1 << CP0C5_XNP))) {
generate_exception_end(ctx, EXCP_RI);
}
}
#ifndef CONFIG_USER_ONLY
/*
* This code generates a "reserved instruction" exception if the
* Config3 PW bit is NOT set.
*/
static inline void check_pw(DisasContext *ctx)
{
if (unlikely(!(ctx->CP0_Config3 & (1 << CP0C3_PW)))) {
generate_exception_end(ctx, EXCP_RI);
}
}
#endif
/*
* This code generates a "reserved instruction" exception if the
* Config3 MT bit is NOT set.
*/
static inline void check_mt(DisasContext *ctx)
{
if (unlikely(!(ctx->CP0_Config3 & (1 << CP0C3_MT)))) {
generate_exception_end(ctx, EXCP_RI);
}
}
#ifndef CONFIG_USER_ONLY
/*
* This code generates a "coprocessor unusable" exception if CP0 is not
* available, and, if that is not the case, generates a "reserved instruction"
* exception if the Config5 MT bit is NOT set. This is needed for availability
* control of some of MT ASE instructions.
*/
static inline void check_cp0_mt(DisasContext *ctx)
{
if (unlikely(!(ctx->hflags & MIPS_HFLAG_CP0))) {
generate_exception_err(ctx, EXCP_CpU, 0);
} else {
if (unlikely(!(ctx->CP0_Config3 & (1 << CP0C3_MT)))) {
generate_exception_err(ctx, EXCP_RI, 0);
}
}
}
#endif
/*
* This code generates a "reserved instruction" exception if the
* Config5 NMS bit is set.
*/
static inline void check_nms(DisasContext *ctx)
{
if (unlikely(ctx->CP0_Config5 & (1 << CP0C5_NMS))) {
generate_exception_end(ctx, EXCP_RI);
}
}
/*
* This code generates a "reserved instruction" exception if the
* Config5 NMS bit is set, and Config1 DL, Config1 IL, Config2 SL,
* Config2 TL, and Config5 L2C are unset.
*/
static inline void check_nms_dl_il_sl_tl_l2c(DisasContext *ctx)
{
if (unlikely((ctx->CP0_Config5 & (1 << CP0C5_NMS)) &&
!(ctx->CP0_Config1 & (1 << CP0C1_DL)) &&
!(ctx->CP0_Config1 & (1 << CP0C1_IL)) &&
!(ctx->CP0_Config2 & (1 << CP0C2_SL)) &&
!(ctx->CP0_Config2 & (1 << CP0C2_TL)) &&
!(ctx->CP0_Config5 & (1 << CP0C5_L2C)))) {
generate_exception_end(ctx, EXCP_RI);
}
}
/*
* This code generates a "reserved instruction" exception if the
* Config5 EVA bit is NOT set.
*/
static inline void check_eva(DisasContext *ctx)
{
if (unlikely(!(ctx->CP0_Config5 & (1 << CP0C5_EVA)))) {
generate_exception_end(ctx, EXCP_RI);
}
}
/*
* Define small wrappers for gen_load_fpr* so that we have a uniform
* calling interface for 32 and 64-bit FPRs. No sense in changing
* all callers for gen_load_fpr32 when we need the CTX parameter for
* this one use.
*/
#define gen_ldcmp_fpr32(ctx, x, y) gen_load_fpr32(ctx, x, y)
#define gen_ldcmp_fpr64(ctx, x, y) gen_load_fpr64(ctx, x, y)
#define FOP_CONDS(type, abs, fmt, ifmt, bits) \
static inline void gen_cmp ## type ## _ ## fmt(DisasContext *ctx, int n, \
int ft, int fs, int cc) \
{ \
TCGv_i##bits fp0 = tcg_temp_new_i##bits (); \
TCGv_i##bits fp1 = tcg_temp_new_i##bits (); \
switch (ifmt) { \
case FMT_PS: \
check_ps(ctx); \
break; \
case FMT_D: \
if (abs) { \
check_cop1x(ctx); \
} \
check_cp1_registers(ctx, fs | ft); \
break; \
case FMT_S: \
if (abs) { \
check_cop1x(ctx); \
} \
break; \
} \
gen_ldcmp_fpr##bits (ctx, fp0, fs); \
gen_ldcmp_fpr##bits (ctx, fp1, ft); \
switch (n) { \
case 0: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _f, fp0, fp1, cc); \
break; \
case 1: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _un, fp0, fp1, cc); \
break; \
case 2: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _eq, fp0, fp1, cc); \
break; \
case 3: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ueq, fp0, fp1, cc); \
break; \
case 4: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _olt, fp0, fp1, cc); \
break; \
case 5: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ult, fp0, fp1, cc); \
break; \
case 6: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ole, fp0, fp1, cc); \
break; \
case 7: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ule, fp0, fp1, cc); \
break; \
case 8: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _sf, fp0, fp1, cc); \
break; \
case 9: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ngle, fp0, fp1, cc); \
break; \
case 10: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _seq, fp0, fp1, cc); \
break; \
case 11: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ngl, fp0, fp1, cc); \
break; \
case 12: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _lt, fp0, fp1, cc); \
break; \
case 13: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _nge, fp0, fp1, cc); \
break; \
case 14: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _le, fp0, fp1, cc); \
break; \
case 15: \
gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ngt, fp0, fp1, cc); \
break; \
default: \
abort(); \
} \
tcg_temp_free_i##bits (fp0); \
tcg_temp_free_i##bits (fp1); \
}
FOP_CONDS(, 0, d, FMT_D, 64)
FOP_CONDS(abs, 1, d, FMT_D, 64)
FOP_CONDS(, 0, s, FMT_S, 32)
FOP_CONDS(abs, 1, s, FMT_S, 32)
FOP_CONDS(, 0, ps, FMT_PS, 64)
FOP_CONDS(abs, 1, ps, FMT_PS, 64)
#undef FOP_CONDS
#define FOP_CONDNS(fmt, ifmt, bits, STORE) \
static inline void gen_r6_cmp_ ## fmt(DisasContext * ctx, int n, \
int ft, int fs, int fd) \
{ \
TCGv_i ## bits fp0 = tcg_temp_new_i ## bits(); \
TCGv_i ## bits fp1 = tcg_temp_new_i ## bits(); \
if (ifmt == FMT_D) { \
check_cp1_registers(ctx, fs | ft | fd); \
} \
gen_ldcmp_fpr ## bits(ctx, fp0, fs); \
gen_ldcmp_fpr ## bits(ctx, fp1, ft); \
switch (n) { \
case 0: \
gen_helper_r6_cmp_ ## fmt ## _af(fp0, cpu_env, fp0, fp1); \
break; \
case 1: \
gen_helper_r6_cmp_ ## fmt ## _un(fp0, cpu_env, fp0, fp1); \
break; \
case 2: \
gen_helper_r6_cmp_ ## fmt ## _eq(fp0, cpu_env, fp0, fp1); \
break; \
case 3: \
gen_helper_r6_cmp_ ## fmt ## _ueq(fp0, cpu_env, fp0, fp1); \
break; \
case 4: \
gen_helper_r6_cmp_ ## fmt ## _lt(fp0, cpu_env, fp0, fp1); \
break; \
case 5: \
gen_helper_r6_cmp_ ## fmt ## _ult(fp0, cpu_env, fp0, fp1); \
break; \
case 6: \
gen_helper_r6_cmp_ ## fmt ## _le(fp0, cpu_env, fp0, fp1); \
break; \
case 7: \
gen_helper_r6_cmp_ ## fmt ## _ule(fp0, cpu_env, fp0, fp1); \
break; \
case 8: \
gen_helper_r6_cmp_ ## fmt ## _saf(fp0, cpu_env, fp0, fp1); \
break; \
case 9: \
gen_helper_r6_cmp_ ## fmt ## _sun(fp0, cpu_env, fp0, fp1); \
break; \
case 10: \
gen_helper_r6_cmp_ ## fmt ## _seq(fp0, cpu_env, fp0, fp1); \
break; \
case 11: \
gen_helper_r6_cmp_ ## fmt ## _sueq(fp0, cpu_env, fp0, fp1); \
break; \
case 12: \
gen_helper_r6_cmp_ ## fmt ## _slt(fp0, cpu_env, fp0, fp1); \
break; \
case 13: \
gen_helper_r6_cmp_ ## fmt ## _sult(fp0, cpu_env, fp0, fp1); \
break; \
case 14: \
gen_helper_r6_cmp_ ## fmt ## _sle(fp0, cpu_env, fp0, fp1); \
break; \
case 15: \
gen_helper_r6_cmp_ ## fmt ## _sule(fp0, cpu_env, fp0, fp1); \
break; \
case 17: \
gen_helper_r6_cmp_ ## fmt ## _or(fp0, cpu_env, fp0, fp1); \
break; \
case 18: \
gen_helper_r6_cmp_ ## fmt ## _une(fp0, cpu_env, fp0, fp1); \
break; \
case 19: \
gen_helper_r6_cmp_ ## fmt ## _ne(fp0, cpu_env, fp0, fp1); \
break; \
case 25: \
gen_helper_r6_cmp_ ## fmt ## _sor(fp0, cpu_env, fp0, fp1); \
break; \
case 26: \
gen_helper_r6_cmp_ ## fmt ## _sune(fp0, cpu_env, fp0, fp1); \
break; \
case 27: \
gen_helper_r6_cmp_ ## fmt ## _sne(fp0, cpu_env, fp0, fp1); \
break; \
default: \
abort(); \
} \
STORE; \
tcg_temp_free_i ## bits (fp0); \
tcg_temp_free_i ## bits (fp1); \
}
FOP_CONDNS(d, FMT_D, 64, gen_store_fpr64(ctx, fp0, fd))
FOP_CONDNS(s, FMT_S, 32, gen_store_fpr32(ctx, fp0, fd))
#undef FOP_CONDNS
#undef gen_ldcmp_fpr32
#undef gen_ldcmp_fpr64
/* load/store instructions. */
#ifdef CONFIG_USER_ONLY
#define OP_LD_ATOMIC(insn,fname) \
static inline void op_ld_##insn(TCGv ret, TCGv arg1, int mem_idx, \
DisasContext *ctx) \
{ \
TCGv t0 = tcg_temp_new(); \
tcg_gen_mov_tl(t0, arg1); \
tcg_gen_qemu_##fname(ret, arg1, ctx->mem_idx); \
tcg_gen_st_tl(t0, cpu_env, offsetof(CPUMIPSState, lladdr)); \
tcg_gen_st_tl(ret, cpu_env, offsetof(CPUMIPSState, llval)); \
tcg_temp_free(t0); \
}
#else
#define OP_LD_ATOMIC(insn,fname) \
static inline void op_ld_##insn(TCGv ret, TCGv arg1, int mem_idx, \
DisasContext *ctx) \
{ \
gen_helper_1e1i(insn, ret, arg1, mem_idx); \
}
#endif
OP_LD_ATOMIC(ll,ld32s);
#if defined(TARGET_MIPS64)
OP_LD_ATOMIC(lld,ld64);
#endif
#undef OP_LD_ATOMIC
static void gen_base_offset_addr(DisasContext *ctx, TCGv addr,
int base, int offset)
{
if (base == 0) {
tcg_gen_movi_tl(addr, offset);
} else if (offset == 0) {
gen_load_gpr(addr, base);
} else {
tcg_gen_movi_tl(addr, offset);
gen_op_addr_add(ctx, addr, cpu_gpr[base], addr);
}
}
static target_ulong pc_relative_pc(DisasContext *ctx)
{
target_ulong pc = ctx->base.pc_next;
if (ctx->hflags & MIPS_HFLAG_BMASK) {
int branch_bytes = ctx->hflags & MIPS_HFLAG_BDS16 ? 2 : 4;
pc -= branch_bytes;
}
pc &= ~(target_ulong)3;
return pc;
}
/* Load */
static void gen_ld(DisasContext *ctx, uint32_t opc,
int rt, int base, int offset)
{
TCGv t0, t1, t2;
int mem_idx = ctx->mem_idx;
if (rt == 0 && ctx->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)) {
/*
* Loongson CPU uses a load to zero register for prefetch.
* We emulate it as a NOP. On other CPU we must perform the
* actual memory access.
*/
return;
}
t0 = tcg_temp_new();
gen_base_offset_addr(ctx, t0, base, offset);
switch (opc) {
#if defined(TARGET_MIPS64)
case OPC_LWU:
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEUL |
ctx->default_tcg_memop_mask);
gen_store_gpr(t0, rt);
break;
case OPC_LD:
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEQ |
ctx->default_tcg_memop_mask);
gen_store_gpr(t0, rt);
break;
case OPC_LLD:
case R6_OPC_LLD:
op_ld_lld(t0, t0, mem_idx, ctx);
gen_store_gpr(t0, rt);
break;
case OPC_LDL:
t1 = tcg_temp_new();
/*
* Do a byte access to possibly trigger a page
* fault with the unaligned address.
*/
tcg_gen_qemu_ld_tl(t1, t0, mem_idx, MO_UB);
tcg_gen_andi_tl(t1, t0, 7);
#ifndef TARGET_WORDS_BIGENDIAN
tcg_gen_xori_tl(t1, t1, 7);
#endif
tcg_gen_shli_tl(t1, t1, 3);
tcg_gen_andi_tl(t0, t0, ~7);
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEQ);
tcg_gen_shl_tl(t0, t0, t1);
t2 = tcg_const_tl(-1);
tcg_gen_shl_tl(t2, t2, t1);
gen_load_gpr(t1, rt);
tcg_gen_andc_tl(t1, t1, t2);
tcg_temp_free(t2);
tcg_gen_or_tl(t0, t0, t1);
tcg_temp_free(t1);
gen_store_gpr(t0, rt);
break;
case OPC_LDR:
t1 = tcg_temp_new();
/*
* Do a byte access to possibly trigger a page
* fault with the unaligned address.
*/
tcg_gen_qemu_ld_tl(t1, t0, mem_idx, MO_UB);
tcg_gen_andi_tl(t1, t0, 7);
#ifdef TARGET_WORDS_BIGENDIAN
tcg_gen_xori_tl(t1, t1, 7);
#endif
tcg_gen_shli_tl(t1, t1, 3);
tcg_gen_andi_tl(t0, t0, ~7);
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEQ);
tcg_gen_shr_tl(t0, t0, t1);
tcg_gen_xori_tl(t1, t1, 63);
t2 = tcg_const_tl(0xfffffffffffffffeull);
tcg_gen_shl_tl(t2, t2, t1);
gen_load_gpr(t1, rt);
tcg_gen_and_tl(t1, t1, t2);
tcg_temp_free(t2);
tcg_gen_or_tl(t0, t0, t1);
tcg_temp_free(t1);
gen_store_gpr(t0, rt);
break;
case OPC_LDPC:
t1 = tcg_const_tl(pc_relative_pc(ctx));
gen_op_addr_add(ctx, t0, t0, t1);
tcg_temp_free(t1);
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEQ);
gen_store_gpr(t0, rt);
break;
#endif
case OPC_LWPC:
t1 = tcg_const_tl(pc_relative_pc(ctx));
gen_op_addr_add(ctx, t0, t0, t1);
tcg_temp_free(t1);
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TESL);
gen_store_gpr(t0, rt);
break;
case OPC_LWE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_LW:
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TESL |
ctx->default_tcg_memop_mask);
gen_store_gpr(t0, rt);
break;
case OPC_LHE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_LH:
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TESW |
ctx->default_tcg_memop_mask);
gen_store_gpr(t0, rt);
break;
case OPC_LHUE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_LHU:
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEUW |
ctx->default_tcg_memop_mask);
gen_store_gpr(t0, rt);
break;
case OPC_LBE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_LB:
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_SB);
gen_store_gpr(t0, rt);
break;
case OPC_LBUE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_LBU:
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_UB);
gen_store_gpr(t0, rt);
break;
case OPC_LWLE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_LWL:
t1 = tcg_temp_new();
/*
* Do a byte access to possibly trigger a page
* fault with the unaligned address.
*/
tcg_gen_qemu_ld_tl(t1, t0, mem_idx, MO_UB);
tcg_gen_andi_tl(t1, t0, 3);
#ifndef TARGET_WORDS_BIGENDIAN
tcg_gen_xori_tl(t1, t1, 3);
#endif
tcg_gen_shli_tl(t1, t1, 3);
tcg_gen_andi_tl(t0, t0, ~3);
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEUL);
tcg_gen_shl_tl(t0, t0, t1);
t2 = tcg_const_tl(-1);
tcg_gen_shl_tl(t2, t2, t1);
gen_load_gpr(t1, rt);
tcg_gen_andc_tl(t1, t1, t2);
tcg_temp_free(t2);
tcg_gen_or_tl(t0, t0, t1);
tcg_temp_free(t1);
tcg_gen_ext32s_tl(t0, t0);
gen_store_gpr(t0, rt);
break;
case OPC_LWRE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_LWR:
t1 = tcg_temp_new();
/*
* Do a byte access to possibly trigger a page
* fault with the unaligned address.
*/
tcg_gen_qemu_ld_tl(t1, t0, mem_idx, MO_UB);
tcg_gen_andi_tl(t1, t0, 3);
#ifdef TARGET_WORDS_BIGENDIAN
tcg_gen_xori_tl(t1, t1, 3);
#endif
tcg_gen_shli_tl(t1, t1, 3);
tcg_gen_andi_tl(t0, t0, ~3);
tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEUL);
tcg_gen_shr_tl(t0, t0, t1);
tcg_gen_xori_tl(t1, t1, 31);
t2 = tcg_const_tl(0xfffffffeull);
tcg_gen_shl_tl(t2, t2, t1);
gen_load_gpr(t1, rt);
tcg_gen_and_tl(t1, t1, t2);
tcg_temp_free(t2);
tcg_gen_or_tl(t0, t0, t1);
tcg_temp_free(t1);
tcg_gen_ext32s_tl(t0, t0);
gen_store_gpr(t0, rt);
break;
case OPC_LLE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_LL:
case R6_OPC_LL:
op_ld_ll(t0, t0, mem_idx, ctx);
gen_store_gpr(t0, rt);
break;
}
tcg_temp_free(t0);
}
static void gen_llwp(DisasContext *ctx, uint32_t base, int16_t offset,
uint32_t reg1, uint32_t reg2)
{
TCGv taddr = tcg_temp_new();
TCGv_i64 tval = tcg_temp_new_i64();
TCGv tmp1 = tcg_temp_new();
TCGv tmp2 = tcg_temp_new();
gen_base_offset_addr(ctx, taddr, base, offset);
tcg_gen_qemu_ld64(tval, taddr, ctx->mem_idx);
#ifdef TARGET_WORDS_BIGENDIAN
tcg_gen_extr_i64_tl(tmp2, tmp1, tval);
#else
tcg_gen_extr_i64_tl(tmp1, tmp2, tval);
#endif
gen_store_gpr(tmp1, reg1);
tcg_temp_free(tmp1);
gen_store_gpr(tmp2, reg2);
tcg_temp_free(tmp2);
tcg_gen_st_i64(tval, cpu_env, offsetof(CPUMIPSState, llval_wp));
tcg_temp_free_i64(tval);
tcg_gen_st_tl(taddr, cpu_env, offsetof(CPUMIPSState, lladdr));
tcg_temp_free(taddr);
}
/* Store */
static void gen_st(DisasContext *ctx, uint32_t opc, int rt,
int base, int offset)
{
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
int mem_idx = ctx->mem_idx;
gen_base_offset_addr(ctx, t0, base, offset);
gen_load_gpr(t1, rt);
switch (opc) {
#if defined(TARGET_MIPS64)
case OPC_SD:
tcg_gen_qemu_st_tl(t1, t0, mem_idx, MO_TEQ |
ctx->default_tcg_memop_mask);
break;
case OPC_SDL:
gen_helper_0e2i(sdl, t1, t0, mem_idx);
break;
case OPC_SDR:
gen_helper_0e2i(sdr, t1, t0, mem_idx);
break;
#endif
case OPC_SWE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_SW:
tcg_gen_qemu_st_tl(t1, t0, mem_idx, MO_TEUL |
ctx->default_tcg_memop_mask);
break;
case OPC_SHE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_SH:
tcg_gen_qemu_st_tl(t1, t0, mem_idx, MO_TEUW |
ctx->default_tcg_memop_mask);
break;
case OPC_SBE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_SB:
tcg_gen_qemu_st_tl(t1, t0, mem_idx, MO_8);
break;
case OPC_SWLE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_SWL:
gen_helper_0e2i(swl, t1, t0, mem_idx);
break;
case OPC_SWRE:
mem_idx = MIPS_HFLAG_UM;
/* fall through */
case OPC_SWR:
gen_helper_0e2i(swr, t1, t0, mem_idx);
break;
}
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/* Store conditional */
static void gen_st_cond(DisasContext *ctx, int rt, int base, int offset,
TCGMemOp tcg_mo, bool eva)
{
TCGv addr, t0, val;
TCGLabel *l1 = gen_new_label();
TCGLabel *done = gen_new_label();
t0 = tcg_temp_new();
addr = tcg_temp_new();
/* compare the address against that of the preceeding LL */
gen_base_offset_addr(ctx, addr, base, offset);
tcg_gen_brcond_tl(TCG_COND_EQ, addr, cpu_lladdr, l1);
tcg_temp_free(addr);
tcg_gen_movi_tl(t0, 0);
gen_store_gpr(t0, rt);
tcg_gen_br(done);
gen_set_label(l1);
/* generate cmpxchg */
val = tcg_temp_new();
gen_load_gpr(val, rt);
tcg_gen_atomic_cmpxchg_tl(t0, cpu_lladdr, cpu_llval, val,
eva ? MIPS_HFLAG_UM : ctx->mem_idx, tcg_mo);
tcg_gen_setcond_tl(TCG_COND_EQ, t0, t0, cpu_llval);
gen_store_gpr(t0, rt);
tcg_temp_free(val);
gen_set_label(done);
tcg_temp_free(t0);
}
static void gen_scwp(DisasContext *ctx, uint32_t base, int16_t offset,
uint32_t reg1, uint32_t reg2, bool eva)
{
TCGv taddr = tcg_temp_local_new();
TCGv lladdr = tcg_temp_local_new();
TCGv_i64 tval = tcg_temp_new_i64();
TCGv_i64 llval = tcg_temp_new_i64();
TCGv_i64 val = tcg_temp_new_i64();
TCGv tmp1 = tcg_temp_new();
TCGv tmp2 = tcg_temp_new();
TCGLabel *lab_fail = gen_new_label();
TCGLabel *lab_done = gen_new_label();
gen_base_offset_addr(ctx, taddr, base, offset);
tcg_gen_ld_tl(lladdr, cpu_env, offsetof(CPUMIPSState, lladdr));
tcg_gen_brcond_tl(TCG_COND_NE, taddr, lladdr, lab_fail);
gen_load_gpr(tmp1, reg1);
gen_load_gpr(tmp2, reg2);
#ifdef TARGET_WORDS_BIGENDIAN
tcg_gen_concat_tl_i64(tval, tmp2, tmp1);
#else
tcg_gen_concat_tl_i64(tval, tmp1, tmp2);
#endif
tcg_gen_ld_i64(llval, cpu_env, offsetof(CPUMIPSState, llval_wp));
tcg_gen_atomic_cmpxchg_i64(val, taddr, llval, tval,
eva ? MIPS_HFLAG_UM : ctx->mem_idx, MO_64);
if (reg1 != 0) {
tcg_gen_movi_tl(cpu_gpr[reg1], 1);
}
tcg_gen_brcond_i64(TCG_COND_EQ, val, llval, lab_done);
gen_set_label(lab_fail);
if (reg1 != 0) {
tcg_gen_movi_tl(cpu_gpr[reg1], 0);
}
gen_set_label(lab_done);
tcg_gen_movi_tl(lladdr, -1);
tcg_gen_st_tl(lladdr, cpu_env, offsetof(CPUMIPSState, lladdr));
}
/* Load and store */
static void gen_flt_ldst(DisasContext *ctx, uint32_t opc, int ft,
TCGv t0)
{
/*
* Don't do NOP if destination is zero: we must perform the actual
* memory access.
*/
switch (opc) {
case OPC_LWC1:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
tcg_gen_qemu_ld_i32(fp0, t0, ctx->mem_idx, MO_TESL |
ctx->default_tcg_memop_mask);
gen_store_fpr32(ctx, fp0, ft);
tcg_temp_free_i32(fp0);
}
break;
case OPC_SWC1:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, ft);
tcg_gen_qemu_st_i32(fp0, t0, ctx->mem_idx, MO_TEUL |
ctx->default_tcg_memop_mask);
tcg_temp_free_i32(fp0);
}
break;
case OPC_LDC1:
{
TCGv_i64 fp0 = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(fp0, t0, ctx->mem_idx, MO_TEQ |
ctx->default_tcg_memop_mask);
gen_store_fpr64(ctx, fp0, ft);
tcg_temp_free_i64(fp0);
}
break;
case OPC_SDC1:
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, ft);
tcg_gen_qemu_st_i64(fp0, t0, ctx->mem_idx, MO_TEQ |
ctx->default_tcg_memop_mask);
tcg_temp_free_i64(fp0);
}
break;
default:
MIPS_INVAL("flt_ldst");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void gen_cop1_ldst(DisasContext *ctx, uint32_t op, int rt,
int rs, int16_t imm)
{
TCGv t0 = tcg_temp_new();
if (ctx->CP0_Config1 & (1 << CP0C1_FP)) {
check_cp1_enabled(ctx);
switch (op) {
case OPC_LDC1:
case OPC_SDC1:
check_insn(ctx, ISA_MIPS2);
/* Fallthrough */
default:
gen_base_offset_addr(ctx, t0, rs, imm);
gen_flt_ldst(ctx, op, rt, t0);
}
} else {
generate_exception_err(ctx, EXCP_CpU, 1);
}
tcg_temp_free(t0);
}
/* Arithmetic with immediate operand */
static void gen_arith_imm(DisasContext *ctx, uint32_t opc,
int rt, int rs, int imm)
{
target_ulong uimm = (target_long)imm; /* Sign extend to 32/64 bits */
if (rt == 0 && opc != OPC_ADDI && opc != OPC_DADDI) {
/*
* If no destination, treat it as a NOP.
* For addi, we must generate the overflow exception when needed.
*/
return;
}
switch (opc) {
case OPC_ADDI:
{
TCGv t0 = tcg_temp_local_new();
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_temp_new();
TCGLabel *l1 = gen_new_label();
gen_load_gpr(t1, rs);
tcg_gen_addi_tl(t0, t1, uimm);
tcg_gen_ext32s_tl(t0, t0);
tcg_gen_xori_tl(t1, t1, ~uimm);
tcg_gen_xori_tl(t2, t0, uimm);
tcg_gen_and_tl(t1, t1, t2);
tcg_temp_free(t2);
tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1);
tcg_temp_free(t1);
/* operands of same sign, result different sign */
generate_exception(ctx, EXCP_OVERFLOW);
gen_set_label(l1);
tcg_gen_ext32s_tl(t0, t0);
gen_store_gpr(t0, rt);
tcg_temp_free(t0);
}
break;
case OPC_ADDIU:
if (rs != 0) {
tcg_gen_addi_tl(cpu_gpr[rt], cpu_gpr[rs], uimm);
tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]);
} else {
tcg_gen_movi_tl(cpu_gpr[rt], uimm);
}
break;
#if defined(TARGET_MIPS64)
case OPC_DADDI:
{
TCGv t0 = tcg_temp_local_new();
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_temp_new();
TCGLabel *l1 = gen_new_label();
gen_load_gpr(t1, rs);
tcg_gen_addi_tl(t0, t1, uimm);
tcg_gen_xori_tl(t1, t1, ~uimm);
tcg_gen_xori_tl(t2, t0, uimm);
tcg_gen_and_tl(t1, t1, t2);
tcg_temp_free(t2);
tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1);
tcg_temp_free(t1);
/* operands of same sign, result different sign */
generate_exception(ctx, EXCP_OVERFLOW);
gen_set_label(l1);
gen_store_gpr(t0, rt);
tcg_temp_free(t0);
}
break;
case OPC_DADDIU:
if (rs != 0) {
tcg_gen_addi_tl(cpu_gpr[rt], cpu_gpr[rs], uimm);
} else {
tcg_gen_movi_tl(cpu_gpr[rt], uimm);
}
break;
#endif
}
}
/* Logic with immediate operand */
static void gen_logic_imm(DisasContext *ctx, uint32_t opc,
int rt, int rs, int16_t imm)
{
target_ulong uimm;
if (rt == 0) {
/* If no destination, treat it as a NOP. */
return;
}
uimm = (uint16_t)imm;
switch (opc) {
case OPC_ANDI:
if (likely(rs != 0)) {
tcg_gen_andi_tl(cpu_gpr[rt], cpu_gpr[rs], uimm);
} else {
tcg_gen_movi_tl(cpu_gpr[rt], 0);
}
break;
case OPC_ORI:
if (rs != 0) {
tcg_gen_ori_tl(cpu_gpr[rt], cpu_gpr[rs], uimm);
} else {
tcg_gen_movi_tl(cpu_gpr[rt], uimm);
}
break;
case OPC_XORI:
if (likely(rs != 0)) {
tcg_gen_xori_tl(cpu_gpr[rt], cpu_gpr[rs], uimm);
} else {
tcg_gen_movi_tl(cpu_gpr[rt], uimm);
}
break;
case OPC_LUI:
if (rs != 0 && (ctx->insn_flags & ISA_MIPS32R6)) {
/* OPC_AUI */
tcg_gen_addi_tl(cpu_gpr[rt], cpu_gpr[rs], imm << 16);
tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]);
} else {
tcg_gen_movi_tl(cpu_gpr[rt], imm << 16);
}
break;
default:
break;
}
}
/* Set on less than with immediate operand */
static void gen_slt_imm(DisasContext *ctx, uint32_t opc,
int rt, int rs, int16_t imm)
{
target_ulong uimm = (target_long)imm; /* Sign extend to 32/64 bits */
TCGv t0;
if (rt == 0) {
/* If no destination, treat it as a NOP. */
return;
}
t0 = tcg_temp_new();
gen_load_gpr(t0, rs);
switch (opc) {
case OPC_SLTI:
tcg_gen_setcondi_tl(TCG_COND_LT, cpu_gpr[rt], t0, uimm);
break;
case OPC_SLTIU:
tcg_gen_setcondi_tl(TCG_COND_LTU, cpu_gpr[rt], t0, uimm);
break;
}
tcg_temp_free(t0);
}
/* Shifts with immediate operand */
static void gen_shift_imm(DisasContext *ctx, uint32_t opc,
int rt, int rs, int16_t imm)
{
target_ulong uimm = ((uint16_t)imm) & 0x1f;
TCGv t0;
if (rt == 0) {
/* If no destination, treat it as a NOP. */
return;
}
t0 = tcg_temp_new();
gen_load_gpr(t0, rs);
switch (opc) {
case OPC_SLL:
tcg_gen_shli_tl(t0, t0, uimm);
tcg_gen_ext32s_tl(cpu_gpr[rt], t0);
break;
case OPC_SRA:
tcg_gen_sari_tl(cpu_gpr[rt], t0, uimm);
break;
case OPC_SRL:
if (uimm != 0) {
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_shri_tl(cpu_gpr[rt], t0, uimm);
} else {
tcg_gen_ext32s_tl(cpu_gpr[rt], t0);
}
break;
case OPC_ROTR:
if (uimm != 0) {
TCGv_i32 t1 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t1, t0);
tcg_gen_rotri_i32(t1, t1, uimm);
tcg_gen_ext_i32_tl(cpu_gpr[rt], t1);
tcg_temp_free_i32(t1);
} else {
tcg_gen_ext32s_tl(cpu_gpr[rt], t0);
}
break;
#if defined(TARGET_MIPS64)
case OPC_DSLL:
tcg_gen_shli_tl(cpu_gpr[rt], t0, uimm);
break;
case OPC_DSRA:
tcg_gen_sari_tl(cpu_gpr[rt], t0, uimm);
break;
case OPC_DSRL:
tcg_gen_shri_tl(cpu_gpr[rt], t0, uimm);
break;
case OPC_DROTR:
if (uimm != 0) {
tcg_gen_rotri_tl(cpu_gpr[rt], t0, uimm);
} else {
tcg_gen_mov_tl(cpu_gpr[rt], t0);
}
break;
case OPC_DSLL32:
tcg_gen_shli_tl(cpu_gpr[rt], t0, uimm + 32);
break;
case OPC_DSRA32:
tcg_gen_sari_tl(cpu_gpr[rt], t0, uimm + 32);
break;
case OPC_DSRL32:
tcg_gen_shri_tl(cpu_gpr[rt], t0, uimm + 32);
break;
case OPC_DROTR32:
tcg_gen_rotri_tl(cpu_gpr[rt], t0, uimm + 32);
break;
#endif
}
tcg_temp_free(t0);
}
/* Arithmetic */
static void gen_arith(DisasContext *ctx, uint32_t opc,
int rd, int rs, int rt)
{
if (rd == 0 && opc != OPC_ADD && opc != OPC_SUB
&& opc != OPC_DADD && opc != OPC_DSUB) {
/*
* If no destination, treat it as a NOP.
* For add & sub, we must generate the overflow exception when needed.
*/
return;
}
switch (opc) {
case OPC_ADD:
{
TCGv t0 = tcg_temp_local_new();
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_temp_new();
TCGLabel *l1 = gen_new_label();
gen_load_gpr(t1, rs);
gen_load_gpr(t2, rt);
tcg_gen_add_tl(t0, t1, t2);
tcg_gen_ext32s_tl(t0, t0);
tcg_gen_xor_tl(t1, t1, t2);
tcg_gen_xor_tl(t2, t0, t2);
tcg_gen_andc_tl(t1, t2, t1);
tcg_temp_free(t2);
tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1);
tcg_temp_free(t1);
/* operands of same sign, result different sign */
generate_exception(ctx, EXCP_OVERFLOW);
gen_set_label(l1);
gen_store_gpr(t0, rd);
tcg_temp_free(t0);
}
break;
case OPC_ADDU:
if (rs != 0 && rt != 0) {
tcg_gen_add_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
} else if (rs == 0 && rt != 0) {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rt]);
} else if (rs != 0 && rt == 0) {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]);
} else {
tcg_gen_movi_tl(cpu_gpr[rd], 0);
}
break;
case OPC_SUB:
{
TCGv t0 = tcg_temp_local_new();
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_temp_new();
TCGLabel *l1 = gen_new_label();
gen_load_gpr(t1, rs);
gen_load_gpr(t2, rt);
tcg_gen_sub_tl(t0, t1, t2);
tcg_gen_ext32s_tl(t0, t0);
tcg_gen_xor_tl(t2, t1, t2);
tcg_gen_xor_tl(t1, t0, t1);
tcg_gen_and_tl(t1, t1, t2);
tcg_temp_free(t2);
tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1);
tcg_temp_free(t1);
/*
* operands of different sign, first operand and the result
* of different sign
*/
generate_exception(ctx, EXCP_OVERFLOW);
gen_set_label(l1);
gen_store_gpr(t0, rd);
tcg_temp_free(t0);
}
break;
case OPC_SUBU:
if (rs != 0 && rt != 0) {
tcg_gen_sub_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
} else if (rs == 0 && rt != 0) {
tcg_gen_neg_tl(cpu_gpr[rd], cpu_gpr[rt]);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
} else if (rs != 0 && rt == 0) {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]);
} else {
tcg_gen_movi_tl(cpu_gpr[rd], 0);
}
break;
#if defined(TARGET_MIPS64)
case OPC_DADD:
{
TCGv t0 = tcg_temp_local_new();
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_temp_new();
TCGLabel *l1 = gen_new_label();
gen_load_gpr(t1, rs);
gen_load_gpr(t2, rt);
tcg_gen_add_tl(t0, t1, t2);
tcg_gen_xor_tl(t1, t1, t2);
tcg_gen_xor_tl(t2, t0, t2);
tcg_gen_andc_tl(t1, t2, t1);
tcg_temp_free(t2);
tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1);
tcg_temp_free(t1);
/* operands of same sign, result different sign */
generate_exception(ctx, EXCP_OVERFLOW);
gen_set_label(l1);
gen_store_gpr(t0, rd);
tcg_temp_free(t0);
}
break;
case OPC_DADDU:
if (rs != 0 && rt != 0) {
tcg_gen_add_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]);
} else if (rs == 0 && rt != 0) {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rt]);
} else if (rs != 0 && rt == 0) {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]);
} else {
tcg_gen_movi_tl(cpu_gpr[rd], 0);
}
break;
case OPC_DSUB:
{
TCGv t0 = tcg_temp_local_new();
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_temp_new();
TCGLabel *l1 = gen_new_label();
gen_load_gpr(t1, rs);
gen_load_gpr(t2, rt);
tcg_gen_sub_tl(t0, t1, t2);
tcg_gen_xor_tl(t2, t1, t2);
tcg_gen_xor_tl(t1, t0, t1);
tcg_gen_and_tl(t1, t1, t2);
tcg_temp_free(t2);
tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1);
tcg_temp_free(t1);
/* operands of different sign, first operand and result different sign */
generate_exception(ctx, EXCP_OVERFLOW);
gen_set_label(l1);
gen_store_gpr(t0, rd);
tcg_temp_free(t0);
}
break;
case OPC_DSUBU:
if (rs != 0 && rt != 0) {
tcg_gen_sub_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]);
} else if (rs == 0 && rt != 0) {
tcg_gen_neg_tl(cpu_gpr[rd], cpu_gpr[rt]);
} else if (rs != 0 && rt == 0) {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]);
} else {
tcg_gen_movi_tl(cpu_gpr[rd], 0);
}
break;
#endif
case OPC_MUL:
if (likely(rs != 0 && rt != 0)) {
tcg_gen_mul_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
} else {
tcg_gen_movi_tl(cpu_gpr[rd], 0);
}
break;
}
}
/* Conditional move */
static void gen_cond_move(DisasContext *ctx, uint32_t opc,
int rd, int rs, int rt)
{
TCGv t0, t1, t2;
if (rd == 0) {
/* If no destination, treat it as a NOP. */
return;
}
t0 = tcg_temp_new();
gen_load_gpr(t0, rt);
t1 = tcg_const_tl(0);
t2 = tcg_temp_new();
gen_load_gpr(t2, rs);
switch (opc) {
case OPC_MOVN:
tcg_gen_movcond_tl(TCG_COND_NE, cpu_gpr[rd], t0, t1, t2, cpu_gpr[rd]);
break;
case OPC_MOVZ:
tcg_gen_movcond_tl(TCG_COND_EQ, cpu_gpr[rd], t0, t1, t2, cpu_gpr[rd]);
break;
case OPC_SELNEZ:
tcg_gen_movcond_tl(TCG_COND_NE, cpu_gpr[rd], t0, t1, t2, t1);
break;
case OPC_SELEQZ:
tcg_gen_movcond_tl(TCG_COND_EQ, cpu_gpr[rd], t0, t1, t2, t1);
break;
}
tcg_temp_free(t2);
tcg_temp_free(t1);
tcg_temp_free(t0);
}
/* Logic */
static void gen_logic(DisasContext *ctx, uint32_t opc,
int rd, int rs, int rt)
{
if (rd == 0) {
/* If no destination, treat it as a NOP. */
return;
}
switch (opc) {
case OPC_AND:
if (likely(rs != 0 && rt != 0)) {
tcg_gen_and_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]);
} else {
tcg_gen_movi_tl(cpu_gpr[rd], 0);
}
break;
case OPC_NOR:
if (rs != 0 && rt != 0) {
tcg_gen_nor_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]);
} else if (rs == 0 && rt != 0) {
tcg_gen_not_tl(cpu_gpr[rd], cpu_gpr[rt]);
} else if (rs != 0 && rt == 0) {
tcg_gen_not_tl(cpu_gpr[rd], cpu_gpr[rs]);
} else {
tcg_gen_movi_tl(cpu_gpr[rd], ~((target_ulong)0));
}
break;
case OPC_OR:
if (likely(rs != 0 && rt != 0)) {
tcg_gen_or_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]);
} else if (rs == 0 && rt != 0) {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rt]);
} else if (rs != 0 && rt == 0) {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]);
} else {
tcg_gen_movi_tl(cpu_gpr[rd], 0);
}
break;
case OPC_XOR:
if (likely(rs != 0 && rt != 0)) {
tcg_gen_xor_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]);
} else if (rs == 0 && rt != 0) {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rt]);
} else if (rs != 0 && rt == 0) {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]);
} else {
tcg_gen_movi_tl(cpu_gpr[rd], 0);
}
break;
}
}
/* Set on lower than */
static void gen_slt(DisasContext *ctx, uint32_t opc,
int rd, int rs, int rt)
{
TCGv t0, t1;
if (rd == 0) {
/* If no destination, treat it as a NOP. */
return;
}
t0 = tcg_temp_new();
t1 = tcg_temp_new();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
switch (opc) {
case OPC_SLT:
tcg_gen_setcond_tl(TCG_COND_LT, cpu_gpr[rd], t0, t1);
break;
case OPC_SLTU:
tcg_gen_setcond_tl(TCG_COND_LTU, cpu_gpr[rd], t0, t1);
break;
}
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/* Shifts */
static void gen_shift(DisasContext *ctx, uint32_t opc,
int rd, int rs, int rt)
{
TCGv t0, t1;
if (rd == 0) {
/*
* If no destination, treat it as a NOP.
* For add & sub, we must generate the overflow exception when needed.
*/
return;
}
t0 = tcg_temp_new();
t1 = tcg_temp_new();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
switch (opc) {
case OPC_SLLV:
tcg_gen_andi_tl(t0, t0, 0x1f);
tcg_gen_shl_tl(t0, t1, t0);
tcg_gen_ext32s_tl(cpu_gpr[rd], t0);
break;
case OPC_SRAV:
tcg_gen_andi_tl(t0, t0, 0x1f);
tcg_gen_sar_tl(cpu_gpr[rd], t1, t0);
break;
case OPC_SRLV:
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_andi_tl(t0, t0, 0x1f);
tcg_gen_shr_tl(t0, t1, t0);
tcg_gen_ext32s_tl(cpu_gpr[rd], t0);
break;
case OPC_ROTRV:
{
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_i32 t3 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t2, t0);
tcg_gen_trunc_tl_i32(t3, t1);
tcg_gen_andi_i32(t2, t2, 0x1f);
tcg_gen_rotr_i32(t2, t3, t2);
tcg_gen_ext_i32_tl(cpu_gpr[rd], t2);
tcg_temp_free_i32(t2);
tcg_temp_free_i32(t3);
}
break;
#if defined(TARGET_MIPS64)
case OPC_DSLLV:
tcg_gen_andi_tl(t0, t0, 0x3f);
tcg_gen_shl_tl(cpu_gpr[rd], t1, t0);
break;
case OPC_DSRAV:
tcg_gen_andi_tl(t0, t0, 0x3f);
tcg_gen_sar_tl(cpu_gpr[rd], t1, t0);
break;
case OPC_DSRLV:
tcg_gen_andi_tl(t0, t0, 0x3f);
tcg_gen_shr_tl(cpu_gpr[rd], t1, t0);
break;
case OPC_DROTRV:
tcg_gen_andi_tl(t0, t0, 0x3f);
tcg_gen_rotr_tl(cpu_gpr[rd], t1, t0);
break;
#endif
}
tcg_temp_free(t0);
tcg_temp_free(t1);
}
#if defined(TARGET_MIPS64)
/* Copy GPR to and from TX79 HI1/LO1 register. */
static void gen_HILO1_tx79(DisasContext *ctx, uint32_t opc, int reg)
{
if (reg == 0 && (opc == MMI_OPC_MFHI1 || opc == MMI_OPC_MFLO1)) {
/* Treat as NOP. */
return;
}
switch (opc) {
case MMI_OPC_MFHI1:
tcg_gen_mov_tl(cpu_gpr[reg], cpu_HI[1]);
break;
case MMI_OPC_MFLO1:
tcg_gen_mov_tl(cpu_gpr[reg], cpu_LO[1]);
break;
case MMI_OPC_MTHI1:
if (reg != 0) {
tcg_gen_mov_tl(cpu_HI[1], cpu_gpr[reg]);
} else {
tcg_gen_movi_tl(cpu_HI[1], 0);
}
break;
case MMI_OPC_MTLO1:
if (reg != 0) {
tcg_gen_mov_tl(cpu_LO[1], cpu_gpr[reg]);
} else {
tcg_gen_movi_tl(cpu_LO[1], 0);
}
break;
default:
MIPS_INVAL("mfthilo1 TX79");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
#endif
/* Arithmetic on HI/LO registers */
static void gen_HILO(DisasContext *ctx, uint32_t opc, int acc, int reg)
{
if (reg == 0 && (opc == OPC_MFHI || opc == OPC_MFLO)) {
/* Treat as NOP. */
return;
}
if (acc != 0) {
check_dsp(ctx);
}
switch (opc) {
case OPC_MFHI:
#if defined(TARGET_MIPS64)
if (acc != 0) {
tcg_gen_ext32s_tl(cpu_gpr[reg], cpu_HI[acc]);
} else
#endif
{
tcg_gen_mov_tl(cpu_gpr[reg], cpu_HI[acc]);
}
break;
case OPC_MFLO:
#if defined(TARGET_MIPS64)
if (acc != 0) {
tcg_gen_ext32s_tl(cpu_gpr[reg], cpu_LO[acc]);
} else
#endif
{
tcg_gen_mov_tl(cpu_gpr[reg], cpu_LO[acc]);
}
break;
case OPC_MTHI:
if (reg != 0) {
#if defined(TARGET_MIPS64)
if (acc != 0) {
tcg_gen_ext32s_tl(cpu_HI[acc], cpu_gpr[reg]);
} else
#endif
{
tcg_gen_mov_tl(cpu_HI[acc], cpu_gpr[reg]);
}
} else {
tcg_gen_movi_tl(cpu_HI[acc], 0);
}
break;
case OPC_MTLO:
if (reg != 0) {
#if defined(TARGET_MIPS64)
if (acc != 0) {
tcg_gen_ext32s_tl(cpu_LO[acc], cpu_gpr[reg]);
} else
#endif
{
tcg_gen_mov_tl(cpu_LO[acc], cpu_gpr[reg]);
}
} else {
tcg_gen_movi_tl(cpu_LO[acc], 0);
}
break;
}
}
static inline void gen_r6_ld(target_long addr, int reg, int memidx,
TCGMemOp memop)
{
TCGv t0 = tcg_const_tl(addr);
tcg_gen_qemu_ld_tl(t0, t0, memidx, memop);
gen_store_gpr(t0, reg);
tcg_temp_free(t0);
}
static inline void gen_pcrel(DisasContext *ctx, int opc, target_ulong pc,
int rs)
{
target_long offset;
target_long addr;
switch (MASK_OPC_PCREL_TOP2BITS(opc)) {
case OPC_ADDIUPC:
if (rs != 0) {
offset = sextract32(ctx->opcode << 2, 0, 21);
addr = addr_add(ctx, pc, offset);
tcg_gen_movi_tl(cpu_gpr[rs], addr);
}
break;
case R6_OPC_LWPC:
offset = sextract32(ctx->opcode << 2, 0, 21);
addr = addr_add(ctx, pc, offset);
gen_r6_ld(addr, rs, ctx->mem_idx, MO_TESL);
break;
#if defined(TARGET_MIPS64)
case OPC_LWUPC:
check_mips_64(ctx);
offset = sextract32(ctx->opcode << 2, 0, 21);
addr = addr_add(ctx, pc, offset);
gen_r6_ld(addr, rs, ctx->mem_idx, MO_TEUL);
break;
#endif
default:
switch (MASK_OPC_PCREL_TOP5BITS(opc)) {
case OPC_AUIPC:
if (rs != 0) {
offset = sextract32(ctx->opcode, 0, 16) << 16;
addr = addr_add(ctx, pc, offset);
tcg_gen_movi_tl(cpu_gpr[rs], addr);
}
break;
case OPC_ALUIPC:
if (rs != 0) {
offset = sextract32(ctx->opcode, 0, 16) << 16;
addr = ~0xFFFF & addr_add(ctx, pc, offset);
tcg_gen_movi_tl(cpu_gpr[rs], addr);
}
break;
#if defined(TARGET_MIPS64)
case R6_OPC_LDPC: /* bits 16 and 17 are part of immediate */
case R6_OPC_LDPC + (1 << 16):
case R6_OPC_LDPC + (2 << 16):
case R6_OPC_LDPC + (3 << 16):
check_mips_64(ctx);
offset = sextract32(ctx->opcode << 3, 0, 21);
addr = addr_add(ctx, (pc & ~0x7), offset);
gen_r6_ld(addr, rs, ctx->mem_idx, MO_TEQ);
break;
#endif
default:
MIPS_INVAL("OPC_PCREL");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
}
}
static void gen_r6_muldiv(DisasContext *ctx, int opc, int rd, int rs, int rt)
{
TCGv t0, t1;
if (rd == 0) {
/* Treat as NOP. */
return;
}
t0 = tcg_temp_new();
t1 = tcg_temp_new();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
switch (opc) {
case R6_OPC_DIV:
{
TCGv t2 = tcg_temp_new();
TCGv t3 = tcg_temp_new();
tcg_gen_ext32s_tl(t0, t0);
tcg_gen_ext32s_tl(t1, t1);
tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, INT_MIN);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1);
tcg_gen_and_tl(t2, t2, t3);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0);
tcg_gen_or_tl(t2, t2, t3);
tcg_gen_movi_tl(t3, 0);
tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1);
tcg_gen_div_tl(cpu_gpr[rd], t0, t1);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case R6_OPC_MOD:
{
TCGv t2 = tcg_temp_new();
TCGv t3 = tcg_temp_new();
tcg_gen_ext32s_tl(t0, t0);
tcg_gen_ext32s_tl(t1, t1);
tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, INT_MIN);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1);
tcg_gen_and_tl(t2, t2, t3);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0);
tcg_gen_or_tl(t2, t2, t3);
tcg_gen_movi_tl(t3, 0);
tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1);
tcg_gen_rem_tl(cpu_gpr[rd], t0, t1);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case R6_OPC_DIVU:
{
TCGv t2 = tcg_const_tl(0);
TCGv t3 = tcg_const_tl(1);
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1);
tcg_gen_divu_tl(cpu_gpr[rd], t0, t1);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case R6_OPC_MODU:
{
TCGv t2 = tcg_const_tl(0);
TCGv t3 = tcg_const_tl(1);
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1);
tcg_gen_remu_tl(cpu_gpr[rd], t0, t1);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case R6_OPC_MUL:
{
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_i32 t3 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t2, t0);
tcg_gen_trunc_tl_i32(t3, t1);
tcg_gen_mul_i32(t2, t2, t3);
tcg_gen_ext_i32_tl(cpu_gpr[rd], t2);
tcg_temp_free_i32(t2);
tcg_temp_free_i32(t3);
}
break;
case R6_OPC_MUH:
{
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_i32 t3 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t2, t0);
tcg_gen_trunc_tl_i32(t3, t1);
tcg_gen_muls2_i32(t2, t3, t2, t3);
tcg_gen_ext_i32_tl(cpu_gpr[rd], t3);
tcg_temp_free_i32(t2);
tcg_temp_free_i32(t3);
}
break;
case R6_OPC_MULU:
{
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_i32 t3 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t2, t0);
tcg_gen_trunc_tl_i32(t3, t1);
tcg_gen_mul_i32(t2, t2, t3);
tcg_gen_ext_i32_tl(cpu_gpr[rd], t2);
tcg_temp_free_i32(t2);
tcg_temp_free_i32(t3);
}
break;
case R6_OPC_MUHU:
{
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_i32 t3 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t2, t0);
tcg_gen_trunc_tl_i32(t3, t1);
tcg_gen_mulu2_i32(t2, t3, t2, t3);
tcg_gen_ext_i32_tl(cpu_gpr[rd], t3);
tcg_temp_free_i32(t2);
tcg_temp_free_i32(t3);
}
break;
#if defined(TARGET_MIPS64)
case R6_OPC_DDIV:
{
TCGv t2 = tcg_temp_new();
TCGv t3 = tcg_temp_new();
tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, -1LL << 63);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1LL);
tcg_gen_and_tl(t2, t2, t3);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0);
tcg_gen_or_tl(t2, t2, t3);
tcg_gen_movi_tl(t3, 0);
tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1);
tcg_gen_div_tl(cpu_gpr[rd], t0, t1);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case R6_OPC_DMOD:
{
TCGv t2 = tcg_temp_new();
TCGv t3 = tcg_temp_new();
tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, -1LL << 63);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1LL);
tcg_gen_and_tl(t2, t2, t3);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0);
tcg_gen_or_tl(t2, t2, t3);
tcg_gen_movi_tl(t3, 0);
tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1);
tcg_gen_rem_tl(cpu_gpr[rd], t0, t1);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case R6_OPC_DDIVU:
{
TCGv t2 = tcg_const_tl(0);
TCGv t3 = tcg_const_tl(1);
tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1);
tcg_gen_divu_i64(cpu_gpr[rd], t0, t1);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case R6_OPC_DMODU:
{
TCGv t2 = tcg_const_tl(0);
TCGv t3 = tcg_const_tl(1);
tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1);
tcg_gen_remu_i64(cpu_gpr[rd], t0, t1);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case R6_OPC_DMUL:
tcg_gen_mul_i64(cpu_gpr[rd], t0, t1);
break;
case R6_OPC_DMUH:
{
TCGv t2 = tcg_temp_new();
tcg_gen_muls2_i64(t2, cpu_gpr[rd], t0, t1);
tcg_temp_free(t2);
}
break;
case R6_OPC_DMULU:
tcg_gen_mul_i64(cpu_gpr[rd], t0, t1);
break;
case R6_OPC_DMUHU:
{
TCGv t2 = tcg_temp_new();
tcg_gen_mulu2_i64(t2, cpu_gpr[rd], t0, t1);
tcg_temp_free(t2);
}
break;
#endif
default:
MIPS_INVAL("r6 mul/div");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
out:
tcg_temp_free(t0);
tcg_temp_free(t1);
}
#if defined(TARGET_MIPS64)
static void gen_div1_tx79(DisasContext *ctx, uint32_t opc, int rs, int rt)
{
TCGv t0, t1;
t0 = tcg_temp_new();
t1 = tcg_temp_new();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
switch (opc) {
case MMI_OPC_DIV1:
{
TCGv t2 = tcg_temp_new();
TCGv t3 = tcg_temp_new();
tcg_gen_ext32s_tl(t0, t0);
tcg_gen_ext32s_tl(t1, t1);
tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, INT_MIN);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1);
tcg_gen_and_tl(t2, t2, t3);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0);
tcg_gen_or_tl(t2, t2, t3);
tcg_gen_movi_tl(t3, 0);
tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1);
tcg_gen_div_tl(cpu_LO[1], t0, t1);
tcg_gen_rem_tl(cpu_HI[1], t0, t1);
tcg_gen_ext32s_tl(cpu_LO[1], cpu_LO[1]);
tcg_gen_ext32s_tl(cpu_HI[1], cpu_HI[1]);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case MMI_OPC_DIVU1:
{
TCGv t2 = tcg_const_tl(0);
TCGv t3 = tcg_const_tl(1);
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1);
tcg_gen_divu_tl(cpu_LO[1], t0, t1);
tcg_gen_remu_tl(cpu_HI[1], t0, t1);
tcg_gen_ext32s_tl(cpu_LO[1], cpu_LO[1]);
tcg_gen_ext32s_tl(cpu_HI[1], cpu_HI[1]);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
default:
MIPS_INVAL("div1 TX79");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
out:
tcg_temp_free(t0);
tcg_temp_free(t1);
}
#endif
static void gen_muldiv(DisasContext *ctx, uint32_t opc,
int acc, int rs, int rt)
{
TCGv t0, t1;
t0 = tcg_temp_new();
t1 = tcg_temp_new();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
if (acc != 0) {
check_dsp(ctx);
}
switch (opc) {
case OPC_DIV:
{
TCGv t2 = tcg_temp_new();
TCGv t3 = tcg_temp_new();
tcg_gen_ext32s_tl(t0, t0);
tcg_gen_ext32s_tl(t1, t1);
tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, INT_MIN);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1);
tcg_gen_and_tl(t2, t2, t3);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0);
tcg_gen_or_tl(t2, t2, t3);
tcg_gen_movi_tl(t3, 0);
tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1);
tcg_gen_div_tl(cpu_LO[acc], t0, t1);
tcg_gen_rem_tl(cpu_HI[acc], t0, t1);
tcg_gen_ext32s_tl(cpu_LO[acc], cpu_LO[acc]);
tcg_gen_ext32s_tl(cpu_HI[acc], cpu_HI[acc]);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case OPC_DIVU:
{
TCGv t2 = tcg_const_tl(0);
TCGv t3 = tcg_const_tl(1);
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1);
tcg_gen_divu_tl(cpu_LO[acc], t0, t1);
tcg_gen_remu_tl(cpu_HI[acc], t0, t1);
tcg_gen_ext32s_tl(cpu_LO[acc], cpu_LO[acc]);
tcg_gen_ext32s_tl(cpu_HI[acc], cpu_HI[acc]);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case OPC_MULT:
{
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_i32 t3 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t2, t0);
tcg_gen_trunc_tl_i32(t3, t1);
tcg_gen_muls2_i32(t2, t3, t2, t3);
tcg_gen_ext_i32_tl(cpu_LO[acc], t2);
tcg_gen_ext_i32_tl(cpu_HI[acc], t3);
tcg_temp_free_i32(t2);
tcg_temp_free_i32(t3);
}
break;
case OPC_MULTU:
{
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_i32 t3 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t2, t0);
tcg_gen_trunc_tl_i32(t3, t1);
tcg_gen_mulu2_i32(t2, t3, t2, t3);
tcg_gen_ext_i32_tl(cpu_LO[acc], t2);
tcg_gen_ext_i32_tl(cpu_HI[acc], t3);
tcg_temp_free_i32(t2);
tcg_temp_free_i32(t3);
}
break;
#if defined(TARGET_MIPS64)
case OPC_DDIV:
{
TCGv t2 = tcg_temp_new();
TCGv t3 = tcg_temp_new();
tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, -1LL << 63);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1LL);
tcg_gen_and_tl(t2, t2, t3);
tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0);
tcg_gen_or_tl(t2, t2, t3);
tcg_gen_movi_tl(t3, 0);
tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1);
tcg_gen_div_tl(cpu_LO[acc], t0, t1);
tcg_gen_rem_tl(cpu_HI[acc], t0, t1);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case OPC_DDIVU:
{
TCGv t2 = tcg_const_tl(0);
TCGv t3 = tcg_const_tl(1);
tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1);
tcg_gen_divu_i64(cpu_LO[acc], t0, t1);
tcg_gen_remu_i64(cpu_HI[acc], t0, t1);
tcg_temp_free(t3);
tcg_temp_free(t2);
}
break;
case OPC_DMULT:
tcg_gen_muls2_i64(cpu_LO[acc], cpu_HI[acc], t0, t1);
break;
case OPC_DMULTU:
tcg_gen_mulu2_i64(cpu_LO[acc], cpu_HI[acc], t0, t1);
break;
#endif
case OPC_MADD:
{
TCGv_i64 t2 = tcg_temp_new_i64();
TCGv_i64 t3 = tcg_temp_new_i64();
tcg_gen_ext_tl_i64(t2, t0);
tcg_gen_ext_tl_i64(t3, t1);
tcg_gen_mul_i64(t2, t2, t3);
tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]);
tcg_gen_add_i64(t2, t2, t3);
tcg_temp_free_i64(t3);
gen_move_low32(cpu_LO[acc], t2);
gen_move_high32(cpu_HI[acc], t2);
tcg_temp_free_i64(t2);
}
break;
case OPC_MADDU:
{
TCGv_i64 t2 = tcg_temp_new_i64();
TCGv_i64 t3 = tcg_temp_new_i64();
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_extu_tl_i64(t2, t0);
tcg_gen_extu_tl_i64(t3, t1);
tcg_gen_mul_i64(t2, t2, t3);
tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]);
tcg_gen_add_i64(t2, t2, t3);
tcg_temp_free_i64(t3);
gen_move_low32(cpu_LO[acc], t2);
gen_move_high32(cpu_HI[acc], t2);
tcg_temp_free_i64(t2);
}
break;
case OPC_MSUB:
{
TCGv_i64 t2 = tcg_temp_new_i64();
TCGv_i64 t3 = tcg_temp_new_i64();
tcg_gen_ext_tl_i64(t2, t0);
tcg_gen_ext_tl_i64(t3, t1);
tcg_gen_mul_i64(t2, t2, t3);
tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]);
tcg_gen_sub_i64(t2, t3, t2);
tcg_temp_free_i64(t3);
gen_move_low32(cpu_LO[acc], t2);
gen_move_high32(cpu_HI[acc], t2);
tcg_temp_free_i64(t2);
}
break;
case OPC_MSUBU:
{
TCGv_i64 t2 = tcg_temp_new_i64();
TCGv_i64 t3 = tcg_temp_new_i64();
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_extu_tl_i64(t2, t0);
tcg_gen_extu_tl_i64(t3, t1);
tcg_gen_mul_i64(t2, t2, t3);
tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]);
tcg_gen_sub_i64(t2, t3, t2);
tcg_temp_free_i64(t3);
gen_move_low32(cpu_LO[acc], t2);
gen_move_high32(cpu_HI[acc], t2);
tcg_temp_free_i64(t2);
}
break;
default:
MIPS_INVAL("mul/div");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
out:
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/*
* These MULT[U] and MADD[U] instructions implemented in for example
* the Toshiba/Sony R5900 and the Toshiba TX19, TX39 and TX79 core
* architectures are special three-operand variants with the syntax
*
* MULT[U][1] rd, rs, rt
*
* such that
*
* (rd, LO, HI) <- rs * rt
*
* and
*
* MADD[U][1] rd, rs, rt
*
* such that
*
* (rd, LO, HI) <- (LO, HI) + rs * rt
*
* where the low-order 32-bits of the result is placed into both the
* GPR rd and the special register LO. The high-order 32-bits of the
* result is placed into the special register HI.
*
* If the GPR rd is omitted in assembly language, it is taken to be 0,
* which is the zero register that always reads as 0.
*/
static void gen_mul_txx9(DisasContext *ctx, uint32_t opc,
int rd, int rs, int rt)
{
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
int acc = 0;
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
switch (opc) {
case MMI_OPC_MULT1:
acc = 1;
/* Fall through */
case OPC_MULT:
{
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_i32 t3 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t2, t0);
tcg_gen_trunc_tl_i32(t3, t1);
tcg_gen_muls2_i32(t2, t3, t2, t3);
if (rd) {
tcg_gen_ext_i32_tl(cpu_gpr[rd], t2);
}
tcg_gen_ext_i32_tl(cpu_LO[acc], t2);
tcg_gen_ext_i32_tl(cpu_HI[acc], t3);
tcg_temp_free_i32(t2);
tcg_temp_free_i32(t3);
}
break;
case MMI_OPC_MULTU1:
acc = 1;
/* Fall through */
case OPC_MULTU:
{
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_i32 t3 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t2, t0);
tcg_gen_trunc_tl_i32(t3, t1);
tcg_gen_mulu2_i32(t2, t3, t2, t3);
if (rd) {
tcg_gen_ext_i32_tl(cpu_gpr[rd], t2);
}
tcg_gen_ext_i32_tl(cpu_LO[acc], t2);
tcg_gen_ext_i32_tl(cpu_HI[acc], t3);
tcg_temp_free_i32(t2);
tcg_temp_free_i32(t3);
}
break;
case MMI_OPC_MADD1:
acc = 1;
/* Fall through */
case MMI_OPC_MADD:
{
TCGv_i64 t2 = tcg_temp_new_i64();
TCGv_i64 t3 = tcg_temp_new_i64();
tcg_gen_ext_tl_i64(t2, t0);
tcg_gen_ext_tl_i64(t3, t1);
tcg_gen_mul_i64(t2, t2, t3);
tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]);
tcg_gen_add_i64(t2, t2, t3);
tcg_temp_free_i64(t3);
gen_move_low32(cpu_LO[acc], t2);
gen_move_high32(cpu_HI[acc], t2);
if (rd) {
gen_move_low32(cpu_gpr[rd], t2);
}
tcg_temp_free_i64(t2);
}
break;
case MMI_OPC_MADDU1:
acc = 1;
/* Fall through */
case MMI_OPC_MADDU:
{
TCGv_i64 t2 = tcg_temp_new_i64();
TCGv_i64 t3 = tcg_temp_new_i64();
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_extu_tl_i64(t2, t0);
tcg_gen_extu_tl_i64(t3, t1);
tcg_gen_mul_i64(t2, t2, t3);
tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]);
tcg_gen_add_i64(t2, t2, t3);
tcg_temp_free_i64(t3);
gen_move_low32(cpu_LO[acc], t2);
gen_move_high32(cpu_HI[acc], t2);
if (rd) {
gen_move_low32(cpu_gpr[rd], t2);
}
tcg_temp_free_i64(t2);
}
break;
default:
MIPS_INVAL("mul/madd TXx9");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
out:
tcg_temp_free(t0);
tcg_temp_free(t1);
}
static void gen_mul_vr54xx(DisasContext *ctx, uint32_t opc,
int rd, int rs, int rt)
{
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
switch (opc) {
case OPC_VR54XX_MULS:
gen_helper_muls(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MULSU:
gen_helper_mulsu(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MACC:
gen_helper_macc(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MACCU:
gen_helper_maccu(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MSAC:
gen_helper_msac(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MSACU:
gen_helper_msacu(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MULHI:
gen_helper_mulhi(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MULHIU:
gen_helper_mulhiu(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MULSHI:
gen_helper_mulshi(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MULSHIU:
gen_helper_mulshiu(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MACCHI:
gen_helper_macchi(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MACCHIU:
gen_helper_macchiu(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MSACHI:
gen_helper_msachi(t0, cpu_env, t0, t1);
break;
case OPC_VR54XX_MSACHIU:
gen_helper_msachiu(t0, cpu_env, t0, t1);
break;
default:
MIPS_INVAL("mul vr54xx");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
gen_store_gpr(t0, rd);
out:
tcg_temp_free(t0);
tcg_temp_free(t1);
}
static void gen_cl(DisasContext *ctx, uint32_t opc,
int rd, int rs)
{
TCGv t0;
if (rd == 0) {
/* Treat as NOP. */
return;
}
t0 = cpu_gpr[rd];
gen_load_gpr(t0, rs);
switch (opc) {
case OPC_CLO:
case R6_OPC_CLO:
#if defined(TARGET_MIPS64)
case OPC_DCLO:
case R6_OPC_DCLO:
#endif
tcg_gen_not_tl(t0, t0);
break;
}
switch (opc) {
case OPC_CLO:
case R6_OPC_CLO:
case OPC_CLZ:
case R6_OPC_CLZ:
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_clzi_tl(t0, t0, TARGET_LONG_BITS);
tcg_gen_subi_tl(t0, t0, TARGET_LONG_BITS - 32);
break;
#if defined(TARGET_MIPS64)
case OPC_DCLO:
case R6_OPC_DCLO:
case OPC_DCLZ:
case R6_OPC_DCLZ:
tcg_gen_clzi_i64(t0, t0, 64);
break;
#endif
}
}
/* Godson integer instructions */
static void gen_loongson_integer(DisasContext *ctx, uint32_t opc,
int rd, int rs, int rt)
{
TCGv t0, t1;
if (rd == 0) {
/* Treat as NOP. */
return;
}
switch (opc) {
case OPC_MULT_G_2E:
case OPC_MULT_G_2F:
case OPC_MULTU_G_2E:
case OPC_MULTU_G_2F:
#if defined(TARGET_MIPS64)
case OPC_DMULT_G_2E:
case OPC_DMULT_G_2F:
case OPC_DMULTU_G_2E:
case OPC_DMULTU_G_2F:
#endif
t0 = tcg_temp_new();
t1 = tcg_temp_new();
break;
default:
t0 = tcg_temp_local_new();
t1 = tcg_temp_local_new();
break;
}
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
switch (opc) {
case OPC_MULT_G_2E:
case OPC_MULT_G_2F:
tcg_gen_mul_tl(cpu_gpr[rd], t0, t1);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
break;
case OPC_MULTU_G_2E:
case OPC_MULTU_G_2F:
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_mul_tl(cpu_gpr[rd], t0, t1);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
break;
case OPC_DIV_G_2E:
case OPC_DIV_G_2F:
{
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
TCGLabel *l3 = gen_new_label();
tcg_gen_ext32s_tl(t0, t0);
tcg_gen_ext32s_tl(t1, t1);
tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1);
tcg_gen_movi_tl(cpu_gpr[rd], 0);
tcg_gen_br(l3);
gen_set_label(l1);
tcg_gen_brcondi_tl(TCG_COND_NE, t0, INT_MIN, l2);
tcg_gen_brcondi_tl(TCG_COND_NE, t1, -1, l2);
tcg_gen_mov_tl(cpu_gpr[rd], t0);
tcg_gen_br(l3);
gen_set_label(l2);
tcg_gen_div_tl(cpu_gpr[rd], t0, t1);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
gen_set_label(l3);
}
break;
case OPC_DIVU_G_2E:
case OPC_DIVU_G_2F:
{
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1);
tcg_gen_movi_tl(cpu_gpr[rd], 0);
tcg_gen_br(l2);
gen_set_label(l1);
tcg_gen_divu_tl(cpu_gpr[rd], t0, t1);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
gen_set_label(l2);
}
break;
case OPC_MOD_G_2E:
case OPC_MOD_G_2F:
{
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
TCGLabel *l3 = gen_new_label();
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_brcondi_tl(TCG_COND_EQ, t1, 0, l1);
tcg_gen_brcondi_tl(TCG_COND_NE, t0, INT_MIN, l2);
tcg_gen_brcondi_tl(TCG_COND_NE, t1, -1, l2);
gen_set_label(l1);
tcg_gen_movi_tl(cpu_gpr[rd], 0);
tcg_gen_br(l3);
gen_set_label(l2);
tcg_gen_rem_tl(cpu_gpr[rd], t0, t1);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
gen_set_label(l3);
}
break;
case OPC_MODU_G_2E:
case OPC_MODU_G_2F:
{
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1);
tcg_gen_movi_tl(cpu_gpr[rd], 0);
tcg_gen_br(l2);
gen_set_label(l1);
tcg_gen_remu_tl(cpu_gpr[rd], t0, t1);
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
gen_set_label(l2);
}
break;
#if defined(TARGET_MIPS64)
case OPC_DMULT_G_2E:
case OPC_DMULT_G_2F:
tcg_gen_mul_tl(cpu_gpr[rd], t0, t1);
break;
case OPC_DMULTU_G_2E:
case OPC_DMULTU_G_2F:
tcg_gen_mul_tl(cpu_gpr[rd], t0, t1);
break;
case OPC_DDIV_G_2E:
case OPC_DDIV_G_2F:
{
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
TCGLabel *l3 = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1);
tcg_gen_movi_tl(cpu_gpr[rd], 0);
tcg_gen_br(l3);
gen_set_label(l1);
tcg_gen_brcondi_tl(TCG_COND_NE, t0, -1LL << 63, l2);
tcg_gen_brcondi_tl(TCG_COND_NE, t1, -1LL, l2);
tcg_gen_mov_tl(cpu_gpr[rd], t0);
tcg_gen_br(l3);
gen_set_label(l2);
tcg_gen_div_tl(cpu_gpr[rd], t0, t1);
gen_set_label(l3);
}
break;
case OPC_DDIVU_G_2E:
case OPC_DDIVU_G_2F:
{
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1);
tcg_gen_movi_tl(cpu_gpr[rd], 0);
tcg_gen_br(l2);
gen_set_label(l1);
tcg_gen_divu_tl(cpu_gpr[rd], t0, t1);
gen_set_label(l2);
}
break;
case OPC_DMOD_G_2E:
case OPC_DMOD_G_2F:
{
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
TCGLabel *l3 = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, t1, 0, l1);
tcg_gen_brcondi_tl(TCG_COND_NE, t0, -1LL << 63, l2);
tcg_gen_brcondi_tl(TCG_COND_NE, t1, -1LL, l2);
gen_set_label(l1);
tcg_gen_movi_tl(cpu_gpr[rd], 0);
tcg_gen_br(l3);
gen_set_label(l2);
tcg_gen_rem_tl(cpu_gpr[rd], t0, t1);
gen_set_label(l3);
}
break;
case OPC_DMODU_G_2E:
case OPC_DMODU_G_2F:
{
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1);
tcg_gen_movi_tl(cpu_gpr[rd], 0);
tcg_gen_br(l2);
gen_set_label(l1);
tcg_gen_remu_tl(cpu_gpr[rd], t0, t1);
gen_set_label(l2);
}
break;
#endif
}
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/* Loongson multimedia instructions */
static void gen_loongson_multimedia(DisasContext *ctx, int rd, int rs, int rt)
{
uint32_t opc, shift_max;
TCGv_i64 t0, t1;
opc = MASK_LMI(ctx->opcode);
switch (opc) {
case OPC_ADD_CP2:
case OPC_SUB_CP2:
case OPC_DADD_CP2:
case OPC_DSUB_CP2:
t0 = tcg_temp_local_new_i64();
t1 = tcg_temp_local_new_i64();
break;
default:
t0 = tcg_temp_new_i64();
t1 = tcg_temp_new_i64();
break;
}
check_cp1_enabled(ctx);
gen_load_fpr64(ctx, t0, rs);
gen_load_fpr64(ctx, t1, rt);
#define LMI_HELPER(UP, LO) \
case OPC_##UP: gen_helper_##LO(t0, t0, t1); break
#define LMI_HELPER_1(UP, LO) \
case OPC_##UP: gen_helper_##LO(t0, t0); break
#define LMI_DIRECT(UP, LO, OP) \
case OPC_##UP: tcg_gen_##OP##_i64(t0, t0, t1); break
switch (opc) {
LMI_HELPER(PADDSH, paddsh);
LMI_HELPER(PADDUSH, paddush);
LMI_HELPER(PADDH, paddh);
LMI_HELPER(PADDW, paddw);
LMI_HELPER(PADDSB, paddsb);
LMI_HELPER(PADDUSB, paddusb);
LMI_HELPER(PADDB, paddb);
LMI_HELPER(PSUBSH, psubsh);
LMI_HELPER(PSUBUSH, psubush);
LMI_HELPER(PSUBH, psubh);
LMI_HELPER(PSUBW, psubw);
LMI_HELPER(PSUBSB, psubsb);
LMI_HELPER(PSUBUSB, psubusb);
LMI_HELPER(PSUBB, psubb);
LMI_HELPER(PSHUFH, pshufh);
LMI_HELPER(PACKSSWH, packsswh);
LMI_HELPER(PACKSSHB, packsshb);
LMI_HELPER(PACKUSHB, packushb);
LMI_HELPER(PUNPCKLHW, punpcklhw);
LMI_HELPER(PUNPCKHHW, punpckhhw);
LMI_HELPER(PUNPCKLBH, punpcklbh);
LMI_HELPER(PUNPCKHBH, punpckhbh);
LMI_HELPER(PUNPCKLWD, punpcklwd);
LMI_HELPER(PUNPCKHWD, punpckhwd);
LMI_HELPER(PAVGH, pavgh);
LMI_HELPER(PAVGB, pavgb);
LMI_HELPER(PMAXSH, pmaxsh);
LMI_HELPER(PMINSH, pminsh);
LMI_HELPER(PMAXUB, pmaxub);
LMI_HELPER(PMINUB, pminub);
LMI_HELPER(PCMPEQW, pcmpeqw);
LMI_HELPER(PCMPGTW, pcmpgtw);
LMI_HELPER(PCMPEQH, pcmpeqh);
LMI_HELPER(PCMPGTH, pcmpgth);
LMI_HELPER(PCMPEQB, pcmpeqb);
LMI_HELPER(PCMPGTB, pcmpgtb);
LMI_HELPER(PSLLW, psllw);
LMI_HELPER(PSLLH, psllh);
LMI_HELPER(PSRLW, psrlw);
LMI_HELPER(PSRLH, psrlh);
LMI_HELPER(PSRAW, psraw);
LMI_HELPER(PSRAH, psrah);
LMI_HELPER(PMULLH, pmullh);
LMI_HELPER(PMULHH, pmulhh);
LMI_HELPER(PMULHUH, pmulhuh);
LMI_HELPER(PMADDHW, pmaddhw);
LMI_HELPER(PASUBUB, pasubub);
LMI_HELPER_1(BIADD, biadd);
LMI_HELPER_1(PMOVMSKB, pmovmskb);
LMI_DIRECT(PADDD, paddd, add);
LMI_DIRECT(PSUBD, psubd, sub);
LMI_DIRECT(XOR_CP2, xor, xor);
LMI_DIRECT(NOR_CP2, nor, nor);
LMI_DIRECT(AND_CP2, and, and);
LMI_DIRECT(OR_CP2, or, or);
case OPC_PANDN:
tcg_gen_andc_i64(t0, t1, t0);
break;
case OPC_PINSRH_0:
tcg_gen_deposit_i64(t0, t0, t1, 0, 16);
break;
case OPC_PINSRH_1:
tcg_gen_deposit_i64(t0, t0, t1, 16, 16);
break;
case OPC_PINSRH_2:
tcg_gen_deposit_i64(t0, t0, t1, 32, 16);
break;
case OPC_PINSRH_3:
tcg_gen_deposit_i64(t0, t0, t1, 48, 16);
break;
case OPC_PEXTRH:
tcg_gen_andi_i64(t1, t1, 3);
tcg_gen_shli_i64(t1, t1, 4);
tcg_gen_shr_i64(t0, t0, t1);
tcg_gen_ext16u_i64(t0, t0);
break;
case OPC_ADDU_CP2:
tcg_gen_add_i64(t0, t0, t1);
tcg_gen_ext32s_i64(t0, t0);
break;
case OPC_SUBU_CP2:
tcg_gen_sub_i64(t0, t0, t1);
tcg_gen_ext32s_i64(t0, t0);
break;
case OPC_SLL_CP2:
shift_max = 32;
goto do_shift;
case OPC_SRL_CP2:
shift_max = 32;
goto do_shift;
case OPC_SRA_CP2:
shift_max = 32;
goto do_shift;
case OPC_DSLL_CP2:
shift_max = 64;
goto do_shift;
case OPC_DSRL_CP2:
shift_max = 64;
goto do_shift;
case OPC_DSRA_CP2:
shift_max = 64;
goto do_shift;
do_shift:
/* Make sure shift count isn't TCG undefined behaviour. */
tcg_gen_andi_i64(t1, t1, shift_max - 1);
switch (opc) {
case OPC_SLL_CP2:
case OPC_DSLL_CP2:
tcg_gen_shl_i64(t0, t0, t1);
break;
case OPC_SRA_CP2:
case OPC_DSRA_CP2:
/*
* Since SRA is UndefinedResult without sign-extended inputs,
* we can treat SRA and DSRA the same.
*/
tcg_gen_sar_i64(t0, t0, t1);
break;
case OPC_SRL_CP2:
/* We want to shift in zeros for SRL; zero-extend first. */
tcg_gen_ext32u_i64(t0, t0);
/* FALLTHRU */
case OPC_DSRL_CP2:
tcg_gen_shr_i64(t0, t0, t1);
break;
}
if (shift_max == 32) {
tcg_gen_ext32s_i64(t0, t0);
}
/* Shifts larger than MAX produce zero. */
tcg_gen_setcondi_i64(TCG_COND_LTU, t1, t1, shift_max);
tcg_gen_neg_i64(t1, t1);
tcg_gen_and_i64(t0, t0, t1);
break;
case OPC_ADD_CP2:
case OPC_DADD_CP2:
{
TCGv_i64 t2 = tcg_temp_new_i64();
TCGLabel *lab = gen_new_label();
tcg_gen_mov_i64(t2, t0);
tcg_gen_add_i64(t0, t1, t2);
if (opc == OPC_ADD_CP2) {
tcg_gen_ext32s_i64(t0, t0);
}
tcg_gen_xor_i64(t1, t1, t2);
tcg_gen_xor_i64(t2, t2, t0);
tcg_gen_andc_i64(t1, t2, t1);
tcg_temp_free_i64(t2);
tcg_gen_brcondi_i64(TCG_COND_GE, t1, 0, lab);
generate_exception(ctx, EXCP_OVERFLOW);
gen_set_label(lab);
break;
}
case OPC_SUB_CP2:
case OPC_DSUB_CP2:
{
TCGv_i64 t2 = tcg_temp_new_i64();
TCGLabel *lab = gen_new_label();
tcg_gen_mov_i64(t2, t0);
tcg_gen_sub_i64(t0, t1, t2);
if (opc == OPC_SUB_CP2) {
tcg_gen_ext32s_i64(t0, t0);
}
tcg_gen_xor_i64(t1, t1, t2);
tcg_gen_xor_i64(t2, t2, t0);
tcg_gen_and_i64(t1, t1, t2);
tcg_temp_free_i64(t2);
tcg_gen_brcondi_i64(TCG_COND_GE, t1, 0, lab);
generate_exception(ctx, EXCP_OVERFLOW);
gen_set_label(lab);
break;
}
case OPC_PMULUW:
tcg_gen_ext32u_i64(t0, t0);
tcg_gen_ext32u_i64(t1, t1);
tcg_gen_mul_i64(t0, t0, t1);
break;
case OPC_SEQU_CP2:
case OPC_SEQ_CP2:
case OPC_SLTU_CP2:
case OPC_SLT_CP2:
case OPC_SLEU_CP2:
case OPC_SLE_CP2:
/*
* ??? Document is unclear: Set FCC[CC]. Does that mean the
* FD field is the CC field?
*/
default:
MIPS_INVAL("loongson_cp2");
generate_exception_end(ctx, EXCP_RI);
return;
}
#undef LMI_HELPER
#undef LMI_DIRECT
gen_store_fpr64(ctx, t0, rd);
tcg_temp_free_i64(t0);
tcg_temp_free_i64(t1);
}
/* Traps */
static void gen_trap (DisasContext *ctx, uint32_t opc,
int rs, int rt, int16_t imm)
{
int cond;
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
cond = 0;
/* Load needed operands */
switch (opc) {
case OPC_TEQ:
case OPC_TGE:
case OPC_TGEU:
case OPC_TLT:
case OPC_TLTU:
case OPC_TNE:
/* Compare two registers */
if (rs != rt) {
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
cond = 1;
}
break;
case OPC_TEQI:
case OPC_TGEI:
case OPC_TGEIU:
case OPC_TLTI:
case OPC_TLTIU:
case OPC_TNEI:
/* Compare register to immediate */
if (rs != 0 || imm != 0) {
gen_load_gpr(t0, rs);
tcg_gen_movi_tl(t1, (int32_t)imm);
cond = 1;
}
break;
}
if (cond == 0) {
switch (opc) {
case OPC_TEQ: /* rs == rs */
case OPC_TEQI: /* r0 == 0 */
case OPC_TGE: /* rs >= rs */
case OPC_TGEI: /* r0 >= 0 */
case OPC_TGEU: /* rs >= rs unsigned */
case OPC_TGEIU: /* r0 >= 0 unsigned */
/* Always trap */
generate_exception_end(ctx, EXCP_TRAP);
break;
case OPC_TLT: /* rs < rs */
case OPC_TLTI: /* r0 < 0 */
case OPC_TLTU: /* rs < rs unsigned */
case OPC_TLTIU: /* r0 < 0 unsigned */
case OPC_TNE: /* rs != rs */
case OPC_TNEI: /* r0 != 0 */
/* Never trap: treat as NOP. */
break;
}
} else {
TCGLabel *l1 = gen_new_label();
switch (opc) {
case OPC_TEQ:
case OPC_TEQI:
tcg_gen_brcond_tl(TCG_COND_NE, t0, t1, l1);
break;
case OPC_TGE:
case OPC_TGEI:
tcg_gen_brcond_tl(TCG_COND_LT, t0, t1, l1);
break;
case OPC_TGEU:
case OPC_TGEIU:
tcg_gen_brcond_tl(TCG_COND_LTU, t0, t1, l1);
break;
case OPC_TLT:
case OPC_TLTI:
tcg_gen_brcond_tl(TCG_COND_GE, t0, t1, l1);
break;
case OPC_TLTU:
case OPC_TLTIU:
tcg_gen_brcond_tl(TCG_COND_GEU, t0, t1, l1);
break;
case OPC_TNE:
case OPC_TNEI:
tcg_gen_brcond_tl(TCG_COND_EQ, t0, t1, l1);
break;
}
generate_exception(ctx, EXCP_TRAP);
gen_set_label(l1);
}
tcg_temp_free(t0);
tcg_temp_free(t1);
}
static inline bool use_goto_tb(DisasContext *ctx, target_ulong dest)
{
if (unlikely(ctx->base.singlestep_enabled)) {
return false;
}
#ifndef CONFIG_USER_ONLY
return (ctx->base.tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK);
#else
return true;
#endif
}
static inline void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
{
if (use_goto_tb(ctx, dest)) {
tcg_gen_goto_tb(n);
gen_save_pc(dest);
tcg_gen_exit_tb(ctx->base.tb, n);
} else {
gen_save_pc(dest);
if (ctx->base.singlestep_enabled) {
save_cpu_state(ctx, 0);
gen_helper_raise_exception_debug(cpu_env);
}
tcg_gen_lookup_and_goto_ptr();
}
}
/* Branches (before delay slot) */
static void gen_compute_branch (DisasContext *ctx, uint32_t opc,
int insn_bytes,
int rs, int rt, int32_t offset,
int delayslot_size)
{
target_ulong btgt = -1;
int blink = 0;
int bcond_compute = 0;
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
if (ctx->hflags & MIPS_HFLAG_BMASK) {
#ifdef MIPS_DEBUG_DISAS
LOG_DISAS("Branch in delay / forbidden slot at PC 0x"
TARGET_FMT_lx "\n", ctx->base.pc_next);
#endif
generate_exception_end(ctx, EXCP_RI);
goto out;
}
/* Load needed operands */
switch (opc) {
case OPC_BEQ:
case OPC_BEQL:
case OPC_BNE:
case OPC_BNEL:
/* Compare two registers */
if (rs != rt) {
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
bcond_compute = 1;
}
btgt = ctx->base.pc_next + insn_bytes + offset;
break;
case OPC_BGEZ:
case OPC_BGEZAL:
case OPC_BGEZALL:
case OPC_BGEZL:
case OPC_BGTZ:
case OPC_BGTZL:
case OPC_BLEZ:
case OPC_BLEZL:
case OPC_BLTZ:
case OPC_BLTZAL:
case OPC_BLTZALL:
case OPC_BLTZL:
/* Compare to zero */
if (rs != 0) {
gen_load_gpr(t0, rs);
bcond_compute = 1;
}
btgt = ctx->base.pc_next + insn_bytes + offset;
break;
case OPC_BPOSGE32:
#if defined(TARGET_MIPS64)
case OPC_BPOSGE64:
tcg_gen_andi_tl(t0, cpu_dspctrl, 0x7F);
#else
tcg_gen_andi_tl(t0, cpu_dspctrl, 0x3F);
#endif
bcond_compute = 1;
btgt = ctx->base.pc_next + insn_bytes + offset;
break;
case OPC_J:
case OPC_JAL:
case OPC_JALX:
/* Jump to immediate */
btgt = ((ctx->base.pc_next + insn_bytes) & (int32_t)0xF0000000) |
(uint32_t)offset;
break;
case OPC_JR:
case OPC_JALR:
/* Jump to register */
if (offset != 0 && offset != 16) {
/*
* Hint = 0 is JR/JALR, hint 16 is JR.HB/JALR.HB, the
* others are reserved.
*/
MIPS_INVAL("jump hint");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
gen_load_gpr(btarget, rs);
break;
default:
MIPS_INVAL("branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
if (bcond_compute == 0) {
/* No condition to be computed */
switch (opc) {
case OPC_BEQ: /* rx == rx */
case OPC_BEQL: /* rx == rx likely */
case OPC_BGEZ: /* 0 >= 0 */
case OPC_BGEZL: /* 0 >= 0 likely */
case OPC_BLEZ: /* 0 <= 0 */
case OPC_BLEZL: /* 0 <= 0 likely */
/* Always take */
ctx->hflags |= MIPS_HFLAG_B;
break;
case OPC_BGEZAL: /* 0 >= 0 */
case OPC_BGEZALL: /* 0 >= 0 likely */
/* Always take and link */
blink = 31;
ctx->hflags |= MIPS_HFLAG_B;
break;
case OPC_BNE: /* rx != rx */
case OPC_BGTZ: /* 0 > 0 */
case OPC_BLTZ: /* 0 < 0 */
/* Treat as NOP. */
goto out;
case OPC_BLTZAL: /* 0 < 0 */
/*
* Handle as an unconditional branch to get correct delay
* slot checking.
*/
blink = 31;
btgt = ctx->base.pc_next + insn_bytes + delayslot_size;
ctx->hflags |= MIPS_HFLAG_B;
break;
case OPC_BLTZALL: /* 0 < 0 likely */
tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 8);
/* Skip the instruction in the delay slot */
ctx->base.pc_next += 4;
goto out;
case OPC_BNEL: /* rx != rx likely */
case OPC_BGTZL: /* 0 > 0 likely */
case OPC_BLTZL: /* 0 < 0 likely */
/* Skip the instruction in the delay slot */
ctx->base.pc_next += 4;
goto out;
case OPC_J:
ctx->hflags |= MIPS_HFLAG_B;
break;
case OPC_JALX:
ctx->hflags |= MIPS_HFLAG_BX;
/* Fallthrough */
case OPC_JAL:
blink = 31;
ctx->hflags |= MIPS_HFLAG_B;
break;
case OPC_JR:
ctx->hflags |= MIPS_HFLAG_BR;
break;
case OPC_JALR:
blink = rt;
ctx->hflags |= MIPS_HFLAG_BR;
break;
default:
MIPS_INVAL("branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
} else {
switch (opc) {
case OPC_BEQ:
tcg_gen_setcond_tl(TCG_COND_EQ, bcond, t0, t1);
goto not_likely;
case OPC_BEQL:
tcg_gen_setcond_tl(TCG_COND_EQ, bcond, t0, t1);
goto likely;
case OPC_BNE:
tcg_gen_setcond_tl(TCG_COND_NE, bcond, t0, t1);
goto not_likely;
case OPC_BNEL:
tcg_gen_setcond_tl(TCG_COND_NE, bcond, t0, t1);
goto likely;
case OPC_BGEZ:
tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 0);
goto not_likely;
case OPC_BGEZL:
tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 0);
goto likely;
case OPC_BGEZAL:
tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 0);
blink = 31;
goto not_likely;
case OPC_BGEZALL:
tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 0);
blink = 31;
goto likely;
case OPC_BGTZ:
tcg_gen_setcondi_tl(TCG_COND_GT, bcond, t0, 0);
goto not_likely;
case OPC_BGTZL:
tcg_gen_setcondi_tl(TCG_COND_GT, bcond, t0, 0);
goto likely;
case OPC_BLEZ:
tcg_gen_setcondi_tl(TCG_COND_LE, bcond, t0, 0);
goto not_likely;
case OPC_BLEZL:
tcg_gen_setcondi_tl(TCG_COND_LE, bcond, t0, 0);
goto likely;
case OPC_BLTZ:
tcg_gen_setcondi_tl(TCG_COND_LT, bcond, t0, 0);
goto not_likely;
case OPC_BLTZL:
tcg_gen_setcondi_tl(TCG_COND_LT, bcond, t0, 0);
goto likely;
case OPC_BPOSGE32:
tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 32);
goto not_likely;
#if defined(TARGET_MIPS64)
case OPC_BPOSGE64:
tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 64);
goto not_likely;
#endif
case OPC_BLTZAL:
tcg_gen_setcondi_tl(TCG_COND_LT, bcond, t0, 0);
blink = 31;
not_likely:
ctx->hflags |= MIPS_HFLAG_BC;
break;
case OPC_BLTZALL:
tcg_gen_setcondi_tl(TCG_COND_LT, bcond, t0, 0);
blink = 31;
likely:
ctx->hflags |= MIPS_HFLAG_BL;
break;
default:
MIPS_INVAL("conditional branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
}
ctx->btarget = btgt;
switch (delayslot_size) {
case 2:
ctx->hflags |= MIPS_HFLAG_BDS16;
break;
case 4:
ctx->hflags |= MIPS_HFLAG_BDS32;
break;
}
if (blink > 0) {
int post_delay = insn_bytes + delayslot_size;
int lowbit = !!(ctx->hflags & MIPS_HFLAG_M16);
tcg_gen_movi_tl(cpu_gpr[blink],
ctx->base.pc_next + post_delay + lowbit);
}
out:
if (insn_bytes == 2) {
ctx->hflags |= MIPS_HFLAG_B16;
}
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/* nanoMIPS Branches */
static void gen_compute_branch_nm(DisasContext *ctx, uint32_t opc,
int insn_bytes,
int rs, int rt, int32_t offset)
{
target_ulong btgt = -1;
int bcond_compute = 0;
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
/* Load needed operands */
switch (opc) {
case OPC_BEQ:
case OPC_BNE:
/* Compare two registers */
if (rs != rt) {
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
bcond_compute = 1;
}
btgt = ctx->base.pc_next + insn_bytes + offset;
break;
case OPC_BGEZAL:
/* Compare to zero */
if (rs != 0) {
gen_load_gpr(t0, rs);
bcond_compute = 1;
}
btgt = ctx->base.pc_next + insn_bytes + offset;
break;
case OPC_BPOSGE32:
tcg_gen_andi_tl(t0, cpu_dspctrl, 0x3F);
bcond_compute = 1;
btgt = ctx->base.pc_next + insn_bytes + offset;
break;
case OPC_JR:
case OPC_JALR:
/* Jump to register */
if (offset != 0 && offset != 16) {
/*
* Hint = 0 is JR/JALR, hint 16 is JR.HB/JALR.HB, the
* others are reserved.
*/
MIPS_INVAL("jump hint");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
gen_load_gpr(btarget, rs);
break;
default:
MIPS_INVAL("branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
if (bcond_compute == 0) {
/* No condition to be computed */
switch (opc) {
case OPC_BEQ: /* rx == rx */
/* Always take */
ctx->hflags |= MIPS_HFLAG_B;
break;
case OPC_BGEZAL: /* 0 >= 0 */
/* Always take and link */
tcg_gen_movi_tl(cpu_gpr[31],
ctx->base.pc_next + insn_bytes);
ctx->hflags |= MIPS_HFLAG_B;
break;
case OPC_BNE: /* rx != rx */
tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 8);
/* Skip the instruction in the delay slot */
ctx->base.pc_next += 4;
goto out;
case OPC_JR:
ctx->hflags |= MIPS_HFLAG_BR;
break;
case OPC_JALR:
if (rt > 0) {
tcg_gen_movi_tl(cpu_gpr[rt],
ctx->base.pc_next + insn_bytes);
}
ctx->hflags |= MIPS_HFLAG_BR;
break;
default:
MIPS_INVAL("branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
} else {
switch (opc) {
case OPC_BEQ:
tcg_gen_setcond_tl(TCG_COND_EQ, bcond, t0, t1);
goto not_likely;
case OPC_BNE:
tcg_gen_setcond_tl(TCG_COND_NE, bcond, t0, t1);
goto not_likely;
case OPC_BGEZAL:
tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 0);
tcg_gen_movi_tl(cpu_gpr[31],
ctx->base.pc_next + insn_bytes);
goto not_likely;
case OPC_BPOSGE32:
tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 32);
not_likely:
ctx->hflags |= MIPS_HFLAG_BC;
break;
default:
MIPS_INVAL("conditional branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
}
ctx->btarget = btgt;
out:
if (insn_bytes == 2) {
ctx->hflags |= MIPS_HFLAG_B16;
}
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/* special3 bitfield operations */
static void gen_bitops(DisasContext *ctx, uint32_t opc, int rt,
int rs, int lsb, int msb)
{
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
gen_load_gpr(t1, rs);
switch (opc) {
case OPC_EXT:
if (lsb + msb > 31) {
goto fail;
}
if (msb != 31) {
tcg_gen_extract_tl(t0, t1, lsb, msb + 1);
} else {
/*
* The two checks together imply that lsb == 0,
* so this is a simple sign-extension.
*/
tcg_gen_ext32s_tl(t0, t1);
}
break;
#if defined(TARGET_MIPS64)
case OPC_DEXTU:
lsb += 32;
goto do_dext;
case OPC_DEXTM:
msb += 32;
goto do_dext;
case OPC_DEXT:
do_dext:
if (lsb + msb > 63) {
goto fail;
}
tcg_gen_extract_tl(t0, t1, lsb, msb + 1);
break;
#endif
case OPC_INS:
if (lsb > msb) {
goto fail;
}
gen_load_gpr(t0, rt);
tcg_gen_deposit_tl(t0, t0, t1, lsb, msb - lsb + 1);
tcg_gen_ext32s_tl(t0, t0);
break;
#if defined(TARGET_MIPS64)
case OPC_DINSU:
lsb += 32;
/* FALLTHRU */
case OPC_DINSM:
msb += 32;
/* FALLTHRU */
case OPC_DINS:
if (lsb > msb) {
goto fail;
}
gen_load_gpr(t0, rt);
tcg_gen_deposit_tl(t0, t0, t1, lsb, msb - lsb + 1);
break;
#endif
default:
fail:
MIPS_INVAL("bitops");
generate_exception_end(ctx, EXCP_RI);
tcg_temp_free(t0);
tcg_temp_free(t1);
return;
}
gen_store_gpr(t0, rt);
tcg_temp_free(t0);
tcg_temp_free(t1);
}
static void gen_bshfl(DisasContext *ctx, uint32_t op2, int rt, int rd)
{
TCGv t0;
if (rd == 0) {
/* If no destination, treat it as a NOP. */
return;
}
t0 = tcg_temp_new();
gen_load_gpr(t0, rt);
switch (op2) {
case OPC_WSBH:
{
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_const_tl(0x00FF00FF);
tcg_gen_shri_tl(t1, t0, 8);
tcg_gen_and_tl(t1, t1, t2);
tcg_gen_and_tl(t0, t0, t2);
tcg_gen_shli_tl(t0, t0, 8);
tcg_gen_or_tl(t0, t0, t1);
tcg_temp_free(t2);
tcg_temp_free(t1);
tcg_gen_ext32s_tl(cpu_gpr[rd], t0);
}
break;
case OPC_SEB:
tcg_gen_ext8s_tl(cpu_gpr[rd], t0);
break;
case OPC_SEH:
tcg_gen_ext16s_tl(cpu_gpr[rd], t0);
break;
#if defined(TARGET_MIPS64)
case OPC_DSBH:
{
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_const_tl(0x00FF00FF00FF00FFULL);
tcg_gen_shri_tl(t1, t0, 8);
tcg_gen_and_tl(t1, t1, t2);
tcg_gen_and_tl(t0, t0, t2);
tcg_gen_shli_tl(t0, t0, 8);
tcg_gen_or_tl(cpu_gpr[rd], t0, t1);
tcg_temp_free(t2);
tcg_temp_free(t1);
}
break;
case OPC_DSHD:
{
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_const_tl(0x0000FFFF0000FFFFULL);
tcg_gen_shri_tl(t1, t0, 16);
tcg_gen_and_tl(t1, t1, t2);
tcg_gen_and_tl(t0, t0, t2);
tcg_gen_shli_tl(t0, t0, 16);
tcg_gen_or_tl(t0, t0, t1);
tcg_gen_shri_tl(t1, t0, 32);
tcg_gen_shli_tl(t0, t0, 32);
tcg_gen_or_tl(cpu_gpr[rd], t0, t1);
tcg_temp_free(t2);
tcg_temp_free(t1);
}
break;
#endif
default:
MIPS_INVAL("bsfhl");
generate_exception_end(ctx, EXCP_RI);
tcg_temp_free(t0);
return;
}
tcg_temp_free(t0);
}
static void gen_lsa(DisasContext *ctx, int opc, int rd, int rs, int rt,
int imm2)
{
TCGv t0;
TCGv t1;
if (rd == 0) {
/* Treat as NOP. */
return;
}
t0 = tcg_temp_new();
t1 = tcg_temp_new();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
tcg_gen_shli_tl(t0, t0, imm2 + 1);
tcg_gen_add_tl(cpu_gpr[rd], t0, t1);
if (opc == OPC_LSA) {
tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]);
}
tcg_temp_free(t1);
tcg_temp_free(t0);
return;
}
static void gen_align_bits(DisasContext *ctx, int wordsz, int rd, int rs,
int rt, int bits)
{
TCGv t0;
if (rd == 0) {
/* Treat as NOP. */
return;
}
t0 = tcg_temp_new();
if (bits == 0 || bits == wordsz) {
if (bits == 0) {
gen_load_gpr(t0, rt);
} else {
gen_load_gpr(t0, rs);
}
switch (wordsz) {
case 32:
tcg_gen_ext32s_tl(cpu_gpr[rd], t0);
break;
#if defined(TARGET_MIPS64)
case 64:
tcg_gen_mov_tl(cpu_gpr[rd], t0);
break;
#endif
}
} else {
TCGv t1 = tcg_temp_new();
gen_load_gpr(t0, rt);
gen_load_gpr(t1, rs);
switch (wordsz) {
case 32:
{
TCGv_i64 t2 = tcg_temp_new_i64();
tcg_gen_concat_tl_i64(t2, t1, t0);
tcg_gen_shri_i64(t2, t2, 32 - bits);
gen_move_low32(cpu_gpr[rd], t2);
tcg_temp_free_i64(t2);
}
break;
#if defined(TARGET_MIPS64)
case 64:
tcg_gen_shli_tl(t0, t0, bits);
tcg_gen_shri_tl(t1, t1, 64 - bits);
tcg_gen_or_tl(cpu_gpr[rd], t1, t0);
break;
#endif
}
tcg_temp_free(t1);
}
tcg_temp_free(t0);
}
static void gen_align(DisasContext *ctx, int wordsz, int rd, int rs, int rt,
int bp)
{
gen_align_bits(ctx, wordsz, rd, rs, rt, bp * 8);
}
static void gen_ext(DisasContext *ctx, int wordsz, int rd, int rs, int rt,
int shift)
{
gen_align_bits(ctx, wordsz, rd, rs, rt, wordsz - shift);
}
static void gen_bitswap(DisasContext *ctx, int opc, int rd, int rt)
{
TCGv t0;
if (rd == 0) {
/* Treat as NOP. */
return;
}
t0 = tcg_temp_new();
gen_load_gpr(t0, rt);
switch (opc) {
case OPC_BITSWAP:
gen_helper_bitswap(cpu_gpr[rd], t0);
break;
#if defined(TARGET_MIPS64)
case OPC_DBITSWAP:
gen_helper_dbitswap(cpu_gpr[rd], t0);
break;
#endif
}
tcg_temp_free(t0);
}
#ifndef CONFIG_USER_ONLY
/* CP0 (MMU and control) */
static inline void gen_mthc0_entrylo(TCGv arg, target_ulong off)
{
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
tcg_gen_ext_tl_i64(t0, arg);
tcg_gen_ld_i64(t1, cpu_env, off);
#if defined(TARGET_MIPS64)
tcg_gen_deposit_i64(t1, t1, t0, 30, 32);
#else
tcg_gen_concat32_i64(t1, t1, t0);
#endif
tcg_gen_st_i64(t1, cpu_env, off);
tcg_temp_free_i64(t1);
tcg_temp_free_i64(t0);
}
static inline void gen_mthc0_store64(TCGv arg, target_ulong off)
{
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
tcg_gen_ext_tl_i64(t0, arg);
tcg_gen_ld_i64(t1, cpu_env, off);
tcg_gen_concat32_i64(t1, t1, t0);
tcg_gen_st_i64(t1, cpu_env, off);
tcg_temp_free_i64(t1);
tcg_temp_free_i64(t0);
}
static inline void gen_mfhc0_entrylo(TCGv arg, target_ulong off)
{
TCGv_i64 t0 = tcg_temp_new_i64();
tcg_gen_ld_i64(t0, cpu_env, off);
#if defined(TARGET_MIPS64)
tcg_gen_shri_i64(t0, t0, 30);
#else
tcg_gen_shri_i64(t0, t0, 32);
#endif
gen_move_low32(arg, t0);
tcg_temp_free_i64(t0);
}
static inline void gen_mfhc0_load64(TCGv arg, target_ulong off, int shift)
{
TCGv_i64 t0 = tcg_temp_new_i64();
tcg_gen_ld_i64(t0, cpu_env, off);
tcg_gen_shri_i64(t0, t0, 32 + shift);
gen_move_low32(arg, t0);
tcg_temp_free_i64(t0);
}
static inline void gen_mfc0_load32(TCGv arg, target_ulong off)
{
TCGv_i32 t0 = tcg_temp_new_i32();
tcg_gen_ld_i32(t0, cpu_env, off);
tcg_gen_ext_i32_tl(arg, t0);
tcg_temp_free_i32(t0);
}
static inline void gen_mfc0_load64(TCGv arg, target_ulong off)
{
tcg_gen_ld_tl(arg, cpu_env, off);
tcg_gen_ext32s_tl(arg, arg);
}
static inline void gen_mtc0_store32(TCGv arg, target_ulong off)
{
TCGv_i32 t0 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t0, arg);
tcg_gen_st_i32(t0, cpu_env, off);
tcg_temp_free_i32(t0);
}
#define CP0_CHECK(c) \
do { \
if (!(c)) { \
goto cp0_unimplemented; \
} \
} while (0)
static void gen_mfhc0(DisasContext *ctx, TCGv arg, int reg, int sel)
{
const char *register_name = "invalid";
switch (reg) {
case CP0_REGISTER_02:
switch (sel) {
case 0:
CP0_CHECK(ctx->hflags & MIPS_HFLAG_ELPA);
gen_mfhc0_entrylo(arg, offsetof(CPUMIPSState, CP0_EntryLo0));
register_name = "EntryLo0";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_03:
switch (sel) {
case 0:
CP0_CHECK(ctx->hflags & MIPS_HFLAG_ELPA);
gen_mfhc0_entrylo(arg, offsetof(CPUMIPSState, CP0_EntryLo1));
register_name = "EntryLo1";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_09:
switch (sel) {
case 7:
CP0_CHECK(ctx->saar);
gen_helper_mfhc0_saar(arg, cpu_env);
register_name = "SAAR";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_17:
switch (sel) {
case 0:
gen_mfhc0_load64(arg, offsetof(CPUMIPSState, CP0_LLAddr),
ctx->CP0_LLAddr_shift);
register_name = "LLAddr";
break;
case 1:
CP0_CHECK(ctx->mrp);
gen_helper_mfhc0_maar(arg, cpu_env);
register_name = "MAAR";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_28:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
gen_mfhc0_load64(arg, offsetof(CPUMIPSState, CP0_TagLo), 0);
register_name = "TagLo";
break;
default:
goto cp0_unimplemented;
}
break;
default:
goto cp0_unimplemented;
}
trace_mips_translate_c0("mfhc0", register_name, reg, sel);
return;
cp0_unimplemented:
qemu_log_mask(LOG_UNIMP, "mfhc0 %s (reg %d sel %d)\n",
register_name, reg, sel);
tcg_gen_movi_tl(arg, 0);
}
static void gen_mthc0(DisasContext *ctx, TCGv arg, int reg, int sel)
{
const char *register_name = "invalid";
uint64_t mask = ctx->PAMask >> 36;
switch (reg) {
case CP0_REGISTER_02:
switch (sel) {
case 0:
CP0_CHECK(ctx->hflags & MIPS_HFLAG_ELPA);
tcg_gen_andi_tl(arg, arg, mask);
gen_mthc0_entrylo(arg, offsetof(CPUMIPSState, CP0_EntryLo0));
register_name = "EntryLo0";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_03:
switch (sel) {
case 0:
CP0_CHECK(ctx->hflags & MIPS_HFLAG_ELPA);
tcg_gen_andi_tl(arg, arg, mask);
gen_mthc0_entrylo(arg, offsetof(CPUMIPSState, CP0_EntryLo1));
register_name = "EntryLo1";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_09:
switch (sel) {
case 7:
CP0_CHECK(ctx->saar);
gen_helper_mthc0_saar(cpu_env, arg);
register_name = "SAAR";
break;
default:
goto cp0_unimplemented;
}
case CP0_REGISTER_17:
switch (sel) {
case 0:
/*
* LLAddr is read-only (the only exception is bit 0 if LLB is
* supported); the CP0_LLAddr_rw_bitmask does not seem to be
* relevant for modern MIPS cores supporting MTHC0, therefore
* treating MTHC0 to LLAddr as NOP.
*/
register_name = "LLAddr";
break;
case 1:
CP0_CHECK(ctx->mrp);
gen_helper_mthc0_maar(cpu_env, arg);
register_name = "MAAR";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_28:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
tcg_gen_andi_tl(arg, arg, mask);
gen_mthc0_store64(arg, offsetof(CPUMIPSState, CP0_TagLo));
register_name = "TagLo";
break;
default:
goto cp0_unimplemented;
}
break;
default:
goto cp0_unimplemented;
}
trace_mips_translate_c0("mthc0", register_name, reg, sel);
cp0_unimplemented:
qemu_log_mask(LOG_UNIMP, "mthc0 %s (reg %d sel %d)\n",
register_name, reg, sel);
}
static inline void gen_mfc0_unimplemented(DisasContext *ctx, TCGv arg)
{
if (ctx->insn_flags & ISA_MIPS32R6) {
tcg_gen_movi_tl(arg, 0);
} else {
tcg_gen_movi_tl(arg, ~0);
}
}
static void gen_mfc0(DisasContext *ctx, TCGv arg, int reg, int sel)
{
const char *register_name = "invalid";
if (sel != 0) {
check_insn(ctx, ISA_MIPS32);
}
switch (reg) {
case CP0_REGISTER_00:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Index));
register_name = "Index";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_mvpcontrol(arg, cpu_env);
register_name = "MVPControl";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_mvpconf0(arg, cpu_env);
register_name = "MVPConf0";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_mvpconf1(arg, cpu_env);
register_name = "MVPConf1";
break;
case 4:
CP0_CHECK(ctx->vp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPControl));
register_name = "VPControl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_01:
switch (sel) {
case 0:
CP0_CHECK(!(ctx->insn_flags & ISA_MIPS32R6));
gen_helper_mfc0_random(arg, cpu_env);
register_name = "Random";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEControl));
register_name = "VPEControl";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEConf0));
register_name = "VPEConf0";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEConf1));
register_name = "VPEConf1";
break;
case 4:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load64(arg, offsetof(CPUMIPSState, CP0_YQMask));
register_name = "YQMask";
break;
case 5:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load64(arg, offsetof(CPUMIPSState, CP0_VPESchedule));
register_name = "VPESchedule";
break;
case 6:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load64(arg, offsetof(CPUMIPSState, CP0_VPEScheFBack));
register_name = "VPEScheFBack";
break;
case 7:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEOpt));
register_name = "VPEOpt";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_02:
switch (sel) {
case 0:
{
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_ld_i64(tmp, cpu_env,
offsetof(CPUMIPSState, CP0_EntryLo0));
#if defined(TARGET_MIPS64)
if (ctx->rxi) {
/* Move RI/XI fields to bits 31:30 */
tcg_gen_shri_tl(arg, tmp, CP0EnLo_XI);
tcg_gen_deposit_tl(tmp, tmp, arg, 30, 2);
}
#endif
gen_move_low32(arg, tmp);
tcg_temp_free_i64(tmp);
}
register_name = "EntryLo0";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_tcstatus(arg, cpu_env);
register_name = "TCStatus";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_tcbind(arg, cpu_env);
register_name = "TCBind";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_tcrestart(arg, cpu_env);
register_name = "TCRestart";
break;
case 4:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_tchalt(arg, cpu_env);
register_name = "TCHalt";
break;
case 5:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_tccontext(arg, cpu_env);
register_name = "TCContext";
break;
case 6:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_tcschedule(arg, cpu_env);
register_name = "TCSchedule";
break;
case 7:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_tcschefback(arg, cpu_env);
register_name = "TCScheFBack";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_03:
switch (sel) {
case 0:
{
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_ld_i64(tmp, cpu_env,
offsetof(CPUMIPSState, CP0_EntryLo1));
#if defined(TARGET_MIPS64)
if (ctx->rxi) {
/* Move RI/XI fields to bits 31:30 */
tcg_gen_shri_tl(arg, tmp, CP0EnLo_XI);
tcg_gen_deposit_tl(tmp, tmp, arg, 30, 2);
}
#endif
gen_move_low32(arg, tmp);
tcg_temp_free_i64(tmp);
}
register_name = "EntryLo1";
break;
case 1:
CP0_CHECK(ctx->vp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_GlobalNumber));
register_name = "GlobalNumber";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_04:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_Context));
tcg_gen_ext32s_tl(arg, arg);
register_name = "Context";
break;
case 1:
/* gen_helper_mfc0_contextconfig(arg); - SmartMIPS ASE */
register_name = "ContextConfig";
goto cp0_unimplemented;
case 2:
CP0_CHECK(ctx->ulri);
tcg_gen_ld_tl(arg, cpu_env,
offsetof(CPUMIPSState, active_tc.CP0_UserLocal));
tcg_gen_ext32s_tl(arg, arg);
register_name = "UserLocal";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_05:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PageMask));
register_name = "PageMask";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PageGrain));
register_name = "PageGrain";
break;
case 2:
CP0_CHECK(ctx->sc);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl0));
tcg_gen_ext32s_tl(arg, arg);
register_name = "SegCtl0";
break;
case 3:
CP0_CHECK(ctx->sc);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl1));
tcg_gen_ext32s_tl(arg, arg);
register_name = "SegCtl1";
break;
case 4:
CP0_CHECK(ctx->sc);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl2));
tcg_gen_ext32s_tl(arg, arg);
register_name = "SegCtl2";
break;
case 5:
check_pw(ctx);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PWBase));
register_name = "PWBase";
break;
case 6:
check_pw(ctx);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PWField));
register_name = "PWField";
break;
case 7:
check_pw(ctx);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PWSize));
register_name = "PWSize";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_06:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Wired));
register_name = "Wired";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf0));
register_name = "SRSConf0";
break;
case 2:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf1));
register_name = "SRSConf1";
break;
case 3:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf2));
register_name = "SRSConf2";
break;
case 4:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf3));
register_name = "SRSConf3";
break;
case 5:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf4));
register_name = "SRSConf4";
break;
case 6:
check_pw(ctx);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PWCtl));
register_name = "PWCtl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_07:
switch (sel) {
case 0:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_HWREna));
register_name = "HWREna";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_08:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_BadVAddr));
tcg_gen_ext32s_tl(arg, arg);
register_name = "BadVAddr";
break;
case 1:
CP0_CHECK(ctx->bi);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstr));
register_name = "BadInstr";
break;
case 2:
CP0_CHECK(ctx->bp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstrP));
register_name = "BadInstrP";
break;
case 3:
CP0_CHECK(ctx->bi);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstrX));
tcg_gen_andi_tl(arg, arg, ~0xffff);
register_name = "BadInstrX";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_09:
switch (sel) {
case 0:
/* Mark as an IO operation because we read the time. */
if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) {
gen_io_start();
}
gen_helper_mfc0_count(arg, cpu_env);
if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) {
gen_io_end();
}
/*
* Break the TB to be able to take timer interrupts immediately
* after reading count. DISAS_STOP isn't sufficient, we need to
* ensure we break completely out of translated code.
*/
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
register_name = "Count";
break;
case 6:
CP0_CHECK(ctx->saar);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SAARI));
register_name = "SAARI";
break;
case 7:
CP0_CHECK(ctx->saar);
gen_helper_mfc0_saar(arg, cpu_env);
register_name = "SAAR";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_10:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EntryHi));
tcg_gen_ext32s_tl(arg, arg);
register_name = "EntryHi";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_11:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Compare));
register_name = "Compare";
break;
/* 6,7 are implementation dependent */
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_12:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Status));
register_name = "Status";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_IntCtl));
register_name = "IntCtl";
break;
case 2:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSCtl));
register_name = "SRSCtl";
break;
case 3:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSMap));
register_name = "SRSMap";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_13:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Cause));
register_name = "Cause";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_14:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EPC));
tcg_gen_ext32s_tl(arg, arg);
register_name = "EPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_15:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PRid));
register_name = "PRid";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EBase));
tcg_gen_ext32s_tl(arg, arg);
register_name = "EBase";
break;
case 3:
check_insn(ctx, ISA_MIPS32R2);
CP0_CHECK(ctx->cmgcr);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_CMGCRBase));
tcg_gen_ext32s_tl(arg, arg);
register_name = "CMGCRBase";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_16:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config0));
register_name = "Config";
break;
case 1:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config1));
register_name = "Config1";
break;
case 2:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config2));
register_name = "Config2";
break;
case 3:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config3));
register_name = "Config3";
break;
case 4:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config4));
register_name = "Config4";
break;
case 5:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config5));
register_name = "Config5";
break;
/* 6,7 are implementation dependent */
case 6:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config6));
register_name = "Config6";
break;
case 7:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config7));
register_name = "Config7";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_17:
switch (sel) {
case 0:
gen_helper_mfc0_lladdr(arg, cpu_env);
register_name = "LLAddr";
break;
case 1:
CP0_CHECK(ctx->mrp);
gen_helper_mfc0_maar(arg, cpu_env);
register_name = "MAAR";
break;
case 2:
CP0_CHECK(ctx->mrp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_MAARI));
register_name = "MAARI";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_18:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR));
gen_helper_1e0i(mfc0_watchlo, arg, sel);
register_name = "WatchLo";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_19:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR));
gen_helper_1e0i(mfc0_watchhi, arg, sel);
register_name = "WatchHi";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_20:
switch (sel) {
case 0:
#if defined(TARGET_MIPS64)
check_insn(ctx, ISA_MIPS3);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_XContext));
tcg_gen_ext32s_tl(arg, arg);
register_name = "XContext";
break;
#endif
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_21:
/* Officially reserved, but sel 0 is used for R1x000 framemask */
CP0_CHECK(!(ctx->insn_flags & ISA_MIPS32R6));
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Framemask));
register_name = "Framemask";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_22:
tcg_gen_movi_tl(arg, 0); /* unimplemented */
register_name = "'Diagnostic"; /* implementation dependent */
break;
case CP0_REGISTER_23:
switch (sel) {
case 0:
gen_helper_mfc0_debug(arg, cpu_env); /* EJTAG support */
register_name = "Debug";
break;
case 1:
// gen_helper_mfc0_tracecontrol(arg); /* PDtrace support */
register_name = "TraceControl";
goto cp0_unimplemented;
case 2:
// gen_helper_mfc0_tracecontrol2(arg); /* PDtrace support */
register_name = "TraceControl2";
goto cp0_unimplemented;
case 3:
// gen_helper_mfc0_usertracedata(arg); /* PDtrace support */
register_name = "UserTraceData";
goto cp0_unimplemented;
case 4:
// gen_helper_mfc0_tracebpc(arg); /* PDtrace support */
register_name = "TraceBPC";
goto cp0_unimplemented;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_24:
switch (sel) {
case 0:
/* EJTAG support */
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_DEPC));
tcg_gen_ext32s_tl(arg, arg);
register_name = "DEPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_25:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Performance0));
register_name = "Performance0";
break;
case 1:
/* gen_helper_mfc0_performance1(arg); */
register_name = "Performance1";
goto cp0_unimplemented;
case 2:
/* gen_helper_mfc0_performance2(arg); */
register_name = "Performance2";
goto cp0_unimplemented;
case 3:
/* gen_helper_mfc0_performance3(arg); */
register_name = "Performance3";
goto cp0_unimplemented;
case 4:
/* gen_helper_mfc0_performance4(arg); */
register_name = "Performance4";
goto cp0_unimplemented;
case 5:
/* gen_helper_mfc0_performance5(arg); */
register_name = "Performance5";
goto cp0_unimplemented;
case 6:
/* gen_helper_mfc0_performance6(arg); */
register_name = "Performance6";
goto cp0_unimplemented;
case 7:
/* gen_helper_mfc0_performance7(arg); */
register_name = "Performance7";
goto cp0_unimplemented;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_26:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_ErrCtl));
register_name = "ErrCtl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_27:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
tcg_gen_movi_tl(arg, 0); /* unimplemented */
register_name = "CacheErr";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_28:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
{
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_ld_i64(tmp, cpu_env, offsetof(CPUMIPSState, CP0_TagLo));
gen_move_low32(arg, tmp);
tcg_temp_free_i64(tmp);
}
register_name = "TagLo";
break;
case 1:
case 3:
case 5:
case 7:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DataLo));
register_name = "DataLo";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_29:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_TagHi));
register_name = "TagHi";
break;
case 1:
case 3:
case 5:
case 7:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DataHi));
register_name = "DataHi";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_30:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_ErrorEPC));
tcg_gen_ext32s_tl(arg, arg);
register_name = "ErrorEPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_31:
switch (sel) {
case 0:
/* EJTAG support */
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DESAVE));
register_name = "DESAVE";
break;
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->kscrexist & (1 << sel));
tcg_gen_ld_tl(arg, cpu_env,
offsetof(CPUMIPSState, CP0_KScratch[sel-2]));
tcg_gen_ext32s_tl(arg, arg);
register_name = "KScratch";
break;
default:
goto cp0_unimplemented;
}
break;
default:
goto cp0_unimplemented;
}
trace_mips_translate_c0("mfc0", register_name, reg, sel);
return;
cp0_unimplemented:
qemu_log_mask(LOG_UNIMP, "mfc0 %s (reg %d sel %d)\n",
register_name, reg, sel);
gen_mfc0_unimplemented(ctx, arg);
}
static void gen_mtc0(DisasContext *ctx, TCGv arg, int reg, int sel)
{
const char *register_name = "invalid";
if (sel != 0) {
check_insn(ctx, ISA_MIPS32);
}
if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) {
gen_io_start();
}
switch (reg) {
case CP0_REGISTER_00:
switch (sel) {
case 0:
gen_helper_mtc0_index(cpu_env, arg);
register_name = "Index";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_mvpcontrol(cpu_env, arg);
register_name = "MVPControl";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
/* ignored */
register_name = "MVPConf0";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
/* ignored */
register_name = "MVPConf1";
break;
case 4:
CP0_CHECK(ctx->vp);
/* ignored */
register_name = "VPControl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_01:
switch (sel) {
case 0:
/* ignored */
register_name = "Random";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_vpecontrol(cpu_env, arg);
register_name = "VPEControl";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_vpeconf0(cpu_env, arg);
register_name = "VPEConf0";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_vpeconf1(cpu_env, arg);
register_name = "VPEConf1";
break;
case 4:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_yqmask(cpu_env, arg);
register_name = "YQMask";
break;
case 5:
CP0_CHECK(ctx->insn_flags & ASE_MT);
tcg_gen_st_tl(arg, cpu_env,
offsetof(CPUMIPSState, CP0_VPESchedule));
register_name = "VPESchedule";
break;
case 6:
CP0_CHECK(ctx->insn_flags & ASE_MT);
tcg_gen_st_tl(arg, cpu_env,
offsetof(CPUMIPSState, CP0_VPEScheFBack));
register_name = "VPEScheFBack";
break;
case 7:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_vpeopt(cpu_env, arg);
register_name = "VPEOpt";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_02:
switch (sel) {
case 0:
gen_helper_mtc0_entrylo0(cpu_env, arg);
register_name = "EntryLo0";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tcstatus(cpu_env, arg);
register_name = "TCStatus";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tcbind(cpu_env, arg);
register_name = "TCBind";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tcrestart(cpu_env, arg);
register_name = "TCRestart";
break;
case 4:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tchalt(cpu_env, arg);
register_name = "TCHalt";
break;
case 5:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tccontext(cpu_env, arg);
register_name = "TCContext";
break;
case 6:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tcschedule(cpu_env, arg);
register_name = "TCSchedule";
break;
case 7:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tcschefback(cpu_env, arg);
register_name = "TCScheFBack";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_03:
switch (sel) {
case 0:
gen_helper_mtc0_entrylo1(cpu_env, arg);
register_name = "EntryLo1";
break;
case 1:
CP0_CHECK(ctx->vp);
/* ignored */
register_name = "GlobalNumber";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_04:
switch (sel) {
case 0:
gen_helper_mtc0_context(cpu_env, arg);
register_name = "Context";
break;
case 1:
// gen_helper_mtc0_contextconfig(cpu_env, arg); /* SmartMIPS ASE */
register_name = "ContextConfig";
goto cp0_unimplemented;
case 2:
CP0_CHECK(ctx->ulri);
tcg_gen_st_tl(arg, cpu_env,
offsetof(CPUMIPSState, active_tc.CP0_UserLocal));
register_name = "UserLocal";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_05:
switch (sel) {
case 0:
gen_helper_mtc0_pagemask(cpu_env, arg);
register_name = "PageMask";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_pagegrain(cpu_env, arg);
register_name = "PageGrain";
ctx->base.is_jmp = DISAS_STOP;
break;
case 2:
CP0_CHECK(ctx->sc);
gen_helper_mtc0_segctl0(cpu_env, arg);
register_name = "SegCtl0";
break;
case 3:
CP0_CHECK(ctx->sc);
gen_helper_mtc0_segctl1(cpu_env, arg);
register_name = "SegCtl1";
break;
case 4:
CP0_CHECK(ctx->sc);
gen_helper_mtc0_segctl2(cpu_env, arg);
register_name = "SegCtl2";
break;
case 5:
check_pw(ctx);
gen_mtc0_store32(arg, offsetof(CPUMIPSState, CP0_PWBase));
register_name = "PWBase";
break;
case 6:
check_pw(ctx);
gen_helper_mtc0_pwfield(cpu_env, arg);
register_name = "PWField";
break;
case 7:
check_pw(ctx);
gen_helper_mtc0_pwsize(cpu_env, arg);
register_name = "PWSize";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_06:
switch (sel) {
case 0:
gen_helper_mtc0_wired(cpu_env, arg);
register_name = "Wired";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsconf0(cpu_env, arg);
register_name = "SRSConf0";
break;
case 2:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsconf1(cpu_env, arg);
register_name = "SRSConf1";
break;
case 3:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsconf2(cpu_env, arg);
register_name = "SRSConf2";
break;
case 4:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsconf3(cpu_env, arg);
register_name = "SRSConf3";
break;
case 5:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsconf4(cpu_env, arg);
register_name = "SRSConf4";
break;
case 6:
check_pw(ctx);
gen_helper_mtc0_pwctl(cpu_env, arg);
register_name = "PWCtl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_07:
switch (sel) {
case 0:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_hwrena(cpu_env, arg);
ctx->base.is_jmp = DISAS_STOP;
register_name = "HWREna";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_08:
switch (sel) {
case 0:
/* ignored */
register_name = "BadVAddr";
break;
case 1:
/* ignored */
register_name = "BadInstr";
break;
case 2:
/* ignored */
register_name = "BadInstrP";
break;
case 3:
/* ignored */
register_name = "BadInstrX";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_09:
switch (sel) {
case 0:
gen_helper_mtc0_count(cpu_env, arg);
register_name = "Count";
break;
case 6:
CP0_CHECK(ctx->saar);
gen_helper_mtc0_saari(cpu_env, arg);
register_name = "SAARI";
break;
case 7:
CP0_CHECK(ctx->saar);
gen_helper_mtc0_saar(cpu_env, arg);
register_name = "SAAR";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_10:
switch (sel) {
case 0:
gen_helper_mtc0_entryhi(cpu_env, arg);
register_name = "EntryHi";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_11:
switch (sel) {
case 0:
gen_helper_mtc0_compare(cpu_env, arg);
register_name = "Compare";
break;
/* 6,7 are implementation dependent */
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_12:
switch (sel) {
case 0:
save_cpu_state(ctx, 1);
gen_helper_mtc0_status(cpu_env, arg);
/* DISAS_STOP isn't good enough here, hflags may have changed. */
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
register_name = "Status";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_intctl(cpu_env, arg);
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
register_name = "IntCtl";
break;
case 2:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsctl(cpu_env, arg);
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
register_name = "SRSCtl";
break;
case 3:
check_insn(ctx, ISA_MIPS32R2);
gen_mtc0_store32(arg, offsetof(CPUMIPSState, CP0_SRSMap));
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
register_name = "SRSMap";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_13:
switch (sel) {
case 0:
save_cpu_state(ctx, 1);
gen_helper_mtc0_cause(cpu_env, arg);
/*
* Stop translation as we may have triggered an interrupt.
* DISAS_STOP isn't sufficient, we need to ensure we break out of
* translated code to check for pending interrupts.
*/
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
register_name = "Cause";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_14:
switch (sel) {
case 0:
tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EPC));
register_name = "EPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_15:
switch (sel) {
case 0:
/* ignored */
register_name = "PRid";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_ebase(cpu_env, arg);
register_name = "EBase";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_16:
switch (sel) {
case 0:
gen_helper_mtc0_config0(cpu_env, arg);
register_name = "Config";
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
break;
case 1:
/* ignored, read only */
register_name = "Config1";
break;
case 2:
gen_helper_mtc0_config2(cpu_env, arg);
register_name = "Config2";
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
break;
case 3:
gen_helper_mtc0_config3(cpu_env, arg);
register_name = "Config3";
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
break;
case 4:
gen_helper_mtc0_config4(cpu_env, arg);
register_name = "Config4";
ctx->base.is_jmp = DISAS_STOP;
break;
case 5:
gen_helper_mtc0_config5(cpu_env, arg);
register_name = "Config5";
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
break;
/* 6,7 are implementation dependent */
case 6:
/* ignored */
register_name = "Config6";
break;
case 7:
/* ignored */
register_name = "Config7";
break;
default:
register_name = "Invalid config selector";
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_17:
switch (sel) {
case 0:
gen_helper_mtc0_lladdr(cpu_env, arg);
register_name = "LLAddr";
break;
case 1:
CP0_CHECK(ctx->mrp);
gen_helper_mtc0_maar(cpu_env, arg);
register_name = "MAAR";
break;
case 2:
CP0_CHECK(ctx->mrp);
gen_helper_mtc0_maari(cpu_env, arg);
register_name = "MAARI";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_18:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR));
gen_helper_0e1i(mtc0_watchlo, arg, sel);
register_name = "WatchLo";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_19:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR));
gen_helper_0e1i(mtc0_watchhi, arg, sel);
register_name = "WatchHi";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_20:
switch (sel) {
case 0:
#if defined(TARGET_MIPS64)
check_insn(ctx, ISA_MIPS3);
gen_helper_mtc0_xcontext(cpu_env, arg);
register_name = "XContext";
break;
#endif
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_21:
/* Officially reserved, but sel 0 is used for R1x000 framemask */
CP0_CHECK(!(ctx->insn_flags & ISA_MIPS32R6));
switch (sel) {
case 0:
gen_helper_mtc0_framemask(cpu_env, arg);
register_name = "Framemask";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_22:
/* ignored */
register_name = "Diagnostic"; /* implementation dependent */
break;
case CP0_REGISTER_23:
switch (sel) {
case 0:
gen_helper_mtc0_debug(cpu_env, arg); /* EJTAG support */
/* DISAS_STOP isn't good enough here, hflags may have changed. */
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
register_name = "Debug";
break;
case 1:
// gen_helper_mtc0_tracecontrol(cpu_env, arg); /* PDtrace support */
register_name = "TraceControl";
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
goto cp0_unimplemented;
case 2:
// gen_helper_mtc0_tracecontrol2(cpu_env, arg); /* PDtrace support */
register_name = "TraceControl2";
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
goto cp0_unimplemented;
case 3:
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
// gen_helper_mtc0_usertracedata(cpu_env, arg); /* PDtrace support */
register_name = "UserTraceData";
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
goto cp0_unimplemented;
case 4:
// gen_helper_mtc0_tracebpc(cpu_env, arg); /* PDtrace support */
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
register_name = "TraceBPC";
goto cp0_unimplemented;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_24:
switch (sel) {
case 0:
/* EJTAG support */
tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_DEPC));
register_name = "DEPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_25:
switch (sel) {
case 0:
gen_helper_mtc0_performance0(cpu_env, arg);
register_name = "Performance0";
break;
case 1:
/* gen_helper_mtc0_performance1(arg); */
register_name = "Performance1";
goto cp0_unimplemented;
case 2:
/* gen_helper_mtc0_performance2(arg); */
register_name = "Performance2";
goto cp0_unimplemented;
case 3:
/* gen_helper_mtc0_performance3(arg); */
register_name = "Performance3";
goto cp0_unimplemented;
case 4:
/* gen_helper_mtc0_performance4(arg); */
register_name = "Performance4";
goto cp0_unimplemented;
case 5:
/* gen_helper_mtc0_performance5(arg); */
register_name = "Performance5";
goto cp0_unimplemented;
case 6:
/* gen_helper_mtc0_performance6(arg); */
register_name = "Performance6";
goto cp0_unimplemented;
case 7:
/* gen_helper_mtc0_performance7(arg); */
register_name = "Performance7";
goto cp0_unimplemented;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_26:
switch (sel) {
case 0:
gen_helper_mtc0_errctl(cpu_env, arg);
ctx->base.is_jmp = DISAS_STOP;
register_name = "ErrCtl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_27:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
/* ignored */
register_name = "CacheErr";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_28:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
gen_helper_mtc0_taglo(cpu_env, arg);
register_name = "TagLo";
break;
case 1:
case 3:
case 5:
case 7:
gen_helper_mtc0_datalo(cpu_env, arg);
register_name = "DataLo";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_29:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
gen_helper_mtc0_taghi(cpu_env, arg);
register_name = "TagHi";
break;
case 1:
case 3:
case 5:
case 7:
gen_helper_mtc0_datahi(cpu_env, arg);
register_name = "DataHi";
break;
default:
register_name = "invalid sel";
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_30:
switch (sel) {
case 0:
tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_ErrorEPC));
register_name = "ErrorEPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_31:
switch (sel) {
case 0:
/* EJTAG support */
gen_mtc0_store32(arg, offsetof(CPUMIPSState, CP0_DESAVE));
register_name = "DESAVE";
break;
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->kscrexist & (1 << sel));
tcg_gen_st_tl(arg, cpu_env,
offsetof(CPUMIPSState, CP0_KScratch[sel-2]));
register_name = "KScratch";
break;
default:
goto cp0_unimplemented;
}
break;
default:
goto cp0_unimplemented;
}
trace_mips_translate_c0("mtc0", register_name, reg, sel);
/* For simplicity assume that all writes can cause interrupts. */
if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) {
gen_io_end();
/*
* DISAS_STOP isn't sufficient, we need to ensure we break out of
* translated code to check for pending interrupts.
*/
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
}
return;
cp0_unimplemented:
qemu_log_mask(LOG_UNIMP, "mtc0 %s (reg %d sel %d)\n",
register_name, reg, sel);
}
#if defined(TARGET_MIPS64)
static void gen_dmfc0(DisasContext *ctx, TCGv arg, int reg, int sel)
{
const char *register_name = "invalid";
if (sel != 0) {
check_insn(ctx, ISA_MIPS64);
}
switch (reg) {
case CP0_REGISTER_00:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Index));
register_name = "Index";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_mvpcontrol(arg, cpu_env);
register_name = "MVPControl";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_mvpconf0(arg, cpu_env);
register_name = "MVPConf0";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_mvpconf1(arg, cpu_env);
register_name = "MVPConf1";
break;
case 4:
CP0_CHECK(ctx->vp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPControl));
register_name = "VPControl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_01:
switch (sel) {
case 0:
CP0_CHECK(!(ctx->insn_flags & ISA_MIPS32R6));
gen_helper_mfc0_random(arg, cpu_env);
register_name = "Random";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEControl));
register_name = "VPEControl";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEConf0));
register_name = "VPEConf0";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEConf1));
register_name = "VPEConf1";
break;
case 4:
CP0_CHECK(ctx->insn_flags & ASE_MT);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_YQMask));
register_name = "YQMask";
break;
case 5:
CP0_CHECK(ctx->insn_flags & ASE_MT);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPESchedule));
register_name = "VPESchedule";
break;
case 6:
CP0_CHECK(ctx->insn_flags & ASE_MT);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPEScheFBack));
register_name = "VPEScheFBack";
break;
case 7:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEOpt));
register_name = "VPEOpt";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_02:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EntryLo0));
register_name = "EntryLo0";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_tcstatus(arg, cpu_env);
register_name = "TCStatus";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_tcbind(arg, cpu_env);
register_name = "TCBind";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_dmfc0_tcrestart(arg, cpu_env);
register_name = "TCRestart";
break;
case 4:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_dmfc0_tchalt(arg, cpu_env);
register_name = "TCHalt";
break;
case 5:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_dmfc0_tccontext(arg, cpu_env);
register_name = "TCContext";
break;
case 6:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_dmfc0_tcschedule(arg, cpu_env);
register_name = "TCSchedule";
break;
case 7:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_dmfc0_tcschefback(arg, cpu_env);
register_name = "TCScheFBack";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_03:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EntryLo1));
register_name = "EntryLo1";
break;
case 1:
CP0_CHECK(ctx->vp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_GlobalNumber));
register_name = "GlobalNumber";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_04:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_Context));
register_name = "Context";
break;
case 1:
// gen_helper_dmfc0_contextconfig(arg); /* SmartMIPS ASE */
register_name = "ContextConfig";
goto cp0_unimplemented;
case 2:
CP0_CHECK(ctx->ulri);
tcg_gen_ld_tl(arg, cpu_env,
offsetof(CPUMIPSState, active_tc.CP0_UserLocal));
register_name = "UserLocal";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_05:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PageMask));
register_name = "PageMask";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PageGrain));
register_name = "PageGrain";
break;
case 2:
CP0_CHECK(ctx->sc);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl0));
register_name = "SegCtl0";
break;
case 3:
CP0_CHECK(ctx->sc);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl1));
register_name = "SegCtl1";
break;
case 4:
CP0_CHECK(ctx->sc);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl2));
register_name = "SegCtl2";
break;
case 5:
check_pw(ctx);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_PWBase));
register_name = "PWBase";
break;
case 6:
check_pw(ctx);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_PWField));
register_name = "PWField";
break;
case 7:
check_pw(ctx);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_PWSize));
register_name = "PWSize";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_06:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Wired));
register_name = "Wired";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf0));
register_name = "SRSConf0";
break;
case 2:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf1));
register_name = "SRSConf1";
break;
case 3:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf2));
register_name = "SRSConf2";
break;
case 4:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf3));
register_name = "SRSConf3";
break;
case 5:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf4));
register_name = "SRSConf4";
break;
case 6:
check_pw(ctx);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PWCtl));
register_name = "PWCtl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_07:
switch (sel) {
case 0:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_HWREna));
register_name = "HWREna";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_08:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_BadVAddr));
register_name = "BadVAddr";
break;
case 1:
CP0_CHECK(ctx->bi);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstr));
register_name = "BadInstr";
break;
case 2:
CP0_CHECK(ctx->bp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstrP));
register_name = "BadInstrP";
break;
case 3:
CP0_CHECK(ctx->bi);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstrX));
tcg_gen_andi_tl(arg, arg, ~0xffff);
register_name = "BadInstrX";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_09:
switch (sel) {
case 0:
/* Mark as an IO operation because we read the time. */
if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) {
gen_io_start();
}
gen_helper_mfc0_count(arg, cpu_env);
if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) {
gen_io_end();
}
/*
* Break the TB to be able to take timer interrupts immediately
* after reading count. DISAS_STOP isn't sufficient, we need to
* ensure we break completely out of translated code.
*/
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
register_name = "Count";
break;
case 6:
CP0_CHECK(ctx->saar);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SAARI));
register_name = "SAARI";
break;
case 7:
CP0_CHECK(ctx->saar);
gen_helper_dmfc0_saar(arg, cpu_env);
register_name = "SAAR";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_10:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EntryHi));
register_name = "EntryHi";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_11:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Compare));
register_name = "Compare";
break;
/* 6,7 are implementation dependent */
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_12:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Status));
register_name = "Status";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_IntCtl));
register_name = "IntCtl";
break;
case 2:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSCtl));
register_name = "SRSCtl";
break;
case 3:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSMap));
register_name = "SRSMap";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_13:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Cause));
register_name = "Cause";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_14:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EPC));
register_name = "EPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_15:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PRid));
register_name = "PRid";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EBase));
register_name = "EBase";
break;
case 3:
check_insn(ctx, ISA_MIPS32R2);
CP0_CHECK(ctx->cmgcr);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_CMGCRBase));
register_name = "CMGCRBase";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_16:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config0));
register_name = "Config";
break;
case 1:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config1));
register_name = "Config1";
break;
case 2:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config2));
register_name = "Config2";
break;
case 3:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config3));
register_name = "Config3";
break;
case 4:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config4));
register_name = "Config4";
break;
case 5:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config5));
register_name = "Config5";
break;
/* 6,7 are implementation dependent */
case 6:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config6));
register_name = "Config6";
break;
case 7:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config7));
register_name = "Config7";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_17:
switch (sel) {
case 0:
gen_helper_dmfc0_lladdr(arg, cpu_env);
register_name = "LLAddr";
break;
case 1:
CP0_CHECK(ctx->mrp);
gen_helper_dmfc0_maar(arg, cpu_env);
register_name = "MAAR";
break;
case 2:
CP0_CHECK(ctx->mrp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_MAARI));
register_name = "MAARI";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_18:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR));
gen_helper_1e0i(dmfc0_watchlo, arg, sel);
register_name = "WatchLo";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_19:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR));
gen_helper_1e0i(mfc0_watchhi, arg, sel);
register_name = "WatchHi";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_20:
switch (sel) {
case 0:
check_insn(ctx, ISA_MIPS3);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_XContext));
register_name = "XContext";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_21:
/* Officially reserved, but sel 0 is used for R1x000 framemask */
CP0_CHECK(!(ctx->insn_flags & ISA_MIPS32R6));
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Framemask));
register_name = "Framemask";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_22:
tcg_gen_movi_tl(arg, 0); /* unimplemented */
register_name = "'Diagnostic"; /* implementation dependent */
break;
case CP0_REGISTER_23:
switch (sel) {
case 0:
gen_helper_mfc0_debug(arg, cpu_env); /* EJTAG support */
register_name = "Debug";
break;
case 1:
// gen_helper_dmfc0_tracecontrol(arg, cpu_env); /* PDtrace support */
register_name = "TraceControl";
goto cp0_unimplemented;
case 2:
// gen_helper_dmfc0_tracecontrol2(arg, cpu_env); /* PDtrace support */
register_name = "TraceControl2";
goto cp0_unimplemented;
case 3:
// gen_helper_dmfc0_usertracedata(arg, cpu_env); /* PDtrace support */
register_name = "UserTraceData";
goto cp0_unimplemented;
case 4:
// gen_helper_dmfc0_tracebpc(arg, cpu_env); /* PDtrace support */
register_name = "TraceBPC";
goto cp0_unimplemented;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_24:
switch (sel) {
case 0:
/* EJTAG support */
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_DEPC));
register_name = "DEPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_25:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Performance0));
register_name = "Performance0";
break;
case 1:
/* gen_helper_dmfc0_performance1(arg); */
register_name = "Performance1";
goto cp0_unimplemented;
case 2:
/* gen_helper_dmfc0_performance2(arg); */
register_name = "Performance2";
goto cp0_unimplemented;
case 3:
/* gen_helper_dmfc0_performance3(arg); */
register_name = "Performance3";
goto cp0_unimplemented;
case 4:
/* gen_helper_dmfc0_performance4(arg); */
register_name = "Performance4";
goto cp0_unimplemented;
case 5:
/* gen_helper_dmfc0_performance5(arg); */
register_name = "Performance5";
goto cp0_unimplemented;
case 6:
/* gen_helper_dmfc0_performance6(arg); */
register_name = "Performance6";
goto cp0_unimplemented;
case 7:
/* gen_helper_dmfc0_performance7(arg); */
register_name = "Performance7";
goto cp0_unimplemented;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_26:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_ErrCtl));
register_name = "ErrCtl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_27:
switch (sel) {
/* ignored */
case 0:
case 1:
case 2:
case 3:
tcg_gen_movi_tl(arg, 0); /* unimplemented */
register_name = "CacheErr";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_28:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_TagLo));
register_name = "TagLo";
break;
case 1:
case 3:
case 5:
case 7:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DataLo));
register_name = "DataLo";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_29:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_TagHi));
register_name = "TagHi";
break;
case 1:
case 3:
case 5:
case 7:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DataHi));
register_name = "DataHi";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_30:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_ErrorEPC));
register_name = "ErrorEPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_31:
switch (sel) {
case 0:
/* EJTAG support */
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DESAVE));
register_name = "DESAVE";
break;
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->kscrexist & (1 << sel));
tcg_gen_ld_tl(arg, cpu_env,
offsetof(CPUMIPSState, CP0_KScratch[sel-2]));
register_name = "KScratch";
break;
default:
goto cp0_unimplemented;
}
break;
default:
goto cp0_unimplemented;
}
trace_mips_translate_c0("dmfc0", register_name, reg, sel);
return;
cp0_unimplemented:
qemu_log_mask(LOG_UNIMP, "dmfc0 %s (reg %d sel %d)\n",
register_name, reg, sel);
gen_mfc0_unimplemented(ctx, arg);
}
static void gen_dmtc0(DisasContext *ctx, TCGv arg, int reg, int sel)
{
const char *register_name = "invalid";
if (sel != 0) {
check_insn(ctx, ISA_MIPS64);
}
if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) {
gen_io_start();
}
switch (reg) {
case CP0_REGISTER_00:
switch (sel) {
case 0:
gen_helper_mtc0_index(cpu_env, arg);
register_name = "Index";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_mvpcontrol(cpu_env, arg);
register_name = "MVPControl";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
/* ignored */
register_name = "MVPConf0";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
/* ignored */
register_name = "MVPConf1";
break;
case 4:
CP0_CHECK(ctx->vp);
/* ignored */
register_name = "VPControl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_01:
switch (sel) {
case 0:
/* ignored */
register_name = "Random";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_vpecontrol(cpu_env, arg);
register_name = "VPEControl";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_vpeconf0(cpu_env, arg);
register_name = "VPEConf0";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_vpeconf1(cpu_env, arg);
register_name = "VPEConf1";
break;
case 4:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_yqmask(cpu_env, arg);
register_name = "YQMask";
break;
case 5:
CP0_CHECK(ctx->insn_flags & ASE_MT);
tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPESchedule));
register_name = "VPESchedule";
break;
case 6:
CP0_CHECK(ctx->insn_flags & ASE_MT);
tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPEScheFBack));
register_name = "VPEScheFBack";
break;
case 7:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_vpeopt(cpu_env, arg);
register_name = "VPEOpt";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_02:
switch (sel) {
case 0:
gen_helper_dmtc0_entrylo0(cpu_env, arg);
register_name = "EntryLo0";
break;
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tcstatus(cpu_env, arg);
register_name = "TCStatus";
break;
case 2:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tcbind(cpu_env, arg);
register_name = "TCBind";
break;
case 3:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tcrestart(cpu_env, arg);
register_name = "TCRestart";
break;
case 4:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tchalt(cpu_env, arg);
register_name = "TCHalt";
break;
case 5:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tccontext(cpu_env, arg);
register_name = "TCContext";
break;
case 6:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tcschedule(cpu_env, arg);
register_name = "TCSchedule";
break;
case 7:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mtc0_tcschefback(cpu_env, arg);
register_name = "TCScheFBack";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_03:
switch (sel) {
case 0:
gen_helper_dmtc0_entrylo1(cpu_env, arg);
register_name = "EntryLo1";
break;
case 1:
CP0_CHECK(ctx->vp);
/* ignored */
register_name = "GlobalNumber";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_04:
switch (sel) {
case 0:
gen_helper_mtc0_context(cpu_env, arg);
register_name = "Context";
break;
case 1:
// gen_helper_mtc0_contextconfig(cpu_env, arg); /* SmartMIPS ASE */
register_name = "ContextConfig";
goto cp0_unimplemented;
case 2:
CP0_CHECK(ctx->ulri);
tcg_gen_st_tl(arg, cpu_env,
offsetof(CPUMIPSState, active_tc.CP0_UserLocal));
register_name = "UserLocal";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_05:
switch (sel) {
case 0:
gen_helper_mtc0_pagemask(cpu_env, arg);
register_name = "PageMask";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_pagegrain(cpu_env, arg);
register_name = "PageGrain";
break;
case 2:
CP0_CHECK(ctx->sc);
gen_helper_mtc0_segctl0(cpu_env, arg);
register_name = "SegCtl0";
break;
case 3:
CP0_CHECK(ctx->sc);
gen_helper_mtc0_segctl1(cpu_env, arg);
register_name = "SegCtl1";
break;
case 4:
CP0_CHECK(ctx->sc);
gen_helper_mtc0_segctl2(cpu_env, arg);
register_name = "SegCtl2";
break;
case 5:
check_pw(ctx);
tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_PWBase));
register_name = "PWBase";
break;
case 6:
check_pw(ctx);
gen_helper_mtc0_pwfield(cpu_env, arg);
register_name = "PWField";
break;
case 7:
check_pw(ctx);
gen_helper_mtc0_pwsize(cpu_env, arg);
register_name = "PWSize";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_06:
switch (sel) {
case 0:
gen_helper_mtc0_wired(cpu_env, arg);
register_name = "Wired";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsconf0(cpu_env, arg);
register_name = "SRSConf0";
break;
case 2:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsconf1(cpu_env, arg);
register_name = "SRSConf1";
break;
case 3:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsconf2(cpu_env, arg);
register_name = "SRSConf2";
break;
case 4:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsconf3(cpu_env, arg);
register_name = "SRSConf3";
break;
case 5:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsconf4(cpu_env, arg);
register_name = "SRSConf4";
break;
case 6:
check_pw(ctx);
gen_helper_mtc0_pwctl(cpu_env, arg);
register_name = "PWCtl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_07:
switch (sel) {
case 0:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_hwrena(cpu_env, arg);
ctx->base.is_jmp = DISAS_STOP;
register_name = "HWREna";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_08:
switch (sel) {
case 0:
/* ignored */
register_name = "BadVAddr";
break;
case 1:
/* ignored */
register_name = "BadInstr";
break;
case 2:
/* ignored */
register_name = "BadInstrP";
break;
case 3:
/* ignored */
register_name = "BadInstrX";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_09:
switch (sel) {
case 0:
gen_helper_mtc0_count(cpu_env, arg);
register_name = "Count";
break;
case 6:
CP0_CHECK(ctx->saar);
gen_helper_mtc0_saari(cpu_env, arg);
register_name = "SAARI";
break;
case 7:
CP0_CHECK(ctx->saar);
gen_helper_mtc0_saar(cpu_env, arg);
register_name = "SAAR";
break;
default:
goto cp0_unimplemented;
}
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
break;
case CP0_REGISTER_10:
switch (sel) {
case 0:
gen_helper_mtc0_entryhi(cpu_env, arg);
register_name = "EntryHi";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_11:
switch (sel) {
case 0:
gen_helper_mtc0_compare(cpu_env, arg);
register_name = "Compare";
break;
/* 6,7 are implementation dependent */
default:
goto cp0_unimplemented;
}
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
break;
case CP0_REGISTER_12:
switch (sel) {
case 0:
save_cpu_state(ctx, 1);
gen_helper_mtc0_status(cpu_env, arg);
/* DISAS_STOP isn't good enough here, hflags may have changed. */
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
register_name = "Status";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_intctl(cpu_env, arg);
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
register_name = "IntCtl";
break;
case 2:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_srsctl(cpu_env, arg);
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
register_name = "SRSCtl";
break;
case 3:
check_insn(ctx, ISA_MIPS32R2);
gen_mtc0_store32(arg, offsetof(CPUMIPSState, CP0_SRSMap));
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
register_name = "SRSMap";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_13:
switch (sel) {
case 0:
save_cpu_state(ctx, 1);
gen_helper_mtc0_cause(cpu_env, arg);
/*
* Stop translation as we may have triggered an interrupt.
* DISAS_STOP isn't sufficient, we need to ensure we break out of
* translated code to check for pending interrupts.
*/
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
register_name = "Cause";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_14:
switch (sel) {
case 0:
tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EPC));
register_name = "EPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_15:
switch (sel) {
case 0:
/* ignored */
register_name = "PRid";
break;
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_helper_mtc0_ebase(cpu_env, arg);
register_name = "EBase";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_16:
switch (sel) {
case 0:
gen_helper_mtc0_config0(cpu_env, arg);
register_name = "Config";
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
break;
case 1:
/* ignored, read only */
register_name = "Config1";
break;
case 2:
gen_helper_mtc0_config2(cpu_env, arg);
register_name = "Config2";
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
break;
case 3:
gen_helper_mtc0_config3(cpu_env, arg);
register_name = "Config3";
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
break;
case 4:
/* currently ignored */
register_name = "Config4";
break;
case 5:
gen_helper_mtc0_config5(cpu_env, arg);
register_name = "Config5";
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
break;
/* 6,7 are implementation dependent */
default:
register_name = "Invalid config selector";
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_17:
switch (sel) {
case 0:
gen_helper_mtc0_lladdr(cpu_env, arg);
register_name = "LLAddr";
break;
case 1:
CP0_CHECK(ctx->mrp);
gen_helper_mtc0_maar(cpu_env, arg);
register_name = "MAAR";
break;
case 2:
CP0_CHECK(ctx->mrp);
gen_helper_mtc0_maari(cpu_env, arg);
register_name = "MAARI";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_18:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR));
gen_helper_0e1i(mtc0_watchlo, arg, sel);
register_name = "WatchLo";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_19:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR));
gen_helper_0e1i(mtc0_watchhi, arg, sel);
register_name = "WatchHi";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_20:
switch (sel) {
case 0:
check_insn(ctx, ISA_MIPS3);
gen_helper_mtc0_xcontext(cpu_env, arg);
register_name = "XContext";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_21:
/* Officially reserved, but sel 0 is used for R1x000 framemask */
CP0_CHECK(!(ctx->insn_flags & ISA_MIPS32R6));
switch (sel) {
case 0:
gen_helper_mtc0_framemask(cpu_env, arg);
register_name = "Framemask";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_22:
/* ignored */
register_name = "Diagnostic"; /* implementation dependent */
break;
case CP0_REGISTER_23:
switch (sel) {
case 0:
gen_helper_mtc0_debug(cpu_env, arg); /* EJTAG support */
/* DISAS_STOP isn't good enough here, hflags may have changed. */
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
register_name = "Debug";
break;
case 1:
// gen_helper_mtc0_tracecontrol(cpu_env, arg); /* PDtrace support */
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
register_name = "TraceControl";
goto cp0_unimplemented;
case 2:
// gen_helper_mtc0_tracecontrol2(cpu_env, arg); /* PDtrace support */
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
register_name = "TraceControl2";
goto cp0_unimplemented;
case 3:
// gen_helper_mtc0_usertracedata(cpu_env, arg); /* PDtrace support */
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
register_name = "UserTraceData";
goto cp0_unimplemented;
case 4:
// gen_helper_mtc0_tracebpc(cpu_env, arg); /* PDtrace support */
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
register_name = "TraceBPC";
goto cp0_unimplemented;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_24:
switch (sel) {
case 0:
/* EJTAG support */
tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_DEPC));
register_name = "DEPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_25:
switch (sel) {
case 0:
gen_helper_mtc0_performance0(cpu_env, arg);
register_name = "Performance0";
break;
case 1:
/* gen_helper_mtc0_performance1(cpu_env, arg); */
register_name = "Performance1";
goto cp0_unimplemented;
case 2:
/* gen_helper_mtc0_performance2(cpu_env, arg); */
register_name = "Performance2";
goto cp0_unimplemented;
case 3:
/* gen_helper_mtc0_performance3(cpu_env, arg); */
register_name = "Performance3";
goto cp0_unimplemented;
case 4:
/* gen_helper_mtc0_performance4(cpu_env, arg); */
register_name = "Performance4";
goto cp0_unimplemented;
case 5:
/* gen_helper_mtc0_performance5(cpu_env, arg); */
register_name = "Performance5";
goto cp0_unimplemented;
case 6:
/* gen_helper_mtc0_performance6(cpu_env, arg); */
register_name = "Performance6";
goto cp0_unimplemented;
case 7:
/* gen_helper_mtc0_performance7(cpu_env, arg); */
register_name = "Performance7";
goto cp0_unimplemented;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_26:
switch (sel) {
case 0:
gen_helper_mtc0_errctl(cpu_env, arg);
ctx->base.is_jmp = DISAS_STOP;
register_name = "ErrCtl";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_27:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
/* ignored */
register_name = "CacheErr";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_28:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
gen_helper_mtc0_taglo(cpu_env, arg);
register_name = "TagLo";
break;
case 1:
case 3:
case 5:
case 7:
gen_helper_mtc0_datalo(cpu_env, arg);
register_name = "DataLo";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_29:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
gen_helper_mtc0_taghi(cpu_env, arg);
register_name = "TagHi";
break;
case 1:
case 3:
case 5:
case 7:
gen_helper_mtc0_datahi(cpu_env, arg);
register_name = "DataHi";
break;
default:
register_name = "invalid sel";
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_30:
switch (sel) {
case 0:
tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_ErrorEPC));
register_name = "ErrorEPC";
break;
default:
goto cp0_unimplemented;
}
break;
case CP0_REGISTER_31:
switch (sel) {
case 0:
/* EJTAG support */
gen_mtc0_store32(arg, offsetof(CPUMIPSState, CP0_DESAVE));
register_name = "DESAVE";
break;
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CP0_CHECK(ctx->kscrexist & (1 << sel));
tcg_gen_st_tl(arg, cpu_env,
offsetof(CPUMIPSState, CP0_KScratch[sel-2]));
register_name = "KScratch";
break;
default:
goto cp0_unimplemented;
}
break;
default:
goto cp0_unimplemented;
}
trace_mips_translate_c0("dmtc0", register_name, reg, sel);
/* For simplicity assume that all writes can cause interrupts. */
if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) {
gen_io_end();
/*
* DISAS_STOP isn't sufficient, we need to ensure we break out of
* translated code to check for pending interrupts.
*/
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
}
return;
cp0_unimplemented:
qemu_log_mask(LOG_UNIMP, "dmtc0 %s (reg %d sel %d)\n",
register_name, reg, sel);
}
#endif /* TARGET_MIPS64 */
static void gen_mftr(CPUMIPSState *env, DisasContext *ctx, int rt, int rd,
int u, int sel, int h)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
TCGv t0 = tcg_temp_local_new();
if ((env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) == 0 &&
((env->tcs[other_tc].CP0_TCBind & (0xf << CP0TCBd_CurVPE)) !=
(env->active_tc.CP0_TCBind & (0xf << CP0TCBd_CurVPE)))) {
tcg_gen_movi_tl(t0, -1);
} else if ((env->CP0_VPEControl & (0xff << CP0VPECo_TargTC)) >
(env->mvp->CP0_MVPConf0 & (0xff << CP0MVPC0_PTC))) {
tcg_gen_movi_tl(t0, -1);
} else if (u == 0) {
switch (rt) {
case 1:
switch (sel) {
case 1:
gen_helper_mftc0_vpecontrol(t0, cpu_env);
break;
case 2:
gen_helper_mftc0_vpeconf0(t0, cpu_env);
break;
default:
goto die;
break;
}
break;
case 2:
switch (sel) {
case 1:
gen_helper_mftc0_tcstatus(t0, cpu_env);
break;
case 2:
gen_helper_mftc0_tcbind(t0, cpu_env);
break;
case 3:
gen_helper_mftc0_tcrestart(t0, cpu_env);
break;
case 4:
gen_helper_mftc0_tchalt(t0, cpu_env);
break;
case 5:
gen_helper_mftc0_tccontext(t0, cpu_env);
break;
case 6:
gen_helper_mftc0_tcschedule(t0, cpu_env);
break;
case 7:
gen_helper_mftc0_tcschefback(t0, cpu_env);
break;
default:
gen_mfc0(ctx, t0, rt, sel);
break;
}
break;
case 10:
switch (sel) {
case 0:
gen_helper_mftc0_entryhi(t0, cpu_env);
break;
default:
gen_mfc0(ctx, t0, rt, sel);
break;
}
case 12:
switch (sel) {
case 0:
gen_helper_mftc0_status(t0, cpu_env);
break;
default:
gen_mfc0(ctx, t0, rt, sel);
break;
}
case 13:
switch (sel) {
case 0:
gen_helper_mftc0_cause(t0, cpu_env);
break;
default:
goto die;
break;
}
break;
case 14:
switch (sel) {
case 0:
gen_helper_mftc0_epc(t0, cpu_env);
break;
default:
goto die;
break;
}
break;
case 15:
switch (sel) {
case 1:
gen_helper_mftc0_ebase(t0, cpu_env);
break;
default:
goto die;
break;
}
break;
case 16:
switch (sel) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
gen_helper_mftc0_configx(t0, cpu_env, tcg_const_tl(sel));
break;
default:
goto die;
break;
}
break;
case 23:
switch (sel) {
case 0:
gen_helper_mftc0_debug(t0, cpu_env);
break;
default:
gen_mfc0(ctx, t0, rt, sel);
break;
}
break;
default:
gen_mfc0(ctx, t0, rt, sel);
}
} else switch (sel) {
/* GPR registers. */
case 0:
gen_helper_1e0i(mftgpr, t0, rt);
break;
/* Auxiliary CPU registers */
case 1:
switch (rt) {
case 0:
gen_helper_1e0i(mftlo, t0, 0);
break;
case 1:
gen_helper_1e0i(mfthi, t0, 0);
break;
case 2:
gen_helper_1e0i(mftacx, t0, 0);
break;
case 4:
gen_helper_1e0i(mftlo, t0, 1);
break;
case 5:
gen_helper_1e0i(mfthi, t0, 1);
break;
case 6:
gen_helper_1e0i(mftacx, t0, 1);
break;
case 8:
gen_helper_1e0i(mftlo, t0, 2);
break;
case 9:
gen_helper_1e0i(mfthi, t0, 2);
break;
case 10:
gen_helper_1e0i(mftacx, t0, 2);
break;
case 12:
gen_helper_1e0i(mftlo, t0, 3);
break;
case 13:
gen_helper_1e0i(mfthi, t0, 3);
break;
case 14:
gen_helper_1e0i(mftacx, t0, 3);
break;
case 16:
gen_helper_mftdsp(t0, cpu_env);
break;
default:
goto die;
}
break;
/* Floating point (COP1). */
case 2:
/* XXX: For now we support only a single FPU context. */
if (h == 0) {
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, rt);
tcg_gen_ext_i32_tl(t0, fp0);
tcg_temp_free_i32(fp0);
} else {
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32h(ctx, fp0, rt);
tcg_gen_ext_i32_tl(t0, fp0);
tcg_temp_free_i32(fp0);
}
break;
case 3:
/* XXX: For now we support only a single FPU context. */
gen_helper_1e0i(cfc1, t0, rt);
break;
/* COP2: Not implemented. */
case 4:
case 5:
/* fall through */
default:
goto die;
}
trace_mips_translate_tr("mftr", rt, u, sel, h);
gen_store_gpr(t0, rd);
tcg_temp_free(t0);
return;
die:
tcg_temp_free(t0);
LOG_DISAS("mftr (reg %d u %d sel %d h %d)\n", rt, u, sel, h);
generate_exception_end(ctx, EXCP_RI);
}
static void gen_mttr(CPUMIPSState *env, DisasContext *ctx, int rd, int rt,
int u, int sel, int h)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
TCGv t0 = tcg_temp_local_new();
gen_load_gpr(t0, rt);
if ((env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) == 0 &&
((env->tcs[other_tc].CP0_TCBind & (0xf << CP0TCBd_CurVPE)) !=
(env->active_tc.CP0_TCBind & (0xf << CP0TCBd_CurVPE)))) {
/* NOP */
;
} else if ((env->CP0_VPEControl & (0xff << CP0VPECo_TargTC)) >
(env->mvp->CP0_MVPConf0 & (0xff << CP0MVPC0_PTC))) {
/* NOP */
;
} else if (u == 0) {
switch (rd) {
case 1:
switch (sel) {
case 1:
gen_helper_mttc0_vpecontrol(cpu_env, t0);
break;
case 2:
gen_helper_mttc0_vpeconf0(cpu_env, t0);
break;
default:
goto die;
break;
}
break;
case 2:
switch (sel) {
case 1:
gen_helper_mttc0_tcstatus(cpu_env, t0);
break;
case 2:
gen_helper_mttc0_tcbind(cpu_env, t0);
break;
case 3:
gen_helper_mttc0_tcrestart(cpu_env, t0);
break;
case 4:
gen_helper_mttc0_tchalt(cpu_env, t0);
break;
case 5:
gen_helper_mttc0_tccontext(cpu_env, t0);
break;
case 6:
gen_helper_mttc0_tcschedule(cpu_env, t0);
break;
case 7:
gen_helper_mttc0_tcschefback(cpu_env, t0);
break;
default:
gen_mtc0(ctx, t0, rd, sel);
break;
}
break;
case 10:
switch (sel) {
case 0:
gen_helper_mttc0_entryhi(cpu_env, t0);
break;
default:
gen_mtc0(ctx, t0, rd, sel);
break;
}
case 12:
switch (sel) {
case 0:
gen_helper_mttc0_status(cpu_env, t0);
break;
default:
gen_mtc0(ctx, t0, rd, sel);
break;
}
case 13:
switch (sel) {
case 0:
gen_helper_mttc0_cause(cpu_env, t0);
break;
default:
goto die;
break;
}
break;
case 15:
switch (sel) {
case 1:
gen_helper_mttc0_ebase(cpu_env, t0);
break;
default:
goto die;
break;
}
break;
case 23:
switch (sel) {
case 0:
gen_helper_mttc0_debug(cpu_env, t0);
break;
default:
gen_mtc0(ctx, t0, rd, sel);
break;
}
break;
default:
gen_mtc0(ctx, t0, rd, sel);
}
} else switch (sel) {
/* GPR registers. */
case 0:
gen_helper_0e1i(mttgpr, t0, rd);
break;
/* Auxiliary CPU registers */
case 1:
switch (rd) {
case 0:
gen_helper_0e1i(mttlo, t0, 0);
break;
case 1:
gen_helper_0e1i(mtthi, t0, 0);
break;
case 2:
gen_helper_0e1i(mttacx, t0, 0);
break;
case 4:
gen_helper_0e1i(mttlo, t0, 1);
break;
case 5:
gen_helper_0e1i(mtthi, t0, 1);
break;
case 6:
gen_helper_0e1i(mttacx, t0, 1);
break;
case 8:
gen_helper_0e1i(mttlo, t0, 2);
break;
case 9:
gen_helper_0e1i(mtthi, t0, 2);
break;
case 10:
gen_helper_0e1i(mttacx, t0, 2);
break;
case 12:
gen_helper_0e1i(mttlo, t0, 3);
break;
case 13:
gen_helper_0e1i(mtthi, t0, 3);
break;
case 14:
gen_helper_0e1i(mttacx, t0, 3);
break;
case 16:
gen_helper_mttdsp(cpu_env, t0);
break;
default:
goto die;
}
break;
/* Floating point (COP1). */
case 2:
/* XXX: For now we support only a single FPU context. */
if (h == 0) {
TCGv_i32 fp0 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(fp0, t0);
gen_store_fpr32(ctx, fp0, rd);
tcg_temp_free_i32(fp0);
} else {
TCGv_i32 fp0 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(fp0, t0);
gen_store_fpr32h(ctx, fp0, rd);
tcg_temp_free_i32(fp0);
}
break;
case 3:
/* XXX: For now we support only a single FPU context. */
{
TCGv_i32 fs_tmp = tcg_const_i32(rd);
gen_helper_0e2i(ctc1, t0, fs_tmp, rt);
tcg_temp_free_i32(fs_tmp);
}
/* Stop translation as we may have changed hflags */
ctx->base.is_jmp = DISAS_STOP;
break;
/* COP2: Not implemented. */
case 4:
case 5:
/* fall through */
default:
goto die;
}
trace_mips_translate_tr("mttr", rd, u, sel, h);
tcg_temp_free(t0);
return;
die:
tcg_temp_free(t0);
LOG_DISAS("mttr (reg %d u %d sel %d h %d)\n", rd, u, sel, h);
generate_exception_end(ctx, EXCP_RI);
}
static void gen_cp0(CPUMIPSState *env, DisasContext *ctx, uint32_t opc,
int rt, int rd)
{
const char *opn = "ldst";
check_cp0_enabled(ctx);
switch (opc) {
case OPC_MFC0:
if (rt == 0) {
/* Treat as NOP. */
return;
}
gen_mfc0(ctx, cpu_gpr[rt], rd, ctx->opcode & 0x7);
opn = "mfc0";
break;
case OPC_MTC0:
{
TCGv t0 = tcg_temp_new();
gen_load_gpr(t0, rt);
gen_mtc0(ctx, t0, rd, ctx->opcode & 0x7);
tcg_temp_free(t0);
}
opn = "mtc0";
break;
#if defined(TARGET_MIPS64)
case OPC_DMFC0:
check_insn(ctx, ISA_MIPS3);
if (rt == 0) {
/* Treat as NOP. */
return;
}
gen_dmfc0(ctx, cpu_gpr[rt], rd, ctx->opcode & 0x7);
opn = "dmfc0";
break;
case OPC_DMTC0:
check_insn(ctx, ISA_MIPS3);
{
TCGv t0 = tcg_temp_new();
gen_load_gpr(t0, rt);
gen_dmtc0(ctx, t0, rd, ctx->opcode & 0x7);
tcg_temp_free(t0);
}
opn = "dmtc0";
break;
#endif
case OPC_MFHC0:
check_mvh(ctx);
if (rt == 0) {
/* Treat as NOP. */
return;
}
gen_mfhc0(ctx, cpu_gpr[rt], rd, ctx->opcode & 0x7);
opn = "mfhc0";
break;
case OPC_MTHC0:
check_mvh(ctx);
{
TCGv t0 = tcg_temp_new();
gen_load_gpr(t0, rt);
gen_mthc0(ctx, t0, rd, ctx->opcode & 0x7);
tcg_temp_free(t0);
}
opn = "mthc0";
break;
case OPC_MFTR:
check_cp0_enabled(ctx);
if (rd == 0) {
/* Treat as NOP. */
return;
}
gen_mftr(env, ctx, rt, rd, (ctx->opcode >> 5) & 1,
ctx->opcode & 0x7, (ctx->opcode >> 4) & 1);
opn = "mftr";
break;
case OPC_MTTR:
check_cp0_enabled(ctx);
gen_mttr(env, ctx, rd, rt, (ctx->opcode >> 5) & 1,
ctx->opcode & 0x7, (ctx->opcode >> 4) & 1);
opn = "mttr";
break;
case OPC_TLBWI:
opn = "tlbwi";
if (!env->tlb->helper_tlbwi) {
goto die;
}
gen_helper_tlbwi(cpu_env);
break;
case OPC_TLBINV:
opn = "tlbinv";
if (ctx->ie >= 2) {
if (!env->tlb->helper_tlbinv) {
goto die;
}
gen_helper_tlbinv(cpu_env);
} /* treat as nop if TLBINV not supported */
break;
case OPC_TLBINVF:
opn = "tlbinvf";
if (ctx->ie >= 2) {
if (!env->tlb->helper_tlbinvf) {
goto die;
}
gen_helper_tlbinvf(cpu_env);
} /* treat as nop if TLBINV not supported */
break;
case OPC_TLBWR:
opn = "tlbwr";
if (!env->tlb->helper_tlbwr) {
goto die;
}
gen_helper_tlbwr(cpu_env);
break;
case OPC_TLBP:
opn = "tlbp";
if (!env->tlb->helper_tlbp) {
goto die;
}
gen_helper_tlbp(cpu_env);
break;
case OPC_TLBR:
opn = "tlbr";
if (!env->tlb->helper_tlbr) {
goto die;
}
gen_helper_tlbr(cpu_env);
break;
case OPC_ERET: /* OPC_ERETNC */
if ((ctx->insn_flags & ISA_MIPS32R6) &&
(ctx->hflags & MIPS_HFLAG_BMASK)) {
goto die;
} else {
int bit_shift = (ctx->hflags & MIPS_HFLAG_M16) ? 16 : 6;
if (ctx->opcode & (1 << bit_shift)) {
/* OPC_ERETNC */
opn = "eretnc";
check_insn(ctx, ISA_MIPS32R5);
gen_helper_eretnc(cpu_env);
} else {
/* OPC_ERET */
opn = "eret";
check_insn(ctx, ISA_MIPS2);
gen_helper_eret(cpu_env);
}
ctx->base.is_jmp = DISAS_EXIT;
}
break;
case OPC_DERET:
opn = "deret";
check_insn(ctx, ISA_MIPS32);
if ((ctx->insn_flags & ISA_MIPS32R6) &&
(ctx->hflags & MIPS_HFLAG_BMASK)) {
goto die;
}
if (!(ctx->hflags & MIPS_HFLAG_DM)) {
MIPS_INVAL(opn);
generate_exception_end(ctx, EXCP_RI);
} else {
gen_helper_deret(cpu_env);
ctx->base.is_jmp = DISAS_EXIT;
}
break;
case OPC_WAIT:
opn = "wait";
check_insn(ctx, ISA_MIPS3 | ISA_MIPS32);
if ((ctx->insn_flags & ISA_MIPS32R6) &&
(ctx->hflags & MIPS_HFLAG_BMASK)) {
goto die;
}
/* If we get an exception, we want to restart at next instruction */
ctx->base.pc_next += 4;
save_cpu_state(ctx, 1);
ctx->base.pc_next -= 4;
gen_helper_wait(cpu_env);
ctx->base.is_jmp = DISAS_NORETURN;
break;
default:
die:
MIPS_INVAL(opn);
generate_exception_end(ctx, EXCP_RI);
return;
}
(void)opn; /* avoid a compiler warning */
}
#endif /* !CONFIG_USER_ONLY */
/* CP1 Branches (before delay slot) */
static void gen_compute_branch1(DisasContext *ctx, uint32_t op,
int32_t cc, int32_t offset)
{
target_ulong btarget;
TCGv_i32 t0 = tcg_temp_new_i32();
if ((ctx->insn_flags & ISA_MIPS32R6) && (ctx->hflags & MIPS_HFLAG_BMASK)) {
generate_exception_end(ctx, EXCP_RI);
goto out;
}
if (cc != 0) {
check_insn(ctx, ISA_MIPS4 | ISA_MIPS32);
}
btarget = ctx->base.pc_next + 4 + offset;
switch (op) {
case OPC_BC1F:
tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc));
tcg_gen_not_i32(t0, t0);
tcg_gen_andi_i32(t0, t0, 1);
tcg_gen_extu_i32_tl(bcond, t0);
goto not_likely;
case OPC_BC1FL:
tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc));
tcg_gen_not_i32(t0, t0);
tcg_gen_andi_i32(t0, t0, 1);
tcg_gen_extu_i32_tl(bcond, t0);
goto likely;
case OPC_BC1T:
tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc));
tcg_gen_andi_i32(t0, t0, 1);
tcg_gen_extu_i32_tl(bcond, t0);
goto not_likely;
case OPC_BC1TL:
tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc));
tcg_gen_andi_i32(t0, t0, 1);
tcg_gen_extu_i32_tl(bcond, t0);
likely:
ctx->hflags |= MIPS_HFLAG_BL;
break;
case OPC_BC1FANY2:
{
TCGv_i32 t1 = tcg_temp_new_i32();
tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc));
tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc+1));
tcg_gen_nand_i32(t0, t0, t1);
tcg_temp_free_i32(t1);
tcg_gen_andi_i32(t0, t0, 1);
tcg_gen_extu_i32_tl(bcond, t0);
}
goto not_likely;
case OPC_BC1TANY2:
{
TCGv_i32 t1 = tcg_temp_new_i32();
tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc));
tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc+1));
tcg_gen_or_i32(t0, t0, t1);
tcg_temp_free_i32(t1);
tcg_gen_andi_i32(t0, t0, 1);
tcg_gen_extu_i32_tl(bcond, t0);
}
goto not_likely;
case OPC_BC1FANY4:
{
TCGv_i32 t1 = tcg_temp_new_i32();
tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc));
tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc+1));
tcg_gen_and_i32(t0, t0, t1);
tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc+2));
tcg_gen_and_i32(t0, t0, t1);
tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc+3));
tcg_gen_nand_i32(t0, t0, t1);
tcg_temp_free_i32(t1);
tcg_gen_andi_i32(t0, t0, 1);
tcg_gen_extu_i32_tl(bcond, t0);
}
goto not_likely;
case OPC_BC1TANY4:
{
TCGv_i32 t1 = tcg_temp_new_i32();
tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc));
tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc+1));
tcg_gen_or_i32(t0, t0, t1);
tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc+2));
tcg_gen_or_i32(t0, t0, t1);
tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc+3));
tcg_gen_or_i32(t0, t0, t1);
tcg_temp_free_i32(t1);
tcg_gen_andi_i32(t0, t0, 1);
tcg_gen_extu_i32_tl(bcond, t0);
}
not_likely:
ctx->hflags |= MIPS_HFLAG_BC;
break;
default:
MIPS_INVAL("cp1 cond branch");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
ctx->btarget = btarget;
ctx->hflags |= MIPS_HFLAG_BDS32;
out:
tcg_temp_free_i32(t0);
}
/* R6 CP1 Branches */
static void gen_compute_branch1_r6(DisasContext *ctx, uint32_t op,
int32_t ft, int32_t offset,
int delayslot_size)
{
target_ulong btarget;
TCGv_i64 t0 = tcg_temp_new_i64();
if (ctx->hflags & MIPS_HFLAG_BMASK) {
#ifdef MIPS_DEBUG_DISAS
LOG_DISAS("Branch in delay / forbidden slot at PC 0x" TARGET_FMT_lx
"\n", ctx->base.pc_next);
#endif
generate_exception_end(ctx, EXCP_RI);
goto out;
}
gen_load_fpr64(ctx, t0, ft);
tcg_gen_andi_i64(t0, t0, 1);
btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
switch (op) {
case OPC_BC1EQZ:
tcg_gen_xori_i64(t0, t0, 1);
ctx->hflags |= MIPS_HFLAG_BC;
break;
case OPC_BC1NEZ:
/* t0 already set */
ctx->hflags |= MIPS_HFLAG_BC;
break;
default:
MIPS_INVAL("cp1 cond branch");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
tcg_gen_trunc_i64_tl(bcond, t0);
ctx->btarget = btarget;
switch (delayslot_size) {
case 2:
ctx->hflags |= MIPS_HFLAG_BDS16;
break;
case 4:
ctx->hflags |= MIPS_HFLAG_BDS32;
break;
}
out:
tcg_temp_free_i64(t0);
}
/* Coprocessor 1 (FPU) */
#define FOP(func, fmt) (((fmt) << 21) | (func))
enum fopcode {
OPC_ADD_S = FOP(0, FMT_S),
OPC_SUB_S = FOP(1, FMT_S),
OPC_MUL_S = FOP(2, FMT_S),
OPC_DIV_S = FOP(3, FMT_S),
OPC_SQRT_S = FOP(4, FMT_S),
OPC_ABS_S = FOP(5, FMT_S),
OPC_MOV_S = FOP(6, FMT_S),
OPC_NEG_S = FOP(7, FMT_S),
OPC_ROUND_L_S = FOP(8, FMT_S),
OPC_TRUNC_L_S = FOP(9, FMT_S),
OPC_CEIL_L_S = FOP(10, FMT_S),
OPC_FLOOR_L_S = FOP(11, FMT_S),
OPC_ROUND_W_S = FOP(12, FMT_S),
OPC_TRUNC_W_S = FOP(13, FMT_S),
OPC_CEIL_W_S = FOP(14, FMT_S),
OPC_FLOOR_W_S = FOP(15, FMT_S),
OPC_SEL_S = FOP(16, FMT_S),
OPC_MOVCF_S = FOP(17, FMT_S),
OPC_MOVZ_S = FOP(18, FMT_S),
OPC_MOVN_S = FOP(19, FMT_S),
OPC_SELEQZ_S = FOP(20, FMT_S),
OPC_RECIP_S = FOP(21, FMT_S),
OPC_RSQRT_S = FOP(22, FMT_S),
OPC_SELNEZ_S = FOP(23, FMT_S),
OPC_MADDF_S = FOP(24, FMT_S),
OPC_MSUBF_S = FOP(25, FMT_S),
OPC_RINT_S = FOP(26, FMT_S),
OPC_CLASS_S = FOP(27, FMT_S),
OPC_MIN_S = FOP(28, FMT_S),
OPC_RECIP2_S = FOP(28, FMT_S),
OPC_MINA_S = FOP(29, FMT_S),
OPC_RECIP1_S = FOP(29, FMT_S),
OPC_MAX_S = FOP(30, FMT_S),
OPC_RSQRT1_S = FOP(30, FMT_S),
OPC_MAXA_S = FOP(31, FMT_S),
OPC_RSQRT2_S = FOP(31, FMT_S),
OPC_CVT_D_S = FOP(33, FMT_S),
OPC_CVT_W_S = FOP(36, FMT_S),
OPC_CVT_L_S = FOP(37, FMT_S),
OPC_CVT_PS_S = FOP(38, FMT_S),
OPC_CMP_F_S = FOP(48, FMT_S),
OPC_CMP_UN_S = FOP(49, FMT_S),
OPC_CMP_EQ_S = FOP(50, FMT_S),
OPC_CMP_UEQ_S = FOP(51, FMT_S),
OPC_CMP_OLT_S = FOP(52, FMT_S),
OPC_CMP_ULT_S = FOP(53, FMT_S),
OPC_CMP_OLE_S = FOP(54, FMT_S),
OPC_CMP_ULE_S = FOP(55, FMT_S),
OPC_CMP_SF_S = FOP(56, FMT_S),
OPC_CMP_NGLE_S = FOP(57, FMT_S),
OPC_CMP_SEQ_S = FOP(58, FMT_S),
OPC_CMP_NGL_S = FOP(59, FMT_S),
OPC_CMP_LT_S = FOP(60, FMT_S),
OPC_CMP_NGE_S = FOP(61, FMT_S),
OPC_CMP_LE_S = FOP(62, FMT_S),
OPC_CMP_NGT_S = FOP(63, FMT_S),
OPC_ADD_D = FOP(0, FMT_D),
OPC_SUB_D = FOP(1, FMT_D),
OPC_MUL_D = FOP(2, FMT_D),
OPC_DIV_D = FOP(3, FMT_D),
OPC_SQRT_D = FOP(4, FMT_D),
OPC_ABS_D = FOP(5, FMT_D),
OPC_MOV_D = FOP(6, FMT_D),
OPC_NEG_D = FOP(7, FMT_D),
OPC_ROUND_L_D = FOP(8, FMT_D),
OPC_TRUNC_L_D = FOP(9, FMT_D),
OPC_CEIL_L_D = FOP(10, FMT_D),
OPC_FLOOR_L_D = FOP(11, FMT_D),
OPC_ROUND_W_D = FOP(12, FMT_D),
OPC_TRUNC_W_D = FOP(13, FMT_D),
OPC_CEIL_W_D = FOP(14, FMT_D),
OPC_FLOOR_W_D = FOP(15, FMT_D),
OPC_SEL_D = FOP(16, FMT_D),
OPC_MOVCF_D = FOP(17, FMT_D),
OPC_MOVZ_D = FOP(18, FMT_D),
OPC_MOVN_D = FOP(19, FMT_D),
OPC_SELEQZ_D = FOP(20, FMT_D),
OPC_RECIP_D = FOP(21, FMT_D),
OPC_RSQRT_D = FOP(22, FMT_D),
OPC_SELNEZ_D = FOP(23, FMT_D),
OPC_MADDF_D = FOP(24, FMT_D),
OPC_MSUBF_D = FOP(25, FMT_D),
OPC_RINT_D = FOP(26, FMT_D),
OPC_CLASS_D = FOP(27, FMT_D),
OPC_MIN_D = FOP(28, FMT_D),
OPC_RECIP2_D = FOP(28, FMT_D),
OPC_MINA_D = FOP(29, FMT_D),
OPC_RECIP1_D = FOP(29, FMT_D),
OPC_MAX_D = FOP(30, FMT_D),
OPC_RSQRT1_D = FOP(30, FMT_D),
OPC_MAXA_D = FOP(31, FMT_D),
OPC_RSQRT2_D = FOP(31, FMT_D),
OPC_CVT_S_D = FOP(32, FMT_D),
OPC_CVT_W_D = FOP(36, FMT_D),
OPC_CVT_L_D = FOP(37, FMT_D),
OPC_CMP_F_D = FOP(48, FMT_D),
OPC_CMP_UN_D = FOP(49, FMT_D),
OPC_CMP_EQ_D = FOP(50, FMT_D),
OPC_CMP_UEQ_D = FOP(51, FMT_D),
OPC_CMP_OLT_D = FOP(52, FMT_D),
OPC_CMP_ULT_D = FOP(53, FMT_D),
OPC_CMP_OLE_D = FOP(54, FMT_D),
OPC_CMP_ULE_D = FOP(55, FMT_D),
OPC_CMP_SF_D = FOP(56, FMT_D),
OPC_CMP_NGLE_D = FOP(57, FMT_D),
OPC_CMP_SEQ_D = FOP(58, FMT_D),
OPC_CMP_NGL_D = FOP(59, FMT_D),
OPC_CMP_LT_D = FOP(60, FMT_D),
OPC_CMP_NGE_D = FOP(61, FMT_D),
OPC_CMP_LE_D = FOP(62, FMT_D),
OPC_CMP_NGT_D = FOP(63, FMT_D),
OPC_CVT_S_W = FOP(32, FMT_W),
OPC_CVT_D_W = FOP(33, FMT_W),
OPC_CVT_S_L = FOP(32, FMT_L),
OPC_CVT_D_L = FOP(33, FMT_L),
OPC_CVT_PS_PW = FOP(38, FMT_W),
OPC_ADD_PS = FOP(0, FMT_PS),
OPC_SUB_PS = FOP(1, FMT_PS),
OPC_MUL_PS = FOP(2, FMT_PS),
OPC_DIV_PS = FOP(3, FMT_PS),
OPC_ABS_PS = FOP(5, FMT_PS),
OPC_MOV_PS = FOP(6, FMT_PS),
OPC_NEG_PS = FOP(7, FMT_PS),
OPC_MOVCF_PS = FOP(17, FMT_PS),
OPC_MOVZ_PS = FOP(18, FMT_PS),
OPC_MOVN_PS = FOP(19, FMT_PS),
OPC_ADDR_PS = FOP(24, FMT_PS),
OPC_MULR_PS = FOP(26, FMT_PS),
OPC_RECIP2_PS = FOP(28, FMT_PS),
OPC_RECIP1_PS = FOP(29, FMT_PS),
OPC_RSQRT1_PS = FOP(30, FMT_PS),
OPC_RSQRT2_PS = FOP(31, FMT_PS),
OPC_CVT_S_PU = FOP(32, FMT_PS),
OPC_CVT_PW_PS = FOP(36, FMT_PS),
OPC_CVT_S_PL = FOP(40, FMT_PS),
OPC_PLL_PS = FOP(44, FMT_PS),
OPC_PLU_PS = FOP(45, FMT_PS),
OPC_PUL_PS = FOP(46, FMT_PS),
OPC_PUU_PS = FOP(47, FMT_PS),
OPC_CMP_F_PS = FOP(48, FMT_PS),
OPC_CMP_UN_PS = FOP(49, FMT_PS),
OPC_CMP_EQ_PS = FOP(50, FMT_PS),
OPC_CMP_UEQ_PS = FOP(51, FMT_PS),
OPC_CMP_OLT_PS = FOP(52, FMT_PS),
OPC_CMP_ULT_PS = FOP(53, FMT_PS),
OPC_CMP_OLE_PS = FOP(54, FMT_PS),
OPC_CMP_ULE_PS = FOP(55, FMT_PS),
OPC_CMP_SF_PS = FOP(56, FMT_PS),
OPC_CMP_NGLE_PS = FOP(57, FMT_PS),
OPC_CMP_SEQ_PS = FOP(58, FMT_PS),
OPC_CMP_NGL_PS = FOP(59, FMT_PS),
OPC_CMP_LT_PS = FOP(60, FMT_PS),
OPC_CMP_NGE_PS = FOP(61, FMT_PS),
OPC_CMP_LE_PS = FOP(62, FMT_PS),
OPC_CMP_NGT_PS = FOP(63, FMT_PS),
};
enum r6_f_cmp_op {
R6_OPC_CMP_AF_S = FOP(0, FMT_W),
R6_OPC_CMP_UN_S = FOP(1, FMT_W),
R6_OPC_CMP_EQ_S = FOP(2, FMT_W),
R6_OPC_CMP_UEQ_S = FOP(3, FMT_W),
R6_OPC_CMP_LT_S = FOP(4, FMT_W),
R6_OPC_CMP_ULT_S = FOP(5, FMT_W),
R6_OPC_CMP_LE_S = FOP(6, FMT_W),
R6_OPC_CMP_ULE_S = FOP(7, FMT_W),
R6_OPC_CMP_SAF_S = FOP(8, FMT_W),
R6_OPC_CMP_SUN_S = FOP(9, FMT_W),
R6_OPC_CMP_SEQ_S = FOP(10, FMT_W),
R6_OPC_CMP_SEUQ_S = FOP(11, FMT_W),
R6_OPC_CMP_SLT_S = FOP(12, FMT_W),
R6_OPC_CMP_SULT_S = FOP(13, FMT_W),
R6_OPC_CMP_SLE_S = FOP(14, FMT_W),
R6_OPC_CMP_SULE_S = FOP(15, FMT_W),
R6_OPC_CMP_OR_S = FOP(17, FMT_W),
R6_OPC_CMP_UNE_S = FOP(18, FMT_W),
R6_OPC_CMP_NE_S = FOP(19, FMT_W),
R6_OPC_CMP_SOR_S = FOP(25, FMT_W),
R6_OPC_CMP_SUNE_S = FOP(26, FMT_W),
R6_OPC_CMP_SNE_S = FOP(27, FMT_W),
R6_OPC_CMP_AF_D = FOP(0, FMT_L),
R6_OPC_CMP_UN_D = FOP(1, FMT_L),
R6_OPC_CMP_EQ_D = FOP(2, FMT_L),
R6_OPC_CMP_UEQ_D = FOP(3, FMT_L),
R6_OPC_CMP_LT_D = FOP(4, FMT_L),
R6_OPC_CMP_ULT_D = FOP(5, FMT_L),
R6_OPC_CMP_LE_D = FOP(6, FMT_L),
R6_OPC_CMP_ULE_D = FOP(7, FMT_L),
R6_OPC_CMP_SAF_D = FOP(8, FMT_L),
R6_OPC_CMP_SUN_D = FOP(9, FMT_L),
R6_OPC_CMP_SEQ_D = FOP(10, FMT_L),
R6_OPC_CMP_SEUQ_D = FOP(11, FMT_L),
R6_OPC_CMP_SLT_D = FOP(12, FMT_L),
R6_OPC_CMP_SULT_D = FOP(13, FMT_L),
R6_OPC_CMP_SLE_D = FOP(14, FMT_L),
R6_OPC_CMP_SULE_D = FOP(15, FMT_L),
R6_OPC_CMP_OR_D = FOP(17, FMT_L),
R6_OPC_CMP_UNE_D = FOP(18, FMT_L),
R6_OPC_CMP_NE_D = FOP(19, FMT_L),
R6_OPC_CMP_SOR_D = FOP(25, FMT_L),
R6_OPC_CMP_SUNE_D = FOP(26, FMT_L),
R6_OPC_CMP_SNE_D = FOP(27, FMT_L),
};
static void gen_cp1(DisasContext *ctx, uint32_t opc, int rt, int fs)
{
TCGv t0 = tcg_temp_new();
switch (opc) {
case OPC_MFC1:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
tcg_gen_ext_i32_tl(t0, fp0);
tcg_temp_free_i32(fp0);
}
gen_store_gpr(t0, rt);
break;
case OPC_MTC1:
gen_load_gpr(t0, rt);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(fp0, t0);
gen_store_fpr32(ctx, fp0, fs);
tcg_temp_free_i32(fp0);
}
break;
case OPC_CFC1:
gen_helper_1e0i(cfc1, t0, fs);
gen_store_gpr(t0, rt);
break;
case OPC_CTC1:
gen_load_gpr(t0, rt);
save_cpu_state(ctx, 0);
{
TCGv_i32 fs_tmp = tcg_const_i32(fs);
gen_helper_0e2i(ctc1, t0, fs_tmp, rt);
tcg_temp_free_i32(fs_tmp);
}
/* Stop translation as we may have changed hflags */
ctx->base.is_jmp = DISAS_STOP;
break;
#if defined(TARGET_MIPS64)
case OPC_DMFC1:
gen_load_fpr64(ctx, t0, fs);
gen_store_gpr(t0, rt);
break;
case OPC_DMTC1:
gen_load_gpr(t0, rt);
gen_store_fpr64(ctx, t0, fs);
break;
#endif
case OPC_MFHC1:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32h(ctx, fp0, fs);
tcg_gen_ext_i32_tl(t0, fp0);
tcg_temp_free_i32(fp0);
}
gen_store_gpr(t0, rt);
break;
case OPC_MTHC1:
gen_load_gpr(t0, rt);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(fp0, t0);
gen_store_fpr32h(ctx, fp0, fs);
tcg_temp_free_i32(fp0);
}
break;
default:
MIPS_INVAL("cp1 move");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
out:
tcg_temp_free(t0);
}
static void gen_movci(DisasContext *ctx, int rd, int rs, int cc, int tf)
{
TCGLabel *l1;
TCGCond cond;
TCGv_i32 t0;
if (rd == 0) {
/* Treat as NOP. */
return;
}
if (tf) {
cond = TCG_COND_EQ;
} else {
cond = TCG_COND_NE;
}
l1 = gen_new_label();
t0 = tcg_temp_new_i32();
tcg_gen_andi_i32(t0, fpu_fcr31, 1 << get_fp_bit(cc));
tcg_gen_brcondi_i32(cond, t0, 0, l1);
tcg_temp_free_i32(t0);
if (rs == 0) {
tcg_gen_movi_tl(cpu_gpr[rd], 0);
} else {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]);
}
gen_set_label(l1);
}
static inline void gen_movcf_s(DisasContext *ctx, int fs, int fd, int cc,
int tf)
{
int cond;
TCGv_i32 t0 = tcg_temp_new_i32();
TCGLabel *l1 = gen_new_label();
if (tf) {
cond = TCG_COND_EQ;
} else {
cond = TCG_COND_NE;
}
tcg_gen_andi_i32(t0, fpu_fcr31, 1 << get_fp_bit(cc));
tcg_gen_brcondi_i32(cond, t0, 0, l1);
gen_load_fpr32(ctx, t0, fs);
gen_store_fpr32(ctx, t0, fd);
gen_set_label(l1);
tcg_temp_free_i32(t0);
}
static inline void gen_movcf_d(DisasContext *ctx, int fs, int fd, int cc,
int tf)
{
int cond;
TCGv_i32 t0 = tcg_temp_new_i32();
TCGv_i64 fp0;
TCGLabel *l1 = gen_new_label();
if (tf) {
cond = TCG_COND_EQ;
} else {
cond = TCG_COND_NE;
}
tcg_gen_andi_i32(t0, fpu_fcr31, 1 << get_fp_bit(cc));
tcg_gen_brcondi_i32(cond, t0, 0, l1);
tcg_temp_free_i32(t0);
fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
gen_set_label(l1);
}
static inline void gen_movcf_ps(DisasContext *ctx, int fs, int fd,
int cc, int tf)
{
int cond;
TCGv_i32 t0 = tcg_temp_new_i32();
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
if (tf) {
cond = TCG_COND_EQ;
} else {
cond = TCG_COND_NE;
}
tcg_gen_andi_i32(t0, fpu_fcr31, 1 << get_fp_bit(cc));
tcg_gen_brcondi_i32(cond, t0, 0, l1);
gen_load_fpr32(ctx, t0, fs);
gen_store_fpr32(ctx, t0, fd);
gen_set_label(l1);
tcg_gen_andi_i32(t0, fpu_fcr31, 1 << get_fp_bit(cc+1));
tcg_gen_brcondi_i32(cond, t0, 0, l2);
gen_load_fpr32h(ctx, t0, fs);
gen_store_fpr32h(ctx, t0, fd);
tcg_temp_free_i32(t0);
gen_set_label(l2);
}
static void gen_sel_s(DisasContext *ctx, enum fopcode op1, int fd, int ft,
int fs)
{
TCGv_i32 t1 = tcg_const_i32(0);
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
TCGv_i32 fp2 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fd);
gen_load_fpr32(ctx, fp1, ft);
gen_load_fpr32(ctx, fp2, fs);
switch (op1) {
case OPC_SEL_S:
tcg_gen_andi_i32(fp0, fp0, 1);
tcg_gen_movcond_i32(TCG_COND_NE, fp0, fp0, t1, fp1, fp2);
break;
case OPC_SELEQZ_S:
tcg_gen_andi_i32(fp1, fp1, 1);
tcg_gen_movcond_i32(TCG_COND_EQ, fp0, fp1, t1, fp2, t1);
break;
case OPC_SELNEZ_S:
tcg_gen_andi_i32(fp1, fp1, 1);
tcg_gen_movcond_i32(TCG_COND_NE, fp0, fp1, t1, fp2, t1);
break;
default:
MIPS_INVAL("gen_sel_s");
generate_exception_end(ctx, EXCP_RI);
break;
}
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp2);
tcg_temp_free_i32(fp1);
tcg_temp_free_i32(fp0);
tcg_temp_free_i32(t1);
}
static void gen_sel_d(DisasContext *ctx, enum fopcode op1, int fd, int ft,
int fs)
{
TCGv_i64 t1 = tcg_const_i64(0);
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
TCGv_i64 fp2 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fd);
gen_load_fpr64(ctx, fp1, ft);
gen_load_fpr64(ctx, fp2, fs);
switch (op1) {
case OPC_SEL_D:
tcg_gen_andi_i64(fp0, fp0, 1);
tcg_gen_movcond_i64(TCG_COND_NE, fp0, fp0, t1, fp1, fp2);
break;
case OPC_SELEQZ_D:
tcg_gen_andi_i64(fp1, fp1, 1);
tcg_gen_movcond_i64(TCG_COND_EQ, fp0, fp1, t1, fp2, t1);
break;
case OPC_SELNEZ_D:
tcg_gen_andi_i64(fp1, fp1, 1);
tcg_gen_movcond_i64(TCG_COND_NE, fp0, fp1, t1, fp2, t1);
break;
default:
MIPS_INVAL("gen_sel_d");
generate_exception_end(ctx, EXCP_RI);
break;
}
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp2);
tcg_temp_free_i64(fp1);
tcg_temp_free_i64(fp0);
tcg_temp_free_i64(t1);
}
static void gen_farith(DisasContext *ctx, enum fopcode op1,
int ft, int fs, int fd, int cc)
{
uint32_t func = ctx->opcode & 0x3f;
switch (op1) {
case OPC_ADD_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_helper_float_add_s(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i32(fp1);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_SUB_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_helper_float_sub_s(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i32(fp1);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_MUL_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_helper_float_mul_s(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i32(fp1);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_DIV_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_helper_float_div_s(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i32(fp1);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_SQRT_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_helper_float_sqrt_s(fp0, cpu_env, fp0);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_ABS_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
if (ctx->abs2008) {
tcg_gen_andi_i32(fp0, fp0, 0x7fffffffUL);
} else {
gen_helper_float_abs_s(fp0, fp0);
}
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_MOV_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_NEG_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
if (ctx->abs2008) {
tcg_gen_xori_i32(fp0, fp0, 1UL << 31);
} else {
gen_helper_float_chs_s(fp0, fp0);
}
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_ROUND_L_S:
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr32(ctx, fp32, fs);
if (ctx->nan2008) {
gen_helper_float_round_2008_l_s(fp64, cpu_env, fp32);
} else {
gen_helper_float_round_l_s(fp64, cpu_env, fp32);
}
tcg_temp_free_i32(fp32);
gen_store_fpr64(ctx, fp64, fd);
tcg_temp_free_i64(fp64);
}
break;
case OPC_TRUNC_L_S:
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr32(ctx, fp32, fs);
if (ctx->nan2008) {
gen_helper_float_trunc_2008_l_s(fp64, cpu_env, fp32);
} else {
gen_helper_float_trunc_l_s(fp64, cpu_env, fp32);
}
tcg_temp_free_i32(fp32);
gen_store_fpr64(ctx, fp64, fd);
tcg_temp_free_i64(fp64);
}
break;
case OPC_CEIL_L_S:
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr32(ctx, fp32, fs);
if (ctx->nan2008) {
gen_helper_float_ceil_2008_l_s(fp64, cpu_env, fp32);
} else {
gen_helper_float_ceil_l_s(fp64, cpu_env, fp32);
}
tcg_temp_free_i32(fp32);
gen_store_fpr64(ctx, fp64, fd);
tcg_temp_free_i64(fp64);
}
break;
case OPC_FLOOR_L_S:
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr32(ctx, fp32, fs);
if (ctx->nan2008) {
gen_helper_float_floor_2008_l_s(fp64, cpu_env, fp32);
} else {
gen_helper_float_floor_l_s(fp64, cpu_env, fp32);
}
tcg_temp_free_i32(fp32);
gen_store_fpr64(ctx, fp64, fd);
tcg_temp_free_i64(fp64);
}
break;
case OPC_ROUND_W_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
if (ctx->nan2008) {
gen_helper_float_round_2008_w_s(fp0, cpu_env, fp0);
} else {
gen_helper_float_round_w_s(fp0, cpu_env, fp0);
}
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_TRUNC_W_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
if (ctx->nan2008) {
gen_helper_float_trunc_2008_w_s(fp0, cpu_env, fp0);
} else {
gen_helper_float_trunc_w_s(fp0, cpu_env, fp0);
}
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_CEIL_W_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
if (ctx->nan2008) {
gen_helper_float_ceil_2008_w_s(fp0, cpu_env, fp0);
} else {
gen_helper_float_ceil_w_s(fp0, cpu_env, fp0);
}
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_FLOOR_W_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
if (ctx->nan2008) {
gen_helper_float_floor_2008_w_s(fp0, cpu_env, fp0);
} else {
gen_helper_float_floor_w_s(fp0, cpu_env, fp0);
}
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_SEL_S:
check_insn(ctx, ISA_MIPS32R6);
gen_sel_s(ctx, op1, fd, ft, fs);
break;
case OPC_SELEQZ_S:
check_insn(ctx, ISA_MIPS32R6);
gen_sel_s(ctx, op1, fd, ft, fs);
break;
case OPC_SELNEZ_S:
check_insn(ctx, ISA_MIPS32R6);
gen_sel_s(ctx, op1, fd, ft, fs);
break;
case OPC_MOVCF_S:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_movcf_s(ctx, fs, fd, (ft >> 2) & 0x7, ft & 0x1);
break;
case OPC_MOVZ_S:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
{
TCGLabel *l1 = gen_new_label();
TCGv_i32 fp0;
if (ft != 0) {
tcg_gen_brcondi_tl(TCG_COND_NE, cpu_gpr[ft], 0, l1);
}
fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
gen_set_label(l1);
}
break;
case OPC_MOVN_S:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
{
TCGLabel *l1 = gen_new_label();
TCGv_i32 fp0;
if (ft != 0) {
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_gpr[ft], 0, l1);
fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
gen_set_label(l1);
}
}
break;
case OPC_RECIP_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_helper_float_recip_s(fp0, cpu_env, fp0);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_RSQRT_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_helper_float_rsqrt_s(fp0, cpu_env, fp0);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_MADDF_S:
check_insn(ctx, ISA_MIPS32R6);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
TCGv_i32 fp2 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_load_fpr32(ctx, fp2, fd);
gen_helper_float_maddf_s(fp2, cpu_env, fp0, fp1, fp2);
gen_store_fpr32(ctx, fp2, fd);
tcg_temp_free_i32(fp2);
tcg_temp_free_i32(fp1);
tcg_temp_free_i32(fp0);
}
break;
case OPC_MSUBF_S:
check_insn(ctx, ISA_MIPS32R6);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
TCGv_i32 fp2 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_load_fpr32(ctx, fp2, fd);
gen_helper_float_msubf_s(fp2, cpu_env, fp0, fp1, fp2);
gen_store_fpr32(ctx, fp2, fd);
tcg_temp_free_i32(fp2);
tcg_temp_free_i32(fp1);
tcg_temp_free_i32(fp0);
}
break;
case OPC_RINT_S:
check_insn(ctx, ISA_MIPS32R6);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_helper_float_rint_s(fp0, cpu_env, fp0);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_CLASS_S:
check_insn(ctx, ISA_MIPS32R6);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_helper_float_class_s(fp0, cpu_env, fp0);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_MIN_S: /* OPC_RECIP2_S */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_MIN_S */
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
TCGv_i32 fp2 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_helper_float_min_s(fp2, cpu_env, fp0, fp1);
gen_store_fpr32(ctx, fp2, fd);
tcg_temp_free_i32(fp2);
tcg_temp_free_i32(fp1);
tcg_temp_free_i32(fp0);
} else {
/* OPC_RECIP2_S */
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_helper_float_recip2_s(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i32(fp1);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
}
break;
case OPC_MINA_S: /* OPC_RECIP1_S */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_MINA_S */
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
TCGv_i32 fp2 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_helper_float_mina_s(fp2, cpu_env, fp0, fp1);
gen_store_fpr32(ctx, fp2, fd);
tcg_temp_free_i32(fp2);
tcg_temp_free_i32(fp1);
tcg_temp_free_i32(fp0);
} else {
/* OPC_RECIP1_S */
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_helper_float_recip1_s(fp0, cpu_env, fp0);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
}
break;
case OPC_MAX_S: /* OPC_RSQRT1_S */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_MAX_S */
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_helper_float_max_s(fp1, cpu_env, fp0, fp1);
gen_store_fpr32(ctx, fp1, fd);
tcg_temp_free_i32(fp1);
tcg_temp_free_i32(fp0);
} else {
/* OPC_RSQRT1_S */
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_helper_float_rsqrt1_s(fp0, cpu_env, fp0);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
}
break;
case OPC_MAXA_S: /* OPC_RSQRT2_S */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_MAXA_S */
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_helper_float_maxa_s(fp1, cpu_env, fp0, fp1);
gen_store_fpr32(ctx, fp1, fd);
tcg_temp_free_i32(fp1);
tcg_temp_free_i32(fp0);
} else {
/* OPC_RSQRT2_S */
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_helper_float_rsqrt2_s(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i32(fp1);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
}
break;
case OPC_CVT_D_S:
check_cp1_registers(ctx, fd);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr32(ctx, fp32, fs);
gen_helper_float_cvtd_s(fp64, cpu_env, fp32);
tcg_temp_free_i32(fp32);
gen_store_fpr64(ctx, fp64, fd);
tcg_temp_free_i64(fp64);
}
break;
case OPC_CVT_W_S:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
if (ctx->nan2008) {
gen_helper_float_cvt_2008_w_s(fp0, cpu_env, fp0);
} else {
gen_helper_float_cvt_w_s(fp0, cpu_env, fp0);
}
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_CVT_L_S:
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr32(ctx, fp32, fs);
if (ctx->nan2008) {
gen_helper_float_cvt_2008_l_s(fp64, cpu_env, fp32);
} else {
gen_helper_float_cvt_l_s(fp64, cpu_env, fp32);
}
tcg_temp_free_i32(fp32);
gen_store_fpr64(ctx, fp64, fd);
tcg_temp_free_i64(fp64);
}
break;
case OPC_CVT_PS_S:
check_ps(ctx);
{
TCGv_i64 fp64 = tcg_temp_new_i64();
TCGv_i32 fp32_0 = tcg_temp_new_i32();
TCGv_i32 fp32_1 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp32_0, fs);
gen_load_fpr32(ctx, fp32_1, ft);
tcg_gen_concat_i32_i64(fp64, fp32_1, fp32_0);
tcg_temp_free_i32(fp32_1);
tcg_temp_free_i32(fp32_0);
gen_store_fpr64(ctx, fp64, fd);
tcg_temp_free_i64(fp64);
}
break;
case OPC_CMP_F_S:
case OPC_CMP_UN_S:
case OPC_CMP_EQ_S:
case OPC_CMP_UEQ_S:
case OPC_CMP_OLT_S:
case OPC_CMP_ULT_S:
case OPC_CMP_OLE_S:
case OPC_CMP_ULE_S:
case OPC_CMP_SF_S:
case OPC_CMP_NGLE_S:
case OPC_CMP_SEQ_S:
case OPC_CMP_NGL_S:
case OPC_CMP_LT_S:
case OPC_CMP_NGE_S:
case OPC_CMP_LE_S:
case OPC_CMP_NGT_S:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
if (ctx->opcode & (1 << 6)) {
gen_cmpabs_s(ctx, func-48, ft, fs, cc);
} else {
gen_cmp_s(ctx, func-48, ft, fs, cc);
}
break;
case OPC_ADD_D:
check_cp1_registers(ctx, fs | ft | fd);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_add_d(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_SUB_D:
check_cp1_registers(ctx, fs | ft | fd);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_sub_d(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_MUL_D:
check_cp1_registers(ctx, fs | ft | fd);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_mul_d(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_DIV_D:
check_cp1_registers(ctx, fs | ft | fd);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_div_d(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_SQRT_D:
check_cp1_registers(ctx, fs | fd);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_sqrt_d(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_ABS_D:
check_cp1_registers(ctx, fs | fd);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
if (ctx->abs2008) {
tcg_gen_andi_i64(fp0, fp0, 0x7fffffffffffffffULL);
} else {
gen_helper_float_abs_d(fp0, fp0);
}
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_MOV_D:
check_cp1_registers(ctx, fs | fd);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_NEG_D:
check_cp1_registers(ctx, fs | fd);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
if (ctx->abs2008) {
tcg_gen_xori_i64(fp0, fp0, 1ULL << 63);
} else {
gen_helper_float_chs_d(fp0, fp0);
}
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_ROUND_L_D:
check_cp1_64bitmode(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
if (ctx->nan2008) {
gen_helper_float_round_2008_l_d(fp0, cpu_env, fp0);
} else {
gen_helper_float_round_l_d(fp0, cpu_env, fp0);
}
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_TRUNC_L_D:
check_cp1_64bitmode(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
if (ctx->nan2008) {
gen_helper_float_trunc_2008_l_d(fp0, cpu_env, fp0);
} else {
gen_helper_float_trunc_l_d(fp0, cpu_env, fp0);
}
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_CEIL_L_D:
check_cp1_64bitmode(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
if (ctx->nan2008) {
gen_helper_float_ceil_2008_l_d(fp0, cpu_env, fp0);
} else {
gen_helper_float_ceil_l_d(fp0, cpu_env, fp0);
}
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_FLOOR_L_D:
check_cp1_64bitmode(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
if (ctx->nan2008) {
gen_helper_float_floor_2008_l_d(fp0, cpu_env, fp0);
} else {
gen_helper_float_floor_l_d(fp0, cpu_env, fp0);
}
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_ROUND_W_D:
check_cp1_registers(ctx, fs);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp64, fs);
if (ctx->nan2008) {
gen_helper_float_round_2008_w_d(fp32, cpu_env, fp64);
} else {
gen_helper_float_round_w_d(fp32, cpu_env, fp64);
}
tcg_temp_free_i64(fp64);
gen_store_fpr32(ctx, fp32, fd);
tcg_temp_free_i32(fp32);
}
break;
case OPC_TRUNC_W_D:
check_cp1_registers(ctx, fs);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp64, fs);
if (ctx->nan2008) {
gen_helper_float_trunc_2008_w_d(fp32, cpu_env, fp64);
} else {
gen_helper_float_trunc_w_d(fp32, cpu_env, fp64);
}
tcg_temp_free_i64(fp64);
gen_store_fpr32(ctx, fp32, fd);
tcg_temp_free_i32(fp32);
}
break;
case OPC_CEIL_W_D:
check_cp1_registers(ctx, fs);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp64, fs);
if (ctx->nan2008) {
gen_helper_float_ceil_2008_w_d(fp32, cpu_env, fp64);
} else {
gen_helper_float_ceil_w_d(fp32, cpu_env, fp64);
}
tcg_temp_free_i64(fp64);
gen_store_fpr32(ctx, fp32, fd);
tcg_temp_free_i32(fp32);
}
break;
case OPC_FLOOR_W_D:
check_cp1_registers(ctx, fs);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp64, fs);
if (ctx->nan2008) {
gen_helper_float_floor_2008_w_d(fp32, cpu_env, fp64);
} else {
gen_helper_float_floor_w_d(fp32, cpu_env, fp64);
}
tcg_temp_free_i64(fp64);
gen_store_fpr32(ctx, fp32, fd);
tcg_temp_free_i32(fp32);
}
break;
case OPC_SEL_D:
check_insn(ctx, ISA_MIPS32R6);
gen_sel_d(ctx, op1, fd, ft, fs);
break;
case OPC_SELEQZ_D:
check_insn(ctx, ISA_MIPS32R6);
gen_sel_d(ctx, op1, fd, ft, fs);
break;
case OPC_SELNEZ_D:
check_insn(ctx, ISA_MIPS32R6);
gen_sel_d(ctx, op1, fd, ft, fs);
break;
case OPC_MOVCF_D:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_movcf_d(ctx, fs, fd, (ft >> 2) & 0x7, ft & 0x1);
break;
case OPC_MOVZ_D:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
{
TCGLabel *l1 = gen_new_label();
TCGv_i64 fp0;
if (ft != 0) {
tcg_gen_brcondi_tl(TCG_COND_NE, cpu_gpr[ft], 0, l1);
}
fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
gen_set_label(l1);
}
break;
case OPC_MOVN_D:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
{
TCGLabel *l1 = gen_new_label();
TCGv_i64 fp0;
if (ft != 0) {
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_gpr[ft], 0, l1);
fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
gen_set_label(l1);
}
}
break;
case OPC_RECIP_D:
check_cp1_registers(ctx, fs | fd);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_recip_d(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_RSQRT_D:
check_cp1_registers(ctx, fs | fd);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_rsqrt_d(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_MADDF_D:
check_insn(ctx, ISA_MIPS32R6);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
TCGv_i64 fp2 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_load_fpr64(ctx, fp2, fd);
gen_helper_float_maddf_d(fp2, cpu_env, fp0, fp1, fp2);
gen_store_fpr64(ctx, fp2, fd);
tcg_temp_free_i64(fp2);
tcg_temp_free_i64(fp1);
tcg_temp_free_i64(fp0);
}
break;
case OPC_MSUBF_D:
check_insn(ctx, ISA_MIPS32R6);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
TCGv_i64 fp2 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_load_fpr64(ctx, fp2, fd);
gen_helper_float_msubf_d(fp2, cpu_env, fp0, fp1, fp2);
gen_store_fpr64(ctx, fp2, fd);
tcg_temp_free_i64(fp2);
tcg_temp_free_i64(fp1);
tcg_temp_free_i64(fp0);
}
break;
case OPC_RINT_D:
check_insn(ctx, ISA_MIPS32R6);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_rint_d(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_CLASS_D:
check_insn(ctx, ISA_MIPS32R6);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_class_d(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_MIN_D: /* OPC_RECIP2_D */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_MIN_D */
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_min_d(fp1, cpu_env, fp0, fp1);
gen_store_fpr64(ctx, fp1, fd);
tcg_temp_free_i64(fp1);
tcg_temp_free_i64(fp0);
} else {
/* OPC_RECIP2_D */
check_cp1_64bitmode(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_recip2_d(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
}
break;
case OPC_MINA_D: /* OPC_RECIP1_D */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_MINA_D */
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_mina_d(fp1, cpu_env, fp0, fp1);
gen_store_fpr64(ctx, fp1, fd);
tcg_temp_free_i64(fp1);
tcg_temp_free_i64(fp0);
} else {
/* OPC_RECIP1_D */
check_cp1_64bitmode(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_recip1_d(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
}
break;
case OPC_MAX_D: /* OPC_RSQRT1_D */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_MAX_D */
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_max_d(fp1, cpu_env, fp0, fp1);
gen_store_fpr64(ctx, fp1, fd);
tcg_temp_free_i64(fp1);
tcg_temp_free_i64(fp0);
} else {
/* OPC_RSQRT1_D */
check_cp1_64bitmode(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_rsqrt1_d(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
}
break;
case OPC_MAXA_D: /* OPC_RSQRT2_D */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_MAXA_D */
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_maxa_d(fp1, cpu_env, fp0, fp1);
gen_store_fpr64(ctx, fp1, fd);
tcg_temp_free_i64(fp1);
tcg_temp_free_i64(fp0);
} else {
/* OPC_RSQRT2_D */
check_cp1_64bitmode(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_rsqrt2_d(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
}
break;
case OPC_CMP_F_D:
case OPC_CMP_UN_D:
case OPC_CMP_EQ_D:
case OPC_CMP_UEQ_D:
case OPC_CMP_OLT_D:
case OPC_CMP_ULT_D:
case OPC_CMP_OLE_D:
case OPC_CMP_ULE_D:
case OPC_CMP_SF_D:
case OPC_CMP_NGLE_D:
case OPC_CMP_SEQ_D:
case OPC_CMP_NGL_D:
case OPC_CMP_LT_D:
case OPC_CMP_NGE_D:
case OPC_CMP_LE_D:
case OPC_CMP_NGT_D:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
if (ctx->opcode & (1 << 6)) {
gen_cmpabs_d(ctx, func-48, ft, fs, cc);
} else {
gen_cmp_d(ctx, func-48, ft, fs, cc);
}
break;
case OPC_CVT_S_D:
check_cp1_registers(ctx, fs);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp64, fs);
gen_helper_float_cvts_d(fp32, cpu_env, fp64);
tcg_temp_free_i64(fp64);
gen_store_fpr32(ctx, fp32, fd);
tcg_temp_free_i32(fp32);
}
break;
case OPC_CVT_W_D:
check_cp1_registers(ctx, fs);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp64, fs);
if (ctx->nan2008) {
gen_helper_float_cvt_2008_w_d(fp32, cpu_env, fp64);
} else {
gen_helper_float_cvt_w_d(fp32, cpu_env, fp64);
}
tcg_temp_free_i64(fp64);
gen_store_fpr32(ctx, fp32, fd);
tcg_temp_free_i32(fp32);
}
break;
case OPC_CVT_L_D:
check_cp1_64bitmode(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
if (ctx->nan2008) {
gen_helper_float_cvt_2008_l_d(fp0, cpu_env, fp0);
} else {
gen_helper_float_cvt_l_d(fp0, cpu_env, fp0);
}
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_CVT_S_W:
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_helper_float_cvts_w(fp0, cpu_env, fp0);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_CVT_D_W:
check_cp1_registers(ctx, fd);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr32(ctx, fp32, fs);
gen_helper_float_cvtd_w(fp64, cpu_env, fp32);
tcg_temp_free_i32(fp32);
gen_store_fpr64(ctx, fp64, fd);
tcg_temp_free_i64(fp64);
}
break;
case OPC_CVT_S_L:
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp32 = tcg_temp_new_i32();
TCGv_i64 fp64 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp64, fs);
gen_helper_float_cvts_l(fp32, cpu_env, fp64);
tcg_temp_free_i64(fp64);
gen_store_fpr32(ctx, fp32, fd);
tcg_temp_free_i32(fp32);
}
break;
case OPC_CVT_D_L:
check_cp1_64bitmode(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_cvtd_l(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_CVT_PS_PW:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_cvtps_pw(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_ADD_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_add_ps(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_SUB_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_sub_ps(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_MUL_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_mul_ps(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_ABS_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_abs_ps(fp0, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_MOV_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_NEG_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_chs_ps(fp0, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_MOVCF_PS:
check_ps(ctx);
gen_movcf_ps(ctx, fs, fd, (ft >> 2) & 0x7, ft & 0x1);
break;
case OPC_MOVZ_PS:
check_ps(ctx);
{
TCGLabel *l1 = gen_new_label();
TCGv_i64 fp0;
if (ft != 0) {
tcg_gen_brcondi_tl(TCG_COND_NE, cpu_gpr[ft], 0, l1);
}
fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
gen_set_label(l1);
}
break;
case OPC_MOVN_PS:
check_ps(ctx);
{
TCGLabel *l1 = gen_new_label();
TCGv_i64 fp0;
if (ft != 0) {
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_gpr[ft], 0, l1);
fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
gen_set_label(l1);
}
}
break;
case OPC_ADDR_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, ft);
gen_load_fpr64(ctx, fp1, fs);
gen_helper_float_addr_ps(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_MULR_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, ft);
gen_load_fpr64(ctx, fp1, fs);
gen_helper_float_mulr_ps(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_RECIP2_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_recip2_ps(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_RECIP1_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_recip1_ps(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_RSQRT1_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_rsqrt1_ps(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_RSQRT2_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_helper_float_rsqrt2_ps(fp0, cpu_env, fp0, fp1);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_CVT_S_PU:
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32h(ctx, fp0, fs);
gen_helper_float_cvts_pu(fp0, cpu_env, fp0);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_CVT_PW_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_cvtpw_ps(fp0, cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_CVT_S_PL:
check_cp1_64bitmode(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_helper_float_cvts_pl(fp0, cpu_env, fp0);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_PLL_PS:
check_ps(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_store_fpr32h(ctx, fp0, fd);
gen_store_fpr32(ctx, fp1, fd);
tcg_temp_free_i32(fp0);
tcg_temp_free_i32(fp1);
}
break;
case OPC_PLU_PS:
check_ps(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32h(ctx, fp1, ft);
gen_store_fpr32(ctx, fp1, fd);
gen_store_fpr32h(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
tcg_temp_free_i32(fp1);
}
break;
case OPC_PUL_PS:
check_ps(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32h(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_store_fpr32(ctx, fp1, fd);
gen_store_fpr32h(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
tcg_temp_free_i32(fp1);
}
break;
case OPC_PUU_PS:
check_ps(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
gen_load_fpr32h(ctx, fp0, fs);
gen_load_fpr32h(ctx, fp1, ft);
gen_store_fpr32(ctx, fp1, fd);
gen_store_fpr32h(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
tcg_temp_free_i32(fp1);
}
break;
case OPC_CMP_F_PS:
case OPC_CMP_UN_PS:
case OPC_CMP_EQ_PS:
case OPC_CMP_UEQ_PS:
case OPC_CMP_OLT_PS:
case OPC_CMP_ULT_PS:
case OPC_CMP_OLE_PS:
case OPC_CMP_ULE_PS:
case OPC_CMP_SF_PS:
case OPC_CMP_NGLE_PS:
case OPC_CMP_SEQ_PS:
case OPC_CMP_NGL_PS:
case OPC_CMP_LT_PS:
case OPC_CMP_NGE_PS:
case OPC_CMP_LE_PS:
case OPC_CMP_NGT_PS:
if (ctx->opcode & (1 << 6)) {
gen_cmpabs_ps(ctx, func-48, ft, fs, cc);
} else {
gen_cmp_ps(ctx, func-48, ft, fs, cc);
}
break;
default:
MIPS_INVAL("farith");
generate_exception_end(ctx, EXCP_RI);
return;
}
}
/* Coprocessor 3 (FPU) */
static void gen_flt3_ldst(DisasContext *ctx, uint32_t opc,
int fd, int fs, int base, int index)
{
TCGv t0 = tcg_temp_new();
if (base == 0) {
gen_load_gpr(t0, index);
} else if (index == 0) {
gen_load_gpr(t0, base);
} else {
gen_op_addr_add(ctx, t0, cpu_gpr[base], cpu_gpr[index]);
}
/*
* Don't do NOP if destination is zero: we must perform the actual
* memory access.
*/
switch (opc) {
case OPC_LWXC1:
check_cop1x(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESL);
tcg_gen_trunc_tl_i32(fp0, t0);
gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(fp0);
}
break;
case OPC_LDXC1:
check_cop1x(ctx);
check_cp1_registers(ctx, fd);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(fp0, t0, ctx->mem_idx, MO_TEQ);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_LUXC1:
check_cp1_64bitmode(ctx);
tcg_gen_andi_tl(t0, t0, ~0x7);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(fp0, t0, ctx->mem_idx, MO_TEQ);
gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(fp0);
}
break;
case OPC_SWXC1:
check_cop1x(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
tcg_gen_qemu_st_i32(fp0, t0, ctx->mem_idx, MO_TEUL);
tcg_temp_free_i32(fp0);
}
break;
case OPC_SDXC1:
check_cop1x(ctx);
check_cp1_registers(ctx, fs);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
tcg_gen_qemu_st_i64(fp0, t0, ctx->mem_idx, MO_TEQ);
tcg_temp_free_i64(fp0);
}
break;
case OPC_SUXC1:
check_cp1_64bitmode(ctx);
tcg_gen_andi_tl(t0, t0, ~0x7);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
tcg_gen_qemu_st_i64(fp0, t0, ctx->mem_idx, MO_TEQ);
tcg_temp_free_i64(fp0);
}
break;
}
tcg_temp_free(t0);
}
static void gen_flt3_arith(DisasContext *ctx, uint32_t opc,
int fd, int fr, int fs, int ft)
{
switch (opc) {
case OPC_ALNV_PS:
check_ps(ctx);
{
TCGv t0 = tcg_temp_local_new();
TCGv_i32 fp = tcg_temp_new_i32();
TCGv_i32 fph = tcg_temp_new_i32();
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
gen_load_gpr(t0, fr);
tcg_gen_andi_tl(t0, t0, 0x7);
tcg_gen_brcondi_tl(TCG_COND_NE, t0, 0, l1);
gen_load_fpr32(ctx, fp, fs);
gen_load_fpr32h(ctx, fph, fs);
gen_store_fpr32(ctx, fp, fd);
gen_store_fpr32h(ctx, fph, fd);
tcg_gen_br(l2);
gen_set_label(l1);
tcg_gen_brcondi_tl(TCG_COND_NE, t0, 4, l2);
tcg_temp_free(t0);
#ifdef TARGET_WORDS_BIGENDIAN
gen_load_fpr32(ctx, fp, fs);
gen_load_fpr32h(ctx, fph, ft);
gen_store_fpr32h(ctx, fp, fd);
gen_store_fpr32(ctx, fph, fd);
#else
gen_load_fpr32h(ctx, fph, fs);
gen_load_fpr32(ctx, fp, ft);
gen_store_fpr32(ctx, fph, fd);
gen_store_fpr32h(ctx, fp, fd);
#endif
gen_set_label(l2);
tcg_temp_free_i32(fp);
tcg_temp_free_i32(fph);
}
break;
case OPC_MADD_S:
check_cop1x(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
TCGv_i32 fp2 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_load_fpr32(ctx, fp2, fr);
gen_helper_float_madd_s(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i32(fp0);
tcg_temp_free_i32(fp1);
gen_store_fpr32(ctx, fp2, fd);
tcg_temp_free_i32(fp2);
}
break;
case OPC_MADD_D:
check_cop1x(ctx);
check_cp1_registers(ctx, fd | fs | ft | fr);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
TCGv_i64 fp2 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_load_fpr64(ctx, fp2, fr);
gen_helper_float_madd_d(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i64(fp0);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp2, fd);
tcg_temp_free_i64(fp2);
}
break;
case OPC_MADD_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
TCGv_i64 fp2 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_load_fpr64(ctx, fp2, fr);
gen_helper_float_madd_ps(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i64(fp0);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp2, fd);
tcg_temp_free_i64(fp2);
}
break;
case OPC_MSUB_S:
check_cop1x(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
TCGv_i32 fp2 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_load_fpr32(ctx, fp2, fr);
gen_helper_float_msub_s(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i32(fp0);
tcg_temp_free_i32(fp1);
gen_store_fpr32(ctx, fp2, fd);
tcg_temp_free_i32(fp2);
}
break;
case OPC_MSUB_D:
check_cop1x(ctx);
check_cp1_registers(ctx, fd | fs | ft | fr);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
TCGv_i64 fp2 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_load_fpr64(ctx, fp2, fr);
gen_helper_float_msub_d(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i64(fp0);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp2, fd);
tcg_temp_free_i64(fp2);
}
break;
case OPC_MSUB_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
TCGv_i64 fp2 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_load_fpr64(ctx, fp2, fr);
gen_helper_float_msub_ps(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i64(fp0);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp2, fd);
tcg_temp_free_i64(fp2);
}
break;
case OPC_NMADD_S:
check_cop1x(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
TCGv_i32 fp2 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_load_fpr32(ctx, fp2, fr);
gen_helper_float_nmadd_s(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i32(fp0);
tcg_temp_free_i32(fp1);
gen_store_fpr32(ctx, fp2, fd);
tcg_temp_free_i32(fp2);
}
break;
case OPC_NMADD_D:
check_cop1x(ctx);
check_cp1_registers(ctx, fd | fs | ft | fr);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
TCGv_i64 fp2 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_load_fpr64(ctx, fp2, fr);
gen_helper_float_nmadd_d(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i64(fp0);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp2, fd);
tcg_temp_free_i64(fp2);
}
break;
case OPC_NMADD_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
TCGv_i64 fp2 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_load_fpr64(ctx, fp2, fr);
gen_helper_float_nmadd_ps(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i64(fp0);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp2, fd);
tcg_temp_free_i64(fp2);
}
break;
case OPC_NMSUB_S:
check_cop1x(ctx);
{
TCGv_i32 fp0 = tcg_temp_new_i32();
TCGv_i32 fp1 = tcg_temp_new_i32();
TCGv_i32 fp2 = tcg_temp_new_i32();
gen_load_fpr32(ctx, fp0, fs);
gen_load_fpr32(ctx, fp1, ft);
gen_load_fpr32(ctx, fp2, fr);
gen_helper_float_nmsub_s(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i32(fp0);
tcg_temp_free_i32(fp1);
gen_store_fpr32(ctx, fp2, fd);
tcg_temp_free_i32(fp2);
}
break;
case OPC_NMSUB_D:
check_cop1x(ctx);
check_cp1_registers(ctx, fd | fs | ft | fr);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
TCGv_i64 fp2 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_load_fpr64(ctx, fp2, fr);
gen_helper_float_nmsub_d(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i64(fp0);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp2, fd);
tcg_temp_free_i64(fp2);
}
break;
case OPC_NMSUB_PS:
check_ps(ctx);
{
TCGv_i64 fp0 = tcg_temp_new_i64();
TCGv_i64 fp1 = tcg_temp_new_i64();
TCGv_i64 fp2 = tcg_temp_new_i64();
gen_load_fpr64(ctx, fp0, fs);
gen_load_fpr64(ctx, fp1, ft);
gen_load_fpr64(ctx, fp2, fr);
gen_helper_float_nmsub_ps(fp2, cpu_env, fp0, fp1, fp2);
tcg_temp_free_i64(fp0);
tcg_temp_free_i64(fp1);
gen_store_fpr64(ctx, fp2, fd);
tcg_temp_free_i64(fp2);
}
break;
default:
MIPS_INVAL("flt3_arith");
generate_exception_end(ctx, EXCP_RI);
return;
}
}
static void gen_rdhwr(DisasContext *ctx, int rt, int rd, int sel)
{
TCGv t0;
#if !defined(CONFIG_USER_ONLY)
/*
* The Linux kernel will emulate rdhwr if it's not supported natively.
* Therefore only check the ISA in system mode.
*/
check_insn(ctx, ISA_MIPS32R2);
#endif
t0 = tcg_temp_new();
switch (rd) {
case 0:
gen_helper_rdhwr_cpunum(t0, cpu_env);
gen_store_gpr(t0, rt);
break;
case 1:
gen_helper_rdhwr_synci_step(t0, cpu_env);
gen_store_gpr(t0, rt);
break;
case 2:
if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) {
gen_io_start();
}
gen_helper_rdhwr_cc(t0, cpu_env);
if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) {
gen_io_end();
}
gen_store_gpr(t0, rt);
/*
* Break the TB to be able to take timer interrupts immediately
* after reading count. DISAS_STOP isn't sufficient, we need to ensure
* we break completely out of translated code.
*/
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
break;
case 3:
gen_helper_rdhwr_ccres(t0, cpu_env);
gen_store_gpr(t0, rt);
break;
case 4:
check_insn(ctx, ISA_MIPS32R6);
if (sel != 0) {
/*
* Performance counter registers are not implemented other than
* control register 0.
*/
generate_exception(ctx, EXCP_RI);
}
gen_helper_rdhwr_performance(t0, cpu_env);
gen_store_gpr(t0, rt);
break;
case 5:
check_insn(ctx, ISA_MIPS32R6);
gen_helper_rdhwr_xnp(t0, cpu_env);
gen_store_gpr(t0, rt);
break;
case 29:
#if defined(CONFIG_USER_ONLY)
tcg_gen_ld_tl(t0, cpu_env,
offsetof(CPUMIPSState, active_tc.CP0_UserLocal));
gen_store_gpr(t0, rt);
break;
#else
if ((ctx->hflags & MIPS_HFLAG_CP0) ||
(ctx->hflags & MIPS_HFLAG_HWRENA_ULR)) {
tcg_gen_ld_tl(t0, cpu_env,
offsetof(CPUMIPSState, active_tc.CP0_UserLocal));
gen_store_gpr(t0, rt);
} else {
generate_exception_end(ctx, EXCP_RI);
}
break;
#endif
default: /* Invalid */
MIPS_INVAL("rdhwr");
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free(t0);
}
static inline void clear_branch_hflags(DisasContext *ctx)
{
ctx->hflags &= ~MIPS_HFLAG_BMASK;
if (ctx->base.is_jmp == DISAS_NEXT) {
save_cpu_state(ctx, 0);
} else {
/*
* It is not safe to save ctx->hflags as hflags may be changed
* in execution time by the instruction in delay / forbidden slot.
*/
tcg_gen_andi_i32(hflags, hflags, ~MIPS_HFLAG_BMASK);
}
}
static void gen_branch(DisasContext *ctx, int insn_bytes)
{
if (ctx->hflags & MIPS_HFLAG_BMASK) {
int proc_hflags = ctx->hflags & MIPS_HFLAG_BMASK;
/* Branches completion */
clear_branch_hflags(ctx);
ctx->base.is_jmp = DISAS_NORETURN;
/* FIXME: Need to clear can_do_io. */
switch (proc_hflags & MIPS_HFLAG_BMASK_BASE) {
case MIPS_HFLAG_FBNSLOT:
gen_goto_tb(ctx, 0, ctx->base.pc_next + insn_bytes);
break;
case MIPS_HFLAG_B:
/* unconditional branch */
if (proc_hflags & MIPS_HFLAG_BX) {
tcg_gen_xori_i32(hflags, hflags, MIPS_HFLAG_M16);
}
gen_goto_tb(ctx, 0, ctx->btarget);
break;
case MIPS_HFLAG_BL:
/* blikely taken case */
gen_goto_tb(ctx, 0, ctx->btarget);
break;
case MIPS_HFLAG_BC:
/* Conditional branch */
{
TCGLabel *l1 = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_NE, bcond, 0, l1);
gen_goto_tb(ctx, 1, ctx->base.pc_next + insn_bytes);
gen_set_label(l1);
gen_goto_tb(ctx, 0, ctx->btarget);
}
break;
case MIPS_HFLAG_BR:
/* unconditional branch to register */
if (ctx->insn_flags & (ASE_MIPS16 | ASE_MICROMIPS)) {
TCGv t0 = tcg_temp_new();
TCGv_i32 t1 = tcg_temp_new_i32();
tcg_gen_andi_tl(t0, btarget, 0x1);
tcg_gen_trunc_tl_i32(t1, t0);
tcg_temp_free(t0);
tcg_gen_andi_i32(hflags, hflags, ~(uint32_t)MIPS_HFLAG_M16);
tcg_gen_shli_i32(t1, t1, MIPS_HFLAG_M16_SHIFT);
tcg_gen_or_i32(hflags, hflags, t1);
tcg_temp_free_i32(t1);
tcg_gen_andi_tl(cpu_PC, btarget, ~(target_ulong)0x1);
} else {
tcg_gen_mov_tl(cpu_PC, btarget);
}
if (ctx->base.singlestep_enabled) {
save_cpu_state(ctx, 0);
gen_helper_raise_exception_debug(cpu_env);
}
tcg_gen_lookup_and_goto_ptr();
break;
default:
fprintf(stderr, "unknown branch 0x%x\n", proc_hflags);
abort();
}
}
}
/* Compact Branches */
static void gen_compute_compact_branch(DisasContext *ctx, uint32_t opc,
int rs, int rt, int32_t offset)
{
int bcond_compute = 0;
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
int m16_lowbit = (ctx->hflags & MIPS_HFLAG_M16) != 0;
if (ctx->hflags & MIPS_HFLAG_BMASK) {
#ifdef MIPS_DEBUG_DISAS
LOG_DISAS("Branch in delay / forbidden slot at PC 0x" TARGET_FMT_lx
"\n", ctx->base.pc_next);
#endif
generate_exception_end(ctx, EXCP_RI);
goto out;
}
/* Load needed operands and calculate btarget */
switch (opc) {
/* compact branch */
case OPC_BOVC: /* OPC_BEQZALC, OPC_BEQC */
case OPC_BNVC: /* OPC_BNEZALC, OPC_BNEC */
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
bcond_compute = 1;
ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
if (rs <= rt && rs == 0) {
/* OPC_BEQZALC, OPC_BNEZALC */
tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 4 + m16_lowbit);
}
break;
case OPC_BLEZC: /* OPC_BGEZC, OPC_BGEC */
case OPC_BGTZC: /* OPC_BLTZC, OPC_BLTC */
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
bcond_compute = 1;
ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
break;
case OPC_BLEZALC: /* OPC_BGEZALC, OPC_BGEUC */
case OPC_BGTZALC: /* OPC_BLTZALC, OPC_BLTUC */
if (rs == 0 || rs == rt) {
/* OPC_BLEZALC, OPC_BGEZALC */
/* OPC_BGTZALC, OPC_BLTZALC */
tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 4 + m16_lowbit);
}
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
bcond_compute = 1;
ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
break;
case OPC_BC:
case OPC_BALC:
ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
break;
case OPC_BEQZC:
case OPC_BNEZC:
if (rs != 0) {
/* OPC_BEQZC, OPC_BNEZC */
gen_load_gpr(t0, rs);
bcond_compute = 1;
ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
} else {
/* OPC_JIC, OPC_JIALC */
TCGv tbase = tcg_temp_new();
TCGv toffset = tcg_temp_new();
gen_load_gpr(tbase, rt);
tcg_gen_movi_tl(toffset, offset);
gen_op_addr_add(ctx, btarget, tbase, toffset);
tcg_temp_free(tbase);
tcg_temp_free(toffset);
}
break;
default:
MIPS_INVAL("Compact branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
if (bcond_compute == 0) {
/* Uncoditional compact branch */
switch (opc) {
case OPC_JIALC:
tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 4 + m16_lowbit);
/* Fallthrough */
case OPC_JIC:
ctx->hflags |= MIPS_HFLAG_BR;
break;
case OPC_BALC:
tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 4 + m16_lowbit);
/* Fallthrough */
case OPC_BC:
ctx->hflags |= MIPS_HFLAG_B;
break;
default:
MIPS_INVAL("Compact branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
/* Generating branch here as compact branches don't have delay slot */
gen_branch(ctx, 4);
} else {
/* Conditional compact branch */
TCGLabel *fs = gen_new_label();
save_cpu_state(ctx, 0);
switch (opc) {
case OPC_BLEZALC: /* OPC_BGEZALC, OPC_BGEUC */
if (rs == 0 && rt != 0) {
/* OPC_BLEZALC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LE), t1, 0, fs);
} else if (rs != 0 && rt != 0 && rs == rt) {
/* OPC_BGEZALC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GE), t1, 0, fs);
} else {
/* OPC_BGEUC */
tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_GEU), t0, t1, fs);
}
break;
case OPC_BGTZALC: /* OPC_BLTZALC, OPC_BLTUC */
if (rs == 0 && rt != 0) {
/* OPC_BGTZALC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GT), t1, 0, fs);
} else if (rs != 0 && rt != 0 && rs == rt) {
/* OPC_BLTZALC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LT), t1, 0, fs);
} else {
/* OPC_BLTUC */
tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_LTU), t0, t1, fs);
}
break;
case OPC_BLEZC: /* OPC_BGEZC, OPC_BGEC */
if (rs == 0 && rt != 0) {
/* OPC_BLEZC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LE), t1, 0, fs);
} else if (rs != 0 && rt != 0 && rs == rt) {
/* OPC_BGEZC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GE), t1, 0, fs);
} else {
/* OPC_BGEC */
tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_GE), t0, t1, fs);
}
break;
case OPC_BGTZC: /* OPC_BLTZC, OPC_BLTC */
if (rs == 0 && rt != 0) {
/* OPC_BGTZC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GT), t1, 0, fs);
} else if (rs != 0 && rt != 0 && rs == rt) {
/* OPC_BLTZC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LT), t1, 0, fs);
} else {
/* OPC_BLTC */
tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_LT), t0, t1, fs);
}
break;
case OPC_BOVC: /* OPC_BEQZALC, OPC_BEQC */
case OPC_BNVC: /* OPC_BNEZALC, OPC_BNEC */
if (rs >= rt) {
/* OPC_BOVC, OPC_BNVC */
TCGv t2 = tcg_temp_new();
TCGv t3 = tcg_temp_new();
TCGv t4 = tcg_temp_new();
TCGv input_overflow = tcg_temp_new();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
tcg_gen_ext32s_tl(t2, t0);
tcg_gen_setcond_tl(TCG_COND_NE, input_overflow, t2, t0);
tcg_gen_ext32s_tl(t3, t1);
tcg_gen_setcond_tl(TCG_COND_NE, t4, t3, t1);
tcg_gen_or_tl(input_overflow, input_overflow, t4);
tcg_gen_add_tl(t4, t2, t3);
tcg_gen_ext32s_tl(t4, t4);
tcg_gen_xor_tl(t2, t2, t3);
tcg_gen_xor_tl(t3, t4, t3);
tcg_gen_andc_tl(t2, t3, t2);
tcg_gen_setcondi_tl(TCG_COND_LT, t4, t2, 0);
tcg_gen_or_tl(t4, t4, input_overflow);
if (opc == OPC_BOVC) {
/* OPC_BOVC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_NE), t4, 0, fs);
} else {
/* OPC_BNVC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_EQ), t4, 0, fs);
}
tcg_temp_free(input_overflow);
tcg_temp_free(t4);
tcg_temp_free(t3);
tcg_temp_free(t2);
} else if (rs < rt && rs == 0) {
/* OPC_BEQZALC, OPC_BNEZALC */
if (opc == OPC_BEQZALC) {
/* OPC_BEQZALC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_EQ), t1, 0, fs);
} else {
/* OPC_BNEZALC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_NE), t1, 0, fs);
}
} else {
/* OPC_BEQC, OPC_BNEC */
if (opc == OPC_BEQC) {
/* OPC_BEQC */
tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_EQ), t0, t1, fs);
} else {
/* OPC_BNEC */
tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_NE), t0, t1, fs);
}
}
break;
case OPC_BEQZC:
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_EQ), t0, 0, fs);
break;
case OPC_BNEZC:
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_NE), t0, 0, fs);
break;
default:
MIPS_INVAL("Compact conditional branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
/* Generating branch here as compact branches don't have delay slot */
gen_goto_tb(ctx, 1, ctx->btarget);
gen_set_label(fs);
ctx->hflags |= MIPS_HFLAG_FBNSLOT;
}
out:
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/* ISA extensions (ASEs) */
/* MIPS16 extension to MIPS32 */
/* MIPS16 major opcodes */
enum {
M16_OPC_ADDIUSP = 0x00,
M16_OPC_ADDIUPC = 0x01,
M16_OPC_B = 0x02,
M16_OPC_JAL = 0x03,
M16_OPC_BEQZ = 0x04,
M16_OPC_BNEQZ = 0x05,
M16_OPC_SHIFT = 0x06,
M16_OPC_LD = 0x07,
M16_OPC_RRIA = 0x08,
M16_OPC_ADDIU8 = 0x09,
M16_OPC_SLTI = 0x0a,
M16_OPC_SLTIU = 0x0b,
M16_OPC_I8 = 0x0c,
M16_OPC_LI = 0x0d,
M16_OPC_CMPI = 0x0e,
M16_OPC_SD = 0x0f,
M16_OPC_LB = 0x10,
M16_OPC_LH = 0x11,
M16_OPC_LWSP = 0x12,
M16_OPC_LW = 0x13,
M16_OPC_LBU = 0x14,
M16_OPC_LHU = 0x15,
M16_OPC_LWPC = 0x16,
M16_OPC_LWU = 0x17,
M16_OPC_SB = 0x18,
M16_OPC_SH = 0x19,
M16_OPC_SWSP = 0x1a,
M16_OPC_SW = 0x1b,
M16_OPC_RRR = 0x1c,
M16_OPC_RR = 0x1d,
M16_OPC_EXTEND = 0x1e,
M16_OPC_I64 = 0x1f
};
/* I8 funct field */
enum {
I8_BTEQZ = 0x0,
I8_BTNEZ = 0x1,
I8_SWRASP = 0x2,
I8_ADJSP = 0x3,
I8_SVRS = 0x4,
I8_MOV32R = 0x5,
I8_MOVR32 = 0x7
};
/* RRR f field */
enum {
RRR_DADDU = 0x0,
RRR_ADDU = 0x1,
RRR_DSUBU = 0x2,
RRR_SUBU = 0x3
};
/* RR funct field */
enum {
RR_JR = 0x00,
RR_SDBBP = 0x01,
RR_SLT = 0x02,
RR_SLTU = 0x03,
RR_SLLV = 0x04,
RR_BREAK = 0x05,
RR_SRLV = 0x06,
RR_SRAV = 0x07,
RR_DSRL = 0x08,
RR_CMP = 0x0a,
RR_NEG = 0x0b,
RR_AND = 0x0c,
RR_OR = 0x0d,
RR_XOR = 0x0e,
RR_NOT = 0x0f,
RR_MFHI = 0x10,
RR_CNVT = 0x11,
RR_MFLO = 0x12,
RR_DSRA = 0x13,
RR_DSLLV = 0x14,
RR_DSRLV = 0x16,
RR_DSRAV = 0x17,
RR_MULT = 0x18,
RR_MULTU = 0x19,
RR_DIV = 0x1a,
RR_DIVU = 0x1b,
RR_DMULT = 0x1c,
RR_DMULTU = 0x1d,
RR_DDIV = 0x1e,
RR_DDIVU = 0x1f
};
/* I64 funct field */
enum {
I64_LDSP = 0x0,
I64_SDSP = 0x1,
I64_SDRASP = 0x2,
I64_DADJSP = 0x3,
I64_LDPC = 0x4,
I64_DADDIU5 = 0x5,
I64_DADDIUPC = 0x6,
I64_DADDIUSP = 0x7
};
/* RR ry field for CNVT */
enum {
RR_RY_CNVT_ZEB = 0x0,
RR_RY_CNVT_ZEH = 0x1,
RR_RY_CNVT_ZEW = 0x2,
RR_RY_CNVT_SEB = 0x4,
RR_RY_CNVT_SEH = 0x5,
RR_RY_CNVT_SEW = 0x6,
};
static int xlat(int r)
{
static int map[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
return map[r];
}
static void gen_mips16_save(DisasContext *ctx,
int xsregs, int aregs,
int do_ra, int do_s0, int do_s1,
int framesize)
{
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_temp_new();
int args, astatic;
switch (aregs) {
case 0:
case 1:
case 2:
case 3:
case 11:
args = 0;
break;
case 4:
case 5:
case 6:
case 7:
args = 1;
break;
case 8:
case 9:
case 10:
args = 2;
break;
case 12:
case 13:
args = 3;
break;
case 14:
args = 4;
break;
default:
generate_exception_end(ctx, EXCP_RI);
return;
}
switch (args) {
case 4:
gen_base_offset_addr(ctx, t0, 29, 12);
gen_load_gpr(t1, 7);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL);
/* Fall through */
case 3:
gen_base_offset_addr(ctx, t0, 29, 8);
gen_load_gpr(t1, 6);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL);
/* Fall through */
case 2:
gen_base_offset_addr(ctx, t0, 29, 4);
gen_load_gpr(t1, 5);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL);
/* Fall through */
case 1:
gen_base_offset_addr(ctx, t0, 29, 0);
gen_load_gpr(t1, 4);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL);
}
gen_load_gpr(t0, 29);
#define DECR_AND_STORE(reg) do { \
tcg_gen_movi_tl(t2, -4); \
gen_op_addr_add(ctx, t0, t0, t2); \
gen_load_gpr(t1, reg); \
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL); \
} while (0)
if (do_ra) {
DECR_AND_STORE(31);
}
switch (xsregs) {
case 7:
DECR_AND_STORE(30);
/* Fall through */
case 6:
DECR_AND_STORE(23);
/* Fall through */
case 5:
DECR_AND_STORE(22);
/* Fall through */
case 4:
DECR_AND_STORE(21);
/* Fall through */
case 3:
DECR_AND_STORE(20);
/* Fall through */
case 2:
DECR_AND_STORE(19);
/* Fall through */
case 1:
DECR_AND_STORE(18);
}
if (do_s1) {
DECR_AND_STORE(17);
}
if (do_s0) {
DECR_AND_STORE(16);
}
switch (aregs) {
case 0:
case 4:
case 8:
case 12:
case 14:
astatic = 0;
break;
case 1:
case 5:
case 9:
case 13:
astatic = 1;
break;
case 2:
case 6:
case 10:
astatic = 2;
break;
case 3:
case 7:
astatic = 3;
break;
case 11:
astatic = 4;
break;
default:
generate_exception_end(ctx, EXCP_RI);
return;
}
if (astatic > 0) {
DECR_AND_STORE(7);
if (astatic > 1) {
DECR_AND_STORE(6);
if (astatic > 2) {
DECR_AND_STORE(5);
if (astatic > 3) {
DECR_AND_STORE(4);
}
}
}
}
#undef DECR_AND_STORE
tcg_gen_movi_tl(t2, -framesize);
gen_op_addr_add(ctx, cpu_gpr[29], cpu_gpr[29], t2);
tcg_temp_free(t0);
tcg_temp_free(t1);
tcg_temp_free(t2);
}
static void gen_mips16_restore(DisasContext *ctx,
int xsregs, int aregs,
int do_ra, int do_s0, int do_s1,
int framesize)
{
int astatic;
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_temp_new();
tcg_gen_movi_tl(t2, framesize);
gen_op_addr_add(ctx, t0, cpu_gpr[29], t2);
#define DECR_AND_LOAD(reg) do { \
tcg_gen_movi_tl(t2, -4); \
gen_op_addr_add(ctx, t0, t0, t2); \
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TESL); \
gen_store_gpr(t1, reg); \
} while (0)
if (do_ra) {
DECR_AND_LOAD(31);
}
switch (xsregs) {
case 7:
DECR_AND_LOAD(30);
/* Fall through */
case 6:
DECR_AND_LOAD(23);
/* Fall through */
case 5:
DECR_AND_LOAD(22);
/* Fall through */
case 4:
DECR_AND_LOAD(21);
/* Fall through */
case 3:
DECR_AND_LOAD(20);
/* Fall through */
case 2:
DECR_AND_LOAD(19);
/* Fall through */
case 1:
DECR_AND_LOAD(18);
}
if (do_s1) {
DECR_AND_LOAD(17);
}
if (do_s0) {
DECR_AND_LOAD(16);
}
switch (aregs) {
case 0:
case 4:
case 8:
case 12:
case 14:
astatic = 0;
break;
case 1:
case 5:
case 9:
case 13:
astatic = 1;
break;
case 2:
case 6:
case 10:
astatic = 2;
break;
case 3:
case 7:
astatic = 3;
break;
case 11:
astatic = 4;
break;
default:
generate_exception_end(ctx, EXCP_RI);
return;
}
if (astatic > 0) {
DECR_AND_LOAD(7);
if (astatic > 1) {
DECR_AND_LOAD(6);
if (astatic > 2) {
DECR_AND_LOAD(5);
if (astatic > 3) {
DECR_AND_LOAD(4);
}
}
}
}
#undef DECR_AND_LOAD
tcg_gen_movi_tl(t2, framesize);
gen_op_addr_add(ctx, cpu_gpr[29], cpu_gpr[29], t2);
tcg_temp_free(t0);
tcg_temp_free(t1);
tcg_temp_free(t2);
}
static void gen_addiupc(DisasContext *ctx, int rx, int imm,
int is_64_bit, int extended)
{
TCGv t0;
if (extended && (ctx->hflags & MIPS_HFLAG_BMASK)) {
generate_exception_end(ctx, EXCP_RI);
return;
}
t0 = tcg_temp_new();
tcg_gen_movi_tl(t0, pc_relative_pc(ctx));
tcg_gen_addi_tl(cpu_gpr[rx], t0, imm);
if (!is_64_bit) {
tcg_gen_ext32s_tl(cpu_gpr[rx], cpu_gpr[rx]);
}
tcg_temp_free(t0);
}
static void gen_cache_operation(DisasContext *ctx, uint32_t op, int base,
int16_t offset)
{
TCGv_i32 t0 = tcg_const_i32(op);
TCGv t1 = tcg_temp_new();
gen_base_offset_addr(ctx, t1, base, offset);
gen_helper_cache(cpu_env, t1, t0);
}
#if defined(TARGET_MIPS64)
static void decode_i64_mips16(DisasContext *ctx,
int ry, int funct, int16_t offset,
int extended)
{
switch (funct) {
case I64_LDSP:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
offset = extended ? offset : offset << 3;
gen_ld(ctx, OPC_LD, ry, 29, offset);
break;
case I64_SDSP:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
offset = extended ? offset : offset << 3;
gen_st(ctx, OPC_SD, ry, 29, offset);
break;
case I64_SDRASP:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
offset = extended ? offset : (ctx->opcode & 0xff) << 3;
gen_st(ctx, OPC_SD, 31, 29, offset);
break;
case I64_DADJSP:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
offset = extended ? offset : ((int8_t)ctx->opcode) << 3;
gen_arith_imm(ctx, OPC_DADDIU, 29, 29, offset);
break;
case I64_LDPC:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
if (extended && (ctx->hflags & MIPS_HFLAG_BMASK)) {
generate_exception_end(ctx, EXCP_RI);
} else {
offset = extended ? offset : offset << 3;
gen_ld(ctx, OPC_LDPC, ry, 0, offset);
}
break;
case I64_DADDIU5:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
offset = extended ? offset : ((int8_t)(offset << 3)) >> 3;
gen_arith_imm(ctx, OPC_DADDIU, ry, ry, offset);
break;
case I64_DADDIUPC:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
offset = extended ? offset : offset << 2;
gen_addiupc(ctx, ry, offset, 1, extended);
break;
case I64_DADDIUSP:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
offset = extended ? offset : offset << 2;
gen_arith_imm(ctx, OPC_DADDIU, ry, 29, offset);
break;
}
}
#endif
static int decode_extended_mips16_opc(CPUMIPSState *env, DisasContext *ctx)
{
int extend = cpu_lduw_code(env, ctx->base.pc_next + 2);
int op, rx, ry, funct, sa;
int16_t imm, offset;
ctx->opcode = (ctx->opcode << 16) | extend;
op = (ctx->opcode >> 11) & 0x1f;
sa = (ctx->opcode >> 22) & 0x1f;
funct = (ctx->opcode >> 8) & 0x7;
rx = xlat((ctx->opcode >> 8) & 0x7);
ry = xlat((ctx->opcode >> 5) & 0x7);
offset = imm = (int16_t) (((ctx->opcode >> 16) & 0x1f) << 11
| ((ctx->opcode >> 21) & 0x3f) << 5
| (ctx->opcode & 0x1f));
/*
* The extended opcodes cleverly reuse the opcodes from their 16-bit
* counterparts.
*/
switch (op) {
case M16_OPC_ADDIUSP:
gen_arith_imm(ctx, OPC_ADDIU, rx, 29, imm);
break;
case M16_OPC_ADDIUPC:
gen_addiupc(ctx, rx, imm, 0, 1);
break;
case M16_OPC_B:
gen_compute_branch(ctx, OPC_BEQ, 4, 0, 0, offset << 1, 0);
/* No delay slot, so just process as a normal instruction */
break;
case M16_OPC_BEQZ:
gen_compute_branch(ctx, OPC_BEQ, 4, rx, 0, offset << 1, 0);
/* No delay slot, so just process as a normal instruction */
break;
case M16_OPC_BNEQZ:
gen_compute_branch(ctx, OPC_BNE, 4, rx, 0, offset << 1, 0);
/* No delay slot, so just process as a normal instruction */
break;
case M16_OPC_SHIFT:
switch (ctx->opcode & 0x3) {
case 0x0:
gen_shift_imm(ctx, OPC_SLL, rx, ry, sa);
break;
case 0x1:
#if defined(TARGET_MIPS64)
check_mips_64(ctx);
gen_shift_imm(ctx, OPC_DSLL, rx, ry, sa);
#else
generate_exception_end(ctx, EXCP_RI);
#endif
break;
case 0x2:
gen_shift_imm(ctx, OPC_SRL, rx, ry, sa);
break;
case 0x3:
gen_shift_imm(ctx, OPC_SRA, rx, ry, sa);
break;
}
break;
#if defined(TARGET_MIPS64)
case M16_OPC_LD:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_ld(ctx, OPC_LD, ry, rx, offset);
break;
#endif
case M16_OPC_RRIA:
imm = ctx->opcode & 0xf;
imm = imm | ((ctx->opcode >> 20) & 0x7f) << 4;
imm = imm | ((ctx->opcode >> 16) & 0xf) << 11;
imm = (int16_t) (imm << 1) >> 1;
if ((ctx->opcode >> 4) & 0x1) {
#if defined(TARGET_MIPS64)
check_mips_64(ctx);
gen_arith_imm(ctx, OPC_DADDIU, ry, rx, imm);
#else
generate_exception_end(ctx, EXCP_RI);
#endif
} else {
gen_arith_imm(ctx, OPC_ADDIU, ry, rx, imm);
}
break;
case M16_OPC_ADDIU8:
gen_arith_imm(ctx, OPC_ADDIU, rx, rx, imm);
break;
case M16_OPC_SLTI:
gen_slt_imm(ctx, OPC_SLTI, 24, rx, imm);
break;
case M16_OPC_SLTIU:
gen_slt_imm(ctx, OPC_SLTIU, 24, rx, imm);
break;
case M16_OPC_I8:
switch (funct) {
case I8_BTEQZ:
gen_compute_branch(ctx, OPC_BEQ, 4, 24, 0, offset << 1, 0);
break;
case I8_BTNEZ:
gen_compute_branch(ctx, OPC_BNE, 4, 24, 0, offset << 1, 0);
break;
case I8_SWRASP:
gen_st(ctx, OPC_SW, 31, 29, imm);
break;
case I8_ADJSP:
gen_arith_imm(ctx, OPC_ADDIU, 29, 29, imm);
break;
case I8_SVRS:
check_insn(ctx, ISA_MIPS32);
{
int xsregs = (ctx->opcode >> 24) & 0x7;
int aregs = (ctx->opcode >> 16) & 0xf;
int do_ra = (ctx->opcode >> 6) & 0x1;
int do_s0 = (ctx->opcode >> 5) & 0x1;
int do_s1 = (ctx->opcode >> 4) & 0x1;
int framesize = (((ctx->opcode >> 20) & 0xf) << 4
| (ctx->opcode & 0xf)) << 3;
if (ctx->opcode & (1 << 7)) {
gen_mips16_save(ctx, xsregs, aregs,
do_ra, do_s0, do_s1,
framesize);
} else {
gen_mips16_restore(ctx, xsregs, aregs,
do_ra, do_s0, do_s1,
framesize);
}
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case M16_OPC_LI:
tcg_gen_movi_tl(cpu_gpr[rx], (uint16_t) imm);
break;
case M16_OPC_CMPI:
tcg_gen_xori_tl(cpu_gpr[24], cpu_gpr[rx], (uint16_t) imm);
break;
#if defined(TARGET_MIPS64)
case M16_OPC_SD:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_st(ctx, OPC_SD, ry, rx, offset);
break;
#endif
case M16_OPC_LB:
gen_ld(ctx, OPC_LB, ry, rx, offset);
break;
case M16_OPC_LH:
gen_ld(ctx, OPC_LH, ry, rx, offset);
break;
case M16_OPC_LWSP:
gen_ld(ctx, OPC_LW, rx, 29, offset);
break;
case M16_OPC_LW:
gen_ld(ctx, OPC_LW, ry, rx, offset);
break;
case M16_OPC_LBU:
gen_ld(ctx, OPC_LBU, ry, rx, offset);
break;
case M16_OPC_LHU:
gen_ld(ctx, OPC_LHU, ry, rx, offset);
break;
case M16_OPC_LWPC:
gen_ld(ctx, OPC_LWPC, rx, 0, offset);
break;
#if defined(TARGET_MIPS64)
case M16_OPC_LWU:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_ld(ctx, OPC_LWU, ry, rx, offset);
break;
#endif
case M16_OPC_SB:
gen_st(ctx, OPC_SB, ry, rx, offset);
break;
case M16_OPC_SH:
gen_st(ctx, OPC_SH, ry, rx, offset);
break;
case M16_OPC_SWSP:
gen_st(ctx, OPC_SW, rx, 29, offset);
break;
case M16_OPC_SW:
gen_st(ctx, OPC_SW, ry, rx, offset);
break;
#if defined(TARGET_MIPS64)
case M16_OPC_I64:
decode_i64_mips16(ctx, ry, funct, offset, 1);
break;
#endif
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
return 4;
}
static inline bool is_uhi(int sdbbp_code)
{
#ifdef CONFIG_USER_ONLY
return false;
#else
return semihosting_enabled() && sdbbp_code == 1;
#endif
}
#ifdef CONFIG_USER_ONLY
/* The above should dead-code away any calls to this..*/
static inline void gen_helper_do_semihosting(void *env)
{
g_assert_not_reached();
}
#endif
static int decode_mips16_opc(CPUMIPSState *env, DisasContext *ctx)
{
int rx, ry;
int sa;
int op, cnvt_op, op1, offset;
int funct;
int n_bytes;
op = (ctx->opcode >> 11) & 0x1f;
sa = (ctx->opcode >> 2) & 0x7;
sa = sa == 0 ? 8 : sa;
rx = xlat((ctx->opcode >> 8) & 0x7);
cnvt_op = (ctx->opcode >> 5) & 0x7;
ry = xlat((ctx->opcode >> 5) & 0x7);
op1 = offset = ctx->opcode & 0x1f;
n_bytes = 2;
switch (op) {
case M16_OPC_ADDIUSP:
{
int16_t imm = ((uint8_t) ctx->opcode) << 2;
gen_arith_imm(ctx, OPC_ADDIU, rx, 29, imm);
}
break;
case M16_OPC_ADDIUPC:
gen_addiupc(ctx, rx, ((uint8_t) ctx->opcode) << 2, 0, 0);
break;
case M16_OPC_B:
offset = (ctx->opcode & 0x7ff) << 1;
offset = (int16_t)(offset << 4) >> 4;
gen_compute_branch(ctx, OPC_BEQ, 2, 0, 0, offset, 0);
/* No delay slot, so just process as a normal instruction */
break;
case M16_OPC_JAL:
offset = cpu_lduw_code(env, ctx->base.pc_next + 2);
offset = (((ctx->opcode & 0x1f) << 21)
| ((ctx->opcode >> 5) & 0x1f) << 16
| offset) << 2;
op = ((ctx->opcode >> 10) & 0x1) ? OPC_JALX : OPC_JAL;
gen_compute_branch(ctx, op, 4, rx, ry, offset, 2);
n_bytes = 4;
break;
case M16_OPC_BEQZ:
gen_compute_branch(ctx, OPC_BEQ, 2, rx, 0,
((int8_t)ctx->opcode) << 1, 0);
/* No delay slot, so just process as a normal instruction */
break;
case M16_OPC_BNEQZ:
gen_compute_branch(ctx, OPC_BNE, 2, rx, 0,
((int8_t)ctx->opcode) << 1, 0);
/* No delay slot, so just process as a normal instruction */
break;
case M16_OPC_SHIFT:
switch (ctx->opcode & 0x3) {
case 0x0:
gen_shift_imm(ctx, OPC_SLL, rx, ry, sa);
break;
case 0x1:
#if defined(TARGET_MIPS64)
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_shift_imm(ctx, OPC_DSLL, rx, ry, sa);
#else
generate_exception_end(ctx, EXCP_RI);
#endif
break;
case 0x2:
gen_shift_imm(ctx, OPC_SRL, rx, ry, sa);
break;
case 0x3:
gen_shift_imm(ctx, OPC_SRA, rx, ry, sa);
break;
}
break;
#if defined(TARGET_MIPS64)
case M16_OPC_LD:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_ld(ctx, OPC_LD, ry, rx, offset << 3);
break;
#endif
case M16_OPC_RRIA:
{
int16_t imm = (int8_t)((ctx->opcode & 0xf) << 4) >> 4;
if ((ctx->opcode >> 4) & 1) {
#if defined(TARGET_MIPS64)
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_arith_imm(ctx, OPC_DADDIU, ry, rx, imm);
#else
generate_exception_end(ctx, EXCP_RI);
#endif
} else {
gen_arith_imm(ctx, OPC_ADDIU, ry, rx, imm);
}
}
break;
case M16_OPC_ADDIU8:
{
int16_t imm = (int8_t) ctx->opcode;
gen_arith_imm(ctx, OPC_ADDIU, rx, rx, imm);
}
break;
case M16_OPC_SLTI:
{
int16_t imm = (uint8_t) ctx->opcode;
gen_slt_imm(ctx, OPC_SLTI, 24, rx, imm);
}
break;
case M16_OPC_SLTIU:
{
int16_t imm = (uint8_t) ctx->opcode;
gen_slt_imm(ctx, OPC_SLTIU, 24, rx, imm);
}
break;
case M16_OPC_I8:
{
int reg32;
funct = (ctx->opcode >> 8) & 0x7;
switch (funct) {
case I8_BTEQZ:
gen_compute_branch(ctx, OPC_BEQ, 2, 24, 0,
((int8_t)ctx->opcode) << 1, 0);
break;
case I8_BTNEZ:
gen_compute_branch(ctx, OPC_BNE, 2, 24, 0,
((int8_t)ctx->opcode) << 1, 0);
break;
case I8_SWRASP:
gen_st(ctx, OPC_SW, 31, 29, (ctx->opcode & 0xff) << 2);
break;
case I8_ADJSP:
gen_arith_imm(ctx, OPC_ADDIU, 29, 29,
((int8_t)ctx->opcode) << 3);
break;
case I8_SVRS:
check_insn(ctx, ISA_MIPS32);
{
int do_ra = ctx->opcode & (1 << 6);
int do_s0 = ctx->opcode & (1 << 5);
int do_s1 = ctx->opcode & (1 << 4);
int framesize = ctx->opcode & 0xf;
if (framesize == 0) {
framesize = 128;
} else {
framesize = framesize << 3;
}
if (ctx->opcode & (1 << 7)) {
gen_mips16_save(ctx, 0, 0,
do_ra, do_s0, do_s1, framesize);
} else {
gen_mips16_restore(ctx, 0, 0,
do_ra, do_s0, do_s1, framesize);
}
}
break;
case I8_MOV32R:
{
int rz = xlat(ctx->opcode & 0x7);
reg32 = (((ctx->opcode >> 3) & 0x3) << 3) |
((ctx->opcode >> 5) & 0x7);
gen_arith(ctx, OPC_ADDU, reg32, rz, 0);
}
break;
case I8_MOVR32:
reg32 = ctx->opcode & 0x1f;
gen_arith(ctx, OPC_ADDU, ry, reg32, 0);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
break;
case M16_OPC_LI:
{
int16_t imm = (uint8_t) ctx->opcode;
gen_arith_imm(ctx, OPC_ADDIU, rx, 0, imm);
}
break;
case M16_OPC_CMPI:
{
int16_t imm = (uint8_t) ctx->opcode;
gen_logic_imm(ctx, OPC_XORI, 24, rx, imm);
}
break;
#if defined(TARGET_MIPS64)
case M16_OPC_SD:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_st(ctx, OPC_SD, ry, rx, offset << 3);
break;
#endif
case M16_OPC_LB:
gen_ld(ctx, OPC_LB, ry, rx, offset);
break;
case M16_OPC_LH:
gen_ld(ctx, OPC_LH, ry, rx, offset << 1);
break;
case M16_OPC_LWSP:
gen_ld(ctx, OPC_LW, rx, 29, ((uint8_t)ctx->opcode) << 2);
break;
case M16_OPC_LW:
gen_ld(ctx, OPC_LW, ry, rx, offset << 2);
break;
case M16_OPC_LBU:
gen_ld(ctx, OPC_LBU, ry, rx, offset);
break;
case M16_OPC_LHU:
gen_ld(ctx, OPC_LHU, ry, rx, offset << 1);
break;
case M16_OPC_LWPC:
gen_ld(ctx, OPC_LWPC, rx, 0, ((uint8_t)ctx->opcode) << 2);
break;
#if defined(TARGET_MIPS64)
case M16_OPC_LWU:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_ld(ctx, OPC_LWU, ry, rx, offset << 2);
break;
#endif
case M16_OPC_SB:
gen_st(ctx, OPC_SB, ry, rx, offset);
break;
case M16_OPC_SH:
gen_st(ctx, OPC_SH, ry, rx, offset << 1);
break;
case M16_OPC_SWSP:
gen_st(ctx, OPC_SW, rx, 29, ((uint8_t)ctx->opcode) << 2);
break;
case M16_OPC_SW:
gen_st(ctx, OPC_SW, ry, rx, offset << 2);
break;
case M16_OPC_RRR:
{
int rz = xlat((ctx->opcode >> 2) & 0x7);
int mips32_op;
switch (ctx->opcode & 0x3) {
case RRR_ADDU:
mips32_op = OPC_ADDU;
break;
case RRR_SUBU:
mips32_op = OPC_SUBU;
break;
#if defined(TARGET_MIPS64)
case RRR_DADDU:
mips32_op = OPC_DADDU;
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
break;
case RRR_DSUBU:
mips32_op = OPC_DSUBU;
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
break;
#endif
default:
generate_exception_end(ctx, EXCP_RI);
goto done;
}
gen_arith(ctx, mips32_op, rz, rx, ry);
done:
;
}
break;
case M16_OPC_RR:
switch (op1) {
case RR_JR:
{
int nd = (ctx->opcode >> 7) & 0x1;
int link = (ctx->opcode >> 6) & 0x1;
int ra = (ctx->opcode >> 5) & 0x1;
if (nd) {
check_insn(ctx, ISA_MIPS32);
}
if (link) {
op = OPC_JALR;
} else {
op = OPC_JR;
}
gen_compute_branch(ctx, op, 2, ra ? 31 : rx, 31, 0,
(nd ? 0 : 2));
}
break;
case RR_SDBBP:
if (is_uhi(extract32(ctx->opcode, 5, 6))) {
gen_helper_do_semihosting(cpu_env);
} else {
/*
* XXX: not clear which exception should be raised
* when in debug mode...
*/
check_insn(ctx, ISA_MIPS32);
generate_exception_end(ctx, EXCP_DBp);
}
break;
case RR_SLT:
gen_slt(ctx, OPC_SLT, 24, rx, ry);
break;
case RR_SLTU:
gen_slt(ctx, OPC_SLTU, 24, rx, ry);
break;
case RR_BREAK:
generate_exception_end(ctx, EXCP_BREAK);
break;
case RR_SLLV:
gen_shift(ctx, OPC_SLLV, ry, rx, ry);
break;
case RR_SRLV:
gen_shift(ctx, OPC_SRLV, ry, rx, ry);
break;
case RR_SRAV:
gen_shift(ctx, OPC_SRAV, ry, rx, ry);
break;
#if defined(TARGET_MIPS64)
case RR_DSRL:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_shift_imm(ctx, OPC_DSRL, ry, ry, sa);
break;
#endif
case RR_CMP:
gen_logic(ctx, OPC_XOR, 24, rx, ry);
break;
case RR_NEG:
gen_arith(ctx, OPC_SUBU, rx, 0, ry);
break;
case RR_AND:
gen_logic(ctx, OPC_AND, rx, rx, ry);
break;
case RR_OR:
gen_logic(ctx, OPC_OR, rx, rx, ry);
break;
case RR_XOR:
gen_logic(ctx, OPC_XOR, rx, rx, ry);
break;
case RR_NOT:
gen_logic(ctx, OPC_NOR, rx, ry, 0);
break;
case RR_MFHI:
gen_HILO(ctx, OPC_MFHI, 0, rx);
break;
case RR_CNVT:
check_insn(ctx, ISA_MIPS32);
switch (cnvt_op) {
case RR_RY_CNVT_ZEB:
tcg_gen_ext8u_tl(cpu_gpr[rx], cpu_gpr[rx]);
break;
case RR_RY_CNVT_ZEH:
tcg_gen_ext16u_tl(cpu_gpr[rx], cpu_gpr[rx]);
break;
case RR_RY_CNVT_SEB:
tcg_gen_ext8s_tl(cpu_gpr[rx], cpu_gpr[rx]);
break;
case RR_RY_CNVT_SEH:
tcg_gen_ext16s_tl(cpu_gpr[rx], cpu_gpr[rx]);
break;
#if defined (TARGET_MIPS64)
case RR_RY_CNVT_ZEW:
check_insn(ctx, ISA_MIPS64);
check_mips_64(ctx);
tcg_gen_ext32u_tl(cpu_gpr[rx], cpu_gpr[rx]);
break;
case RR_RY_CNVT_SEW:
check_insn(ctx, ISA_MIPS64);
check_mips_64(ctx);
tcg_gen_ext32s_tl(cpu_gpr[rx], cpu_gpr[rx]);
break;
#endif
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case RR_MFLO:
gen_HILO(ctx, OPC_MFLO, 0, rx);
break;
#if defined(TARGET_MIPS64)
case RR_DSRA:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_shift_imm(ctx, OPC_DSRA, ry, ry, sa);
break;
case RR_DSLLV:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_shift(ctx, OPC_DSLLV, ry, rx, ry);
break;
case RR_DSRLV:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_shift(ctx, OPC_DSRLV, ry, rx, ry);
break;
case RR_DSRAV:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_shift(ctx, OPC_DSRAV, ry, rx, ry);
break;
#endif
case RR_MULT:
gen_muldiv(ctx, OPC_MULT, 0, rx, ry);
break;
case RR_MULTU:
gen_muldiv(ctx, OPC_MULTU, 0, rx, ry);
break;
case RR_DIV:
gen_muldiv(ctx, OPC_DIV, 0, rx, ry);
break;
case RR_DIVU:
gen_muldiv(ctx, OPC_DIVU, 0, rx, ry);
break;
#if defined(TARGET_MIPS64)
case RR_DMULT:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_muldiv(ctx, OPC_DMULT, 0, rx, ry);
break;
case RR_DMULTU:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_muldiv(ctx, OPC_DMULTU, 0, rx, ry);
break;
case RR_DDIV:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_muldiv(ctx, OPC_DDIV, 0, rx, ry);
break;
case RR_DDIVU:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_muldiv(ctx, OPC_DDIVU, 0, rx, ry);
break;
#endif
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case M16_OPC_EXTEND:
decode_extended_mips16_opc(env, ctx);
n_bytes = 4;
break;
#if defined(TARGET_MIPS64)
case M16_OPC_I64:
funct = (ctx->opcode >> 8) & 0x7;
decode_i64_mips16(ctx, ry, funct, offset, 0);
break;
#endif
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
return n_bytes;
}
/* microMIPS extension to MIPS32/MIPS64 */
/*
* microMIPS32/microMIPS64 major opcodes
*
* 1. MIPS Architecture for Programmers Volume II-B:
* The microMIPS32 Instruction Set (Revision 3.05)
*
* Table 6.2 microMIPS32 Encoding of Major Opcode Field
*
* 2. MIPS Architecture For Programmers Volume II-A:
* The MIPS64 Instruction Set (Revision 3.51)
*/
enum {
POOL32A = 0x00,
POOL16A = 0x01,
LBU16 = 0x02,
MOVE16 = 0x03,
ADDI32 = 0x04,
R6_LUI = 0x04,
AUI = 0x04,
LBU32 = 0x05,
SB32 = 0x06,
LB32 = 0x07,
POOL32B = 0x08,
POOL16B = 0x09,
LHU16 = 0x0a,
ANDI16 = 0x0b,
ADDIU32 = 0x0c,
LHU32 = 0x0d,
SH32 = 0x0e,
LH32 = 0x0f,
POOL32I = 0x10,
POOL16C = 0x11,
LWSP16 = 0x12,
POOL16D = 0x13,
ORI32 = 0x14,
POOL32F = 0x15,
POOL32S = 0x16, /* MIPS64 */
DADDIU32 = 0x17, /* MIPS64 */
POOL32C = 0x18,
LWGP16 = 0x19,
LW16 = 0x1a,
POOL16E = 0x1b,
XORI32 = 0x1c,
JALS32 = 0x1d,
BOVC = 0x1d,
BEQC = 0x1d,
BEQZALC = 0x1d,
ADDIUPC = 0x1e,
PCREL = 0x1e,
BNVC = 0x1f,
BNEC = 0x1f,
BNEZALC = 0x1f,
R6_BEQZC = 0x20,
JIC = 0x20,
POOL16F = 0x21,
SB16 = 0x22,
BEQZ16 = 0x23,
BEQZC16 = 0x23,
SLTI32 = 0x24,
BEQ32 = 0x25,
BC = 0x25,
SWC132 = 0x26,
LWC132 = 0x27,
/* 0x29 is reserved */
RES_29 = 0x29,
R6_BNEZC = 0x28,
JIALC = 0x28,
SH16 = 0x2a,
BNEZ16 = 0x2b,
BNEZC16 = 0x2b,
SLTIU32 = 0x2c,
BNE32 = 0x2d,
BALC = 0x2d,
SDC132 = 0x2e,
LDC132 = 0x2f,
/* 0x31 is reserved */
RES_31 = 0x31,
BLEZALC = 0x30,
BGEZALC = 0x30,
BGEUC = 0x30,
SWSP16 = 0x32,
B16 = 0x33,
BC16 = 0x33,
ANDI32 = 0x34,
J32 = 0x35,
BGTZC = 0x35,
BLTZC = 0x35,
BLTC = 0x35,
SD32 = 0x36, /* MIPS64 */
LD32 = 0x37, /* MIPS64 */
/* 0x39 is reserved */
RES_39 = 0x39,
BGTZALC = 0x38,
BLTZALC = 0x38,
BLTUC = 0x38,
SW16 = 0x3a,
LI16 = 0x3b,
JALX32 = 0x3c,
JAL32 = 0x3d,
BLEZC = 0x3d,
BGEZC = 0x3d,
BGEC = 0x3d,
SW32 = 0x3e,
LW32 = 0x3f
};
/* PCREL Instructions perform PC-Relative address calculation. bits 20..16 */
enum {
ADDIUPC_00 = 0x00,
ADDIUPC_01 = 0x01,
ADDIUPC_02 = 0x02,
ADDIUPC_03 = 0x03,
ADDIUPC_04 = 0x04,
ADDIUPC_05 = 0x05,
ADDIUPC_06 = 0x06,
ADDIUPC_07 = 0x07,
AUIPC = 0x1e,
ALUIPC = 0x1f,
LWPC_08 = 0x08,
LWPC_09 = 0x09,
LWPC_0A = 0x0A,
LWPC_0B = 0x0B,
LWPC_0C = 0x0C,
LWPC_0D = 0x0D,
LWPC_0E = 0x0E,
LWPC_0F = 0x0F,
};
/* POOL32A encoding of minor opcode field */
enum {
/*
* These opcodes are distinguished only by bits 9..6; those bits are
* what are recorded below.
*/
SLL32 = 0x0,
SRL32 = 0x1,
SRA = 0x2,
ROTR = 0x3,
SELEQZ = 0x5,
SELNEZ = 0x6,
R6_RDHWR = 0x7,
SLLV = 0x0,
SRLV = 0x1,
SRAV = 0x2,
ROTRV = 0x3,
ADD = 0x4,
ADDU32 = 0x5,
SUB = 0x6,
SUBU32 = 0x7,
MUL = 0x8,
AND = 0x9,
OR32 = 0xa,
NOR = 0xb,
XOR32 = 0xc,
SLT = 0xd,
SLTU = 0xe,
MOVN = 0x0,
R6_MUL = 0x0,
MOVZ = 0x1,
MUH = 0x1,
MULU = 0x2,
MUHU = 0x3,
LWXS = 0x4,
R6_DIV = 0x4,
MOD = 0x5,
R6_DIVU = 0x6,
MODU = 0x7,
/* The following can be distinguished by their lower 6 bits. */
BREAK32 = 0x07,
INS = 0x0c,
LSA = 0x0f,
ALIGN = 0x1f,
EXT = 0x2c,
POOL32AXF = 0x3c,
SIGRIE = 0x3f
};
/* POOL32AXF encoding of minor opcode field extension */
/*
* 1. MIPS Architecture for Programmers Volume II-B:
* The microMIPS32 Instruction Set (Revision 3.05)
*
* Table 6.5 POOL32Axf Encoding of Minor Opcode Extension Field
*
* 2. MIPS Architecture for Programmers VolumeIV-e:
* The MIPS DSP Application-Specific Extension
* to the microMIPS32 Architecture (Revision 2.34)
*
* Table 5.5 POOL32Axf Encoding of Minor Opcode Extension Field
*/
enum {
/* bits 11..6 */
TEQ = 0x00,
TGE = 0x08,
TGEU = 0x10,
TLT = 0x20,
TLTU = 0x28,
TNE = 0x30,
MFC0 = 0x03,
MTC0 = 0x0b,
/* begin of microMIPS32 DSP */
/* bits 13..12 for 0x01 */
MFHI_ACC = 0x0,
MFLO_ACC = 0x1,
MTHI_ACC = 0x2,
MTLO_ACC = 0x3,
/* bits 13..12 for 0x2a */
MADD_ACC = 0x0,
MADDU_ACC = 0x1,
MSUB_ACC = 0x2,
MSUBU_ACC = 0x3,
/* bits 13..12 for 0x32 */
MULT_ACC = 0x0,
MULTU_ACC = 0x1,
/* end of microMIPS32 DSP */
/* bits 15..12 for 0x2c */
BITSWAP = 0x0,
SEB = 0x2,
SEH = 0x3,
CLO = 0x4,
CLZ = 0x5,
RDHWR = 0x6,
WSBH = 0x7,
MULT = 0x8,
MULTU = 0x9,
DIV = 0xa,
DIVU = 0xb,
MADD = 0xc,
MADDU = 0xd,
MSUB = 0xe,
MSUBU = 0xf,
/* bits 15..12 for 0x34 */
MFC2 = 0x4,
MTC2 = 0x5,
MFHC2 = 0x8,
MTHC2 = 0x9,
CFC2 = 0xc,
CTC2 = 0xd,
/* bits 15..12 for 0x3c */
JALR = 0x0,
JR = 0x0, /* alias */
JALRC = 0x0,
JRC = 0x0,
JALR_HB = 0x1,
JALRC_HB = 0x1,
JALRS = 0x4,
JALRS_HB = 0x5,
/* bits 15..12 for 0x05 */
RDPGPR = 0xe,
WRPGPR = 0xf,
/* bits 15..12 for 0x0d */
TLBP = 0x0,
TLBR = 0x1,
TLBWI = 0x2,
TLBWR = 0x3,
TLBINV = 0x4,
TLBINVF = 0x5,
WAIT = 0x9,
IRET = 0xd,
DERET = 0xe,
ERET = 0xf,
/* bits 15..12 for 0x15 */
DMT = 0x0,
DVPE = 0x1,
EMT = 0x2,
EVPE = 0x3,
/* bits 15..12 for 0x1d */
DI = 0x4,
EI = 0x5,
/* bits 15..12 for 0x2d */
SYNC = 0x6,
SYSCALL = 0x8,
SDBBP = 0xd,
/* bits 15..12 for 0x35 */
MFHI32 = 0x0,
MFLO32 = 0x1,
MTHI32 = 0x2,
MTLO32 = 0x3,
};
/* POOL32B encoding of minor opcode field (bits 15..12) */
enum {
LWC2 = 0x0,
LWP = 0x1,
LDP = 0x4,
LWM32 = 0x5,
CACHE = 0x6,
LDM = 0x7,
SWC2 = 0x8,
SWP = 0x9,
SDP = 0xc,
SWM32 = 0xd,
SDM = 0xf
};
/* POOL32C encoding of minor opcode field (bits 15..12) */
enum {
LWL = 0x0,
SWL = 0x8,
LWR = 0x1,
SWR = 0x9,
PREF = 0x2,
ST_EVA = 0xa,
LL = 0x3,
SC = 0xb,
LDL = 0x4,
SDL = 0xc,
LDR = 0x5,
SDR = 0xd,
LD_EVA = 0x6,
LWU = 0xe,
LLD = 0x7,
SCD = 0xf
};
/* POOL32C LD-EVA encoding of minor opcode field (bits 11..9) */
enum {
LBUE = 0x0,
LHUE = 0x1,
LWLE = 0x2,
LWRE = 0x3,
LBE = 0x4,
LHE = 0x5,
LLE = 0x6,
LWE = 0x7,
};
/* POOL32C ST-EVA encoding of minor opcode field (bits 11..9) */
enum {
SWLE = 0x0,
SWRE = 0x1,
PREFE = 0x2,
CACHEE = 0x3,
SBE = 0x4,
SHE = 0x5,
SCE = 0x6,
SWE = 0x7,
};
/* POOL32F encoding of minor opcode field (bits 5..0) */
enum {
/* These are the bit 7..6 values */
ADD_FMT = 0x0,
SUB_FMT = 0x1,
MUL_FMT = 0x2,
DIV_FMT = 0x3,
/* These are the bit 8..6 values */
MOVN_FMT = 0x0,
RSQRT2_FMT = 0x0,
MOVF_FMT = 0x0,
RINT_FMT = 0x0,
SELNEZ_FMT = 0x0,
MOVZ_FMT = 0x1,
LWXC1 = 0x1,
MOVT_FMT = 0x1,
CLASS_FMT = 0x1,
SELEQZ_FMT = 0x1,
PLL_PS = 0x2,
SWXC1 = 0x2,
SEL_FMT = 0x2,
PLU_PS = 0x3,
LDXC1 = 0x3,
MOVN_FMT_04 = 0x4,
PUL_PS = 0x4,
SDXC1 = 0x4,
RECIP2_FMT = 0x4,
MOVZ_FMT_05 = 0x05,
PUU_PS = 0x5,
LUXC1 = 0x5,
CVT_PS_S = 0x6,
SUXC1 = 0x6,
ADDR_PS = 0x6,
PREFX = 0x6,
MADDF_FMT = 0x6,
MULR_PS = 0x7,
MSUBF_FMT = 0x7,
MADD_S = 0x01,
MADD_D = 0x09,
MADD_PS = 0x11,
ALNV_PS = 0x19,
MSUB_S = 0x21,
MSUB_D = 0x29,
MSUB_PS = 0x31,
NMADD_S = 0x02,
NMADD_D = 0x0a,
NMADD_PS = 0x12,
NMSUB_S = 0x22,
NMSUB_D = 0x2a,
NMSUB_PS = 0x32,
MIN_FMT = 0x3,
MAX_FMT = 0xb,
MINA_FMT = 0x23,
MAXA_FMT = 0x2b,
POOL32FXF = 0x3b,
CABS_COND_FMT = 0x1c, /* MIPS3D */
C_COND_FMT = 0x3c,
CMP_CONDN_S = 0x5,
CMP_CONDN_D = 0x15
};
/* POOL32Fxf encoding of minor opcode extension field */
enum {
CVT_L = 0x04,
RSQRT_FMT = 0x08,
FLOOR_L = 0x0c,
CVT_PW_PS = 0x1c,
CVT_W = 0x24,
SQRT_FMT = 0x28,
FLOOR_W = 0x2c,
CVT_PS_PW = 0x3c,
CFC1 = 0x40,
RECIP_FMT = 0x48,
CEIL_L = 0x4c,
CTC1 = 0x60,
CEIL_W = 0x6c,
MFC1 = 0x80,
CVT_S_PL = 0x84,
TRUNC_L = 0x8c,
MTC1 = 0xa0,
CVT_S_PU = 0xa4,
TRUNC_W = 0xac,
MFHC1 = 0xc0,
ROUND_L = 0xcc,
MTHC1 = 0xe0,
ROUND_W = 0xec,
MOV_FMT = 0x01,
MOVF = 0x05,
ABS_FMT = 0x0d,
RSQRT1_FMT = 0x1d,
MOVT = 0x25,
NEG_FMT = 0x2d,
CVT_D = 0x4d,
RECIP1_FMT = 0x5d,
CVT_S = 0x6d
};
/* POOL32I encoding of minor opcode field (bits 25..21) */
enum {
BLTZ = 0x00,
BLTZAL = 0x01,
BGEZ = 0x02,
BGEZAL = 0x03,
BLEZ = 0x04,
BNEZC = 0x05,
BGTZ = 0x06,
BEQZC = 0x07,
TLTI = 0x08,
BC1EQZC = 0x08,
TGEI = 0x09,
BC1NEZC = 0x09,
TLTIU = 0x0a,
BC2EQZC = 0x0a,
TGEIU = 0x0b,
BC2NEZC = 0x0a,
TNEI = 0x0c,
R6_SYNCI = 0x0c,
LUI = 0x0d,
TEQI = 0x0e,
SYNCI = 0x10,
BLTZALS = 0x11,
BGEZALS = 0x13,
BC2F = 0x14,
BC2T = 0x15,
BPOSGE64 = 0x1a,
BPOSGE32 = 0x1b,
/* These overlap and are distinguished by bit16 of the instruction */
BC1F = 0x1c,
BC1T = 0x1d,
BC1ANY2F = 0x1c,
BC1ANY2T = 0x1d,
BC1ANY4F = 0x1e,
BC1ANY4T = 0x1f
};
/* POOL16A encoding of minor opcode field */
enum {
ADDU16 = 0x0,
SUBU16 = 0x1
};
/* POOL16B encoding of minor opcode field */
enum {
SLL16 = 0x0,
SRL16 = 0x1
};
/* POOL16C encoding of minor opcode field */
enum {
NOT16 = 0x00,
XOR16 = 0x04,
AND16 = 0x08,
OR16 = 0x0c,
LWM16 = 0x10,
SWM16 = 0x14,
JR16 = 0x18,
JRC16 = 0x1a,
JALR16 = 0x1c,
JALR16S = 0x1e,
MFHI16 = 0x20,
MFLO16 = 0x24,
BREAK16 = 0x28,
SDBBP16 = 0x2c,
JRADDIUSP = 0x30
};
/* R6 POOL16C encoding of minor opcode field (bits 0..5) */
enum {
R6_NOT16 = 0x00,
R6_AND16 = 0x01,
R6_LWM16 = 0x02,
R6_JRC16 = 0x03,
MOVEP = 0x04,
MOVEP_05 = 0x05,
MOVEP_06 = 0x06,
MOVEP_07 = 0x07,
R6_XOR16 = 0x08,
R6_OR16 = 0x09,
R6_SWM16 = 0x0a,
JALRC16 = 0x0b,
MOVEP_0C = 0x0c,
MOVEP_0D = 0x0d,
MOVEP_0E = 0x0e,
MOVEP_0F = 0x0f,
JRCADDIUSP = 0x13,
R6_BREAK16 = 0x1b,
R6_SDBBP16 = 0x3b
};
/* POOL16D encoding of minor opcode field */
enum {
ADDIUS5 = 0x0,
ADDIUSP = 0x1
};
/* POOL16E encoding of minor opcode field */
enum {
ADDIUR2 = 0x0,
ADDIUR1SP = 0x1
};
static int mmreg(int r)
{
static const int map[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
return map[r];
}
/* Used for 16-bit store instructions. */
static int mmreg2(int r)
{
static const int map[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
return map[r];
}
#define uMIPS_RD(op) ((op >> 7) & 0x7)
#define uMIPS_RS(op) ((op >> 4) & 0x7)
#define uMIPS_RS2(op) uMIPS_RS(op)
#define uMIPS_RS1(op) ((op >> 1) & 0x7)
#define uMIPS_RD5(op) ((op >> 5) & 0x1f)
#define uMIPS_RS5(op) (op & 0x1f)
/* Signed immediate */
#define SIMM(op, start, width) \
((int32_t)(((op >> start) & ((~0U) >> (32-width))) \
<< (32-width)) \
>> (32-width))
/* Zero-extended immediate */
#define ZIMM(op, start, width) ((op >> start) & ((~0U) >> (32-width)))
static void gen_addiur1sp(DisasContext *ctx)
{
int rd = mmreg(uMIPS_RD(ctx->opcode));
gen_arith_imm(ctx, OPC_ADDIU, rd, 29, ((ctx->opcode >> 1) & 0x3f) << 2);
}
static void gen_addiur2(DisasContext *ctx)
{
static const int decoded_imm[] = { 1, 4, 8, 12, 16, 20, 24, -1 };
int rd = mmreg(uMIPS_RD(ctx->opcode));
int rs = mmreg(uMIPS_RS(ctx->opcode));
gen_arith_imm(ctx, OPC_ADDIU, rd, rs, decoded_imm[ZIMM(ctx->opcode, 1, 3)]);
}
static void gen_addiusp(DisasContext *ctx)
{
int encoded = ZIMM(ctx->opcode, 1, 9);
int decoded;
if (encoded <= 1) {
decoded = 256 + encoded;
} else if (encoded <= 255) {
decoded = encoded;
} else if (encoded <= 509) {
decoded = encoded - 512;
} else {
decoded = encoded - 768;
}
gen_arith_imm(ctx, OPC_ADDIU, 29, 29, decoded << 2);
}
static void gen_addius5(DisasContext *ctx)
{
int imm = SIMM(ctx->opcode, 1, 4);
int rd = (ctx->opcode >> 5) & 0x1f;
gen_arith_imm(ctx, OPC_ADDIU, rd, rd, imm);
}
static void gen_andi16(DisasContext *ctx)
{
static const int decoded_imm[] = { 128, 1, 2, 3, 4, 7, 8, 15, 16,
31, 32, 63, 64, 255, 32768, 65535 };
int rd = mmreg(uMIPS_RD(ctx->opcode));
int rs = mmreg(uMIPS_RS(ctx->opcode));
int encoded = ZIMM(ctx->opcode, 0, 4);
gen_logic_imm(ctx, OPC_ANDI, rd, rs, decoded_imm[encoded]);
}
static void gen_ldst_multiple(DisasContext *ctx, uint32_t opc, int reglist,
int base, int16_t offset)
{
TCGv t0, t1;
TCGv_i32 t2;
if (ctx->hflags & MIPS_HFLAG_BMASK) {
generate_exception_end(ctx, EXCP_RI);
return;
}
t0 = tcg_temp_new();
gen_base_offset_addr(ctx, t0, base, offset);
t1 = tcg_const_tl(reglist);
t2 = tcg_const_i32(ctx->mem_idx);
save_cpu_state(ctx, 1);
switch (opc) {
case LWM32:
gen_helper_lwm(cpu_env, t0, t1, t2);
break;
case SWM32:
gen_helper_swm(cpu_env, t0, t1, t2);
break;
#ifdef TARGET_MIPS64
case LDM:
gen_helper_ldm(cpu_env, t0, t1, t2);
break;
case SDM:
gen_helper_sdm(cpu_env, t0, t1, t2);
break;
#endif
}
tcg_temp_free(t0);
tcg_temp_free(t1);
tcg_temp_free_i32(t2);
}
static void gen_pool16c_insn(DisasContext *ctx)
{
int rd = mmreg((ctx->opcode >> 3) & 0x7);
int rs = mmreg(ctx->opcode & 0x7);
switch (((ctx->opcode) >> 4) & 0x3f) {
case NOT16 + 0:
case NOT16 + 1:
case NOT16 + 2:
case NOT16 + 3:
gen_logic(ctx, OPC_NOR, rd, rs, 0);
break;
case XOR16 + 0:
case XOR16 + 1:
case XOR16 + 2:
case XOR16 + 3:
gen_logic(ctx, OPC_XOR, rd, rd, rs);
break;
case AND16 + 0:
case AND16 + 1:
case AND16 + 2:
case AND16 + 3:
gen_logic(ctx, OPC_AND, rd, rd, rs);
break;
case OR16 + 0:
case OR16 + 1:
case OR16 + 2:
case OR16 + 3:
gen_logic(ctx, OPC_OR, rd, rd, rs);
break;
case LWM16 + 0:
case LWM16 + 1:
case LWM16 + 2:
case LWM16 + 3:
{
static const int lwm_convert[] = { 0x11, 0x12, 0x13, 0x14 };
int offset = ZIMM(ctx->opcode, 0, 4);
gen_ldst_multiple(ctx, LWM32, lwm_convert[(ctx->opcode >> 4) & 0x3],
29, offset << 2);
}
break;
case SWM16 + 0:
case SWM16 + 1:
case SWM16 + 2:
case SWM16 + 3:
{
static const int swm_convert[] = { 0x11, 0x12, 0x13, 0x14 };
int offset = ZIMM(ctx->opcode, 0, 4);
gen_ldst_multiple(ctx, SWM32, swm_convert[(ctx->opcode >> 4) & 0x3],
29, offset << 2);
}
break;
case JR16 + 0:
case JR16 + 1:
{
int reg = ctx->opcode & 0x1f;
gen_compute_branch(ctx, OPC_JR, 2, reg, 0, 0, 4);
}
break;
case JRC16 + 0:
case JRC16 + 1:
{
int reg = ctx->opcode & 0x1f;
gen_compute_branch(ctx, OPC_JR, 2, reg, 0, 0, 0);
/*
* Let normal delay slot handling in our caller take us
* to the branch target.
*/
}
break;
case JALR16 + 0:
case JALR16 + 1:
gen_compute_branch(ctx, OPC_JALR, 2, ctx->opcode & 0x1f, 31, 0, 4);
ctx->hflags |= MIPS_HFLAG_BDS_STRICT;
break;
case JALR16S + 0:
case JALR16S + 1:
gen_compute_branch(ctx, OPC_JALR, 2, ctx->opcode & 0x1f, 31, 0, 2);
ctx->hflags |= MIPS_HFLAG_BDS_STRICT;
break;
case MFHI16 + 0:
case MFHI16 + 1:
gen_HILO(ctx, OPC_MFHI, 0, uMIPS_RS5(ctx->opcode));
break;
case MFLO16 + 0:
case MFLO16 + 1:
gen_HILO(ctx, OPC_MFLO, 0, uMIPS_RS5(ctx->opcode));
break;
case BREAK16:
generate_exception_end(ctx, EXCP_BREAK);
break;
case SDBBP16:
if (is_uhi(extract32(ctx->opcode, 0, 4))) {
gen_helper_do_semihosting(cpu_env);
} else {
/*
* XXX: not clear which exception should be raised
* when in debug mode...
*/
check_insn(ctx, ISA_MIPS32);
generate_exception_end(ctx, EXCP_DBp);
}
break;
case JRADDIUSP + 0:
case JRADDIUSP + 1:
{
int imm = ZIMM(ctx->opcode, 0, 5);
gen_compute_branch(ctx, OPC_JR, 2, 31, 0, 0, 0);
gen_arith_imm(ctx, OPC_ADDIU, 29, 29, imm << 2);
/*
* Let normal delay slot handling in our caller take us
* to the branch target.
*/
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static inline void gen_movep(DisasContext *ctx, int enc_dest, int enc_rt,
int enc_rs)
{
int rd, rs, re, rt;
static const int rd_enc[] = { 5, 5, 6, 4, 4, 4, 4, 4 };
static const int re_enc[] = { 6, 7, 7, 21, 22, 5, 6, 7 };
static const int rs_rt_enc[] = { 0, 17, 2, 3, 16, 18, 19, 20 };
rd = rd_enc[enc_dest];
re = re_enc[enc_dest];
rs = rs_rt_enc[enc_rs];
rt = rs_rt_enc[enc_rt];
if (rs) {
tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]);
} else {
tcg_gen_movi_tl(cpu_gpr[rd], 0);
}
if (rt) {
tcg_gen_mov_tl(cpu_gpr[re], cpu_gpr[rt]);
} else {
tcg_gen_movi_tl(cpu_gpr[re], 0);
}
}
static void gen_pool16c_r6_insn(DisasContext *ctx)
{
int rt = mmreg((ctx->opcode >> 7) & 0x7);
int rs = mmreg((ctx->opcode >> 4) & 0x7);
switch (ctx->opcode & 0xf) {
case R6_NOT16:
gen_logic(ctx, OPC_NOR, rt, rs, 0);
break;
case R6_AND16:
gen_logic(ctx, OPC_AND, rt, rt, rs);
break;
case R6_LWM16:
{
int lwm_converted = 0x11 + extract32(ctx->opcode, 8, 2);
int offset = extract32(ctx->opcode, 4, 4);
gen_ldst_multiple(ctx, LWM32, lwm_converted, 29, offset << 2);
}
break;
case R6_JRC16: /* JRCADDIUSP */
if ((ctx->opcode >> 4) & 1) {
/* JRCADDIUSP */
int imm = extract32(ctx->opcode, 5, 5);
gen_compute_branch(ctx, OPC_JR, 2, 31, 0, 0, 0);
gen_arith_imm(ctx, OPC_ADDIU, 29, 29, imm << 2);
} else {
/* JRC16 */
rs = extract32(ctx->opcode, 5, 5);
gen_compute_branch(ctx, OPC_JR, 2, rs, 0, 0, 0);
}
break;
case MOVEP:
case MOVEP_05:
case MOVEP_06:
case MOVEP_07:
case MOVEP_0C:
case MOVEP_0D:
case MOVEP_0E:
case MOVEP_0F:
{
int enc_dest = uMIPS_RD(ctx->opcode);
int enc_rt = uMIPS_RS2(ctx->opcode);
int enc_rs = (ctx->opcode & 3) | ((ctx->opcode >> 1) & 4);
gen_movep(ctx, enc_dest, enc_rt, enc_rs);
}
break;
case R6_XOR16:
gen_logic(ctx, OPC_XOR, rt, rt, rs);
break;
case R6_OR16:
gen_logic(ctx, OPC_OR, rt, rt, rs);
break;
case R6_SWM16:
{
int swm_converted = 0x11 + extract32(ctx->opcode, 8, 2);
int offset = extract32(ctx->opcode, 4, 4);
gen_ldst_multiple(ctx, SWM32, swm_converted, 29, offset << 2);
}
break;
case JALRC16: /* BREAK16, SDBBP16 */
switch (ctx->opcode & 0x3f) {
case JALRC16:
case JALRC16 + 0x20:
/* JALRC16 */
gen_compute_branch(ctx, OPC_JALR, 2, (ctx->opcode >> 5) & 0x1f,
31, 0, 0);
break;
case R6_BREAK16:
/* BREAK16 */
generate_exception(ctx, EXCP_BREAK);
break;
case R6_SDBBP16:
/* SDBBP16 */
if (is_uhi(extract32(ctx->opcode, 6, 4))) {
gen_helper_do_semihosting(cpu_env);
} else {
if (ctx->hflags & MIPS_HFLAG_SBRI) {
generate_exception(ctx, EXCP_RI);
} else {
generate_exception(ctx, EXCP_DBp);
}
}
break;
}
break;
default:
generate_exception(ctx, EXCP_RI);
break;
}
}
static void gen_ldxs(DisasContext *ctx, int base, int index, int rd)
{
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
gen_load_gpr(t0, base);
if (index != 0) {
gen_load_gpr(t1, index);
tcg_gen_shli_tl(t1, t1, 2);
gen_op_addr_add(ctx, t0, t1, t0);
}
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TESL);
gen_store_gpr(t1, rd);
tcg_temp_free(t0);
tcg_temp_free(t1);
}
static void gen_ldst_pair(DisasContext *ctx, uint32_t opc, int rd,
int base, int16_t offset)
{
TCGv t0, t1;
if (ctx->hflags & MIPS_HFLAG_BMASK || rd == 31) {
generate_exception_end(ctx, EXCP_RI);
return;
}
t0 = tcg_temp_new();
t1 = tcg_temp_new();
gen_base_offset_addr(ctx, t0, base, offset);
switch (opc) {
case LWP:
if (rd == base) {
generate_exception_end(ctx, EXCP_RI);
return;
}
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TESL);
gen_store_gpr(t1, rd);
tcg_gen_movi_tl(t1, 4);
gen_op_addr_add(ctx, t0, t0, t1);
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TESL);
gen_store_gpr(t1, rd + 1);
break;
case SWP:
gen_load_gpr(t1, rd);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL);
tcg_gen_movi_tl(t1, 4);
gen_op_addr_add(ctx, t0, t0, t1);
gen_load_gpr(t1, rd + 1);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL);
break;
#ifdef TARGET_MIPS64
case LDP:
if (rd == base) {
generate_exception_end(ctx, EXCP_RI);
return;
}
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TEQ);
gen_store_gpr(t1, rd);
tcg_gen_movi_tl(t1, 8);
gen_op_addr_add(ctx, t0, t0, t1);
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TEQ);
gen_store_gpr(t1, rd + 1);
break;
case SDP:
gen_load_gpr(t1, rd);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEQ);
tcg_gen_movi_tl(t1, 8);
gen_op_addr_add(ctx, t0, t0, t1);
gen_load_gpr(t1, rd + 1);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEQ);
break;
#endif
}
tcg_temp_free(t0);
tcg_temp_free(t1);
}
static void gen_sync(int stype)
{
TCGBar tcg_mo = TCG_BAR_SC;
switch (stype) {
case 0x4: /* SYNC_WMB */
tcg_mo |= TCG_MO_ST_ST;
break;
case 0x10: /* SYNC_MB */
tcg_mo |= TCG_MO_ALL;
break;
case 0x11: /* SYNC_ACQUIRE */
tcg_mo |= TCG_MO_LD_LD | TCG_MO_LD_ST;
break;
case 0x12: /* SYNC_RELEASE */
tcg_mo |= TCG_MO_ST_ST | TCG_MO_LD_ST;
break;
case 0x13: /* SYNC_RMB */
tcg_mo |= TCG_MO_LD_LD;
break;
default:
tcg_mo |= TCG_MO_ALL;
break;
}
tcg_gen_mb(tcg_mo);
}
static void gen_pool32axf(CPUMIPSState *env, DisasContext *ctx, int rt, int rs)
{
int extension = (ctx->opcode >> 6) & 0x3f;
int minor = (ctx->opcode >> 12) & 0xf;
uint32_t mips32_op;
switch (extension) {
case TEQ:
mips32_op = OPC_TEQ;
goto do_trap;
case TGE:
mips32_op = OPC_TGE;
goto do_trap;
case TGEU:
mips32_op = OPC_TGEU;
goto do_trap;
case TLT:
mips32_op = OPC_TLT;
goto do_trap;
case TLTU:
mips32_op = OPC_TLTU;
goto do_trap;
case TNE:
mips32_op = OPC_TNE;
do_trap:
gen_trap(ctx, mips32_op, rs, rt, -1);
break;
#ifndef CONFIG_USER_ONLY
case MFC0:
case MFC0 + 32:
check_cp0_enabled(ctx);
if (rt == 0) {
/* Treat as NOP. */
break;
}
gen_mfc0(ctx, cpu_gpr[rt], rs, (ctx->opcode >> 11) & 0x7);
break;
case MTC0:
case MTC0 + 32:
check_cp0_enabled(ctx);
{
TCGv t0 = tcg_temp_new();
gen_load_gpr(t0, rt);
gen_mtc0(ctx, t0, rs, (ctx->opcode >> 11) & 0x7);
tcg_temp_free(t0);
}
break;
#endif
case 0x2a:
switch (minor & 3) {
case MADD_ACC:
gen_muldiv(ctx, OPC_MADD, (ctx->opcode >> 14) & 3, rs, rt);
break;
case MADDU_ACC:
gen_muldiv(ctx, OPC_MADDU, (ctx->opcode >> 14) & 3, rs, rt);
break;
case MSUB_ACC:
gen_muldiv(ctx, OPC_MSUB, (ctx->opcode >> 14) & 3, rs, rt);
break;
case MSUBU_ACC:
gen_muldiv(ctx, OPC_MSUBU, (ctx->opcode >> 14) & 3, rs, rt);
break;
default:
goto pool32axf_invalid;
}
break;
case 0x32:
switch (minor & 3) {
case MULT_ACC:
gen_muldiv(ctx, OPC_MULT, (ctx->opcode >> 14) & 3, rs, rt);
break;
case MULTU_ACC:
gen_muldiv(ctx, OPC_MULTU, (ctx->opcode >> 14) & 3, rs, rt);
break;
default:
goto pool32axf_invalid;
}
break;
case 0x2c:
switch (minor) {
case BITSWAP:
check_insn(ctx, ISA_MIPS32R6);
gen_bitswap(ctx, OPC_BITSWAP, rs, rt);
break;
case SEB:
gen_bshfl(ctx, OPC_SEB, rs, rt);
break;
case SEH:
gen_bshfl(ctx, OPC_SEH, rs, rt);
break;
case CLO:
mips32_op = OPC_CLO;
goto do_cl;
case CLZ:
mips32_op = OPC_CLZ;
do_cl:
check_insn(ctx, ISA_MIPS32);
gen_cl(ctx, mips32_op, rt, rs);
break;
case RDHWR:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_rdhwr(ctx, rt, rs, 0);
break;
case WSBH:
gen_bshfl(ctx, OPC_WSBH, rs, rt);
break;
case MULT:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MULT;
goto do_mul;
case MULTU:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MULTU;
goto do_mul;
case DIV:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_DIV;
goto do_div;
case DIVU:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_DIVU;
goto do_div;
do_div:
check_insn(ctx, ISA_MIPS32);
gen_muldiv(ctx, mips32_op, 0, rs, rt);
break;
case MADD:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MADD;
goto do_mul;
case MADDU:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MADDU;
goto do_mul;
case MSUB:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MSUB;
goto do_mul;
case MSUBU:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MSUBU;
do_mul:
check_insn(ctx, ISA_MIPS32);
gen_muldiv(ctx, mips32_op, 0, rs, rt);
break;
default:
goto pool32axf_invalid;
}
break;
case 0x34:
switch (minor) {
case MFC2:
case MTC2:
case MFHC2:
case MTHC2:
case CFC2:
case CTC2:
generate_exception_err(ctx, EXCP_CpU, 2);
break;
default:
goto pool32axf_invalid;
}
break;
case 0x3c:
switch (minor) {
case JALR: /* JALRC */
case JALR_HB: /* JALRC_HB */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* JALRC, JALRC_HB */
gen_compute_branch(ctx, OPC_JALR, 4, rs, rt, 0, 0);
} else {
/* JALR, JALR_HB */
gen_compute_branch(ctx, OPC_JALR, 4, rs, rt, 0, 4);
ctx->hflags |= MIPS_HFLAG_BDS_STRICT;
}
break;
case JALRS:
case JALRS_HB:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_compute_branch(ctx, OPC_JALR, 4, rs, rt, 0, 2);
ctx->hflags |= MIPS_HFLAG_BDS_STRICT;
break;
default:
goto pool32axf_invalid;
}
break;
case 0x05:
switch (minor) {
case RDPGPR:
check_cp0_enabled(ctx);
check_insn(ctx, ISA_MIPS32R2);
gen_load_srsgpr(rs, rt);
break;
case WRPGPR:
check_cp0_enabled(ctx);
check_insn(ctx, ISA_MIPS32R2);
gen_store_srsgpr(rs, rt);
break;
default:
goto pool32axf_invalid;
}
break;
#ifndef CONFIG_USER_ONLY
case 0x0d:
switch (minor) {
case TLBP:
mips32_op = OPC_TLBP;
goto do_cp0;
case TLBR:
mips32_op = OPC_TLBR;
goto do_cp0;
case TLBWI:
mips32_op = OPC_TLBWI;
goto do_cp0;
case TLBWR:
mips32_op = OPC_TLBWR;
goto do_cp0;
case TLBINV:
mips32_op = OPC_TLBINV;
goto do_cp0;
case TLBINVF:
mips32_op = OPC_TLBINVF;
goto do_cp0;
case WAIT:
mips32_op = OPC_WAIT;
goto do_cp0;
case DERET:
mips32_op = OPC_DERET;
goto do_cp0;
case ERET:
mips32_op = OPC_ERET;
do_cp0:
gen_cp0(env, ctx, mips32_op, rt, rs);
break;
default:
goto pool32axf_invalid;
}
break;
case 0x1d:
switch (minor) {
case DI:
check_cp0_enabled(ctx);
{
TCGv t0 = tcg_temp_new();
save_cpu_state(ctx, 1);
gen_helper_di(t0, cpu_env);
gen_store_gpr(t0, rs);
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
tcg_temp_free(t0);
}
break;
case EI:
check_cp0_enabled(ctx);
{
TCGv t0 = tcg_temp_new();
save_cpu_state(ctx, 1);
gen_helper_ei(t0, cpu_env);
gen_store_gpr(t0, rs);
/*
* DISAS_STOP isn't sufficient, we need to ensure we break out
* of translated code to check for pending interrupts.
*/
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
tcg_temp_free(t0);
}
break;
default:
goto pool32axf_invalid;
}
break;
#endif
case 0x2d:
switch (minor) {
case SYNC:
gen_sync(extract32(ctx->opcode, 16, 5));
break;
case SYSCALL:
generate_exception_end(ctx, EXCP_SYSCALL);
break;
case SDBBP:
if (is_uhi(extract32(ctx->opcode, 16, 10))) {
gen_helper_do_semihosting(cpu_env);
} else {
check_insn(ctx, ISA_MIPS32);
if (ctx->hflags & MIPS_HFLAG_SBRI) {
generate_exception_end(ctx, EXCP_RI);
} else {
generate_exception_end(ctx, EXCP_DBp);
}
}
break;
default:
goto pool32axf_invalid;
}
break;
case 0x01:
switch (minor & 3) {
case MFHI_ACC:
gen_HILO(ctx, OPC_MFHI, minor >> 2, rs);
break;
case MFLO_ACC:
gen_HILO(ctx, OPC_MFLO, minor >> 2, rs);
break;
case MTHI_ACC:
gen_HILO(ctx, OPC_MTHI, minor >> 2, rs);
break;
case MTLO_ACC:
gen_HILO(ctx, OPC_MTLO, minor >> 2, rs);
break;
default:
goto pool32axf_invalid;
}
break;
case 0x35:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
switch (minor) {
case MFHI32:
gen_HILO(ctx, OPC_MFHI, 0, rs);
break;
case MFLO32:
gen_HILO(ctx, OPC_MFLO, 0, rs);
break;
case MTHI32:
gen_HILO(ctx, OPC_MTHI, 0, rs);
break;
case MTLO32:
gen_HILO(ctx, OPC_MTLO, 0, rs);
break;
default:
goto pool32axf_invalid;
}
break;
default:
pool32axf_invalid:
MIPS_INVAL("pool32axf");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
* Values for microMIPS fmt field. Variable-width, depending on which
* formats the instruction supports.
*/
enum {
FMT_SD_S = 0,
FMT_SD_D = 1,
FMT_SDPS_S = 0,
FMT_SDPS_D = 1,
FMT_SDPS_PS = 2,
FMT_SWL_S = 0,
FMT_SWL_W = 1,
FMT_SWL_L = 2,
FMT_DWL_D = 0,
FMT_DWL_W = 1,
FMT_DWL_L = 2
};
static void gen_pool32fxf(DisasContext *ctx, int rt, int rs)
{
int extension = (ctx->opcode >> 6) & 0x3ff;
uint32_t mips32_op;
#define FLOAT_1BIT_FMT(opc, fmt) (fmt << 8) | opc
#define FLOAT_2BIT_FMT(opc, fmt) (fmt << 7) | opc
#define COND_FLOAT_MOV(opc, cond) (cond << 7) | opc
switch (extension) {
case FLOAT_1BIT_FMT(CFC1, 0):
mips32_op = OPC_CFC1;
goto do_cp1;
case FLOAT_1BIT_FMT(CTC1, 0):
mips32_op = OPC_CTC1;
goto do_cp1;
case FLOAT_1BIT_FMT(MFC1, 0):
mips32_op = OPC_MFC1;
goto do_cp1;
case FLOAT_1BIT_FMT(MTC1, 0):
mips32_op = OPC_MTC1;
goto do_cp1;
case FLOAT_1BIT_FMT(MFHC1, 0):
mips32_op = OPC_MFHC1;
goto do_cp1;
case FLOAT_1BIT_FMT(MTHC1, 0):
mips32_op = OPC_MTHC1;
do_cp1:
gen_cp1(ctx, mips32_op, rt, rs);
break;
/* Reciprocal square root */
case FLOAT_1BIT_FMT(RSQRT_FMT, FMT_SD_S):
mips32_op = OPC_RSQRT_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(RSQRT_FMT, FMT_SD_D):
mips32_op = OPC_RSQRT_D;
goto do_unaryfp;
/* Square root */
case FLOAT_1BIT_FMT(SQRT_FMT, FMT_SD_S):
mips32_op = OPC_SQRT_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(SQRT_FMT, FMT_SD_D):
mips32_op = OPC_SQRT_D;
goto do_unaryfp;
/* Reciprocal */
case FLOAT_1BIT_FMT(RECIP_FMT, FMT_SD_S):
mips32_op = OPC_RECIP_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(RECIP_FMT, FMT_SD_D):
mips32_op = OPC_RECIP_D;
goto do_unaryfp;
/* Floor */
case FLOAT_1BIT_FMT(FLOOR_L, FMT_SD_S):
mips32_op = OPC_FLOOR_L_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(FLOOR_L, FMT_SD_D):
mips32_op = OPC_FLOOR_L_D;
goto do_unaryfp;
case FLOAT_1BIT_FMT(FLOOR_W, FMT_SD_S):
mips32_op = OPC_FLOOR_W_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(FLOOR_W, FMT_SD_D):
mips32_op = OPC_FLOOR_W_D;
goto do_unaryfp;
/* Ceiling */
case FLOAT_1BIT_FMT(CEIL_L, FMT_SD_S):
mips32_op = OPC_CEIL_L_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(CEIL_L, FMT_SD_D):
mips32_op = OPC_CEIL_L_D;
goto do_unaryfp;
case FLOAT_1BIT_FMT(CEIL_W, FMT_SD_S):
mips32_op = OPC_CEIL_W_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(CEIL_W, FMT_SD_D):
mips32_op = OPC_CEIL_W_D;
goto do_unaryfp;
/* Truncation */
case FLOAT_1BIT_FMT(TRUNC_L, FMT_SD_S):
mips32_op = OPC_TRUNC_L_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(TRUNC_L, FMT_SD_D):
mips32_op = OPC_TRUNC_L_D;
goto do_unaryfp;
case FLOAT_1BIT_FMT(TRUNC_W, FMT_SD_S):
mips32_op = OPC_TRUNC_W_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(TRUNC_W, FMT_SD_D):
mips32_op = OPC_TRUNC_W_D;
goto do_unaryfp;
/* Round */
case FLOAT_1BIT_FMT(ROUND_L, FMT_SD_S):
mips32_op = OPC_ROUND_L_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(ROUND_L, FMT_SD_D):
mips32_op = OPC_ROUND_L_D;
goto do_unaryfp;
case FLOAT_1BIT_FMT(ROUND_W, FMT_SD_S):
mips32_op = OPC_ROUND_W_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(ROUND_W, FMT_SD_D):
mips32_op = OPC_ROUND_W_D;
goto do_unaryfp;
/* Integer to floating-point conversion */
case FLOAT_1BIT_FMT(CVT_L, FMT_SD_S):
mips32_op = OPC_CVT_L_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(CVT_L, FMT_SD_D):
mips32_op = OPC_CVT_L_D;
goto do_unaryfp;
case FLOAT_1BIT_FMT(CVT_W, FMT_SD_S):
mips32_op = OPC_CVT_W_S;
goto do_unaryfp;
case FLOAT_1BIT_FMT(CVT_W, FMT_SD_D):
mips32_op = OPC_CVT_W_D;
goto do_unaryfp;
/* Paired-foo conversions */
case FLOAT_1BIT_FMT(CVT_S_PL, 0):
mips32_op = OPC_CVT_S_PL;
goto do_unaryfp;
case FLOAT_1BIT_FMT(CVT_S_PU, 0):
mips32_op = OPC_CVT_S_PU;
goto do_unaryfp;
case FLOAT_1BIT_FMT(CVT_PW_PS, 0):
mips32_op = OPC_CVT_PW_PS;
goto do_unaryfp;
case FLOAT_1BIT_FMT(CVT_PS_PW, 0):
mips32_op = OPC_CVT_PS_PW;
goto do_unaryfp;
/* Floating-point moves */
case FLOAT_2BIT_FMT(MOV_FMT, FMT_SDPS_S):
mips32_op = OPC_MOV_S;
goto do_unaryfp;
case FLOAT_2BIT_FMT(MOV_FMT, FMT_SDPS_D):
mips32_op = OPC_MOV_D;
goto do_unaryfp;
case FLOAT_2BIT_FMT(MOV_FMT, FMT_SDPS_PS):
mips32_op = OPC_MOV_PS;
goto do_unaryfp;
/* Absolute value */
case FLOAT_2BIT_FMT(ABS_FMT, FMT_SDPS_S):
mips32_op = OPC_ABS_S;
goto do_unaryfp;
case FLOAT_2BIT_FMT(ABS_FMT, FMT_SDPS_D):
mips32_op = OPC_ABS_D;
goto do_unaryfp;
case FLOAT_2BIT_FMT(ABS_FMT, FMT_SDPS_PS):
mips32_op = OPC_ABS_PS;
goto do_unaryfp;
/* Negation */
case FLOAT_2BIT_FMT(NEG_FMT, FMT_SDPS_S):
mips32_op = OPC_NEG_S;
goto do_unaryfp;
case FLOAT_2BIT_FMT(NEG_FMT, FMT_SDPS_D):
mips32_op = OPC_NEG_D;
goto do_unaryfp;
case FLOAT_2BIT_FMT(NEG_FMT, FMT_SDPS_PS):
mips32_op = OPC_NEG_PS;
goto do_unaryfp;
/* Reciprocal square root step */
case FLOAT_2BIT_FMT(RSQRT1_FMT, FMT_SDPS_S):
mips32_op = OPC_RSQRT1_S;
goto do_unaryfp;
case FLOAT_2BIT_FMT(RSQRT1_FMT, FMT_SDPS_D):
mips32_op = OPC_RSQRT1_D;
goto do_unaryfp;
case FLOAT_2BIT_FMT(RSQRT1_FMT, FMT_SDPS_PS):
mips32_op = OPC_RSQRT1_PS;
goto do_unaryfp;
/* Reciprocal step */
case FLOAT_2BIT_FMT(RECIP1_FMT, FMT_SDPS_S):
mips32_op = OPC_RECIP1_S;
goto do_unaryfp;
case FLOAT_2BIT_FMT(RECIP1_FMT, FMT_SDPS_D):
mips32_op = OPC_RECIP1_S;
goto do_unaryfp;
case FLOAT_2BIT_FMT(RECIP1_FMT, FMT_SDPS_PS):
mips32_op = OPC_RECIP1_PS;
goto do_unaryfp;
/* Conversions from double */
case FLOAT_2BIT_FMT(CVT_D, FMT_SWL_S):
mips32_op = OPC_CVT_D_S;
goto do_unaryfp;
case FLOAT_2BIT_FMT(CVT_D, FMT_SWL_W):
mips32_op = OPC_CVT_D_W;
goto do_unaryfp;
case FLOAT_2BIT_FMT(CVT_D, FMT_SWL_L):
mips32_op = OPC_CVT_D_L;
goto do_unaryfp;
/* Conversions from single */
case FLOAT_2BIT_FMT(CVT_S, FMT_DWL_D):
mips32_op = OPC_CVT_S_D;
goto do_unaryfp;
case FLOAT_2BIT_FMT(CVT_S, FMT_DWL_W):
mips32_op = OPC_CVT_S_W;
goto do_unaryfp;
case FLOAT_2BIT_FMT(CVT_S, FMT_DWL_L):
mips32_op = OPC_CVT_S_L;
do_unaryfp:
gen_farith(ctx, mips32_op, -1, rs, rt, 0);
break;
/* Conditional moves on floating-point codes */
case COND_FLOAT_MOV(MOVT, 0):
case COND_FLOAT_MOV(MOVT, 1):
case COND_FLOAT_MOV(MOVT, 2):
case COND_FLOAT_MOV(MOVT, 3):
case COND_FLOAT_MOV(MOVT, 4):
case COND_FLOAT_MOV(MOVT, 5):
case COND_FLOAT_MOV(MOVT, 6):
case COND_FLOAT_MOV(MOVT, 7):
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_movci(ctx, rt, rs, (ctx->opcode >> 13) & 0x7, 1);
break;
case COND_FLOAT_MOV(MOVF, 0):
case COND_FLOAT_MOV(MOVF, 1):
case COND_FLOAT_MOV(MOVF, 2):
case COND_FLOAT_MOV(MOVF, 3):
case COND_FLOAT_MOV(MOVF, 4):
case COND_FLOAT_MOV(MOVF, 5):
case COND_FLOAT_MOV(MOVF, 6):
case COND_FLOAT_MOV(MOVF, 7):
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_movci(ctx, rt, rs, (ctx->opcode >> 13) & 0x7, 0);
break;
default:
MIPS_INVAL("pool32fxf");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void decode_micromips32_opc(CPUMIPSState *env, DisasContext *ctx)
{
int32_t offset;
uint16_t insn;
int rt, rs, rd, rr;
int16_t imm;
uint32_t op, minor, minor2, mips32_op;
uint32_t cond, fmt, cc;
insn = cpu_lduw_code(env, ctx->base.pc_next + 2);
ctx->opcode = (ctx->opcode << 16) | insn;
rt = (ctx->opcode >> 21) & 0x1f;
rs = (ctx->opcode >> 16) & 0x1f;
rd = (ctx->opcode >> 11) & 0x1f;
rr = (ctx->opcode >> 6) & 0x1f;
imm = (int16_t) ctx->opcode;
op = (ctx->opcode >> 26) & 0x3f;
switch (op) {
case POOL32A:
minor = ctx->opcode & 0x3f;
switch (minor) {
case 0x00:
minor = (ctx->opcode >> 6) & 0xf;
switch (minor) {
case SLL32:
mips32_op = OPC_SLL;
goto do_shifti;
case SRA:
mips32_op = OPC_SRA;
goto do_shifti;
case SRL32:
mips32_op = OPC_SRL;
goto do_shifti;
case ROTR:
mips32_op = OPC_ROTR;
do_shifti:
gen_shift_imm(ctx, mips32_op, rt, rs, rd);
break;
case SELEQZ:
check_insn(ctx, ISA_MIPS32R6);
gen_cond_move(ctx, OPC_SELEQZ, rd, rs, rt);
break;
case SELNEZ:
check_insn(ctx, ISA_MIPS32R6);
gen_cond_move(ctx, OPC_SELNEZ, rd, rs, rt);
break;
case R6_RDHWR:
check_insn(ctx, ISA_MIPS32R6);
gen_rdhwr(ctx, rt, rs, extract32(ctx->opcode, 11, 3));
break;
default:
goto pool32a_invalid;
}
break;
case 0x10:
minor = (ctx->opcode >> 6) & 0xf;
switch (minor) {
/* Arithmetic */
case ADD:
mips32_op = OPC_ADD;
goto do_arith;
case ADDU32:
mips32_op = OPC_ADDU;
goto do_arith;
case SUB:
mips32_op = OPC_SUB;
goto do_arith;
case SUBU32:
mips32_op = OPC_SUBU;
goto do_arith;
case MUL:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MUL;
do_arith:
gen_arith(ctx, mips32_op, rd, rs, rt);
break;
/* Shifts */
case SLLV:
mips32_op = OPC_SLLV;
goto do_shift;
case SRLV:
mips32_op = OPC_SRLV;
goto do_shift;
case SRAV:
mips32_op = OPC_SRAV;
goto do_shift;
case ROTRV:
mips32_op = OPC_ROTRV;
do_shift:
gen_shift(ctx, mips32_op, rd, rs, rt);
break;
/* Logical operations */
case AND:
mips32_op = OPC_AND;
goto do_logic;
case OR32:
mips32_op = OPC_OR;
goto do_logic;
case NOR:
mips32_op = OPC_NOR;
goto do_logic;
case XOR32:
mips32_op = OPC_XOR;
do_logic:
gen_logic(ctx, mips32_op, rd, rs, rt);
break;
/* Set less than */
case SLT:
mips32_op = OPC_SLT;
goto do_slt;
case SLTU:
mips32_op = OPC_SLTU;
do_slt:
gen_slt(ctx, mips32_op, rd, rs, rt);
break;
default:
goto pool32a_invalid;
}
break;
case 0x18:
minor = (ctx->opcode >> 6) & 0xf;
switch (minor) {
/* Conditional moves */
case MOVN: /* MUL */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* MUL */
gen_r6_muldiv(ctx, R6_OPC_MUL, rd, rs, rt);
} else {
/* MOVN */
gen_cond_move(ctx, OPC_MOVN, rd, rs, rt);
}
break;
case MOVZ: /* MUH */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* MUH */
gen_r6_muldiv(ctx, R6_OPC_MUH, rd, rs, rt);
} else {
/* MOVZ */
gen_cond_move(ctx, OPC_MOVZ, rd, rs, rt);
}
break;
case MULU:
check_insn(ctx, ISA_MIPS32R6);
gen_r6_muldiv(ctx, R6_OPC_MULU, rd, rs, rt);
break;
case MUHU:
check_insn(ctx, ISA_MIPS32R6);
gen_r6_muldiv(ctx, R6_OPC_MUHU, rd, rs, rt);
break;
case LWXS: /* DIV */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* DIV */
gen_r6_muldiv(ctx, R6_OPC_DIV, rd, rs, rt);
} else {
/* LWXS */
gen_ldxs(ctx, rs, rt, rd);
}
break;
case MOD:
check_insn(ctx, ISA_MIPS32R6);
gen_r6_muldiv(ctx, R6_OPC_MOD, rd, rs, rt);
break;
case R6_DIVU:
check_insn(ctx, ISA_MIPS32R6);
gen_r6_muldiv(ctx, R6_OPC_DIVU, rd, rs, rt);
break;
case MODU:
check_insn(ctx, ISA_MIPS32R6);
gen_r6_muldiv(ctx, R6_OPC_MODU, rd, rs, rt);
break;
default:
goto pool32a_invalid;
}
break;
case INS:
gen_bitops(ctx, OPC_INS, rt, rs, rr, rd);
return;
case LSA:
check_insn(ctx, ISA_MIPS32R6);
gen_lsa(ctx, OPC_LSA, rd, rs, rt,
extract32(ctx->opcode, 9, 2));
break;
case ALIGN:
check_insn(ctx, ISA_MIPS32R6);
gen_align(ctx, 32, rd, rs, rt, extract32(ctx->opcode, 9, 2));
break;
case EXT:
gen_bitops(ctx, OPC_EXT, rt, rs, rr, rd);
return;
case POOL32AXF:
gen_pool32axf(env, ctx, rt, rs);
break;
case BREAK32:
generate_exception_end(ctx, EXCP_BREAK);
break;
case SIGRIE:
check_insn(ctx, ISA_MIPS32R6);
generate_exception_end(ctx, EXCP_RI);
break;
default:
pool32a_invalid:
MIPS_INVAL("pool32a");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case POOL32B:
minor = (ctx->opcode >> 12) & 0xf;
switch (minor) {
case CACHE:
check_cp0_enabled(ctx);
if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) {
gen_cache_operation(ctx, rt, rs, imm);
}
break;
case LWC2:
case SWC2:
/* COP2: Not implemented. */
generate_exception_err(ctx, EXCP_CpU, 2);
break;
#ifdef TARGET_MIPS64
case LDP:
case SDP:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
#endif
/* fall through */
case LWP:
case SWP:
gen_ldst_pair(ctx, minor, rt, rs, SIMM(ctx->opcode, 0, 12));
break;
#ifdef TARGET_MIPS64
case LDM:
case SDM:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
#endif
/* fall through */
case LWM32:
case SWM32:
gen_ldst_multiple(ctx, minor, rt, rs, SIMM(ctx->opcode, 0, 12));
break;
default:
MIPS_INVAL("pool32b");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case POOL32F:
if (ctx->CP0_Config1 & (1 << CP0C1_FP)) {
minor = ctx->opcode & 0x3f;
check_cp1_enabled(ctx);
switch (minor) {
case ALNV_PS:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_ALNV_PS;
goto do_madd;
case MADD_S:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MADD_S;
goto do_madd;
case MADD_D:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MADD_D;
goto do_madd;
case MADD_PS:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MADD_PS;
goto do_madd;
case MSUB_S:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MSUB_S;
goto do_madd;
case MSUB_D:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MSUB_D;
goto do_madd;
case MSUB_PS:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_MSUB_PS;
goto do_madd;
case NMADD_S:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_NMADD_S;
goto do_madd;
case NMADD_D:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_NMADD_D;
goto do_madd;
case NMADD_PS:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_NMADD_PS;
goto do_madd;
case NMSUB_S:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_NMSUB_S;
goto do_madd;
case NMSUB_D:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_NMSUB_D;
goto do_madd;
case NMSUB_PS:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_NMSUB_PS;
do_madd:
gen_flt3_arith(ctx, mips32_op, rd, rr, rs, rt);
break;
case CABS_COND_FMT:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
cond = (ctx->opcode >> 6) & 0xf;
cc = (ctx->opcode >> 13) & 0x7;
fmt = (ctx->opcode >> 10) & 0x3;
switch (fmt) {
case 0x0:
gen_cmpabs_s(ctx, cond, rt, rs, cc);
break;
case 0x1:
gen_cmpabs_d(ctx, cond, rt, rs, cc);
break;
case 0x2:
gen_cmpabs_ps(ctx, cond, rt, rs, cc);
break;
default:
goto pool32f_invalid;
}
break;
case C_COND_FMT:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
cond = (ctx->opcode >> 6) & 0xf;
cc = (ctx->opcode >> 13) & 0x7;
fmt = (ctx->opcode >> 10) & 0x3;
switch (fmt) {
case 0x0:
gen_cmp_s(ctx, cond, rt, rs, cc);
break;
case 0x1:
gen_cmp_d(ctx, cond, rt, rs, cc);
break;
case 0x2:
gen_cmp_ps(ctx, cond, rt, rs, cc);
break;
default:
goto pool32f_invalid;
}
break;
case CMP_CONDN_S:
check_insn(ctx, ISA_MIPS32R6);
gen_r6_cmp_s(ctx, (ctx->opcode >> 6) & 0x1f, rt, rs, rd);
break;
case CMP_CONDN_D:
check_insn(ctx, ISA_MIPS32R6);
gen_r6_cmp_d(ctx, (ctx->opcode >> 6) & 0x1f, rt, rs, rd);
break;
case POOL32FXF:
gen_pool32fxf(ctx, rt, rs);
break;
case 0x00:
/* PLL foo */
switch ((ctx->opcode >> 6) & 0x7) {
case PLL_PS:
mips32_op = OPC_PLL_PS;
goto do_ps;
case PLU_PS:
mips32_op = OPC_PLU_PS;
goto do_ps;
case PUL_PS:
mips32_op = OPC_PUL_PS;
goto do_ps;
case PUU_PS:
mips32_op = OPC_PUU_PS;
goto do_ps;
case CVT_PS_S:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_CVT_PS_S;
do_ps:
gen_farith(ctx, mips32_op, rt, rs, rd, 0);
break;
default:
goto pool32f_invalid;
}
break;
case MIN_FMT:
check_insn(ctx, ISA_MIPS32R6);
switch ((ctx->opcode >> 9) & 0x3) {
case FMT_SDPS_S:
gen_farith(ctx, OPC_MIN_S, rt, rs, rd, 0);
break;
case FMT_SDPS_D:
gen_farith(ctx, OPC_MIN_D, rt, rs, rd, 0);
break;
default:
goto pool32f_invalid;
}
break;
case 0x08:
/* [LS][WDU]XC1 */
switch ((ctx->opcode >> 6) & 0x7) {
case LWXC1:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_LWXC1;
goto do_ldst_cp1;
case SWXC1:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_SWXC1;
goto do_ldst_cp1;
case LDXC1:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_LDXC1;
goto do_ldst_cp1;
case SDXC1:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_SDXC1;
goto do_ldst_cp1;
case LUXC1:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_LUXC1;
goto do_ldst_cp1;
case SUXC1:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_SUXC1;
do_ldst_cp1:
gen_flt3_ldst(ctx, mips32_op, rd, rd, rt, rs);
break;
default:
goto pool32f_invalid;
}
break;
case MAX_FMT:
check_insn(ctx, ISA_MIPS32R6);
switch ((ctx->opcode >> 9) & 0x3) {
case FMT_SDPS_S:
gen_farith(ctx, OPC_MAX_S, rt, rs, rd, 0);
break;
case FMT_SDPS_D:
gen_farith(ctx, OPC_MAX_D, rt, rs, rd, 0);
break;
default:
goto pool32f_invalid;
}
break;
case 0x18:
/* 3D insns */
check_insn_opc_removed(ctx, ISA_MIPS32R6);
fmt = (ctx->opcode >> 9) & 0x3;
switch ((ctx->opcode >> 6) & 0x7) {
case RSQRT2_FMT:
switch (fmt) {
case FMT_SDPS_S:
mips32_op = OPC_RSQRT2_S;
goto do_3d;
case FMT_SDPS_D:
mips32_op = OPC_RSQRT2_D;
goto do_3d;
case FMT_SDPS_PS:
mips32_op = OPC_RSQRT2_PS;
goto do_3d;
default:
goto pool32f_invalid;
}
break;
case RECIP2_FMT:
switch (fmt) {
case FMT_SDPS_S:
mips32_op = OPC_RECIP2_S;
goto do_3d;
case FMT_SDPS_D:
mips32_op = OPC_RECIP2_D;
goto do_3d;
case FMT_SDPS_PS:
mips32_op = OPC_RECIP2_PS;
goto do_3d;
default:
goto pool32f_invalid;
}
break;
case ADDR_PS:
mips32_op = OPC_ADDR_PS;
goto do_3d;
case MULR_PS:
mips32_op = OPC_MULR_PS;
do_3d:
gen_farith(ctx, mips32_op, rt, rs, rd, 0);
break;
default:
goto pool32f_invalid;
}
break;
case 0x20:
/* MOV[FT].fmt, PREFX, RINT.fmt, CLASS.fmt*/
cc = (ctx->opcode >> 13) & 0x7;
fmt = (ctx->opcode >> 9) & 0x3;
switch ((ctx->opcode >> 6) & 0x7) {
case MOVF_FMT: /* RINT_FMT */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* RINT_FMT */
switch (fmt) {
case FMT_SDPS_S:
gen_farith(ctx, OPC_RINT_S, 0, rt, rs, 0);
break;
case FMT_SDPS_D:
gen_farith(ctx, OPC_RINT_D, 0, rt, rs, 0);
break;
default:
goto pool32f_invalid;
}
} else {
/* MOVF_FMT */
switch (fmt) {
case FMT_SDPS_S:
gen_movcf_s(ctx, rs, rt, cc, 0);
break;
case FMT_SDPS_D:
gen_movcf_d(ctx, rs, rt, cc, 0);
break;
case FMT_SDPS_PS:
check_ps(ctx);
gen_movcf_ps(ctx, rs, rt, cc, 0);
break;
default:
goto pool32f_invalid;
}
}
break;
case MOVT_FMT: /* CLASS_FMT */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* CLASS_FMT */
switch (fmt) {
case FMT_SDPS_S:
gen_farith(ctx, OPC_CLASS_S, 0, rt, rs, 0);
break;
case FMT_SDPS_D:
gen_farith(ctx, OPC_CLASS_D, 0, rt, rs, 0);
break;
default:
goto pool32f_invalid;
}
} else {
/* MOVT_FMT */
switch (fmt) {
case FMT_SDPS_S:
gen_movcf_s(ctx, rs, rt, cc, 1);
break;
case FMT_SDPS_D:
gen_movcf_d(ctx, rs, rt, cc, 1);
break;
case FMT_SDPS_PS:
check_ps(ctx);
gen_movcf_ps(ctx, rs, rt, cc, 1);
break;
default:
goto pool32f_invalid;
}
}
break;
case PREFX:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
break;
default:
goto pool32f_invalid;
}
break;
#define FINSN_3ARG_SDPS(prfx) \
switch ((ctx->opcode >> 8) & 0x3) { \
case FMT_SDPS_S: \
mips32_op = OPC_##prfx##_S; \
goto do_fpop; \
case FMT_SDPS_D: \
mips32_op = OPC_##prfx##_D; \
goto do_fpop; \
case FMT_SDPS_PS: \
check_ps(ctx); \
mips32_op = OPC_##prfx##_PS; \
goto do_fpop; \
default: \
goto pool32f_invalid; \
}
case MINA_FMT:
check_insn(ctx, ISA_MIPS32R6);
switch ((ctx->opcode >> 9) & 0x3) {
case FMT_SDPS_S:
gen_farith(ctx, OPC_MINA_S, rt, rs, rd, 0);
break;
case FMT_SDPS_D:
gen_farith(ctx, OPC_MINA_D, rt, rs, rd, 0);
break;
default:
goto pool32f_invalid;
}
break;
case MAXA_FMT:
check_insn(ctx, ISA_MIPS32R6);
switch ((ctx->opcode >> 9) & 0x3) {
case FMT_SDPS_S:
gen_farith(ctx, OPC_MAXA_S, rt, rs, rd, 0);
break;
case FMT_SDPS_D:
gen_farith(ctx, OPC_MAXA_D, rt, rs, rd, 0);
break;
default:
goto pool32f_invalid;
}
break;
case 0x30:
/* regular FP ops */
switch ((ctx->opcode >> 6) & 0x3) {
case ADD_FMT:
FINSN_3ARG_SDPS(ADD);
break;
case SUB_FMT:
FINSN_3ARG_SDPS(SUB);
break;
case MUL_FMT:
FINSN_3ARG_SDPS(MUL);
break;
case DIV_FMT:
fmt = (ctx->opcode >> 8) & 0x3;
if (fmt == 1) {
mips32_op = OPC_DIV_D;
} else if (fmt == 0) {
mips32_op = OPC_DIV_S;
} else {
goto pool32f_invalid;
}
goto do_fpop;
default:
goto pool32f_invalid;
}
break;
case 0x38:
/* cmovs */
switch ((ctx->opcode >> 6) & 0x7) {
case MOVN_FMT: /* SELEQZ_FMT */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* SELEQZ_FMT */
switch ((ctx->opcode >> 9) & 0x3) {
case FMT_SDPS_S:
gen_sel_s(ctx, OPC_SELEQZ_S, rd, rt, rs);
break;
case FMT_SDPS_D:
gen_sel_d(ctx, OPC_SELEQZ_D, rd, rt, rs);
break;
default:
goto pool32f_invalid;
}
} else {
/* MOVN_FMT */
FINSN_3ARG_SDPS(MOVN);
}
break;
case MOVN_FMT_04:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
FINSN_3ARG_SDPS(MOVN);
break;
case MOVZ_FMT: /* SELNEZ_FMT */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* SELNEZ_FMT */
switch ((ctx->opcode >> 9) & 0x3) {
case FMT_SDPS_S:
gen_sel_s(ctx, OPC_SELNEZ_S, rd, rt, rs);
break;
case FMT_SDPS_D:
gen_sel_d(ctx, OPC_SELNEZ_D, rd, rt, rs);
break;
default:
goto pool32f_invalid;
}
} else {
/* MOVZ_FMT */
FINSN_3ARG_SDPS(MOVZ);
}
break;
case MOVZ_FMT_05:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
FINSN_3ARG_SDPS(MOVZ);
break;
case SEL_FMT:
check_insn(ctx, ISA_MIPS32R6);
switch ((ctx->opcode >> 9) & 0x3) {
case FMT_SDPS_S:
gen_sel_s(ctx, OPC_SEL_S, rd, rt, rs);
break;
case FMT_SDPS_D:
gen_sel_d(ctx, OPC_SEL_D, rd, rt, rs);
break;
default:
goto pool32f_invalid;
}
break;
case MADDF_FMT:
check_insn(ctx, ISA_MIPS32R6);
switch ((ctx->opcode >> 9) & 0x3) {
case FMT_SDPS_S:
mips32_op = OPC_MADDF_S;
goto do_fpop;
case FMT_SDPS_D:
mips32_op = OPC_MADDF_D;
goto do_fpop;
default:
goto pool32f_invalid;
}
break;
case MSUBF_FMT:
check_insn(ctx, ISA_MIPS32R6);
switch ((ctx->opcode >> 9) & 0x3) {
case FMT_SDPS_S:
mips32_op = OPC_MSUBF_S;
goto do_fpop;
case FMT_SDPS_D:
mips32_op = OPC_MSUBF_D;
goto do_fpop;
default:
goto pool32f_invalid;
}
break;
default:
goto pool32f_invalid;
}
break;
do_fpop:
gen_farith(ctx, mips32_op, rt, rs, rd, 0);
break;
default:
pool32f_invalid:
MIPS_INVAL("pool32f");
generate_exception_end(ctx, EXCP_RI);
break;
}
} else {
generate_exception_err(ctx, EXCP_CpU, 1);
}
break;
case POOL32I:
minor = (ctx->opcode >> 21) & 0x1f;
switch (minor) {
case BLTZ:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_compute_branch(ctx, OPC_BLTZ, 4, rs, -1, imm << 1, 4);
break;
case BLTZAL:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_compute_branch(ctx, OPC_BLTZAL, 4, rs, -1, imm << 1, 4);
ctx->hflags |= MIPS_HFLAG_BDS_STRICT;
break;
case BLTZALS:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_compute_branch(ctx, OPC_BLTZAL, 4, rs, -1, imm << 1, 2);
ctx->hflags |= MIPS_HFLAG_BDS_STRICT;
break;
case BGEZ:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_compute_branch(ctx, OPC_BGEZ, 4, rs, -1, imm << 1, 4);
break;
case BGEZAL:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_compute_branch(ctx, OPC_BGEZAL, 4, rs, -1, imm << 1, 4);
ctx->hflags |= MIPS_HFLAG_BDS_STRICT;
break;
case BGEZALS:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_compute_branch(ctx, OPC_BGEZAL, 4, rs, -1, imm << 1, 2);
ctx->hflags |= MIPS_HFLAG_BDS_STRICT;
break;
case BLEZ:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_compute_branch(ctx, OPC_BLEZ, 4, rs, -1, imm << 1, 4);
break;
case BGTZ:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_compute_branch(ctx, OPC_BGTZ, 4, rs, -1, imm << 1, 4);
break;
/* Traps */
case TLTI: /* BC1EQZC */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* BC1EQZC */
check_cp1_enabled(ctx);
gen_compute_branch1_r6(ctx, OPC_BC1EQZ, rs, imm << 1, 0);
} else {
/* TLTI */
mips32_op = OPC_TLTI;
goto do_trapi;
}
break;
case TGEI: /* BC1NEZC */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* BC1NEZC */
check_cp1_enabled(ctx);
gen_compute_branch1_r6(ctx, OPC_BC1NEZ, rs, imm << 1, 0);
} else {
/* TGEI */
mips32_op = OPC_TGEI;
goto do_trapi;
}
break;
case TLTIU:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_TLTIU;
goto do_trapi;
case TGEIU:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_TGEIU;
goto do_trapi;
case TNEI: /* SYNCI */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* SYNCI */
/*
* Break the TB to be able to sync copied instructions
* immediately.
*/
ctx->base.is_jmp = DISAS_STOP;
} else {
/* TNEI */
mips32_op = OPC_TNEI;
goto do_trapi;
}
break;
case TEQI:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_TEQI;
do_trapi:
gen_trap(ctx, mips32_op, rs, -1, imm);
break;
case BNEZC:
case BEQZC:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_compute_branch(ctx, minor == BNEZC ? OPC_BNE : OPC_BEQ,
4, rs, 0, imm << 1, 0);
/*
* Compact branches don't have a delay slot, so just let
* the normal delay slot handling take us to the branch
* target.
*/
break;
case LUI:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_logic_imm(ctx, OPC_LUI, rs, 0, imm);
break;
case SYNCI:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
/*
* Break the TB to be able to sync copied instructions
* immediately.
*/
ctx->base.is_jmp = DISAS_STOP;
break;
case BC2F:
case BC2T:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
/* COP2: Not implemented. */
generate_exception_err(ctx, EXCP_CpU, 2);
break;
case BC1F:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = (ctx->opcode & (1 << 16)) ? OPC_BC1FANY2 : OPC_BC1F;
goto do_cp1branch;
case BC1T:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = (ctx->opcode & (1 << 16)) ? OPC_BC1TANY2 : OPC_BC1T;
goto do_cp1branch;
case BC1ANY4F:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_BC1FANY4;
goto do_cp1mips3d;
case BC1ANY4T:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_BC1TANY4;
do_cp1mips3d:
check_cop1x(ctx);
check_insn(ctx, ASE_MIPS3D);
/* Fall through */
do_cp1branch:
if (env->CP0_Config1 & (1 << CP0C1_FP)) {
check_cp1_enabled(ctx);
gen_compute_branch1(ctx, mips32_op,
(ctx->opcode >> 18) & 0x7, imm << 1);
} else {
generate_exception_err(ctx, EXCP_CpU, 1);
}
break;
case BPOSGE64:
case BPOSGE32:
/* MIPS DSP: not implemented */
/* Fall through */
default:
MIPS_INVAL("pool32i");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case POOL32C:
minor = (ctx->opcode >> 12) & 0xf;
offset = sextract32(ctx->opcode, 0,
(ctx->insn_flags & ISA_MIPS32R6) ? 9 : 12);
switch (minor) {
case LWL:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_LWL;
goto do_ld_lr;
case SWL:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_SWL;
goto do_st_lr;
case LWR:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_LWR;
goto do_ld_lr;
case SWR:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_SWR;
goto do_st_lr;
#if defined(TARGET_MIPS64)
case LDL:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_LDL;
goto do_ld_lr;
case SDL:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_SDL;
goto do_st_lr;
case LDR:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_LDR;
goto do_ld_lr;
case SDR:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_SDR;
goto do_st_lr;
case LWU:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
mips32_op = OPC_LWU;
goto do_ld_lr;
case LLD:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
mips32_op = OPC_LLD;
goto do_ld_lr;
#endif
case LL:
mips32_op = OPC_LL;
goto do_ld_lr;
do_ld_lr:
gen_ld(ctx, mips32_op, rt, rs, offset);
break;
do_st_lr:
gen_st(ctx, mips32_op, rt, rs, offset);
break;
case SC:
gen_st_cond(ctx, rt, rs, offset, MO_TESL, false);
break;
#if defined(TARGET_MIPS64)
case SCD:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_st_cond(ctx, rt, rs, offset, MO_TEQ, false);
break;
#endif
case LD_EVA:
if (!ctx->eva) {
MIPS_INVAL("pool32c ld-eva");
generate_exception_end(ctx, EXCP_RI);
break;
}
check_cp0_enabled(ctx);
minor2 = (ctx->opcode >> 9) & 0x7;
offset = sextract32(ctx->opcode, 0, 9);
switch (minor2) {
case LBUE:
mips32_op = OPC_LBUE;
goto do_ld_lr;
case LHUE:
mips32_op = OPC_LHUE;
goto do_ld_lr;
case LWLE:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_LWLE;
goto do_ld_lr;
case LWRE:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_LWRE;
goto do_ld_lr;
case LBE:
mips32_op = OPC_LBE;
goto do_ld_lr;
case LHE:
mips32_op = OPC_LHE;
goto do_ld_lr;
case LLE:
mips32_op = OPC_LLE;
goto do_ld_lr;
case LWE:
mips32_op = OPC_LWE;
goto do_ld_lr;
};
break;
case ST_EVA:
if (!ctx->eva) {
MIPS_INVAL("pool32c st-eva");
generate_exception_end(ctx, EXCP_RI);
break;
}
check_cp0_enabled(ctx);
minor2 = (ctx->opcode >> 9) & 0x7;
offset = sextract32(ctx->opcode, 0, 9);
switch (minor2) {
case SWLE:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_SWLE;
goto do_st_lr;
case SWRE:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
mips32_op = OPC_SWRE;
goto do_st_lr;
case PREFE:
/* Treat as no-op */
if ((ctx->insn_flags & ISA_MIPS32R6) && (rt >= 24)) {
/* hint codes 24-31 are reserved and signal RI */
generate_exception(ctx, EXCP_RI);
}
break;
case CACHEE:
/* Treat as no-op */
if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) {
gen_cache_operation(ctx, rt, rs, offset);
}
break;
case SBE:
mips32_op = OPC_SBE;
goto do_st_lr;
case SHE:
mips32_op = OPC_SHE;
goto do_st_lr;
case SCE:
gen_st_cond(ctx, rt, rs, offset, MO_TESL, true);
break;
case SWE:
mips32_op = OPC_SWE;
goto do_st_lr;
};
break;
case PREF:
/* Treat as no-op */
if ((ctx->insn_flags & ISA_MIPS32R6) && (rt >= 24)) {
/* hint codes 24-31 are reserved and signal RI */
generate_exception(ctx, EXCP_RI);
}
break;
default:
MIPS_INVAL("pool32c");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case ADDI32: /* AUI, LUI */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* AUI, LUI */
gen_logic_imm(ctx, OPC_LUI, rt, rs, imm);
} else {
/* ADDI32 */
mips32_op = OPC_ADDI;
goto do_addi;
}
break;
case ADDIU32:
mips32_op = OPC_ADDIU;
do_addi:
gen_arith_imm(ctx, mips32_op, rt, rs, imm);
break;
/* Logical operations */
case ORI32:
mips32_op = OPC_ORI;
goto do_logici;
case XORI32:
mips32_op = OPC_XORI;
goto do_logici;
case ANDI32:
mips32_op = OPC_ANDI;
do_logici:
gen_logic_imm(ctx, mips32_op, rt, rs, imm);
break;
/* Set less than immediate */
case SLTI32:
mips32_op = OPC_SLTI;
goto do_slti;
case SLTIU32:
mips32_op = OPC_SLTIU;
do_slti:
gen_slt_imm(ctx, mips32_op, rt, rs, imm);
break;
case JALX32:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
offset = (int32_t)(ctx->opcode & 0x3FFFFFF) << 2;
gen_compute_branch(ctx, OPC_JALX, 4, rt, rs, offset, 4);
ctx->hflags |= MIPS_HFLAG_BDS_STRICT;
break;
case JALS32: /* BOVC, BEQC, BEQZALC */
if (ctx->insn_flags & ISA_MIPS32R6) {
if (rs >= rt) {
/* BOVC */
mips32_op = OPC_BOVC;
} else if (rs < rt && rs == 0) {
/* BEQZALC */
mips32_op = OPC_BEQZALC;
} else {
/* BEQC */
mips32_op = OPC_BEQC;
}
gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1);
} else {
/* JALS32 */
offset = (int32_t)(ctx->opcode & 0x3FFFFFF) << 1;
gen_compute_branch(ctx, OPC_JAL, 4, rt, rs, offset, 2);
ctx->hflags |= MIPS_HFLAG_BDS_STRICT;
}
break;
case BEQ32: /* BC */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* BC */
gen_compute_compact_branch(ctx, OPC_BC, 0, 0,
sextract32(ctx->opcode << 1, 0, 27));
} else {
/* BEQ32 */
gen_compute_branch(ctx, OPC_BEQ, 4, rt, rs, imm << 1, 4);
}
break;
case BNE32: /* BALC */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* BALC */
gen_compute_compact_branch(ctx, OPC_BALC, 0, 0,
sextract32(ctx->opcode << 1, 0, 27));
} else {
/* BNE32 */
gen_compute_branch(ctx, OPC_BNE, 4, rt, rs, imm << 1, 4);
}
break;
case J32: /* BGTZC, BLTZC, BLTC */
if (ctx->insn_flags & ISA_MIPS32R6) {
if (rs == 0 && rt != 0) {
/* BGTZC */
mips32_op = OPC_BGTZC;
} else if (rs != 0 && rt != 0 && rs == rt) {
/* BLTZC */
mips32_op = OPC_BLTZC;
} else {
/* BLTC */
mips32_op = OPC_BLTC;
}
gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1);
} else {
/* J32 */
gen_compute_branch(ctx, OPC_J, 4, rt, rs,
(int32_t)(ctx->opcode & 0x3FFFFFF) << 1, 4);
}
break;
case JAL32: /* BLEZC, BGEZC, BGEC */
if (ctx->insn_flags & ISA_MIPS32R6) {
if (rs == 0 && rt != 0) {
/* BLEZC */
mips32_op = OPC_BLEZC;
} else if (rs != 0 && rt != 0 && rs == rt) {
/* BGEZC */
mips32_op = OPC_BGEZC;
} else {
/* BGEC */
mips32_op = OPC_BGEC;
}
gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1);
} else {
/* JAL32 */
gen_compute_branch(ctx, OPC_JAL, 4, rt, rs,
(int32_t)(ctx->opcode & 0x3FFFFFF) << 1, 4);
ctx->hflags |= MIPS_HFLAG_BDS_STRICT;
}
break;
/* Floating point (COP1) */
case LWC132:
mips32_op = OPC_LWC1;
goto do_cop1;
case LDC132:
mips32_op = OPC_LDC1;
goto do_cop1;
case SWC132:
mips32_op = OPC_SWC1;
goto do_cop1;
case SDC132:
mips32_op = OPC_SDC1;
do_cop1:
gen_cop1_ldst(ctx, mips32_op, rt, rs, imm);
break;
case ADDIUPC: /* PCREL: ADDIUPC, AUIPC, ALUIPC, LWPC */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* PCREL: ADDIUPC, AUIPC, ALUIPC, LWPC */
switch ((ctx->opcode >> 16) & 0x1f) {
case ADDIUPC_00:
case ADDIUPC_01:
case ADDIUPC_02:
case ADDIUPC_03:
case ADDIUPC_04:
case ADDIUPC_05:
case ADDIUPC_06:
case ADDIUPC_07:
gen_pcrel(ctx, OPC_ADDIUPC, ctx->base.pc_next & ~0x3, rt);
break;
case AUIPC:
gen_pcrel(ctx, OPC_AUIPC, ctx->base.pc_next, rt);
break;
case ALUIPC:
gen_pcrel(ctx, OPC_ALUIPC, ctx->base.pc_next, rt);
break;
case LWPC_08:
case LWPC_09:
case LWPC_0A:
case LWPC_0B:
case LWPC_0C:
case LWPC_0D:
case LWPC_0E:
case LWPC_0F:
gen_pcrel(ctx, R6_OPC_LWPC, ctx->base.pc_next & ~0x3, rt);
break;
default:
generate_exception(ctx, EXCP_RI);
break;
}
} else {
/* ADDIUPC */
int reg = mmreg(ZIMM(ctx->opcode, 23, 3));
offset = SIMM(ctx->opcode, 0, 23) << 2;
gen_addiupc(ctx, reg, offset, 0, 0);
}
break;
case BNVC: /* BNEC, BNEZALC */
check_insn(ctx, ISA_MIPS32R6);
if (rs >= rt) {
/* BNVC */
mips32_op = OPC_BNVC;
} else if (rs < rt && rs == 0) {
/* BNEZALC */
mips32_op = OPC_BNEZALC;
} else {
/* BNEC */
mips32_op = OPC_BNEC;
}
gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1);
break;
case R6_BNEZC: /* JIALC */
check_insn(ctx, ISA_MIPS32R6);
if (rt != 0) {
/* BNEZC */
gen_compute_compact_branch(ctx, OPC_BNEZC, rt, 0,
sextract32(ctx->opcode << 1, 0, 22));
} else {
/* JIALC */
gen_compute_compact_branch(ctx, OPC_JIALC, 0, rs, imm);
}
break;
case R6_BEQZC: /* JIC */
check_insn(ctx, ISA_MIPS32R6);
if (rt != 0) {
/* BEQZC */
gen_compute_compact_branch(ctx, OPC_BEQZC, rt, 0,
sextract32(ctx->opcode << 1, 0, 22));
} else {
/* JIC */
gen_compute_compact_branch(ctx, OPC_JIC, 0, rs, imm);
}
break;
case BLEZALC: /* BGEZALC, BGEUC */
check_insn(ctx, ISA_MIPS32R6);
if (rs == 0 && rt != 0) {
/* BLEZALC */
mips32_op = OPC_BLEZALC;
} else if (rs != 0 && rt != 0 && rs == rt) {
/* BGEZALC */
mips32_op = OPC_BGEZALC;
} else {
/* BGEUC */
mips32_op = OPC_BGEUC;
}
gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1);
break;
case BGTZALC: /* BLTZALC, BLTUC */
check_insn(ctx, ISA_MIPS32R6);
if (rs == 0 && rt != 0) {
/* BGTZALC */
mips32_op = OPC_BGTZALC;
} else if (rs != 0 && rt != 0 && rs == rt) {
/* BLTZALC */
mips32_op = OPC_BLTZALC;
} else {
/* BLTUC */
mips32_op = OPC_BLTUC;
}
gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1);
break;
/* Loads and stores */
case LB32:
mips32_op = OPC_LB;
goto do_ld;
case LBU32:
mips32_op = OPC_LBU;
goto do_ld;
case LH32:
mips32_op = OPC_LH;
goto do_ld;
case LHU32:
mips32_op = OPC_LHU;
goto do_ld;
case LW32:
mips32_op = OPC_LW;
goto do_ld;
#ifdef TARGET_MIPS64
case LD32:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
mips32_op = OPC_LD;
goto do_ld;
case SD32:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
mips32_op = OPC_SD;
goto do_st;
#endif
case SB32:
mips32_op = OPC_SB;
goto do_st;
case SH32:
mips32_op = OPC_SH;
goto do_st;
case SW32:
mips32_op = OPC_SW;
goto do_st;
do_ld:
gen_ld(ctx, mips32_op, rt, rs, imm);
break;
do_st:
gen_st(ctx, mips32_op, rt, rs, imm);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static int decode_micromips_opc(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t op;
/* make sure instructions are on a halfword boundary */
if (ctx->base.pc_next & 0x1) {
env->CP0_BadVAddr = ctx->base.pc_next;
generate_exception_end(ctx, EXCP_AdEL);
return 2;
}
op = (ctx->opcode >> 10) & 0x3f;
/* Enforce properly-sized instructions in a delay slot */
if (ctx->hflags & MIPS_HFLAG_BDS_STRICT) {
switch (op & 0x7) { /* MSB-3..MSB-5 */
case 0:
/* POOL32A, POOL32B, POOL32I, POOL32C */
case 4:
/* ADDI32, ADDIU32, ORI32, XORI32, SLTI32, SLTIU32, ANDI32, JALX32 */
case 5:
/* LBU32, LHU32, POOL32F, JALS32, BEQ32, BNE32, J32, JAL32 */
case 6:
/* SB32, SH32, ADDIUPC, SWC132, SDC132, SW32 */
case 7:
/* LB32, LH32, LWC132, LDC132, LW32 */
if (ctx->hflags & MIPS_HFLAG_BDS16) {
generate_exception_end(ctx, EXCP_RI);
return 2;
}
break;
case 1:
/* POOL16A, POOL16B, POOL16C, LWGP16, POOL16F */
case 2:
/* LBU16, LHU16, LWSP16, LW16, SB16, SH16, SWSP16, SW16 */
case 3:
/* MOVE16, ANDI16, POOL16D, POOL16E, BEQZ16, BNEZ16, B16, LI16 */
if (ctx->hflags & MIPS_HFLAG_BDS32) {
generate_exception_end(ctx, EXCP_RI);
return 2;
}
break;
}
}
switch (op) {
case POOL16A:
{
int rd = mmreg(uMIPS_RD(ctx->opcode));
int rs1 = mmreg(uMIPS_RS1(ctx->opcode));
int rs2 = mmreg(uMIPS_RS2(ctx->opcode));
uint32_t opc = 0;
switch (ctx->opcode & 0x1) {
case ADDU16:
opc = OPC_ADDU;
break;
case SUBU16:
opc = OPC_SUBU;
break;
}
if (ctx->insn_flags & ISA_MIPS32R6) {
/*
* In the Release 6, the register number location in
* the instruction encoding has changed.
*/
gen_arith(ctx, opc, rs1, rd, rs2);
} else {
gen_arith(ctx, opc, rd, rs1, rs2);
}
}
break;
case POOL16B:
{
int rd = mmreg(uMIPS_RD(ctx->opcode));
int rs = mmreg(uMIPS_RS(ctx->opcode));
int amount = (ctx->opcode >> 1) & 0x7;
uint32_t opc = 0;
amount = amount == 0 ? 8 : amount;
switch (ctx->opcode & 0x1) {
case SLL16:
opc = OPC_SLL;
break;
case SRL16:
opc = OPC_SRL;
break;
}
gen_shift_imm(ctx, opc, rd, rs, amount);
}
break;
case POOL16C:
if (ctx->insn_flags & ISA_MIPS32R6) {
gen_pool16c_r6_insn(ctx);
} else {
gen_pool16c_insn(ctx);
}
break;
case LWGP16:
{
int rd = mmreg(uMIPS_RD(ctx->opcode));
int rb = 28; /* GP */
int16_t offset = SIMM(ctx->opcode, 0, 7) << 2;
gen_ld(ctx, OPC_LW, rd, rb, offset);
}
break;
case POOL16F:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
if (ctx->opcode & 1) {
generate_exception_end(ctx, EXCP_RI);
} else {
/* MOVEP */
int enc_dest = uMIPS_RD(ctx->opcode);
int enc_rt = uMIPS_RS2(ctx->opcode);
int enc_rs = uMIPS_RS1(ctx->opcode);
gen_movep(ctx, enc_dest, enc_rt, enc_rs);
}
break;
case LBU16:
{
int rd = mmreg(uMIPS_RD(ctx->opcode));
int rb = mmreg(uMIPS_RS(ctx->opcode));
int16_t offset = ZIMM(ctx->opcode, 0, 4);
offset = (offset == 0xf ? -1 : offset);
gen_ld(ctx, OPC_LBU, rd, rb, offset);
}
break;
case LHU16:
{
int rd = mmreg(uMIPS_RD(ctx->opcode));
int rb = mmreg(uMIPS_RS(ctx->opcode));
int16_t offset = ZIMM(ctx->opcode, 0, 4) << 1;
gen_ld(ctx, OPC_LHU, rd, rb, offset);
}
break;
case LWSP16:
{
int rd = (ctx->opcode >> 5) & 0x1f;
int rb = 29; /* SP */
int16_t offset = ZIMM(ctx->opcode, 0, 5) << 2;
gen_ld(ctx, OPC_LW, rd, rb, offset);
}
break;
case LW16:
{
int rd = mmreg(uMIPS_RD(ctx->opcode));
int rb = mmreg(uMIPS_RS(ctx->opcode));
int16_t offset = ZIMM(ctx->opcode, 0, 4) << 2;
gen_ld(ctx, OPC_LW, rd, rb, offset);
}
break;
case SB16:
{
int rd = mmreg2(uMIPS_RD(ctx->opcode));
int rb = mmreg(uMIPS_RS(ctx->opcode));
int16_t offset = ZIMM(ctx->opcode, 0, 4);
gen_st(ctx, OPC_SB, rd, rb, offset);
}
break;
case SH16:
{
int rd = mmreg2(uMIPS_RD(ctx->opcode));
int rb = mmreg(uMIPS_RS(ctx->opcode));
int16_t offset = ZIMM(ctx->opcode, 0, 4) << 1;
gen_st(ctx, OPC_SH, rd, rb, offset);
}
break;
case SWSP16:
{
int rd = (ctx->opcode >> 5) & 0x1f;
int rb = 29; /* SP */
int16_t offset = ZIMM(ctx->opcode, 0, 5) << 2;
gen_st(ctx, OPC_SW, rd, rb, offset);
}
break;
case SW16:
{
int rd = mmreg2(uMIPS_RD(ctx->opcode));
int rb = mmreg(uMIPS_RS(ctx->opcode));
int16_t offset = ZIMM(ctx->opcode, 0, 4) << 2;
gen_st(ctx, OPC_SW, rd, rb, offset);
}
break;
case MOVE16:
{
int rd = uMIPS_RD5(ctx->opcode);
int rs = uMIPS_RS5(ctx->opcode);
gen_arith(ctx, OPC_ADDU, rd, rs, 0);
}
break;
case ANDI16:
gen_andi16(ctx);
break;
case POOL16D:
switch (ctx->opcode & 0x1) {
case ADDIUS5:
gen_addius5(ctx);
break;
case ADDIUSP:
gen_addiusp(ctx);
break;
}
break;
case POOL16E:
switch (ctx->opcode & 0x1) {
case ADDIUR2:
gen_addiur2(ctx);
break;
case ADDIUR1SP:
gen_addiur1sp(ctx);
break;
}
break;
case B16: /* BC16 */
gen_compute_branch(ctx, OPC_BEQ, 2, 0, 0,
sextract32(ctx->opcode, 0, 10) << 1,
(ctx->insn_flags & ISA_MIPS32R6) ? 0 : 4);
break;
case BNEZ16: /* BNEZC16 */
case BEQZ16: /* BEQZC16 */
gen_compute_branch(ctx, op == BNEZ16 ? OPC_BNE : OPC_BEQ, 2,
mmreg(uMIPS_RD(ctx->opcode)),
0, sextract32(ctx->opcode, 0, 7) << 1,
(ctx->insn_flags & ISA_MIPS32R6) ? 0 : 4);
break;
case LI16:
{
int reg = mmreg(uMIPS_RD(ctx->opcode));
int imm = ZIMM(ctx->opcode, 0, 7);
imm = (imm == 0x7f ? -1 : imm);
tcg_gen_movi_tl(cpu_gpr[reg], imm);
}
break;
case RES_29:
case RES_31:
case RES_39:
generate_exception_end(ctx, EXCP_RI);
break;
default:
decode_micromips32_opc(env, ctx);
return 4;
}
return 2;
}
/*
*
* nanoMIPS opcodes
*
*/
/* MAJOR, P16, and P32 pools opcodes */
enum {
NM_P_ADDIU = 0x00,
NM_ADDIUPC = 0x01,
NM_MOVE_BALC = 0x02,
NM_P16_MV = 0x04,
NM_LW16 = 0x05,
NM_BC16 = 0x06,
NM_P16_SR = 0x07,
NM_POOL32A = 0x08,
NM_P_BAL = 0x0a,
NM_P16_SHIFT = 0x0c,
NM_LWSP16 = 0x0d,
NM_BALC16 = 0x0e,
NM_P16_4X4 = 0x0f,
NM_P_GP_W = 0x10,
NM_P_GP_BH = 0x11,
NM_P_J = 0x12,
NM_P16C = 0x14,
NM_LWGP16 = 0x15,
NM_P16_LB = 0x17,
NM_P48I = 0x18,
NM_P16_A1 = 0x1c,
NM_LW4X4 = 0x1d,
NM_P16_LH = 0x1f,
NM_P_U12 = 0x20,
NM_P_LS_U12 = 0x21,
NM_P_BR1 = 0x22,
NM_P16_A2 = 0x24,
NM_SW16 = 0x25,
NM_BEQZC16 = 0x26,
NM_POOL32F = 0x28,
NM_P_LS_S9 = 0x29,
NM_P_BR2 = 0x2a,
NM_P16_ADDU = 0x2c,
NM_SWSP16 = 0x2d,
NM_BNEZC16 = 0x2e,
NM_MOVEP = 0x2f,
NM_POOL32S = 0x30,
NM_P_BRI = 0x32,
NM_LI16 = 0x34,
NM_SWGP16 = 0x35,
NM_P16_BR = 0x36,
NM_P_LUI = 0x38,
NM_ANDI16 = 0x3c,
NM_SW4X4 = 0x3d,
NM_MOVEPREV = 0x3f,
};
/* POOL32A instruction pool */
enum {
NM_POOL32A0 = 0x00,
NM_SPECIAL2 = 0x01,
NM_COP2_1 = 0x02,
NM_UDI = 0x03,
NM_POOL32A5 = 0x05,
NM_POOL32A7 = 0x07,
};
/* P.GP.W instruction pool */
enum {
NM_ADDIUGP_W = 0x00,
NM_LWGP = 0x02,
NM_SWGP = 0x03,
};
/* P48I instruction pool */
enum {
NM_LI48 = 0x00,
NM_ADDIU48 = 0x01,
NM_ADDIUGP48 = 0x02,
NM_ADDIUPC48 = 0x03,
NM_LWPC48 = 0x0b,
NM_SWPC48 = 0x0f,
};
/* P.U12 instruction pool */
enum {
NM_ORI = 0x00,
NM_XORI = 0x01,
NM_ANDI = 0x02,
NM_P_SR = 0x03,
NM_SLTI = 0x04,
NM_SLTIU = 0x05,
NM_SEQI = 0x06,
NM_ADDIUNEG = 0x08,
NM_P_SHIFT = 0x0c,
NM_P_ROTX = 0x0d,
NM_P_INS = 0x0e,
NM_P_EXT = 0x0f,
};
/* POOL32F instruction pool */
enum {
NM_POOL32F_0 = 0x00,
NM_POOL32F_3 = 0x03,
NM_POOL32F_5 = 0x05,
};
/* POOL32S instruction pool */
enum {
NM_POOL32S_0 = 0x00,
NM_POOL32S_4 = 0x04,
};
/* P.LUI instruction pool */
enum {
NM_LUI = 0x00,
NM_ALUIPC = 0x01,
};
/* P.GP.BH instruction pool */
enum {
NM_LBGP = 0x00,
NM_SBGP = 0x01,
NM_LBUGP = 0x02,
NM_ADDIUGP_B = 0x03,
NM_P_GP_LH = 0x04,
NM_P_GP_SH = 0x05,
NM_P_GP_CP1 = 0x06,
};
/* P.LS.U12 instruction pool */
enum {
NM_LB = 0x00,
NM_SB = 0x01,
NM_LBU = 0x02,
NM_P_PREFU12 = 0x03,
NM_LH = 0x04,
NM_SH = 0x05,
NM_LHU = 0x06,
NM_LWU = 0x07,
NM_LW = 0x08,
NM_SW = 0x09,
NM_LWC1 = 0x0a,
NM_SWC1 = 0x0b,
NM_LDC1 = 0x0e,
NM_SDC1 = 0x0f,
};
/* P.LS.S9 instruction pool */
enum {
NM_P_LS_S0 = 0x00,
NM_P_LS_S1 = 0x01,
NM_P_LS_E0 = 0x02,
NM_P_LS_WM = 0x04,
NM_P_LS_UAWM = 0x05,
};
/* P.BAL instruction pool */
enum {
NM_BC = 0x00,
NM_BALC = 0x01,
};
/* P.J instruction pool */
enum {
NM_JALRC = 0x00,
NM_JALRC_HB = 0x01,
NM_P_BALRSC = 0x08,
};
/* P.BR1 instruction pool */
enum {
NM_BEQC = 0x00,
NM_P_BR3A = 0x01,
NM_BGEC = 0x02,
NM_BGEUC = 0x03,
};
/* P.BR2 instruction pool */
enum {
NM_BNEC = 0x00,
NM_BLTC = 0x02,
NM_BLTUC = 0x03,
};
/* P.BRI instruction pool */
enum {
NM_BEQIC = 0x00,
NM_BBEQZC = 0x01,
NM_BGEIC = 0x02,
NM_BGEIUC = 0x03,
NM_BNEIC = 0x04,
NM_BBNEZC = 0x05,
NM_BLTIC = 0x06,
NM_BLTIUC = 0x07,
};
/* P16.SHIFT instruction pool */
enum {
NM_SLL16 = 0x00,
NM_SRL16 = 0x01,
};
/* POOL16C instruction pool */
enum {
NM_POOL16C_0 = 0x00,
NM_LWXS16 = 0x01,
};
/* P16.A1 instruction pool */
enum {
NM_ADDIUR1SP = 0x01,
};
/* P16.A2 instruction pool */
enum {
NM_ADDIUR2 = 0x00,
NM_P_ADDIURS5 = 0x01,
};
/* P16.ADDU instruction pool */
enum {
NM_ADDU16 = 0x00,
NM_SUBU16 = 0x01,
};
/* P16.SR instruction pool */
enum {
NM_SAVE16 = 0x00,
NM_RESTORE_JRC16 = 0x01,
};
/* P16.4X4 instruction pool */
enum {
NM_ADDU4X4 = 0x00,
NM_MUL4X4 = 0x01,
};
/* P16.LB instruction pool */
enum {
NM_LB16 = 0x00,
NM_SB16 = 0x01,
NM_LBU16 = 0x02,
};
/* P16.LH instruction pool */
enum {
NM_LH16 = 0x00,
NM_SH16 = 0x01,
NM_LHU16 = 0x02,
};
/* P.RI instruction pool */
enum {
NM_SIGRIE = 0x00,
NM_P_SYSCALL = 0x01,
NM_BREAK = 0x02,
NM_SDBBP = 0x03,
};
/* POOL32A0 instruction pool */
enum {
NM_P_TRAP = 0x00,
NM_SEB = 0x01,
NM_SLLV = 0x02,
NM_MUL = 0x03,
NM_MFC0 = 0x06,
NM_MFHC0 = 0x07,
NM_SEH = 0x09,
NM_SRLV = 0x0a,
NM_MUH = 0x0b,
NM_MTC0 = 0x0e,
NM_MTHC0 = 0x0f,
NM_SRAV = 0x12,
NM_MULU = 0x13,
NM_ROTRV = 0x1a,
NM_MUHU = 0x1b,
NM_ADD = 0x22,
NM_DIV = 0x23,
NM_ADDU = 0x2a,
NM_MOD = 0x2b,
NM_SUB = 0x32,
NM_DIVU = 0x33,
NM_RDHWR = 0x38,
NM_SUBU = 0x3a,
NM_MODU = 0x3b,
NM_P_CMOVE = 0x42,
NM_FORK = 0x45,
NM_MFTR = 0x46,
NM_MFHTR = 0x47,
NM_AND = 0x4a,
NM_YIELD = 0x4d,
NM_MTTR = 0x4e,
NM_MTHTR = 0x4f,
NM_OR = 0x52,
NM_D_E_MT_VPE = 0x56,
NM_NOR = 0x5a,
NM_XOR = 0x62,
NM_SLT = 0x6a,
NM_P_SLTU = 0x72,
NM_SOV = 0x7a,
};
/* CRC32 instruction pool */
enum {
NM_CRC32B = 0x00,
NM_CRC32H = 0x01,
NM_CRC32W = 0x02,
NM_CRC32CB = 0x04,
NM_CRC32CH = 0x05,
NM_CRC32CW = 0x06,
};
/* POOL32A5 instruction pool */
enum {
NM_CMP_EQ_PH = 0x00,
NM_CMP_LT_PH = 0x08,
NM_CMP_LE_PH = 0x10,
NM_CMPGU_EQ_QB = 0x18,
NM_CMPGU_LT_QB = 0x20,
NM_CMPGU_LE_QB = 0x28,
NM_CMPGDU_EQ_QB = 0x30,
NM_CMPGDU_LT_QB = 0x38,
NM_CMPGDU_LE_QB = 0x40,
NM_CMPU_EQ_QB = 0x48,
NM_CMPU_LT_QB = 0x50,
NM_CMPU_LE_QB = 0x58,
NM_ADDQ_S_W = 0x60,
NM_SUBQ_S_W = 0x68,
NM_ADDSC = 0x70,
NM_ADDWC = 0x78,
NM_ADDQ_S_PH = 0x01,
NM_ADDQH_R_PH = 0x09,
NM_ADDQH_R_W = 0x11,
NM_ADDU_S_QB = 0x19,
NM_ADDU_S_PH = 0x21,
NM_ADDUH_R_QB = 0x29,
NM_SHRAV_R_PH = 0x31,
NM_SHRAV_R_QB = 0x39,
NM_SUBQ_S_PH = 0x41,
NM_SUBQH_R_PH = 0x49,
NM_SUBQH_R_W = 0x51,
NM_SUBU_S_QB = 0x59,
NM_SUBU_S_PH = 0x61,
NM_SUBUH_R_QB = 0x69,
NM_SHLLV_S_PH = 0x71,
NM_PRECR_SRA_R_PH_W = 0x79,
NM_MULEU_S_PH_QBL = 0x12,
NM_MULEU_S_PH_QBR = 0x1a,
NM_MULQ_RS_PH = 0x22,
NM_MULQ_S_PH = 0x2a,
NM_MULQ_RS_W = 0x32,
NM_MULQ_S_W = 0x3a,
NM_APPEND = 0x42,
NM_MODSUB = 0x52,
NM_SHRAV_R_W = 0x5a,
NM_SHRLV_PH = 0x62,
NM_SHRLV_QB = 0x6a,
NM_SHLLV_QB = 0x72,
NM_SHLLV_S_W = 0x7a,
NM_SHILO = 0x03,
NM_MULEQ_S_W_PHL = 0x04,
NM_MULEQ_S_W_PHR = 0x0c,
NM_MUL_S_PH = 0x05,
NM_PRECR_QB_PH = 0x0d,
NM_PRECRQ_QB_PH = 0x15,
NM_PRECRQ_PH_W = 0x1d,
NM_PRECRQ_RS_PH_W = 0x25,
NM_PRECRQU_S_QB_PH = 0x2d,
NM_PACKRL_PH = 0x35,
NM_PICK_QB = 0x3d,
NM_PICK_PH = 0x45,
NM_SHRA_R_W = 0x5e,
NM_SHRA_R_PH = 0x66,
NM_SHLL_S_PH = 0x76,
NM_SHLL_S_W = 0x7e,
NM_REPL_PH = 0x07
};
/* POOL32A7 instruction pool */
enum {
NM_P_LSX = 0x00,
NM_LSA = 0x01,
NM_EXTW = 0x03,
NM_POOL32AXF = 0x07,
};
/* P.SR instruction pool */
enum {
NM_PP_SR = 0x00,
NM_P_SR_F = 0x01,
};
/* P.SHIFT instruction pool */
enum {
NM_P_SLL = 0x00,
NM_SRL = 0x02,
NM_SRA = 0x04,
NM_ROTR = 0x06,
};
/* P.ROTX instruction pool */
enum {
NM_ROTX = 0x00,
};
/* P.INS instruction pool */
enum {
NM_INS = 0x00,
};
/* P.EXT instruction pool */
enum {
NM_EXT = 0x00,
};
/* POOL32F_0 (fmt) instruction pool */
enum {
NM_RINT_S = 0x04,
NM_RINT_D = 0x44,
NM_ADD_S = 0x06,
NM_SELEQZ_S = 0x07,
NM_SELEQZ_D = 0x47,
NM_CLASS_S = 0x0c,
NM_CLASS_D = 0x4c,
NM_SUB_S = 0x0e,
NM_SELNEZ_S = 0x0f,
NM_SELNEZ_D = 0x4f,
NM_MUL_S = 0x16,
NM_SEL_S = 0x17,
NM_SEL_D = 0x57,
NM_DIV_S = 0x1e,
NM_ADD_D = 0x26,
NM_SUB_D = 0x2e,
NM_MUL_D = 0x36,
NM_MADDF_S = 0x37,
NM_MADDF_D = 0x77,
NM_DIV_D = 0x3e,
NM_MSUBF_S = 0x3f,
NM_MSUBF_D = 0x7f,
};
/* POOL32F_3 instruction pool */
enum {
NM_MIN_FMT = 0x00,
NM_MAX_FMT = 0x01,
NM_MINA_FMT = 0x04,
NM_MAXA_FMT = 0x05,
NM_POOL32FXF = 0x07,
};
/* POOL32F_5 instruction pool */
enum {
NM_CMP_CONDN_S = 0x00,
NM_CMP_CONDN_D = 0x02,
};
/* P.GP.LH instruction pool */
enum {
NM_LHGP = 0x00,
NM_LHUGP = 0x01,
};
/* P.GP.SH instruction pool */
enum {
NM_SHGP = 0x00,
};
/* P.GP.CP1 instruction pool */
enum {
NM_LWC1GP = 0x00,
NM_SWC1GP = 0x01,
NM_LDC1GP = 0x02,
NM_SDC1GP = 0x03,
};
/* P.LS.S0 instruction pool */
enum {
NM_LBS9 = 0x00,
NM_LHS9 = 0x04,
NM_LWS9 = 0x08,
NM_LDS9 = 0x0c,
NM_SBS9 = 0x01,
NM_SHS9 = 0x05,
NM_SWS9 = 0x09,
NM_SDS9 = 0x0d,
NM_LBUS9 = 0x02,
NM_LHUS9 = 0x06,
NM_LWC1S9 = 0x0a,
NM_LDC1S9 = 0x0e,
NM_P_PREFS9 = 0x03,
NM_LWUS9 = 0x07,
NM_SWC1S9 = 0x0b,
NM_SDC1S9 = 0x0f,
};
/* P.LS.S1 instruction pool */
enum {
NM_ASET_ACLR = 0x02,
NM_UALH = 0x04,
NM_UASH = 0x05,
NM_CACHE = 0x07,
NM_P_LL = 0x0a,
NM_P_SC = 0x0b,
};
/* P.LS.E0 instruction pool */
enum {
NM_LBE = 0x00,
NM_SBE = 0x01,
NM_LBUE = 0x02,
NM_P_PREFE = 0x03,
NM_LHE = 0x04,
NM_SHE = 0x05,
NM_LHUE = 0x06,
NM_CACHEE = 0x07,
NM_LWE = 0x08,
NM_SWE = 0x09,
NM_P_LLE = 0x0a,
NM_P_SCE = 0x0b,
};
/* P.PREFE instruction pool */
enum {
NM_SYNCIE = 0x00,
NM_PREFE = 0x01,
};
/* P.LLE instruction pool */
enum {
NM_LLE = 0x00,
NM_LLWPE = 0x01,
};
/* P.SCE instruction pool */
enum {
NM_SCE = 0x00,
NM_SCWPE = 0x01,
};
/* P.LS.WM instruction pool */
enum {
NM_LWM = 0x00,
NM_SWM = 0x01,
};
/* P.LS.UAWM instruction pool */
enum {
NM_UALWM = 0x00,
NM_UASWM = 0x01,
};
/* P.BR3A instruction pool */
enum {
NM_BC1EQZC = 0x00,
NM_BC1NEZC = 0x01,
NM_BC2EQZC = 0x02,
NM_BC2NEZC = 0x03,
NM_BPOSGE32C = 0x04,
};
/* P16.RI instruction pool */
enum {
NM_P16_SYSCALL = 0x01,
NM_BREAK16 = 0x02,
NM_SDBBP16 = 0x03,
};
/* POOL16C_0 instruction pool */
enum {
NM_POOL16C_00 = 0x00,
};
/* P16.JRC instruction pool */
enum {
NM_JRC = 0x00,
NM_JALRC16 = 0x01,
};
/* P.SYSCALL instruction pool */
enum {
NM_SYSCALL = 0x00,
NM_HYPCALL = 0x01,
};
/* P.TRAP instruction pool */
enum {
NM_TEQ = 0x00,
NM_TNE = 0x01,
};
/* P.CMOVE instruction pool */
enum {
NM_MOVZ = 0x00,
NM_MOVN = 0x01,
};
/* POOL32Axf instruction pool */
enum {
NM_POOL32AXF_1 = 0x01,
NM_POOL32AXF_2 = 0x02,
NM_POOL32AXF_4 = 0x04,
NM_POOL32AXF_5 = 0x05,
NM_POOL32AXF_7 = 0x07,
};
/* POOL32Axf_1 instruction pool */
enum {
NM_POOL32AXF_1_0 = 0x00,
NM_POOL32AXF_1_1 = 0x01,
NM_POOL32AXF_1_3 = 0x03,
NM_POOL32AXF_1_4 = 0x04,
NM_POOL32AXF_1_5 = 0x05,
NM_POOL32AXF_1_7 = 0x07,
};
/* POOL32Axf_2 instruction pool */
enum {
NM_POOL32AXF_2_0_7 = 0x00,
NM_POOL32AXF_2_8_15 = 0x01,
NM_POOL32AXF_2_16_23 = 0x02,
NM_POOL32AXF_2_24_31 = 0x03,
};
/* POOL32Axf_7 instruction pool */
enum {
NM_SHRA_R_QB = 0x0,
NM_SHRL_PH = 0x1,
NM_REPL_QB = 0x2,
};
/* POOL32Axf_1_0 instruction pool */
enum {
NM_MFHI = 0x0,
NM_MFLO = 0x1,
NM_MTHI = 0x2,
NM_MTLO = 0x3,
};
/* POOL32Axf_1_1 instruction pool */
enum {
NM_MTHLIP = 0x0,
NM_SHILOV = 0x1,
};
/* POOL32Axf_1_3 instruction pool */
enum {
NM_RDDSP = 0x0,
NM_WRDSP = 0x1,
NM_EXTP = 0x2,
NM_EXTPDP = 0x3,
};
/* POOL32Axf_1_4 instruction pool */
enum {
NM_SHLL_QB = 0x0,
NM_SHRL_QB = 0x1,
};
/* POOL32Axf_1_5 instruction pool */
enum {
NM_MAQ_S_W_PHR = 0x0,
NM_MAQ_S_W_PHL = 0x1,
NM_MAQ_SA_W_PHR = 0x2,
NM_MAQ_SA_W_PHL = 0x3,
};
/* POOL32Axf_1_7 instruction pool */
enum {
NM_EXTR_W = 0x0,
NM_EXTR_R_W = 0x1,
NM_EXTR_RS_W = 0x2,
NM_EXTR_S_H = 0x3,
};
/* POOL32Axf_2_0_7 instruction pool */
enum {
NM_DPA_W_PH = 0x0,
NM_DPAQ_S_W_PH = 0x1,
NM_DPS_W_PH = 0x2,
NM_DPSQ_S_W_PH = 0x3,
NM_BALIGN = 0x4,
NM_MADD = 0x5,
NM_MULT = 0x6,
NM_EXTRV_W = 0x7,
};
/* POOL32Axf_2_8_15 instruction pool */
enum {
NM_DPAX_W_PH = 0x0,
NM_DPAQ_SA_L_W = 0x1,
NM_DPSX_W_PH = 0x2,
NM_DPSQ_SA_L_W = 0x3,
NM_MADDU = 0x5,
NM_MULTU = 0x6,
NM_EXTRV_R_W = 0x7,
};
/* POOL32Axf_2_16_23 instruction pool */
enum {
NM_DPAU_H_QBL = 0x0,
NM_DPAQX_S_W_PH = 0x1,
NM_DPSU_H_QBL = 0x2,
NM_DPSQX_S_W_PH = 0x3,
NM_EXTPV = 0x4,
NM_MSUB = 0x5,
NM_MULSA_W_PH = 0x6,
NM_EXTRV_RS_W = 0x7,
};
/* POOL32Axf_2_24_31 instruction pool */
enum {
NM_DPAU_H_QBR = 0x0,
NM_DPAQX_SA_W_PH = 0x1,
NM_DPSU_H_QBR = 0x2,
NM_DPSQX_SA_W_PH = 0x3,
NM_EXTPDPV = 0x4,
NM_MSUBU = 0x5,
NM_MULSAQ_S_W_PH = 0x6,
NM_EXTRV_S_H = 0x7,
};
/* POOL32Axf_{4, 5} instruction pool */
enum {
NM_CLO = 0x25,
NM_CLZ = 0x2d,
NM_TLBP = 0x01,
NM_TLBR = 0x09,
NM_TLBWI = 0x11,
NM_TLBWR = 0x19,
NM_TLBINV = 0x03,
NM_TLBINVF = 0x0b,
NM_DI = 0x23,
NM_EI = 0x2b,
NM_RDPGPR = 0x70,
NM_WRPGPR = 0x78,
NM_WAIT = 0x61,
NM_DERET = 0x71,
NM_ERETX = 0x79,
/* nanoMIPS DSP instructions */
NM_ABSQ_S_QB = 0x00,
NM_ABSQ_S_PH = 0x08,
NM_ABSQ_S_W = 0x10,
NM_PRECEQ_W_PHL = 0x28,
NM_PRECEQ_W_PHR = 0x30,
NM_PRECEQU_PH_QBL = 0x38,
NM_PRECEQU_PH_QBR = 0x48,
NM_PRECEU_PH_QBL = 0x58,
NM_PRECEU_PH_QBR = 0x68,
NM_PRECEQU_PH_QBLA = 0x39,
NM_PRECEQU_PH_QBRA = 0x49,
NM_PRECEU_PH_QBLA = 0x59,
NM_PRECEU_PH_QBRA = 0x69,
NM_REPLV_PH = 0x01,
NM_REPLV_QB = 0x09,
NM_BITREV = 0x18,
NM_INSV = 0x20,
NM_RADDU_W_QB = 0x78,
NM_BITSWAP = 0x05,
NM_WSBH = 0x3d,
};
/* PP.SR instruction pool */
enum {
NM_SAVE = 0x00,
NM_RESTORE = 0x02,
NM_RESTORE_JRC = 0x03,
};
/* P.SR.F instruction pool */
enum {
NM_SAVEF = 0x00,
NM_RESTOREF = 0x01,
};
/* P16.SYSCALL instruction pool */
enum {
NM_SYSCALL16 = 0x00,
NM_HYPCALL16 = 0x01,
};
/* POOL16C_00 instruction pool */
enum {
NM_NOT16 = 0x00,
NM_XOR16 = 0x01,
NM_AND16 = 0x02,
NM_OR16 = 0x03,
};
/* PP.LSX and PP.LSXS instruction pool */
enum {
NM_LBX = 0x00,
NM_LHX = 0x04,
NM_LWX = 0x08,
NM_LDX = 0x0c,
NM_SBX = 0x01,
NM_SHX = 0x05,
NM_SWX = 0x09,
NM_SDX = 0x0d,
NM_LBUX = 0x02,
NM_LHUX = 0x06,
NM_LWC1X = 0x0a,
NM_LDC1X = 0x0e,
NM_LWUX = 0x07,
NM_SWC1X = 0x0b,
NM_SDC1X = 0x0f,
NM_LHXS = 0x04,
NM_LWXS = 0x08,
NM_LDXS = 0x0c,
NM_SHXS = 0x05,
NM_SWXS = 0x09,
NM_SDXS = 0x0d,
NM_LHUXS = 0x06,
NM_LWC1XS = 0x0a,
NM_LDC1XS = 0x0e,
NM_LWUXS = 0x07,
NM_SWC1XS = 0x0b,
NM_SDC1XS = 0x0f,
};
/* ERETx instruction pool */
enum {
NM_ERET = 0x00,
NM_ERETNC = 0x01,
};
/* POOL32FxF_{0, 1} insturction pool */
enum {
NM_CFC1 = 0x40,
NM_CTC1 = 0x60,
NM_MFC1 = 0x80,
NM_MTC1 = 0xa0,
NM_MFHC1 = 0xc0,
NM_MTHC1 = 0xe0,
NM_CVT_S_PL = 0x84,
NM_CVT_S_PU = 0xa4,
NM_CVT_L_S = 0x004,
NM_CVT_L_D = 0x104,
NM_CVT_W_S = 0x024,
NM_CVT_W_D = 0x124,
NM_RSQRT_S = 0x008,
NM_RSQRT_D = 0x108,
NM_SQRT_S = 0x028,
NM_SQRT_D = 0x128,
NM_RECIP_S = 0x048,
NM_RECIP_D = 0x148,
NM_FLOOR_L_S = 0x00c,
NM_FLOOR_L_D = 0x10c,
NM_FLOOR_W_S = 0x02c,
NM_FLOOR_W_D = 0x12c,
NM_CEIL_L_S = 0x04c,
NM_CEIL_L_D = 0x14c,
NM_CEIL_W_S = 0x06c,
NM_CEIL_W_D = 0x16c,
NM_TRUNC_L_S = 0x08c,
NM_TRUNC_L_D = 0x18c,
NM_TRUNC_W_S = 0x0ac,
NM_TRUNC_W_D = 0x1ac,
NM_ROUND_L_S = 0x0cc,
NM_ROUND_L_D = 0x1cc,
NM_ROUND_W_S = 0x0ec,
NM_ROUND_W_D = 0x1ec,
NM_MOV_S = 0x01,
NM_MOV_D = 0x81,
NM_ABS_S = 0x0d,
NM_ABS_D = 0x8d,
NM_NEG_S = 0x2d,
NM_NEG_D = 0xad,
NM_CVT_D_S = 0x04d,
NM_CVT_D_W = 0x0cd,
NM_CVT_D_L = 0x14d,
NM_CVT_S_D = 0x06d,
NM_CVT_S_W = 0x0ed,
NM_CVT_S_L = 0x16d,
};
/* P.LL instruction pool */
enum {
NM_LL = 0x00,
NM_LLWP = 0x01,
};
/* P.SC instruction pool */
enum {
NM_SC = 0x00,
NM_SCWP = 0x01,
};
/* P.DVP instruction pool */
enum {
NM_DVP = 0x00,
NM_EVP = 0x01,
};
/*
*
* nanoMIPS decoding engine
*
*/
/* extraction utilities */
#define NANOMIPS_EXTRACT_RT3(op) ((op >> 7) & 0x7)
#define NANOMIPS_EXTRACT_RS3(op) ((op >> 4) & 0x7)
#define NANOMIPS_EXTRACT_RD3(op) ((op >> 1) & 0x7)
#define NANOMIPS_EXTRACT_RD5(op) ((op >> 5) & 0x1f)
#define NANOMIPS_EXTRACT_RS5(op) (op & 0x1f)
/* Implement nanoMIPS pseudocode decode_gpr(encoded_gpr, 'gpr3'). */
static inline int decode_gpr_gpr3(int r)
{
static const int map[] = { 16, 17, 18, 19, 4, 5, 6, 7 };
return map[r & 0x7];
}
/* Implement nanoMIPS pseudocode decode_gpr(encoded_gpr, 'gpr3.src.store'). */
static inline int decode_gpr_gpr3_src_store(int r)
{
static const int map[] = { 0, 17, 18, 19, 4, 5, 6, 7 };
return map[r & 0x7];
}
/* Implement nanoMIPS pseudocode decode_gpr(encoded_gpr, 'gpr4'). */
static inline int decode_gpr_gpr4(int r)
{
static const int map[] = { 8, 9, 10, 11, 4, 5, 6, 7,
16, 17, 18, 19, 20, 21, 22, 23 };
return map[r & 0xf];
}
/* Implement nanoMIPS pseudocode decode_gpr(encoded_gpr, 'gpr4.zero'). */
static inline int decode_gpr_gpr4_zero(int r)
{
static const int map[] = { 8, 9, 10, 0, 4, 5, 6, 7,
16, 17, 18, 19, 20, 21, 22, 23 };
return map[r & 0xf];
}
static void gen_adjust_sp(DisasContext *ctx, int u)
{
gen_op_addr_addi(ctx, cpu_gpr[29], cpu_gpr[29], u);
}
static void gen_save(DisasContext *ctx, uint8_t rt, uint8_t count,
uint8_t gp, uint16_t u)
{
int counter = 0;
TCGv va = tcg_temp_new();
TCGv t0 = tcg_temp_new();
while (counter != count) {
bool use_gp = gp && (counter == count - 1);
int this_rt = use_gp ? 28 : (rt & 0x10) | ((rt + counter) & 0x1f);
int this_offset = -((counter + 1) << 2);
gen_base_offset_addr(ctx, va, 29, this_offset);
gen_load_gpr(t0, this_rt);
tcg_gen_qemu_st_tl(t0, va, ctx->mem_idx,
(MO_TEUL | ctx->default_tcg_memop_mask));
counter++;
}
/* adjust stack pointer */
gen_adjust_sp(ctx, -u);
tcg_temp_free(t0);
tcg_temp_free(va);
}
static void gen_restore(DisasContext *ctx, uint8_t rt, uint8_t count,
uint8_t gp, uint16_t u)
{
int counter = 0;
TCGv va = tcg_temp_new();
TCGv t0 = tcg_temp_new();
while (counter != count) {
bool use_gp = gp && (counter == count - 1);
int this_rt = use_gp ? 28 : (rt & 0x10) | ((rt + counter) & 0x1f);
int this_offset = u - ((counter + 1) << 2);
gen_base_offset_addr(ctx, va, 29, this_offset);
tcg_gen_qemu_ld_tl(t0, va, ctx->mem_idx, MO_TESL |
ctx->default_tcg_memop_mask);
tcg_gen_ext32s_tl(t0, t0);
gen_store_gpr(t0, this_rt);
counter++;
}
/* adjust stack pointer */
gen_adjust_sp(ctx, u);
tcg_temp_free(t0);
tcg_temp_free(va);
}
static void gen_pool16c_nanomips_insn(DisasContext *ctx)
{
int rt = decode_gpr_gpr3(NANOMIPS_EXTRACT_RT3(ctx->opcode));
int rs = decode_gpr_gpr3(NANOMIPS_EXTRACT_RS3(ctx->opcode));
switch (extract32(ctx->opcode, 2, 2)) {
case NM_NOT16:
gen_logic(ctx, OPC_NOR, rt, rs, 0);
break;
case NM_AND16:
gen_logic(ctx, OPC_AND, rt, rt, rs);
break;
case NM_XOR16:
gen_logic(ctx, OPC_XOR, rt, rt, rs);
break;
case NM_OR16:
gen_logic(ctx, OPC_OR, rt, rt, rs);
break;
}
}
static void gen_pool32a0_nanomips_insn(CPUMIPSState *env, DisasContext *ctx)
{
int rt = extract32(ctx->opcode, 21, 5);
int rs = extract32(ctx->opcode, 16, 5);
int rd = extract32(ctx->opcode, 11, 5);
switch (extract32(ctx->opcode, 3, 7)) {
case NM_P_TRAP:
switch (extract32(ctx->opcode, 10, 1)) {
case NM_TEQ:
check_nms(ctx);
gen_trap(ctx, OPC_TEQ, rs, rt, -1);
break;
case NM_TNE:
check_nms(ctx);
gen_trap(ctx, OPC_TNE, rs, rt, -1);
break;
}
break;
case NM_RDHWR:
check_nms(ctx);
gen_rdhwr(ctx, rt, rs, extract32(ctx->opcode, 11, 3));
break;
case NM_SEB:
check_nms(ctx);
gen_bshfl(ctx, OPC_SEB, rs, rt);
break;
case NM_SEH:
gen_bshfl(ctx, OPC_SEH, rs, rt);
break;
case NM_SLLV:
gen_shift(ctx, OPC_SLLV, rd, rt, rs);
break;
case NM_SRLV:
gen_shift(ctx, OPC_SRLV, rd, rt, rs);
break;
case NM_SRAV:
gen_shift(ctx, OPC_SRAV, rd, rt, rs);
break;
case NM_ROTRV:
gen_shift(ctx, OPC_ROTRV, rd, rt, rs);
break;
case NM_ADD:
gen_arith(ctx, OPC_ADD, rd, rs, rt);
break;
case NM_ADDU:
gen_arith(ctx, OPC_ADDU, rd, rs, rt);
break;
case NM_SUB:
check_nms(ctx);
gen_arith(ctx, OPC_SUB, rd, rs, rt);
break;
case NM_SUBU:
gen_arith(ctx, OPC_SUBU, rd, rs, rt);
break;
case NM_P_CMOVE:
switch (extract32(ctx->opcode, 10, 1)) {
case NM_MOVZ:
gen_cond_move(ctx, OPC_MOVZ, rd, rs, rt);
break;
case NM_MOVN:
gen_cond_move(ctx, OPC_MOVN, rd, rs, rt);
break;
}
break;
case NM_AND:
gen_logic(ctx, OPC_AND, rd, rs, rt);
break;
case NM_OR:
gen_logic(ctx, OPC_OR, rd, rs, rt);
break;
case NM_NOR:
gen_logic(ctx, OPC_NOR, rd, rs, rt);
break;
case NM_XOR:
gen_logic(ctx, OPC_XOR, rd, rs, rt);
break;
case NM_SLT:
gen_slt(ctx, OPC_SLT, rd, rs, rt);
break;
case NM_P_SLTU:
if (rd == 0) {
/* P_DVP */
#ifndef CONFIG_USER_ONLY
TCGv t0 = tcg_temp_new();
switch (extract32(ctx->opcode, 10, 1)) {
case NM_DVP:
if (ctx->vp) {
check_cp0_enabled(ctx);
gen_helper_dvp(t0, cpu_env);
gen_store_gpr(t0, rt);
}
break;
case NM_EVP:
if (ctx->vp) {
check_cp0_enabled(ctx);
gen_helper_evp(t0, cpu_env);
gen_store_gpr(t0, rt);
}
break;
}
tcg_temp_free(t0);
#endif
} else {
gen_slt(ctx, OPC_SLTU, rd, rs, rt);
}
break;
case NM_SOV:
{
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
TCGv t2 = tcg_temp_new();
gen_load_gpr(t1, rs);
gen_load_gpr(t2, rt);
tcg_gen_add_tl(t0, t1, t2);
tcg_gen_ext32s_tl(t0, t0);
tcg_gen_xor_tl(t1, t1, t2);
tcg_gen_xor_tl(t2, t0, t2);
tcg_gen_andc_tl(t1, t2, t1);
/* operands of same sign, result different sign */
tcg_gen_setcondi_tl(TCG_COND_LT, t0, t1, 0);
gen_store_gpr(t0, rd);
tcg_temp_free(t0);
tcg_temp_free(t1);
tcg_temp_free(t2);
}
break;
case NM_MUL:
gen_r6_muldiv(ctx, R6_OPC_MUL, rd, rs, rt);
break;
case NM_MUH:
gen_r6_muldiv(ctx, R6_OPC_MUH, rd, rs, rt);
break;
case NM_MULU:
gen_r6_muldiv(ctx, R6_OPC_MULU, rd, rs, rt);
break;
case NM_MUHU:
gen_r6_muldiv(ctx, R6_OPC_MUHU, rd, rs, rt);
break;
case NM_DIV:
gen_r6_muldiv(ctx, R6_OPC_DIV, rd, rs, rt);
break;
case NM_MOD:
gen_r6_muldiv(ctx, R6_OPC_MOD, rd, rs, rt);
break;
case NM_DIVU:
gen_r6_muldiv(ctx, R6_OPC_DIVU, rd, rs, rt);
break;
case NM_MODU:
gen_r6_muldiv(ctx, R6_OPC_MODU, rd, rs, rt);
break;
#ifndef CONFIG_USER_ONLY
case NM_MFC0:
check_cp0_enabled(ctx);
if (rt == 0) {
/* Treat as NOP. */
break;
}
gen_mfc0(ctx, cpu_gpr[rt], rs, extract32(ctx->opcode, 11, 3));
break;
case NM_MTC0:
check_cp0_enabled(ctx);
{
TCGv t0 = tcg_temp_new();
gen_load_gpr(t0, rt);
gen_mtc0(ctx, t0, rs, extract32(ctx->opcode, 11, 3));
tcg_temp_free(t0);
}
break;
case NM_D_E_MT_VPE:
{
uint8_t sc = extract32(ctx->opcode, 10, 1);
TCGv t0 = tcg_temp_new();
switch (sc) {
case 0:
if (rs == 1) {
/* DMT */
check_cp0_mt(ctx);
gen_helper_dmt(t0);
gen_store_gpr(t0, rt);
} else if (rs == 0) {
/* DVPE */
check_cp0_mt(ctx);
gen_helper_dvpe(t0, cpu_env);
gen_store_gpr(t0, rt);
} else {
generate_exception_end(ctx, EXCP_RI);
}
break;
case 1:
if (rs == 1) {
/* EMT */
check_cp0_mt(ctx);
gen_helper_emt(t0);
gen_store_gpr(t0, rt);
} else if (rs == 0) {
/* EVPE */
check_cp0_mt(ctx);
gen_helper_evpe(t0, cpu_env);
gen_store_gpr(t0, rt);
} else {
generate_exception_end(ctx, EXCP_RI);
}
break;
}
tcg_temp_free(t0);
}
break;
case NM_FORK:
check_mt(ctx);
{
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
gen_load_gpr(t0, rt);
gen_load_gpr(t1, rs);
gen_helper_fork(t0, t1);
tcg_temp_free(t0);
tcg_temp_free(t1);
}
break;
case NM_MFTR:
case NM_MFHTR:
check_cp0_enabled(ctx);
if (rd == 0) {
/* Treat as NOP. */
return;
}
gen_mftr(env, ctx, rs, rt, extract32(ctx->opcode, 10, 1),
extract32(ctx->opcode, 11, 5), extract32(ctx->opcode, 3, 1));
break;
case NM_MTTR:
case NM_MTHTR:
check_cp0_enabled(ctx);
gen_mttr(env, ctx, rs, rt, extract32(ctx->opcode, 10, 1),
extract32(ctx->opcode, 11, 5), extract32(ctx->opcode, 3, 1));
break;
case NM_YIELD:
check_mt(ctx);
{
TCGv t0 = tcg_temp_new();
gen_load_gpr(t0, rs);
gen_helper_yield(t0, cpu_env, t0);
gen_store_gpr(t0, rt);
tcg_temp_free(t0);
}
break;
#endif
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/* dsp */
static void gen_pool32axf_1_5_nanomips_insn(DisasContext *ctx, uint32_t opc,
int ret, int v1, int v2)
{
TCGv_i32 t0;
TCGv v0_t;
TCGv v1_t;
t0 = tcg_temp_new_i32();
v0_t = tcg_temp_new();
v1_t = tcg_temp_new();
tcg_gen_movi_i32(t0, v2 >> 3);
gen_load_gpr(v0_t, ret);
gen_load_gpr(v1_t, v1);
switch (opc) {
case NM_MAQ_S_W_PHR:
check_dsp(ctx);
gen_helper_maq_s_w_phr(t0, v1_t, v0_t, cpu_env);
break;
case NM_MAQ_S_W_PHL:
check_dsp(ctx);
gen_helper_maq_s_w_phl(t0, v1_t, v0_t, cpu_env);
break;
case NM_MAQ_SA_W_PHR:
check_dsp(ctx);
gen_helper_maq_sa_w_phr(t0, v1_t, v0_t, cpu_env);
break;
case NM_MAQ_SA_W_PHL:
check_dsp(ctx);
gen_helper_maq_sa_w_phl(t0, v1_t, v0_t, cpu_env);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free_i32(t0);
tcg_temp_free(v0_t);
tcg_temp_free(v1_t);
}
static void gen_pool32axf_1_nanomips_insn(DisasContext *ctx, uint32_t opc,
int ret, int v1, int v2)
{
int16_t imm;
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
TCGv v0_t = tcg_temp_new();
gen_load_gpr(v0_t, v1);
switch (opc) {
case NM_POOL32AXF_1_0:
check_dsp(ctx);
switch (extract32(ctx->opcode, 12, 2)) {
case NM_MFHI:
gen_HILO(ctx, OPC_MFHI, v2 >> 3, ret);
break;
case NM_MFLO:
gen_HILO(ctx, OPC_MFLO, v2 >> 3, ret);
break;
case NM_MTHI:
gen_HILO(ctx, OPC_MTHI, v2 >> 3, v1);
break;
case NM_MTLO:
gen_HILO(ctx, OPC_MTLO, v2 >> 3, v1);
break;
}
break;
case NM_POOL32AXF_1_1:
check_dsp(ctx);
switch (extract32(ctx->opcode, 12, 2)) {
case NM_MTHLIP:
tcg_gen_movi_tl(t0, v2);
gen_helper_mthlip(t0, v0_t, cpu_env);
break;
case NM_SHILOV:
tcg_gen_movi_tl(t0, v2 >> 3);
gen_helper_shilo(t0, v0_t, cpu_env);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_POOL32AXF_1_3:
check_dsp(ctx);
imm = extract32(ctx->opcode, 14, 7);
switch (extract32(ctx->opcode, 12, 2)) {
case NM_RDDSP:
tcg_gen_movi_tl(t0, imm);
gen_helper_rddsp(t0, t0, cpu_env);
gen_store_gpr(t0, ret);
break;
case NM_WRDSP:
gen_load_gpr(t0, ret);
tcg_gen_movi_tl(t1, imm);
gen_helper_wrdsp(t0, t1, cpu_env);
break;
case NM_EXTP:
tcg_gen_movi_tl(t0, v2 >> 3);
tcg_gen_movi_tl(t1, v1);
gen_helper_extp(t0, t0, t1, cpu_env);
gen_store_gpr(t0, ret);
break;
case NM_EXTPDP:
tcg_gen_movi_tl(t0, v2 >> 3);
tcg_gen_movi_tl(t1, v1);
gen_helper_extpdp(t0, t0, t1, cpu_env);
gen_store_gpr(t0, ret);
break;
}
break;
case NM_POOL32AXF_1_4:
check_dsp(ctx);
tcg_gen_movi_tl(t0, v2 >> 2);
switch (extract32(ctx->opcode, 12, 1)) {
case NM_SHLL_QB:
gen_helper_shll_qb(t0, t0, v0_t, cpu_env);
gen_store_gpr(t0, ret);
break;
case NM_SHRL_QB:
gen_helper_shrl_qb(t0, t0, v0_t);
gen_store_gpr(t0, ret);
break;
}
break;
case NM_POOL32AXF_1_5:
opc = extract32(ctx->opcode, 12, 2);
gen_pool32axf_1_5_nanomips_insn(ctx, opc, ret, v1, v2);
break;
case NM_POOL32AXF_1_7:
check_dsp(ctx);
tcg_gen_movi_tl(t0, v2 >> 3);
tcg_gen_movi_tl(t1, v1);
switch (extract32(ctx->opcode, 12, 2)) {
case NM_EXTR_W:
gen_helper_extr_w(t0, t0, t1, cpu_env);
gen_store_gpr(t0, ret);
break;
case NM_EXTR_R_W:
gen_helper_extr_r_w(t0, t0, t1, cpu_env);
gen_store_gpr(t0, ret);
break;
case NM_EXTR_RS_W:
gen_helper_extr_rs_w(t0, t0, t1, cpu_env);
gen_store_gpr(t0, ret);
break;
case NM_EXTR_S_H:
gen_helper_extr_s_h(t0, t0, t1, cpu_env);
gen_store_gpr(t0, ret);
break;
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free(t0);
tcg_temp_free(t1);
tcg_temp_free(v0_t);
}
static void gen_pool32axf_2_multiply(DisasContext *ctx, uint32_t opc,
TCGv v0, TCGv v1, int rd)
{
TCGv_i32 t0;
t0 = tcg_temp_new_i32();
tcg_gen_movi_i32(t0, rd >> 3);
switch (opc) {
case NM_POOL32AXF_2_0_7:
switch (extract32(ctx->opcode, 9, 3)) {
case NM_DPA_W_PH:
check_dsp_r2(ctx);
gen_helper_dpa_w_ph(t0, v1, v0, cpu_env);
break;
case NM_DPAQ_S_W_PH:
check_dsp(ctx);
gen_helper_dpaq_s_w_ph(t0, v1, v0, cpu_env);
break;
case NM_DPS_W_PH:
check_dsp_r2(ctx);
gen_helper_dps_w_ph(t0, v1, v0, cpu_env);
break;
case NM_DPSQ_S_W_PH:
check_dsp(ctx);
gen_helper_dpsq_s_w_ph(t0, v1, v0, cpu_env);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_POOL32AXF_2_8_15:
switch (extract32(ctx->opcode, 9, 3)) {
case NM_DPAX_W_PH:
check_dsp_r2(ctx);
gen_helper_dpax_w_ph(t0, v0, v1, cpu_env);
break;
case NM_DPAQ_SA_L_W:
check_dsp(ctx);
gen_helper_dpaq_sa_l_w(t0, v0, v1, cpu_env);
break;
case NM_DPSX_W_PH:
check_dsp_r2(ctx);
gen_helper_dpsx_w_ph(t0, v0, v1, cpu_env);
break;
case NM_DPSQ_SA_L_W:
check_dsp(ctx);
gen_helper_dpsq_sa_l_w(t0, v0, v1, cpu_env);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_POOL32AXF_2_16_23:
switch (extract32(ctx->opcode, 9, 3)) {
case NM_DPAU_H_QBL:
check_dsp(ctx);
gen_helper_dpau_h_qbl(t0, v0, v1, cpu_env);
break;
case NM_DPAQX_S_W_PH:
check_dsp_r2(ctx);
gen_helper_dpaqx_s_w_ph(t0, v0, v1, cpu_env);
break;
case NM_DPSU_H_QBL:
check_dsp(ctx);
gen_helper_dpsu_h_qbl(t0, v0, v1, cpu_env);
break;
case NM_DPSQX_S_W_PH:
check_dsp_r2(ctx);
gen_helper_dpsqx_s_w_ph(t0, v0, v1, cpu_env);
break;
case NM_MULSA_W_PH:
check_dsp_r2(ctx);
gen_helper_mulsa_w_ph(t0, v0, v1, cpu_env);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_POOL32AXF_2_24_31:
switch (extract32(ctx->opcode, 9, 3)) {
case NM_DPAU_H_QBR:
check_dsp(ctx);
gen_helper_dpau_h_qbr(t0, v1, v0, cpu_env);
break;
case NM_DPAQX_SA_W_PH:
check_dsp_r2(ctx);
gen_helper_dpaqx_sa_w_ph(t0, v1, v0, cpu_env);
break;
case NM_DPSU_H_QBR:
check_dsp(ctx);
gen_helper_dpsu_h_qbr(t0, v1, v0, cpu_env);
break;
case NM_DPSQX_SA_W_PH:
check_dsp_r2(ctx);
gen_helper_dpsqx_sa_w_ph(t0, v1, v0, cpu_env);
break;
case NM_MULSAQ_S_W_PH:
check_dsp(ctx);
gen_helper_mulsaq_s_w_ph(t0, v1, v0, cpu_env);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free_i32(t0);
}
static void gen_pool32axf_2_nanomips_insn(DisasContext *ctx, uint32_t opc,
int rt, int rs, int rd)
{
int ret = rt;
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
TCGv v0_t = tcg_temp_new();
TCGv v1_t = tcg_temp_new();
gen_load_gpr(v0_t, rt);
gen_load_gpr(v1_t, rs);
switch (opc) {
case NM_POOL32AXF_2_0_7:
switch (extract32(ctx->opcode, 9, 3)) {
case NM_DPA_W_PH:
case NM_DPAQ_S_W_PH:
case NM_DPS_W_PH:
case NM_DPSQ_S_W_PH:
gen_pool32axf_2_multiply(ctx, opc, v0_t, v1_t, rd);
break;
case NM_BALIGN:
check_dsp_r2(ctx);
if (rt != 0) {
gen_load_gpr(t0, rs);
rd &= 3;
if (rd != 0 && rd != 2) {
tcg_gen_shli_tl(cpu_gpr[ret], cpu_gpr[ret], 8 * rd);
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_shri_tl(t0, t0, 8 * (4 - rd));
tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0);
}
tcg_gen_ext32s_tl(cpu_gpr[ret], cpu_gpr[ret]);
}
break;
case NM_MADD:
check_dsp(ctx);
{
int acc = extract32(ctx->opcode, 14, 2);
TCGv_i64 t2 = tcg_temp_new_i64();
TCGv_i64 t3 = tcg_temp_new_i64();
gen_load_gpr(t0, rt);
gen_load_gpr(t1, rs);
tcg_gen_ext_tl_i64(t2, t0);
tcg_gen_ext_tl_i64(t3, t1);
tcg_gen_mul_i64(t2, t2, t3);
tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]);
tcg_gen_add_i64(t2, t2, t3);
tcg_temp_free_i64(t3);
gen_move_low32(cpu_LO[acc], t2);
gen_move_high32(cpu_HI[acc], t2);
tcg_temp_free_i64(t2);
}
break;
case NM_MULT:
check_dsp(ctx);
{
int acc = extract32(ctx->opcode, 14, 2);
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_i32 t3 = tcg_temp_new_i32();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
tcg_gen_trunc_tl_i32(t2, t0);
tcg_gen_trunc_tl_i32(t3, t1);
tcg_gen_muls2_i32(t2, t3, t2, t3);
tcg_gen_ext_i32_tl(cpu_LO[acc], t2);
tcg_gen_ext_i32_tl(cpu_HI[acc], t3);
tcg_temp_free_i32(t2);
tcg_temp_free_i32(t3);
}
break;
case NM_EXTRV_W:
check_dsp(ctx);
gen_load_gpr(v1_t, rs);
tcg_gen_movi_tl(t0, rd >> 3);
gen_helper_extr_w(t0, t0, v1_t, cpu_env);
gen_store_gpr(t0, ret);
break;
}
break;
case NM_POOL32AXF_2_8_15:
switch (extract32(ctx->opcode, 9, 3)) {
case NM_DPAX_W_PH:
case NM_DPAQ_SA_L_W:
case NM_DPSX_W_PH:
case NM_DPSQ_SA_L_W:
gen_pool32axf_2_multiply(ctx, opc, v0_t, v1_t, rd);
break;
case NM_MADDU:
check_dsp(ctx);
{
int acc = extract32(ctx->opcode, 14, 2);
TCGv_i64 t2 = tcg_temp_new_i64();
TCGv_i64 t3 = tcg_temp_new_i64();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_extu_tl_i64(t2, t0);
tcg_gen_extu_tl_i64(t3, t1);
tcg_gen_mul_i64(t2, t2, t3);
tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]);
tcg_gen_add_i64(t2, t2, t3);
tcg_temp_free_i64(t3);
gen_move_low32(cpu_LO[acc], t2);
gen_move_high32(cpu_HI[acc], t2);
tcg_temp_free_i64(t2);
}
break;
case NM_MULTU:
check_dsp(ctx);
{
int acc = extract32(ctx->opcode, 14, 2);
TCGv_i32 t2 = tcg_temp_new_i32();
TCGv_i32 t3 = tcg_temp_new_i32();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
tcg_gen_trunc_tl_i32(t2, t0);
tcg_gen_trunc_tl_i32(t3, t1);
tcg_gen_mulu2_i32(t2, t3, t2, t3);
tcg_gen_ext_i32_tl(cpu_LO[acc], t2);
tcg_gen_ext_i32_tl(cpu_HI[acc], t3);
tcg_temp_free_i32(t2);
tcg_temp_free_i32(t3);
}
break;
case NM_EXTRV_R_W:
check_dsp(ctx);
tcg_gen_movi_tl(t0, rd >> 3);
gen_helper_extr_r_w(t0, t0, v1_t, cpu_env);
gen_store_gpr(t0, ret);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_POOL32AXF_2_16_23:
switch (extract32(ctx->opcode, 9, 3)) {
case NM_DPAU_H_QBL:
case NM_DPAQX_S_W_PH:
case NM_DPSU_H_QBL:
case NM_DPSQX_S_W_PH:
case NM_MULSA_W_PH:
gen_pool32axf_2_multiply(ctx, opc, v0_t, v1_t, rd);
break;
case NM_EXTPV:
check_dsp(ctx);
tcg_gen_movi_tl(t0, rd >> 3);
gen_helper_extp(t0, t0, v1_t, cpu_env);
gen_store_gpr(t0, ret);
break;
case NM_MSUB:
check_dsp(ctx);
{
int acc = extract32(ctx->opcode, 14, 2);
TCGv_i64 t2 = tcg_temp_new_i64();
TCGv_i64 t3 = tcg_temp_new_i64();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
tcg_gen_ext_tl_i64(t2, t0);
tcg_gen_ext_tl_i64(t3, t1);
tcg_gen_mul_i64(t2, t2, t3);
tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]);
tcg_gen_sub_i64(t2, t3, t2);
tcg_temp_free_i64(t3);
gen_move_low32(cpu_LO[acc], t2);
gen_move_high32(cpu_HI[acc], t2);
tcg_temp_free_i64(t2);
}
break;
case NM_EXTRV_RS_W:
check_dsp(ctx);
tcg_gen_movi_tl(t0, rd >> 3);
gen_helper_extr_rs_w(t0, t0, v1_t, cpu_env);
gen_store_gpr(t0, ret);
break;
}
break;
case NM_POOL32AXF_2_24_31:
switch (extract32(ctx->opcode, 9, 3)) {
case NM_DPAU_H_QBR:
case NM_DPAQX_SA_W_PH:
case NM_DPSU_H_QBR:
case NM_DPSQX_SA_W_PH:
case NM_MULSAQ_S_W_PH:
gen_pool32axf_2_multiply(ctx, opc, v0_t, v1_t, rd);
break;
case NM_EXTPDPV:
check_dsp(ctx);
tcg_gen_movi_tl(t0, rd >> 3);
gen_helper_extpdp(t0, t0, v1_t, cpu_env);
gen_store_gpr(t0, ret);
break;
case NM_MSUBU:
check_dsp(ctx);
{
int acc = extract32(ctx->opcode, 14, 2);
TCGv_i64 t2 = tcg_temp_new_i64();
TCGv_i64 t3 = tcg_temp_new_i64();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_ext32u_tl(t1, t1);
tcg_gen_extu_tl_i64(t2, t0);
tcg_gen_extu_tl_i64(t3, t1);
tcg_gen_mul_i64(t2, t2, t3);
tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]);
tcg_gen_sub_i64(t2, t3, t2);
tcg_temp_free_i64(t3);
gen_move_low32(cpu_LO[acc], t2);
gen_move_high32(cpu_HI[acc], t2);
tcg_temp_free_i64(t2);
}
break;
case NM_EXTRV_S_H:
check_dsp(ctx);
tcg_gen_movi_tl(t0, rd >> 3);
gen_helper_extr_s_h(t0, t0, v0_t, cpu_env);
gen_store_gpr(t0, ret);
break;
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free(t0);
tcg_temp_free(t1);
tcg_temp_free(v0_t);
tcg_temp_free(v1_t);
}
static void gen_pool32axf_4_nanomips_insn(DisasContext *ctx, uint32_t opc,
int rt, int rs)
{
int ret = rt;
TCGv t0 = tcg_temp_new();
TCGv v0_t = tcg_temp_new();
gen_load_gpr(v0_t, rs);
switch (opc) {
case NM_ABSQ_S_QB:
check_dsp_r2(ctx);
gen_helper_absq_s_qb(v0_t, v0_t, cpu_env);
gen_store_gpr(v0_t, ret);
break;
case NM_ABSQ_S_PH:
check_dsp(ctx);
gen_helper_absq_s_ph(v0_t, v0_t, cpu_env);
gen_store_gpr(v0_t, ret);
break;
case NM_ABSQ_S_W:
check_dsp(ctx);
gen_helper_absq_s_w(v0_t, v0_t, cpu_env);
gen_store_gpr(v0_t, ret);
break;
case NM_PRECEQ_W_PHL:
check_dsp(ctx);
tcg_gen_andi_tl(v0_t, v0_t, 0xFFFF0000);
tcg_gen_ext32s_tl(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_PRECEQ_W_PHR:
check_dsp(ctx);
tcg_gen_andi_tl(v0_t, v0_t, 0x0000FFFF);
tcg_gen_shli_tl(v0_t, v0_t, 16);
tcg_gen_ext32s_tl(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_PRECEQU_PH_QBL:
check_dsp(ctx);
gen_helper_precequ_ph_qbl(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_PRECEQU_PH_QBR:
check_dsp(ctx);
gen_helper_precequ_ph_qbr(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_PRECEQU_PH_QBLA:
check_dsp(ctx);
gen_helper_precequ_ph_qbla(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_PRECEQU_PH_QBRA:
check_dsp(ctx);
gen_helper_precequ_ph_qbra(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_PRECEU_PH_QBL:
check_dsp(ctx);
gen_helper_preceu_ph_qbl(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_PRECEU_PH_QBR:
check_dsp(ctx);
gen_helper_preceu_ph_qbr(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_PRECEU_PH_QBLA:
check_dsp(ctx);
gen_helper_preceu_ph_qbla(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_PRECEU_PH_QBRA:
check_dsp(ctx);
gen_helper_preceu_ph_qbra(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_REPLV_PH:
check_dsp(ctx);
tcg_gen_ext16u_tl(v0_t, v0_t);
tcg_gen_shli_tl(t0, v0_t, 16);
tcg_gen_or_tl(v0_t, v0_t, t0);
tcg_gen_ext32s_tl(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_REPLV_QB:
check_dsp(ctx);
tcg_gen_ext8u_tl(v0_t, v0_t);
tcg_gen_shli_tl(t0, v0_t, 8);
tcg_gen_or_tl(v0_t, v0_t, t0);
tcg_gen_shli_tl(t0, v0_t, 16);
tcg_gen_or_tl(v0_t, v0_t, t0);
tcg_gen_ext32s_tl(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_BITREV:
check_dsp(ctx);
gen_helper_bitrev(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_INSV:
check_dsp(ctx);
{
TCGv tv0 = tcg_temp_new();
gen_load_gpr(tv0, rt);
gen_helper_insv(v0_t, cpu_env, v0_t, tv0);
gen_store_gpr(v0_t, ret);
tcg_temp_free(tv0);
}
break;
case NM_RADDU_W_QB:
check_dsp(ctx);
gen_helper_raddu_w_qb(v0_t, v0_t);
gen_store_gpr(v0_t, ret);
break;
case NM_BITSWAP:
gen_bitswap(ctx, OPC_BITSWAP, ret, rs);
break;
case NM_CLO:
check_nms(ctx);
gen_cl(ctx, OPC_CLO, ret, rs);
break;
case NM_CLZ:
check_nms(ctx);
gen_cl(ctx, OPC_CLZ, ret, rs);
break;
case NM_WSBH:
gen_bshfl(ctx, OPC_WSBH, ret, rs);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free(v0_t);
tcg_temp_free(t0);
}
static void gen_pool32axf_7_nanomips_insn(DisasContext *ctx, uint32_t opc,
int rt, int rs, int rd)
{
TCGv t0 = tcg_temp_new();
TCGv rs_t = tcg_temp_new();
gen_load_gpr(rs_t, rs);
switch (opc) {
case NM_SHRA_R_QB:
check_dsp_r2(ctx);
tcg_gen_movi_tl(t0, rd >> 2);
switch (extract32(ctx->opcode, 12, 1)) {
case 0:
/* NM_SHRA_QB */
gen_helper_shra_qb(t0, t0, rs_t);
gen_store_gpr(t0, rt);
break;
case 1:
/* NM_SHRA_R_QB */
gen_helper_shra_r_qb(t0, t0, rs_t);
gen_store_gpr(t0, rt);
break;
}
break;
case NM_SHRL_PH:
check_dsp_r2(ctx);
tcg_gen_movi_tl(t0, rd >> 1);
gen_helper_shrl_ph(t0, t0, rs_t);
gen_store_gpr(t0, rt);
break;
case NM_REPL_QB:
check_dsp(ctx);
{
int16_t imm;
target_long result;
imm = extract32(ctx->opcode, 13, 8);
result = (uint32_t)imm << 24 |
(uint32_t)imm << 16 |
(uint32_t)imm << 8 |
(uint32_t)imm;
result = (int32_t)result;
tcg_gen_movi_tl(t0, result);
gen_store_gpr(t0, rt);
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free(t0);
tcg_temp_free(rs_t);
}
static void gen_pool32axf_nanomips_insn(CPUMIPSState *env, DisasContext *ctx)
{
int rt = extract32(ctx->opcode, 21, 5);
int rs = extract32(ctx->opcode, 16, 5);
int rd = extract32(ctx->opcode, 11, 5);
switch (extract32(ctx->opcode, 6, 3)) {
case NM_POOL32AXF_1:
{
int32_t op1 = extract32(ctx->opcode, 9, 3);
gen_pool32axf_1_nanomips_insn(ctx, op1, rt, rs, rd);
}
break;
case NM_POOL32AXF_2:
{
int32_t op1 = extract32(ctx->opcode, 12, 2);
gen_pool32axf_2_nanomips_insn(ctx, op1, rt, rs, rd);
}
break;
case NM_POOL32AXF_4:
{
int32_t op1 = extract32(ctx->opcode, 9, 7);
gen_pool32axf_4_nanomips_insn(ctx, op1, rt, rs);
}
break;
case NM_POOL32AXF_5:
switch (extract32(ctx->opcode, 9, 7)) {
#ifndef CONFIG_USER_ONLY
case NM_TLBP:
gen_cp0(env, ctx, OPC_TLBP, 0, 0);
break;
case NM_TLBR:
gen_cp0(env, ctx, OPC_TLBR, 0, 0);
break;
case NM_TLBWI:
gen_cp0(env, ctx, OPC_TLBWI, 0, 0);
break;
case NM_TLBWR:
gen_cp0(env, ctx, OPC_TLBWR, 0, 0);
break;
case NM_TLBINV:
gen_cp0(env, ctx, OPC_TLBINV, 0, 0);
break;
case NM_TLBINVF:
gen_cp0(env, ctx, OPC_TLBINVF, 0, 0);
break;
case NM_DI:
check_cp0_enabled(ctx);
{
TCGv t0 = tcg_temp_new();
save_cpu_state(ctx, 1);
gen_helper_di(t0, cpu_env);
gen_store_gpr(t0, rt);
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
tcg_temp_free(t0);
}
break;
case NM_EI:
check_cp0_enabled(ctx);
{
TCGv t0 = tcg_temp_new();
save_cpu_state(ctx, 1);
gen_helper_ei(t0, cpu_env);
gen_store_gpr(t0, rt);
/* Stop translation as we may have switched the execution mode */
ctx->base.is_jmp = DISAS_STOP;
tcg_temp_free(t0);
}
break;
case NM_RDPGPR:
gen_load_srsgpr(rs, rt);
break;
case NM_WRPGPR:
gen_store_srsgpr(rs, rt);
break;
case NM_WAIT:
gen_cp0(env, ctx, OPC_WAIT, 0, 0);
break;
case NM_DERET:
gen_cp0(env, ctx, OPC_DERET, 0, 0);
break;
case NM_ERETX:
gen_cp0(env, ctx, OPC_ERET, 0, 0);
break;
#endif
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_POOL32AXF_7:
{
int32_t op1 = extract32(ctx->opcode, 9, 3);
gen_pool32axf_7_nanomips_insn(ctx, op1, rt, rs, rd);
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/* Immediate Value Compact Branches */
static void gen_compute_imm_branch(DisasContext *ctx, uint32_t opc,
int rt, int32_t imm, int32_t offset)
{
TCGCond cond;
int bcond_compute = 0;
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
gen_load_gpr(t0, rt);
tcg_gen_movi_tl(t1, imm);
ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
/* Load needed operands and calculate btarget */
switch (opc) {
case NM_BEQIC:
if (rt == 0 && imm == 0) {
/* Unconditional branch */
} else if (rt == 0 && imm != 0) {
/* Treat as NOP */
goto out;
} else {
bcond_compute = 1;
cond = TCG_COND_EQ;
}
break;
case NM_BBEQZC:
case NM_BBNEZC:
check_nms(ctx);
if (imm >= 32 && !(ctx->hflags & MIPS_HFLAG_64)) {
generate_exception_end(ctx, EXCP_RI);
goto out;
} else if (rt == 0 && opc == NM_BBEQZC) {
/* Unconditional branch */
} else if (rt == 0 && opc == NM_BBNEZC) {
/* Treat as NOP */
goto out;
} else {
tcg_gen_shri_tl(t0, t0, imm);
tcg_gen_andi_tl(t0, t0, 1);
tcg_gen_movi_tl(t1, 0);
bcond_compute = 1;
if (opc == NM_BBEQZC) {
cond = TCG_COND_EQ;
} else {
cond = TCG_COND_NE;
}
}
break;
case NM_BNEIC:
if (rt == 0 && imm == 0) {
/* Treat as NOP */
goto out;
} else if (rt == 0 && imm != 0) {
/* Unconditional branch */
} else {
bcond_compute = 1;
cond = TCG_COND_NE;
}
break;
case NM_BGEIC:
if (rt == 0 && imm == 0) {
/* Unconditional branch */
} else {
bcond_compute = 1;
cond = TCG_COND_GE;
}
break;
case NM_BLTIC:
bcond_compute = 1;
cond = TCG_COND_LT;
break;
case NM_BGEIUC:
if (rt == 0 && imm == 0) {
/* Unconditional branch */
} else {
bcond_compute = 1;
cond = TCG_COND_GEU;
}
break;
case NM_BLTIUC:
bcond_compute = 1;
cond = TCG_COND_LTU;
break;
default:
MIPS_INVAL("Immediate Value Compact branch");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
/* branch completion */
clear_branch_hflags(ctx);
ctx->base.is_jmp = DISAS_NORETURN;
if (bcond_compute == 0) {
/* Uncoditional compact branch */
gen_goto_tb(ctx, 0, ctx->btarget);
} else {
/* Conditional compact branch */
TCGLabel *fs = gen_new_label();
tcg_gen_brcond_tl(tcg_invert_cond(cond), t0, t1, fs);
gen_goto_tb(ctx, 1, ctx->btarget);
gen_set_label(fs);
gen_goto_tb(ctx, 0, ctx->base.pc_next + 4);
}
out:
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/* P.BALRSC type nanoMIPS R6 branches: BALRSC and BRSC */
static void gen_compute_nanomips_pbalrsc_branch(DisasContext *ctx, int rs,
int rt)
{
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
/* load rs */
gen_load_gpr(t0, rs);
/* link */
if (rt != 0) {
tcg_gen_movi_tl(cpu_gpr[rt], ctx->base.pc_next + 4);
}
/* calculate btarget */
tcg_gen_shli_tl(t0, t0, 1);
tcg_gen_movi_tl(t1, ctx->base.pc_next + 4);
gen_op_addr_add(ctx, btarget, t1, t0);
/* branch completion */
clear_branch_hflags(ctx);
ctx->base.is_jmp = DISAS_NORETURN;
/* unconditional branch to register */
tcg_gen_mov_tl(cpu_PC, btarget);
tcg_gen_lookup_and_goto_ptr();
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/* nanoMIPS Branches */
static void gen_compute_compact_branch_nm(DisasContext *ctx, uint32_t opc,
int rs, int rt, int32_t offset)
{
int bcond_compute = 0;
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
/* Load needed operands and calculate btarget */
switch (opc) {
/* compact branch */
case OPC_BGEC:
case OPC_BLTC:
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
bcond_compute = 1;
ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
break;
case OPC_BGEUC:
case OPC_BLTUC:
if (rs == 0 || rs == rt) {
/* OPC_BLEZALC, OPC_BGEZALC */
/* OPC_BGTZALC, OPC_BLTZALC */
tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 4);
}
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
bcond_compute = 1;
ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
break;
case OPC_BC:
ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
break;
case OPC_BEQZC:
if (rs != 0) {
/* OPC_BEQZC, OPC_BNEZC */
gen_load_gpr(t0, rs);
bcond_compute = 1;
ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
} else {
/* OPC_JIC, OPC_JIALC */
TCGv tbase = tcg_temp_new();
TCGv toffset = tcg_temp_new();
gen_load_gpr(tbase, rt);
tcg_gen_movi_tl(toffset, offset);
gen_op_addr_add(ctx, btarget, tbase, toffset);
tcg_temp_free(tbase);
tcg_temp_free(toffset);
}
break;
default:
MIPS_INVAL("Compact branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
if (bcond_compute == 0) {
/* Uncoditional compact branch */
switch (opc) {
case OPC_BC:
gen_goto_tb(ctx, 0, ctx->btarget);
break;
default:
MIPS_INVAL("Compact branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
} else {
/* Conditional compact branch */
TCGLabel *fs = gen_new_label();
switch (opc) {
case OPC_BGEUC:
if (rs == 0 && rt != 0) {
/* OPC_BLEZALC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LE), t1, 0, fs);
} else if (rs != 0 && rt != 0 && rs == rt) {
/* OPC_BGEZALC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GE), t1, 0, fs);
} else {
/* OPC_BGEUC */
tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_GEU), t0, t1, fs);
}
break;
case OPC_BLTUC:
if (rs == 0 && rt != 0) {
/* OPC_BGTZALC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GT), t1, 0, fs);
} else if (rs != 0 && rt != 0 && rs == rt) {
/* OPC_BLTZALC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LT), t1, 0, fs);
} else {
/* OPC_BLTUC */
tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_LTU), t0, t1, fs);
}
break;
case OPC_BGEC:
if (rs == 0 && rt != 0) {
/* OPC_BLEZC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LE), t1, 0, fs);
} else if (rs != 0 && rt != 0 && rs == rt) {
/* OPC_BGEZC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GE), t1, 0, fs);
} else {
/* OPC_BGEC */
tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_GE), t0, t1, fs);
}
break;
case OPC_BLTC:
if (rs == 0 && rt != 0) {
/* OPC_BGTZC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GT), t1, 0, fs);
} else if (rs != 0 && rt != 0 && rs == rt) {
/* OPC_BLTZC */
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LT), t1, 0, fs);
} else {
/* OPC_BLTC */
tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_LT), t0, t1, fs);
}
break;
case OPC_BEQZC:
tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_EQ), t0, 0, fs);
break;
default:
MIPS_INVAL("Compact conditional branch/jump");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
/* branch completion */
clear_branch_hflags(ctx);
ctx->base.is_jmp = DISAS_NORETURN;
/* Generating branch here as compact branches don't have delay slot */
gen_goto_tb(ctx, 1, ctx->btarget);
gen_set_label(fs);
gen_goto_tb(ctx, 0, ctx->base.pc_next + 4);
}
out:
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/* nanoMIPS CP1 Branches */
static void gen_compute_branch_cp1_nm(DisasContext *ctx, uint32_t op,
int32_t ft, int32_t offset)
{
target_ulong btarget;
TCGv_i64 t0 = tcg_temp_new_i64();
gen_load_fpr64(ctx, t0, ft);
tcg_gen_andi_i64(t0, t0, 1);
btarget = addr_add(ctx, ctx->base.pc_next + 4, offset);
switch (op) {
case NM_BC1EQZC:
tcg_gen_xori_i64(t0, t0, 1);
ctx->hflags |= MIPS_HFLAG_BC;
break;
case NM_BC1NEZC:
/* t0 already set */
ctx->hflags |= MIPS_HFLAG_BC;
break;
default:
MIPS_INVAL("cp1 cond branch");
generate_exception_end(ctx, EXCP_RI);
goto out;
}
tcg_gen_trunc_i64_tl(bcond, t0);
ctx->btarget = btarget;
out:
tcg_temp_free_i64(t0);
}
static void gen_p_lsx(DisasContext *ctx, int rd, int rs, int rt)
{
TCGv t0, t1;
t0 = tcg_temp_new();
t1 = tcg_temp_new();
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
if ((extract32(ctx->opcode, 6, 1)) == 1) {
/* PP.LSXS instructions require shifting */
switch (extract32(ctx->opcode, 7, 4)) {
case NM_SHXS:
check_nms(ctx);
case NM_LHXS:
case NM_LHUXS:
tcg_gen_shli_tl(t0, t0, 1);
break;
case NM_SWXS:
check_nms(ctx);
case NM_LWXS:
case NM_LWC1XS:
case NM_SWC1XS:
tcg_gen_shli_tl(t0, t0, 2);
break;
case NM_LDC1XS:
case NM_SDC1XS:
tcg_gen_shli_tl(t0, t0, 3);
break;
}
}
gen_op_addr_add(ctx, t0, t0, t1);
switch (extract32(ctx->opcode, 7, 4)) {
case NM_LBX:
tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx,
MO_SB);
gen_store_gpr(t0, rd);
break;
case NM_LHX:
/*case NM_LHXS:*/
tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx,
MO_TESW);
gen_store_gpr(t0, rd);
break;
case NM_LWX:
/*case NM_LWXS:*/
tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx,
MO_TESL);
gen_store_gpr(t0, rd);
break;
case NM_LBUX:
tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx,
MO_UB);
gen_store_gpr(t0, rd);
break;
case NM_LHUX:
/*case NM_LHUXS:*/
tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx,
MO_TEUW);
gen_store_gpr(t0, rd);
break;
case NM_SBX:
check_nms(ctx);
gen_load_gpr(t1, rd);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx,
MO_8);
break;
case NM_SHX:
/*case NM_SHXS:*/
check_nms(ctx);
gen_load_gpr(t1, rd);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx,
MO_TEUW);
break;
case NM_SWX:
/*case NM_SWXS:*/
check_nms(ctx);
gen_load_gpr(t1, rd);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx,
MO_TEUL);
break;
case NM_LWC1X:
/*case NM_LWC1XS:*/
case NM_LDC1X:
/*case NM_LDC1XS:*/
case NM_SWC1X:
/*case NM_SWC1XS:*/
case NM_SDC1X:
/*case NM_SDC1XS:*/
if (ctx->CP0_Config1 & (1 << CP0C1_FP)) {
check_cp1_enabled(ctx);
switch (extract32(ctx->opcode, 7, 4)) {
case NM_LWC1X:
/*case NM_LWC1XS:*/
gen_flt_ldst(ctx, OPC_LWC1, rd, t0);
break;
case NM_LDC1X:
/*case NM_LDC1XS:*/
gen_flt_ldst(ctx, OPC_LDC1, rd, t0);
break;
case NM_SWC1X:
/*case NM_SWC1XS:*/
gen_flt_ldst(ctx, OPC_SWC1, rd, t0);
break;
case NM_SDC1X:
/*case NM_SDC1XS:*/
gen_flt_ldst(ctx, OPC_SDC1, rd, t0);
break;
}
} else {
generate_exception_err(ctx, EXCP_CpU, 1);
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free(t0);
tcg_temp_free(t1);
}
static void gen_pool32f_nanomips_insn(DisasContext *ctx)
{
int rt, rs, rd;
rt = extract32(ctx->opcode, 21, 5);
rs = extract32(ctx->opcode, 16, 5);
rd = extract32(ctx->opcode, 11, 5);
if (!(ctx->CP0_Config1 & (1 << CP0C1_FP))) {
generate_exception_end(ctx, EXCP_RI);
return;
}
check_cp1_enabled(ctx);
switch (extract32(ctx->opcode, 0, 3)) {
case NM_POOL32F_0:
switch (extract32(ctx->opcode, 3, 7)) {
case NM_RINT_S:
gen_farith(ctx, OPC_RINT_S, 0, rt, rs, 0);
break;
case NM_RINT_D:
gen_farith(ctx, OPC_RINT_D, 0, rt, rs, 0);
break;
case NM_CLASS_S:
gen_farith(ctx, OPC_CLASS_S, 0, rt, rs, 0);
break;
case NM_CLASS_D:
gen_farith(ctx, OPC_CLASS_D, 0, rt, rs, 0);
break;
case NM_ADD_S:
gen_farith(ctx, OPC_ADD_S, rt, rs, rd, 0);
break;
case NM_ADD_D:
gen_farith(ctx, OPC_ADD_D, rt, rs, rd, 0);
break;
case NM_SUB_S:
gen_farith(ctx, OPC_SUB_S, rt, rs, rd, 0);
break;
case NM_SUB_D:
gen_farith(ctx, OPC_SUB_D, rt, rs, rd, 0);
break;
case NM_MUL_S:
gen_farith(ctx, OPC_MUL_S, rt, rs, rd, 0);
break;
case NM_MUL_D:
gen_farith(ctx, OPC_MUL_D, rt, rs, rd, 0);
break;
case NM_DIV_S:
gen_farith(ctx, OPC_DIV_S, rt, rs, rd, 0);
break;
case NM_DIV_D:
gen_farith(ctx, OPC_DIV_D, rt, rs, rd, 0);
break;
case NM_SELEQZ_S:
gen_sel_s(ctx, OPC_SELEQZ_S, rd, rt, rs);
break;
case NM_SELEQZ_D:
gen_sel_d(ctx, OPC_SELEQZ_D, rd, rt, rs);
break;
case NM_SELNEZ_S:
gen_sel_s(ctx, OPC_SELNEZ_S, rd, rt, rs);
break;
case NM_SELNEZ_D:
gen_sel_d(ctx, OPC_SELNEZ_D, rd, rt, rs);
break;
case NM_SEL_S:
gen_sel_s(ctx, OPC_SEL_S, rd, rt, rs);
break;
case NM_SEL_D:
gen_sel_d(ctx, OPC_SEL_D, rd, rt, rs);
break;
case NM_MADDF_S:
gen_farith(ctx, OPC_MADDF_S, rt, rs, rd, 0);
break;
case NM_MADDF_D:
gen_farith(ctx, OPC_MADDF_D, rt, rs, rd, 0);
break;
case NM_MSUBF_S:
gen_farith(ctx, OPC_MSUBF_S, rt, rs, rd, 0);
break;
case NM_MSUBF_D:
gen_farith(ctx, OPC_MSUBF_D, rt, rs, rd, 0);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_POOL32F_3:
switch (extract32(ctx->opcode, 3, 3)) {
case NM_MIN_FMT:
switch (extract32(ctx->opcode, 9, 1)) {
case FMT_SDPS_S:
gen_farith(ctx, OPC_MIN_S, rt, rs, rd, 0);
break;
case FMT_SDPS_D:
gen_farith(ctx, OPC_MIN_D, rt, rs, rd, 0);
break;
}
break;
case NM_MAX_FMT:
switch (extract32(ctx->opcode, 9, 1)) {
case FMT_SDPS_S:
gen_farith(ctx, OPC_MAX_S, rt, rs, rd, 0);
break;
case FMT_SDPS_D:
gen_farith(ctx, OPC_MAX_D, rt, rs, rd, 0);
break;
}
break;
case NM_MINA_FMT:
switch (extract32(ctx->opcode, 9, 1)) {
case FMT_SDPS_S:
gen_farith(ctx, OPC_MINA_S, rt, rs, rd, 0);
break;
case FMT_SDPS_D:
gen_farith(ctx, OPC_MINA_D, rt, rs, rd, 0);
break;
}
break;
case NM_MAXA_FMT:
switch (extract32(ctx->opcode, 9, 1)) {
case FMT_SDPS_S:
gen_farith(ctx, OPC_MAXA_S, rt, rs, rd, 0);
break;
case FMT_SDPS_D:
gen_farith(ctx, OPC_MAXA_D, rt, rs, rd, 0);
break;
}
break;
case NM_POOL32FXF:
switch (extract32(ctx->opcode, 6, 8)) {
case NM_CFC1:
gen_cp1(ctx, OPC_CFC1, rt, rs);
break;
case NM_CTC1:
gen_cp1(ctx, OPC_CTC1, rt, rs);
break;
case NM_MFC1:
gen_cp1(ctx, OPC_MFC1, rt, rs);
break;
case NM_MTC1:
gen_cp1(ctx, OPC_MTC1, rt, rs);
break;
case NM_MFHC1:
gen_cp1(ctx, OPC_MFHC1, rt, rs);
break;
case NM_MTHC1:
gen_cp1(ctx, OPC_MTHC1, rt, rs);
break;
case NM_CVT_S_PL:
gen_farith(ctx, OPC_CVT_S_PL, -1, rs, rt, 0);
break;
case NM_CVT_S_PU:
gen_farith(ctx, OPC_CVT_S_PU, -1, rs, rt, 0);
break;
default:
switch (extract32(ctx->opcode, 6, 9)) {
case NM_CVT_L_S:
gen_farith(ctx, OPC_CVT_L_S, -1, rs, rt, 0);
break;
case NM_CVT_L_D:
gen_farith(ctx, OPC_CVT_L_D, -1, rs, rt, 0);
break;
case NM_CVT_W_S:
gen_farith(ctx, OPC_CVT_W_S, -1, rs, rt, 0);
break;
case NM_CVT_W_D:
gen_farith(ctx, OPC_CVT_W_D, -1, rs, rt, 0);
break;
case NM_RSQRT_S:
gen_farith(ctx, OPC_RSQRT_S, -1, rs, rt, 0);
break;
case NM_RSQRT_D:
gen_farith(ctx, OPC_RSQRT_D, -1, rs, rt, 0);
break;
case NM_SQRT_S:
gen_farith(ctx, OPC_SQRT_S, -1, rs, rt, 0);
break;
case NM_SQRT_D:
gen_farith(ctx, OPC_SQRT_D, -1, rs, rt, 0);
break;
case NM_RECIP_S:
gen_farith(ctx, OPC_RECIP_S, -1, rs, rt, 0);
break;
case NM_RECIP_D:
gen_farith(ctx, OPC_RECIP_D, -1, rs, rt, 0);
break;
case NM_FLOOR_L_S:
gen_farith(ctx, OPC_FLOOR_L_S, -1, rs, rt, 0);
break;
case NM_FLOOR_L_D:
gen_farith(ctx, OPC_FLOOR_L_D, -1, rs, rt, 0);
break;
case NM_FLOOR_W_S:
gen_farith(ctx, OPC_FLOOR_W_S, -1, rs, rt, 0);
break;
case NM_FLOOR_W_D:
gen_farith(ctx, OPC_FLOOR_W_D, -1, rs, rt, 0);
break;
case NM_CEIL_L_S:
gen_farith(ctx, OPC_CEIL_L_S, -1, rs, rt, 0);
break;
case NM_CEIL_L_D:
gen_farith(ctx, OPC_CEIL_L_D, -1, rs, rt, 0);
break;
case NM_CEIL_W_S:
gen_farith(ctx, OPC_CEIL_W_S, -1, rs, rt, 0);
break;
case NM_CEIL_W_D:
gen_farith(ctx, OPC_CEIL_W_D, -1, rs, rt, 0);
break;
case NM_TRUNC_L_S:
gen_farith(ctx, OPC_TRUNC_L_S, -1, rs, rt, 0);
break;
case NM_TRUNC_L_D:
gen_farith(ctx, OPC_TRUNC_L_D, -1, rs, rt, 0);
break;
case NM_TRUNC_W_S:
gen_farith(ctx, OPC_TRUNC_W_S, -1, rs, rt, 0);
break;
case NM_TRUNC_W_D:
gen_farith(ctx, OPC_TRUNC_W_D, -1, rs, rt, 0);
break;
case NM_ROUND_L_S:
gen_farith(ctx, OPC_ROUND_L_S, -1, rs, rt, 0);
break;
case NM_ROUND_L_D:
gen_farith(ctx, OPC_ROUND_L_D, -1, rs, rt, 0);
break;
case NM_ROUND_W_S:
gen_farith(ctx, OPC_ROUND_W_S, -1, rs, rt, 0);
break;
case NM_ROUND_W_D:
gen_farith(ctx, OPC_ROUND_W_D, -1, rs, rt, 0);
break;
case NM_MOV_S:
gen_farith(ctx, OPC_MOV_S, -1, rs, rt, 0);
break;
case NM_MOV_D:
gen_farith(ctx, OPC_MOV_D, -1, rs, rt, 0);
break;
case NM_ABS_S:
gen_farith(ctx, OPC_ABS_S, -1, rs, rt, 0);
break;
case NM_ABS_D:
gen_farith(ctx, OPC_ABS_D, -1, rs, rt, 0);
break;
case NM_NEG_S:
gen_farith(ctx, OPC_NEG_S, -1, rs, rt, 0);
break;
case NM_NEG_D:
gen_farith(ctx, OPC_NEG_D, -1, rs, rt, 0);
break;
case NM_CVT_D_S:
gen_farith(ctx, OPC_CVT_D_S, -1, rs, rt, 0);
break;
case NM_CVT_D_W:
gen_farith(ctx, OPC_CVT_D_W, -1, rs, rt, 0);
break;
case NM_CVT_D_L:
gen_farith(ctx, OPC_CVT_D_L, -1, rs, rt, 0);
break;
case NM_CVT_S_D:
gen_farith(ctx, OPC_CVT_S_D, -1, rs, rt, 0);
break;
case NM_CVT_S_W:
gen_farith(ctx, OPC_CVT_S_W, -1, rs, rt, 0);
break;
case NM_CVT_S_L:
gen_farith(ctx, OPC_CVT_S_L, -1, rs, rt, 0);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
}
break;
}
break;
case NM_POOL32F_5:
switch (extract32(ctx->opcode, 3, 3)) {
case NM_CMP_CONDN_S:
gen_r6_cmp_s(ctx, extract32(ctx->opcode, 6, 5), rt, rs, rd);
break;
case NM_CMP_CONDN_D:
gen_r6_cmp_d(ctx, extract32(ctx->opcode, 6, 5), rt, rs, rd);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void gen_pool32a5_nanomips_insn(DisasContext *ctx, int opc,
int rd, int rs, int rt)
{
int ret = rd;
TCGv t0 = tcg_temp_new();
TCGv v1_t = tcg_temp_new();
TCGv v2_t = tcg_temp_new();
gen_load_gpr(v1_t, rs);
gen_load_gpr(v2_t, rt);
switch (opc) {
case NM_CMP_EQ_PH:
check_dsp(ctx);
gen_helper_cmp_eq_ph(v1_t, v2_t, cpu_env);
break;
case NM_CMP_LT_PH:
check_dsp(ctx);
gen_helper_cmp_lt_ph(v1_t, v2_t, cpu_env);
break;
case NM_CMP_LE_PH:
check_dsp(ctx);
gen_helper_cmp_le_ph(v1_t, v2_t, cpu_env);
break;
case NM_CMPU_EQ_QB:
check_dsp(ctx);
gen_helper_cmpu_eq_qb(v1_t, v2_t, cpu_env);
break;
case NM_CMPU_LT_QB:
check_dsp(ctx);
gen_helper_cmpu_lt_qb(v1_t, v2_t, cpu_env);
break;
case NM_CMPU_LE_QB:
check_dsp(ctx);
gen_helper_cmpu_le_qb(v1_t, v2_t, cpu_env);
break;
case NM_CMPGU_EQ_QB:
check_dsp(ctx);
gen_helper_cmpgu_eq_qb(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case NM_CMPGU_LT_QB:
check_dsp(ctx);
gen_helper_cmpgu_lt_qb(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case NM_CMPGU_LE_QB:
check_dsp(ctx);
gen_helper_cmpgu_le_qb(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case NM_CMPGDU_EQ_QB:
check_dsp_r2(ctx);
gen_helper_cmpgu_eq_qb(v1_t, v1_t, v2_t);
tcg_gen_deposit_tl(cpu_dspctrl, cpu_dspctrl, v1_t, 24, 4);
gen_store_gpr(v1_t, ret);
break;
case NM_CMPGDU_LT_QB:
check_dsp_r2(ctx);
gen_helper_cmpgu_lt_qb(v1_t, v1_t, v2_t);
tcg_gen_deposit_tl(cpu_dspctrl, cpu_dspctrl, v1_t, 24, 4);
gen_store_gpr(v1_t, ret);
break;
case NM_CMPGDU_LE_QB:
check_dsp_r2(ctx);
gen_helper_cmpgu_le_qb(v1_t, v1_t, v2_t);
tcg_gen_deposit_tl(cpu_dspctrl, cpu_dspctrl, v1_t, 24, 4);
gen_store_gpr(v1_t, ret);
break;
case NM_PACKRL_PH:
check_dsp(ctx);
gen_helper_packrl_ph(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case NM_PICK_QB:
check_dsp(ctx);
gen_helper_pick_qb(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_PICK_PH:
check_dsp(ctx);
gen_helper_pick_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_ADDQ_S_W:
check_dsp(ctx);
gen_helper_addq_s_w(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_SUBQ_S_W:
check_dsp(ctx);
gen_helper_subq_s_w(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_ADDSC:
check_dsp(ctx);
gen_helper_addsc(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_ADDWC:
check_dsp(ctx);
gen_helper_addwc(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_ADDQ_S_PH:
check_dsp(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* ADDQ_PH */
gen_helper_addq_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* ADDQ_S_PH */
gen_helper_addq_s_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_ADDQH_R_PH:
check_dsp_r2(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* ADDQH_PH */
gen_helper_addqh_ph(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* ADDQH_R_PH */
gen_helper_addqh_r_ph(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_ADDQH_R_W:
check_dsp_r2(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* ADDQH_W */
gen_helper_addqh_w(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* ADDQH_R_W */
gen_helper_addqh_r_w(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_ADDU_S_QB:
check_dsp(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* ADDU_QB */
gen_helper_addu_qb(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* ADDU_S_QB */
gen_helper_addu_s_qb(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_ADDU_S_PH:
check_dsp_r2(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* ADDU_PH */
gen_helper_addu_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* ADDU_S_PH */
gen_helper_addu_s_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_ADDUH_R_QB:
check_dsp_r2(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* ADDUH_QB */
gen_helper_adduh_qb(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* ADDUH_R_QB */
gen_helper_adduh_r_qb(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_SHRAV_R_PH:
check_dsp(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* SHRAV_PH */
gen_helper_shra_ph(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* SHRAV_R_PH */
gen_helper_shra_r_ph(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_SHRAV_R_QB:
check_dsp_r2(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* SHRAV_QB */
gen_helper_shra_qb(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* SHRAV_R_QB */
gen_helper_shra_r_qb(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_SUBQ_S_PH:
check_dsp(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* SUBQ_PH */
gen_helper_subq_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* SUBQ_S_PH */
gen_helper_subq_s_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_SUBQH_R_PH:
check_dsp_r2(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* SUBQH_PH */
gen_helper_subqh_ph(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* SUBQH_R_PH */
gen_helper_subqh_r_ph(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_SUBQH_R_W:
check_dsp_r2(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* SUBQH_W */
gen_helper_subqh_w(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* SUBQH_R_W */
gen_helper_subqh_r_w(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_SUBU_S_QB:
check_dsp(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* SUBU_QB */
gen_helper_subu_qb(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* SUBU_S_QB */
gen_helper_subu_s_qb(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_SUBU_S_PH:
check_dsp_r2(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* SUBU_PH */
gen_helper_subu_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* SUBU_S_PH */
gen_helper_subu_s_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_SUBUH_R_QB:
check_dsp_r2(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* SUBUH_QB */
gen_helper_subuh_qb(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* SUBUH_R_QB */
gen_helper_subuh_r_qb(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_SHLLV_S_PH:
check_dsp(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* SHLLV_PH */
gen_helper_shll_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* SHLLV_S_PH */
gen_helper_shll_s_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_PRECR_SRA_R_PH_W:
check_dsp_r2(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* PRECR_SRA_PH_W */
{
TCGv_i32 sa_t = tcg_const_i32(rd);
gen_helper_precr_sra_ph_w(v1_t, sa_t, v1_t,
cpu_gpr[rt]);
gen_store_gpr(v1_t, rt);
tcg_temp_free_i32(sa_t);
}
break;
case 1:
/* PRECR_SRA_R_PH_W */
{
TCGv_i32 sa_t = tcg_const_i32(rd);
gen_helper_precr_sra_r_ph_w(v1_t, sa_t, v1_t,
cpu_gpr[rt]);
gen_store_gpr(v1_t, rt);
tcg_temp_free_i32(sa_t);
}
break;
}
break;
case NM_MULEU_S_PH_QBL:
check_dsp(ctx);
gen_helper_muleu_s_ph_qbl(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_MULEU_S_PH_QBR:
check_dsp(ctx);
gen_helper_muleu_s_ph_qbr(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_MULQ_RS_PH:
check_dsp(ctx);
gen_helper_mulq_rs_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_MULQ_S_PH:
check_dsp_r2(ctx);
gen_helper_mulq_s_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_MULQ_RS_W:
check_dsp_r2(ctx);
gen_helper_mulq_rs_w(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_MULQ_S_W:
check_dsp_r2(ctx);
gen_helper_mulq_s_w(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_APPEND:
check_dsp_r2(ctx);
gen_load_gpr(t0, rs);
if (rd != 0) {
tcg_gen_deposit_tl(cpu_gpr[rt], t0, cpu_gpr[rt], rd, 32 - rd);
}
tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]);
break;
case NM_MODSUB:
check_dsp(ctx);
gen_helper_modsub(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case NM_SHRAV_R_W:
check_dsp(ctx);
gen_helper_shra_r_w(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case NM_SHRLV_PH:
check_dsp_r2(ctx);
gen_helper_shrl_ph(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case NM_SHRLV_QB:
check_dsp(ctx);
gen_helper_shrl_qb(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case NM_SHLLV_QB:
check_dsp(ctx);
gen_helper_shll_qb(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_SHLLV_S_W:
check_dsp(ctx);
gen_helper_shll_s_w(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_SHILO:
check_dsp(ctx);
{
TCGv tv0 = tcg_temp_new();
TCGv tv1 = tcg_temp_new();
int16_t imm = extract32(ctx->opcode, 16, 7);
tcg_gen_movi_tl(tv0, rd >> 3);
tcg_gen_movi_tl(tv1, imm);
gen_helper_shilo(tv0, tv1, cpu_env);
}
break;
case NM_MULEQ_S_W_PHL:
check_dsp(ctx);
gen_helper_muleq_s_w_phl(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_MULEQ_S_W_PHR:
check_dsp(ctx);
gen_helper_muleq_s_w_phr(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_MUL_S_PH:
check_dsp_r2(ctx);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* MUL_PH */
gen_helper_mul_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case 1:
/* MUL_S_PH */
gen_helper_mul_s_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
}
break;
case NM_PRECR_QB_PH:
check_dsp_r2(ctx);
gen_helper_precr_qb_ph(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case NM_PRECRQ_QB_PH:
check_dsp(ctx);
gen_helper_precrq_qb_ph(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case NM_PRECRQ_PH_W:
check_dsp(ctx);
gen_helper_precrq_ph_w(v1_t, v1_t, v2_t);
gen_store_gpr(v1_t, ret);
break;
case NM_PRECRQ_RS_PH_W:
check_dsp(ctx);
gen_helper_precrq_rs_ph_w(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_PRECRQU_S_QB_PH:
check_dsp(ctx);
gen_helper_precrqu_s_qb_ph(v1_t, v1_t, v2_t, cpu_env);
gen_store_gpr(v1_t, ret);
break;
case NM_SHRA_R_W:
check_dsp(ctx);
tcg_gen_movi_tl(t0, rd);
gen_helper_shra_r_w(v1_t, t0, v1_t);
gen_store_gpr(v1_t, rt);
break;
case NM_SHRA_R_PH:
check_dsp(ctx);
tcg_gen_movi_tl(t0, rd >> 1);
switch (extract32(ctx->opcode, 10, 1)) {
case 0:
/* SHRA_PH */
gen_helper_shra_ph(v1_t, t0, v1_t);
gen_store_gpr(v1_t, rt);
break;
case 1:
/* SHRA_R_PH */
gen_helper_shra_r_ph(v1_t, t0, v1_t);
gen_store_gpr(v1_t, rt);
break;
}
break;
case NM_SHLL_S_PH:
check_dsp(ctx);
tcg_gen_movi_tl(t0, rd >> 1);
switch (extract32(ctx->opcode, 10, 2)) {
case 0:
/* SHLL_PH */
gen_helper_shll_ph(v1_t, t0, v1_t, cpu_env);
gen_store_gpr(v1_t, rt);
break;
case 2:
/* SHLL_S_PH */
gen_helper_shll_s_ph(v1_t, t0, v1_t, cpu_env);
gen_store_gpr(v1_t, rt);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_SHLL_S_W:
check_dsp(ctx);
tcg_gen_movi_tl(t0, rd);
gen_helper_shll_s_w(v1_t, t0, v1_t, cpu_env);
gen_store_gpr(v1_t, rt);
break;
case NM_REPL_PH:
check_dsp(ctx);
{
int16_t imm;
imm = sextract32(ctx->opcode, 11, 11);
imm = (int16_t)(imm << 6) >> 6;
if (rt != 0) {
tcg_gen_movi_tl(cpu_gpr[rt], dup_const(MO_16, imm));
}
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static int decode_nanomips_32_48_opc(CPUMIPSState *env, DisasContext *ctx)
{
uint16_t insn;
uint32_t op;
int rt, rs, rd;
int offset;
int imm;
insn = cpu_lduw_code(env, ctx->base.pc_next + 2);
ctx->opcode = (ctx->opcode << 16) | insn;
rt = extract32(ctx->opcode, 21, 5);
rs = extract32(ctx->opcode, 16, 5);
rd = extract32(ctx->opcode, 11, 5);
op = extract32(ctx->opcode, 26, 6);
switch (op) {
case NM_P_ADDIU:
if (rt == 0) {
/* P.RI */
switch (extract32(ctx->opcode, 19, 2)) {
case NM_SIGRIE:
default:
generate_exception_end(ctx, EXCP_RI);
break;
case NM_P_SYSCALL:
if ((extract32(ctx->opcode, 18, 1)) == NM_SYSCALL) {
generate_exception_end(ctx, EXCP_SYSCALL);
} else {
generate_exception_end(ctx, EXCP_RI);
}
break;
case NM_BREAK:
generate_exception_end(ctx, EXCP_BREAK);
break;
case NM_SDBBP:
if (is_uhi(extract32(ctx->opcode, 0, 19))) {
gen_helper_do_semihosting(cpu_env);
} else {
if (ctx->hflags & MIPS_HFLAG_SBRI) {
generate_exception_end(ctx, EXCP_RI);
} else {
generate_exception_end(ctx, EXCP_DBp);
}
}
break;
}
} else {
/* NM_ADDIU */
imm = extract32(ctx->opcode, 0, 16);
if (rs != 0) {
tcg_gen_addi_tl(cpu_gpr[rt], cpu_gpr[rs], imm);
} else {
tcg_gen_movi_tl(cpu_gpr[rt], imm);
}
tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]);
}
break;
case NM_ADDIUPC:
if (rt != 0) {
offset = sextract32(ctx->opcode, 0, 1) << 21 |
extract32(ctx->opcode, 1, 20) << 1;
target_long addr = addr_add(ctx, ctx->base.pc_next + 4, offset);
tcg_gen_movi_tl(cpu_gpr[rt], addr);
}
break;
case NM_POOL32A:
switch (ctx->opcode & 0x07) {
case NM_POOL32A0:
gen_pool32a0_nanomips_insn(env, ctx);
break;
case NM_POOL32A5:
{
int32_t op1 = extract32(ctx->opcode, 3, 7);
gen_pool32a5_nanomips_insn(ctx, op1, rd, rs, rt);
}
break;
case NM_POOL32A7:
switch (extract32(ctx->opcode, 3, 3)) {
case NM_P_LSX:
gen_p_lsx(ctx, rd, rs, rt);
break;
case NM_LSA:
/*
* In nanoMIPS, the shift field directly encodes the shift
* amount, meaning that the supported shift values are in
* the range 0 to 3 (instead of 1 to 4 in MIPSR6).
*/
gen_lsa(ctx, OPC_LSA, rd, rs, rt,
extract32(ctx->opcode, 9, 2) - 1);
break;
case NM_EXTW:
gen_ext(ctx, 32, rd, rs, rt, extract32(ctx->opcode, 6, 5));
break;
case NM_POOL32AXF:
gen_pool32axf_nanomips_insn(env, ctx);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_P_GP_W:
switch (ctx->opcode & 0x03) {
case NM_ADDIUGP_W:
if (rt != 0) {
offset = extract32(ctx->opcode, 0, 21);
gen_op_addr_addi(ctx, cpu_gpr[rt], cpu_gpr[28], offset);
}
break;
case NM_LWGP:
gen_ld(ctx, OPC_LW, rt, 28, extract32(ctx->opcode, 2, 19) << 2);
break;
case NM_SWGP:
gen_st(ctx, OPC_SW, rt, 28, extract32(ctx->opcode, 2, 19) << 2);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_P48I:
{
insn = cpu_lduw_code(env, ctx->base.pc_next + 4);
target_long addr_off = extract32(ctx->opcode, 0, 16) | insn << 16;
switch (extract32(ctx->opcode, 16, 5)) {
case NM_LI48:
check_nms(ctx);
if (rt != 0) {
tcg_gen_movi_tl(cpu_gpr[rt], addr_off);
}
break;
case NM_ADDIU48:
check_nms(ctx);
if (rt != 0) {
tcg_gen_addi_tl(cpu_gpr[rt], cpu_gpr[rt], addr_off);
tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]);
}
break;
case NM_ADDIUGP48:
check_nms(ctx);
if (rt != 0) {
gen_op_addr_addi(ctx, cpu_gpr[rt], cpu_gpr[28], addr_off);
}
break;
case NM_ADDIUPC48:
check_nms(ctx);
if (rt != 0) {
target_long addr = addr_add(ctx, ctx->base.pc_next + 6,
addr_off);
tcg_gen_movi_tl(cpu_gpr[rt], addr);
}
break;
case NM_LWPC48:
check_nms(ctx);
if (rt != 0) {
TCGv t0;
t0 = tcg_temp_new();
target_long addr = addr_add(ctx, ctx->base.pc_next + 6,
addr_off);
tcg_gen_movi_tl(t0, addr);
tcg_gen_qemu_ld_tl(cpu_gpr[rt], t0, ctx->mem_idx, MO_TESL);
tcg_temp_free(t0);
}
break;
case NM_SWPC48:
check_nms(ctx);
{
TCGv t0, t1;
t0 = tcg_temp_new();
t1 = tcg_temp_new();
target_long addr = addr_add(ctx, ctx->base.pc_next + 6,
addr_off);
tcg_gen_movi_tl(t0, addr);
gen_load_gpr(t1, rt);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL);
tcg_temp_free(t0);
tcg_temp_free(t1);
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
return 6;
}
case NM_P_U12:
switch (extract32(ctx->opcode, 12, 4)) {
case NM_ORI:
gen_logic_imm(ctx, OPC_ORI, rt, rs, extract32(ctx->opcode, 0, 12));
break;
case NM_XORI:
gen_logic_imm(ctx, OPC_XORI, rt, rs, extract32(ctx->opcode, 0, 12));
break;
case NM_ANDI:
gen_logic_imm(ctx, OPC_ANDI, rt, rs, extract32(ctx->opcode, 0, 12));
break;
case NM_P_SR:
switch (extract32(ctx->opcode, 20, 1)) {
case NM_PP_SR:
switch (ctx->opcode & 3) {
case NM_SAVE:
gen_save(ctx, rt, extract32(ctx->opcode, 16, 4),
extract32(ctx->opcode, 2, 1),
extract32(ctx->opcode, 3, 9) << 3);
break;
case NM_RESTORE:
case NM_RESTORE_JRC:
gen_restore(ctx, rt, extract32(ctx->opcode, 16, 4),
extract32(ctx->opcode, 2, 1),
extract32(ctx->opcode, 3, 9) << 3);
if ((ctx->opcode & 3) == NM_RESTORE_JRC) {
gen_compute_branch_nm(ctx, OPC_JR, 2, 31, 0, 0);
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_P_SR_F:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_SLTI:
gen_slt_imm(ctx, OPC_SLTI, rt, rs, extract32(ctx->opcode, 0, 12));
break;
case NM_SLTIU:
gen_slt_imm(ctx, OPC_SLTIU, rt, rs, extract32(ctx->opcode, 0, 12));
break;
case NM_SEQI:
{
TCGv t0 = tcg_temp_new();
imm = extract32(ctx->opcode, 0, 12);
gen_load_gpr(t0, rs);
tcg_gen_setcondi_tl(TCG_COND_EQ, t0, t0, imm);
gen_store_gpr(t0, rt);
tcg_temp_free(t0);
}
break;
case NM_ADDIUNEG:
imm = (int16_t) extract32(ctx->opcode, 0, 12);
gen_arith_imm(ctx, OPC_ADDIU, rt, rs, -imm);
break;
case NM_P_SHIFT:
{
int shift = extract32(ctx->opcode, 0, 5);
switch (extract32(ctx->opcode, 5, 4)) {
case NM_P_SLL:
if (rt == 0 && shift == 0) {
/* NOP */
} else if (rt == 0 && shift == 3) {
/* EHB - treat as NOP */
} else if (rt == 0 && shift == 5) {
/* PAUSE - treat as NOP */
} else if (rt == 0 && shift == 6) {
/* SYNC */
gen_sync(extract32(ctx->opcode, 16, 5));
} else {
/* SLL */
gen_shift_imm(ctx, OPC_SLL, rt, rs,
extract32(ctx->opcode, 0, 5));
}
break;
case NM_SRL:
gen_shift_imm(ctx, OPC_SRL, rt, rs,
extract32(ctx->opcode, 0, 5));
break;
case NM_SRA:
gen_shift_imm(ctx, OPC_SRA, rt, rs,
extract32(ctx->opcode, 0, 5));
break;
case NM_ROTR:
gen_shift_imm(ctx, OPC_ROTR, rt, rs,
extract32(ctx->opcode, 0, 5));
break;
}
}
break;
case NM_P_ROTX:
check_nms(ctx);
if (rt != 0) {
TCGv t0 = tcg_temp_new();
TCGv_i32 shift = tcg_const_i32(extract32(ctx->opcode, 0, 5));
TCGv_i32 shiftx = tcg_const_i32(extract32(ctx->opcode, 7, 4)
<< 1);
TCGv_i32 stripe = tcg_const_i32(extract32(ctx->opcode, 6, 1));
gen_load_gpr(t0, rs);
gen_helper_rotx(cpu_gpr[rt], t0, shift, shiftx, stripe);
tcg_temp_free(t0);
tcg_temp_free_i32(shift);
tcg_temp_free_i32(shiftx);
tcg_temp_free_i32(stripe);
}
break;
case NM_P_INS:
switch (((ctx->opcode >> 10) & 2) |
(extract32(ctx->opcode, 5, 1))) {
case NM_INS:
check_nms(ctx);
gen_bitops(ctx, OPC_INS, rt, rs, extract32(ctx->opcode, 0, 5),
extract32(ctx->opcode, 6, 5));
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_P_EXT:
switch (((ctx->opcode >> 10) & 2) |
(extract32(ctx->opcode, 5, 1))) {
case NM_EXT:
check_nms(ctx);
gen_bitops(ctx, OPC_EXT, rt, rs, extract32(ctx->opcode, 0, 5),
extract32(ctx->opcode, 6, 5));
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_POOL32F:
gen_pool32f_nanomips_insn(ctx);
break;
case NM_POOL32S:
break;
case NM_P_LUI:
switch (extract32(ctx->opcode, 1, 1)) {
case NM_LUI:
if (rt != 0) {
tcg_gen_movi_tl(cpu_gpr[rt],
sextract32(ctx->opcode, 0, 1) << 31 |
extract32(ctx->opcode, 2, 10) << 21 |
extract32(ctx->opcode, 12, 9) << 12);
}
break;
case NM_ALUIPC:
if (rt != 0) {
offset = sextract32(ctx->opcode, 0, 1) << 31 |
extract32(ctx->opcode, 2, 10) << 21 |
extract32(ctx->opcode, 12, 9) << 12;
target_long addr;
addr = ~0xFFF & addr_add(ctx, ctx->base.pc_next + 4, offset);
tcg_gen_movi_tl(cpu_gpr[rt], addr);
}
break;
}
break;
case NM_P_GP_BH:
{
uint32_t u = extract32(ctx->opcode, 0, 18);
switch (extract32(ctx->opcode, 18, 3)) {
case NM_LBGP:
gen_ld(ctx, OPC_LB, rt, 28, u);
break;
case NM_SBGP:
gen_st(ctx, OPC_SB, rt, 28, u);
break;
case NM_LBUGP:
gen_ld(ctx, OPC_LBU, rt, 28, u);
break;
case NM_ADDIUGP_B:
if (rt != 0) {
gen_op_addr_addi(ctx, cpu_gpr[rt], cpu_gpr[28], u);
}
break;
case NM_P_GP_LH:
u &= ~1;
switch (ctx->opcode & 1) {
case NM_LHGP:
gen_ld(ctx, OPC_LH, rt, 28, u);
break;
case NM_LHUGP:
gen_ld(ctx, OPC_LHU, rt, 28, u);
break;
}
break;
case NM_P_GP_SH:
u &= ~1;
switch (ctx->opcode & 1) {
case NM_SHGP:
gen_st(ctx, OPC_SH, rt, 28, u);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_P_GP_CP1:
u &= ~0x3;
switch (ctx->opcode & 0x3) {
case NM_LWC1GP:
gen_cop1_ldst(ctx, OPC_LWC1, rt, 28, u);
break;
case NM_LDC1GP:
gen_cop1_ldst(ctx, OPC_LDC1, rt, 28, u);
break;
case NM_SWC1GP:
gen_cop1_ldst(ctx, OPC_SWC1, rt, 28, u);
break;
case NM_SDC1GP:
gen_cop1_ldst(ctx, OPC_SDC1, rt, 28, u);
break;
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
break;
case NM_P_LS_U12:
{
uint32_t u = extract32(ctx->opcode, 0, 12);
switch (extract32(ctx->opcode, 12, 4)) {
case NM_P_PREFU12:
if (rt == 31) {
/* SYNCI */
/*
* Break the TB to be able to sync copied instructions
* immediately.
*/
ctx->base.is_jmp = DISAS_STOP;
} else {
/* PREF */
/* Treat as NOP. */
}
break;
case NM_LB:
gen_ld(ctx, OPC_LB, rt, rs, u);
break;
case NM_LH:
gen_ld(ctx, OPC_LH, rt, rs, u);
break;
case NM_LW:
gen_ld(ctx, OPC_LW, rt, rs, u);
break;
case NM_LBU:
gen_ld(ctx, OPC_LBU, rt, rs, u);
break;
case NM_LHU:
gen_ld(ctx, OPC_LHU, rt, rs, u);
break;
case NM_SB:
gen_st(ctx, OPC_SB, rt, rs, u);
break;
case NM_SH:
gen_st(ctx, OPC_SH, rt, rs, u);
break;
case NM_SW:
gen_st(ctx, OPC_SW, rt, rs, u);
break;
case NM_LWC1:
gen_cop1_ldst(ctx, OPC_LWC1, rt, rs, u);
break;
case NM_LDC1:
gen_cop1_ldst(ctx, OPC_LDC1, rt, rs, u);
break;
case NM_SWC1:
gen_cop1_ldst(ctx, OPC_SWC1, rt, rs, u);
break;
case NM_SDC1:
gen_cop1_ldst(ctx, OPC_SDC1, rt, rs, u);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
break;
case NM_P_LS_S9:
{
int32_t s = (sextract32(ctx->opcode, 15, 1) << 8) |
extract32(ctx->opcode, 0, 8);
switch (extract32(ctx->opcode, 8, 3)) {
case NM_P_LS_S0:
switch (extract32(ctx->opcode, 11, 4)) {
case NM_LBS9:
gen_ld(ctx, OPC_LB, rt, rs, s);
break;
case NM_LHS9:
gen_ld(ctx, OPC_LH, rt, rs, s);
break;
case NM_LWS9:
gen_ld(ctx, OPC_LW, rt, rs, s);
break;
case NM_LBUS9:
gen_ld(ctx, OPC_LBU, rt, rs, s);
break;
case NM_LHUS9:
gen_ld(ctx, OPC_LHU, rt, rs, s);
break;
case NM_SBS9:
gen_st(ctx, OPC_SB, rt, rs, s);
break;
case NM_SHS9:
gen_st(ctx, OPC_SH, rt, rs, s);
break;
case NM_SWS9:
gen_st(ctx, OPC_SW, rt, rs, s);
break;
case NM_LWC1S9:
gen_cop1_ldst(ctx, OPC_LWC1, rt, rs, s);
break;
case NM_LDC1S9:
gen_cop1_ldst(ctx, OPC_LDC1, rt, rs, s);
break;
case NM_SWC1S9:
gen_cop1_ldst(ctx, OPC_SWC1, rt, rs, s);
break;
case NM_SDC1S9:
gen_cop1_ldst(ctx, OPC_SDC1, rt, rs, s);
break;
case NM_P_PREFS9:
if (rt == 31) {
/* SYNCI */
/*
* Break the TB to be able to sync copied instructions
* immediately.
*/
ctx->base.is_jmp = DISAS_STOP;
} else {
/* PREF */
/* Treat as NOP. */
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_P_LS_S1:
switch (extract32(ctx->opcode, 11, 4)) {
case NM_UALH:
case NM_UASH:
check_nms(ctx);
{
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
gen_base_offset_addr(ctx, t0, rs, s);
switch (extract32(ctx->opcode, 11, 4)) {
case NM_UALH:
tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESW |
MO_UNALN);
gen_store_gpr(t0, rt);
break;
case NM_UASH:
gen_load_gpr(t1, rt);
tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUW |
MO_UNALN);
break;
}
tcg_temp_free(t0);
tcg_temp_free(t1);
}
break;
case NM_P_LL:
switch (ctx->opcode & 0x03) {
case NM_LL:
gen_ld(ctx, OPC_LL, rt, rs, s);
break;
case NM_LLWP:
check_xnp(ctx);
gen_llwp(ctx, rs, 0, rt, extract32(ctx->opcode, 3, 5));
break;
}
break;
case NM_P_SC:
switch (ctx->opcode & 0x03) {
case NM_SC:
gen_st_cond(ctx, rt, rs, s, MO_TESL, false);
break;
case NM_SCWP:
check_xnp(ctx);
gen_scwp(ctx, rs, 0, rt, extract32(ctx->opcode, 3, 5),
false);
break;
}
break;
case NM_CACHE:
check_cp0_enabled(ctx);
if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) {
gen_cache_operation(ctx, rt, rs, s);
}
break;
}
break;
case NM_P_LS_E0:
switch (extract32(ctx->opcode, 11, 4)) {
case NM_LBE:
check_eva(ctx);
check_cp0_enabled(ctx);
gen_ld(ctx, OPC_LBE, rt, rs, s);
break;
case NM_SBE:
check_eva(ctx);
check_cp0_enabled(ctx);
gen_st(ctx, OPC_SBE, rt, rs, s);
break;
case NM_LBUE:
check_eva(ctx);
check_cp0_enabled(ctx);
gen_ld(ctx, OPC_LBUE, rt, rs, s);
break;
case NM_P_PREFE:
if (rt == 31) {
/* case NM_SYNCIE */
check_eva(ctx);
check_cp0_enabled(ctx);
/*
* Break the TB to be able to sync copied instructions
* immediately.
*/
ctx->base.is_jmp = DISAS_STOP;
} else {
/* case NM_PREFE */
check_eva(ctx);
check_cp0_enabled(ctx);
/* Treat as NOP. */
}
break;
case NM_LHE:
check_eva(ctx);
check_cp0_enabled(ctx);
gen_ld(ctx, OPC_LHE, rt, rs, s);
break;
case NM_SHE:
check_eva(ctx);
check_cp0_enabled(ctx);
gen_st(ctx, OPC_SHE, rt, rs, s);
break;
case NM_LHUE:
check_eva(ctx);
check_cp0_enabled(ctx);
gen_ld(ctx, OPC_LHUE, rt, rs, s);
break;
case NM_CACHEE:
check_nms_dl_il_sl_tl_l2c(ctx);
gen_cache_operation(ctx, rt, rs, s);
break;
case NM_LWE:
check_eva(ctx);
check_cp0_enabled(ctx);
gen_ld(ctx, OPC_LWE, rt, rs, s);
break;
case NM_SWE:
check_eva(ctx);
check_cp0_enabled(ctx);
gen_st(ctx, OPC_SWE, rt, rs, s);
break;
case NM_P_LLE:
switch (extract32(ctx->opcode, 2, 2)) {
case NM_LLE:
check_xnp(ctx);
check_eva(ctx);
check_cp0_enabled(ctx);
gen_ld(ctx, OPC_LLE, rt, rs, s);
break;
case NM_LLWPE:
check_xnp(ctx);
check_eva(ctx);
check_cp0_enabled(ctx);
gen_llwp(ctx, rs, 0, rt, extract32(ctx->opcode, 3, 5));
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_P_SCE:
switch (extract32(ctx->opcode, 2, 2)) {
case NM_SCE:
check_xnp(ctx);
check_eva(ctx);
check_cp0_enabled(ctx);
gen_st_cond(ctx, rt, rs, s, MO_TESL, true);
break;
case NM_SCWPE:
check_xnp(ctx);
check_eva(ctx);
check_cp0_enabled(ctx);
gen_scwp(ctx, rs, 0, rt, extract32(ctx->opcode, 3, 5),
true);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
}
break;
case NM_P_LS_WM:
case NM_P_LS_UAWM:
check_nms(ctx);
{
int count = extract32(ctx->opcode, 12, 3);
int counter = 0;
offset = sextract32(ctx->opcode, 15, 1) << 8 |
extract32(ctx->opcode, 0, 8);
TCGv va = tcg_temp_new();
TCGv t1 = tcg_temp_new();
TCGMemOp memop = (extract32(ctx->opcode, 8, 3)) ==
NM_P_LS_UAWM ? MO_UNALN : 0;
count = (count == 0) ? 8 : count;
while (counter != count) {
int this_rt = ((rt + counter) & 0x1f) | (rt & 0x10);
int this_offset = offset + (counter << 2);
gen_base_offset_addr(ctx, va, rs, this_offset);
switch (extract32(ctx->opcode, 11, 1)) {
case NM_LWM:
tcg_gen_qemu_ld_tl(t1, va, ctx->mem_idx,
memop | MO_TESL);
gen_store_gpr(t1, this_rt);
if ((this_rt == rs) &&
(counter != (count - 1))) {
/* UNPREDICTABLE */
}
break;
case NM_SWM:
this_rt = (rt == 0) ? 0 : this_rt;
gen_load_gpr(t1, this_rt);
tcg_gen_qemu_st_tl(t1, va, ctx->mem_idx,
memop | MO_TEUL);
break;
}
counter++;
}
tcg_temp_free(va);
tcg_temp_free(t1);
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
break;
case NM_MOVE_BALC:
check_nms(ctx);
{
TCGv t0 = tcg_temp_new();
int32_t s = sextract32(ctx->opcode, 0, 1) << 21 |
extract32(ctx->opcode, 1, 20) << 1;
rd = (extract32(ctx->opcode, 24, 1)) == 0 ? 4 : 5;
rt = decode_gpr_gpr4_zero(extract32(ctx->opcode, 25, 1) << 3 |
extract32(ctx->opcode, 21, 3));
gen_load_gpr(t0, rt);
tcg_gen_mov_tl(cpu_gpr[rd], t0);
gen_compute_branch_nm(ctx, OPC_BGEZAL, 4, 0, 0, s);
tcg_temp_free(t0);
}
break;
case NM_P_BAL:
{
int32_t s = sextract32(ctx->opcode, 0, 1) << 25 |
extract32(ctx->opcode, 1, 24) << 1;
if ((extract32(ctx->opcode, 25, 1)) == 0) {
/* BC */
gen_compute_branch_nm(ctx, OPC_BEQ, 4, 0, 0, s);
} else {
/* BALC */
gen_compute_branch_nm(ctx, OPC_BGEZAL, 4, 0, 0, s);
}
}
break;
case NM_P_J:
switch (extract32(ctx->opcode, 12, 4)) {
case NM_JALRC:
case NM_JALRC_HB:
gen_compute_branch_nm(ctx, OPC_JALR, 4, rs, rt, 0);
break;
case NM_P_BALRSC:
gen_compute_nanomips_pbalrsc_branch(ctx, rs, rt);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_P_BR1:
{
int32_t s = sextract32(ctx->opcode, 0, 1) << 14 |
extract32(ctx->opcode, 1, 13) << 1;
switch (extract32(ctx->opcode, 14, 2)) {
case NM_BEQC:
check_nms(ctx);
gen_compute_branch_nm(ctx, OPC_BEQ, 4, rs, rt, s);
break;
case NM_P_BR3A:
s = sextract32(ctx->opcode, 0, 1) << 14 |
extract32(ctx->opcode, 1, 13) << 1;
check_cp1_enabled(ctx);
switch (extract32(ctx->opcode, 16, 5)) {
case NM_BC1EQZC:
gen_compute_branch_cp1_nm(ctx, OPC_BC1EQZ, rt, s);
break;
case NM_BC1NEZC:
gen_compute_branch_cp1_nm(ctx, OPC_BC1NEZ, rt, s);
break;
case NM_BPOSGE32C:
check_dsp_r3(ctx);
{
int32_t imm = extract32(ctx->opcode, 1, 13) |
extract32(ctx->opcode, 0, 1) << 13;
gen_compute_branch_nm(ctx, OPC_BPOSGE32, 4, -1, -2,
imm);
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_BGEC:
if (rs == rt) {
gen_compute_compact_branch_nm(ctx, OPC_BC, rs, rt, s);
} else {
gen_compute_compact_branch_nm(ctx, OPC_BGEC, rs, rt, s);
}
break;
case NM_BGEUC:
if (rs == rt || rt == 0) {
gen_compute_compact_branch_nm(ctx, OPC_BC, 0, 0, s);
} else if (rs == 0) {
gen_compute_compact_branch_nm(ctx, OPC_BEQZC, rt, 0, s);
} else {
gen_compute_compact_branch_nm(ctx, OPC_BGEUC, rs, rt, s);
}
break;
}
}
break;
case NM_P_BR2:
{
int32_t s = sextract32(ctx->opcode, 0, 1) << 14 |
extract32(ctx->opcode, 1, 13) << 1;
switch (extract32(ctx->opcode, 14, 2)) {
case NM_BNEC:
check_nms(ctx);
gen_compute_branch_nm(ctx, OPC_BNE, 4, rs, rt, s);
break;
case NM_BLTC:
if (rs != 0 && rt != 0 && rs == rt) {
/* NOP */
ctx->hflags |= MIPS_HFLAG_FBNSLOT;
} else {
gen_compute_compact_branch_nm(ctx, OPC_BLTC, rs, rt, s);
}
break;
case NM_BLTUC:
if (rs == 0 || rs == rt) {
/* NOP */
ctx->hflags |= MIPS_HFLAG_FBNSLOT;
} else {
gen_compute_compact_branch_nm(ctx, OPC_BLTUC, rs, rt, s);
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
break;
case NM_P_BRI:
{
int32_t s = sextract32(ctx->opcode, 0, 1) << 11 |
extract32(ctx->opcode, 1, 10) << 1;
uint32_t u = extract32(ctx->opcode, 11, 7);
gen_compute_imm_branch(ctx, extract32(ctx->opcode, 18, 3),
rt, u, s);
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
return 4;
}
static int decode_nanomips_opc(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t op;
int rt = decode_gpr_gpr3(NANOMIPS_EXTRACT_RT3(ctx->opcode));
int rs = decode_gpr_gpr3(NANOMIPS_EXTRACT_RS3(ctx->opcode));
int rd = decode_gpr_gpr3(NANOMIPS_EXTRACT_RD3(ctx->opcode));
int offset;
int imm;
/* make sure instructions are on a halfword boundary */
if (ctx->base.pc_next & 0x1) {
TCGv tmp = tcg_const_tl(ctx->base.pc_next);
tcg_gen_st_tl(tmp, cpu_env, offsetof(CPUMIPSState, CP0_BadVAddr));
tcg_temp_free(tmp);
generate_exception_end(ctx, EXCP_AdEL);
return 2;
}
op = extract32(ctx->opcode, 10, 6);
switch (op) {
case NM_P16_MV:
rt = NANOMIPS_EXTRACT_RD5(ctx->opcode);
if (rt != 0) {
/* MOVE */
rs = NANOMIPS_EXTRACT_RS5(ctx->opcode);
gen_arith(ctx, OPC_ADDU, rt, rs, 0);
} else {
/* P16.RI */
switch (extract32(ctx->opcode, 3, 2)) {
case NM_P16_SYSCALL:
if (extract32(ctx->opcode, 2, 1) == 0) {
generate_exception_end(ctx, EXCP_SYSCALL);
} else {
generate_exception_end(ctx, EXCP_RI);
}
break;
case NM_BREAK16:
generate_exception_end(ctx, EXCP_BREAK);
break;
case NM_SDBBP16:
if (is_uhi(extract32(ctx->opcode, 0, 3))) {
gen_helper_do_semihosting(cpu_env);
} else {
if (ctx->hflags & MIPS_HFLAG_SBRI) {
generate_exception_end(ctx, EXCP_RI);
} else {
generate_exception_end(ctx, EXCP_DBp);
}
}
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
}
break;
case NM_P16_SHIFT:
{
int shift = extract32(ctx->opcode, 0, 3);
uint32_t opc = 0;
shift = (shift == 0) ? 8 : shift;
switch (extract32(ctx->opcode, 3, 1)) {
case NM_SLL16:
opc = OPC_SLL;
break;
case NM_SRL16:
opc = OPC_SRL;
break;
}
gen_shift_imm(ctx, opc, rt, rs, shift);
}
break;
case NM_P16C:
switch (ctx->opcode & 1) {
case NM_POOL16C_0:
gen_pool16c_nanomips_insn(ctx);
break;
case NM_LWXS16:
gen_ldxs(ctx, rt, rs, rd);
break;
}
break;
case NM_P16_A1:
switch (extract32(ctx->opcode, 6, 1)) {
case NM_ADDIUR1SP:
imm = extract32(ctx->opcode, 0, 6) << 2;
gen_arith_imm(ctx, OPC_ADDIU, rt, 29, imm);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_P16_A2:
switch (extract32(ctx->opcode, 3, 1)) {
case NM_ADDIUR2:
imm = extract32(ctx->opcode, 0, 3) << 2;
gen_arith_imm(ctx, OPC_ADDIU, rt, rs, imm);
break;
case NM_P_ADDIURS5:
rt = extract32(ctx->opcode, 5, 5);
if (rt != 0) {
/* imm = sign_extend(s[3] . s[2:0] , from_nbits = 4) */
imm = (sextract32(ctx->opcode, 4, 1) << 3) |
(extract32(ctx->opcode, 0, 3));
gen_arith_imm(ctx, OPC_ADDIU, rt, rt, imm);
}
break;
}
break;
case NM_P16_ADDU:
switch (ctx->opcode & 0x1) {
case NM_ADDU16:
gen_arith(ctx, OPC_ADDU, rd, rs, rt);
break;
case NM_SUBU16:
gen_arith(ctx, OPC_SUBU, rd, rs, rt);
break;
}
break;
case NM_P16_4X4:
rt = (extract32(ctx->opcode, 9, 1) << 3) |
extract32(ctx->opcode, 5, 3);
rs = (extract32(ctx->opcode, 4, 1) << 3) |
extract32(ctx->opcode, 0, 3);
rt = decode_gpr_gpr4(rt);
rs = decode_gpr_gpr4(rs);
switch ((extract32(ctx->opcode, 7, 2) & 0x2) |
(extract32(ctx->opcode, 3, 1))) {
case NM_ADDU4X4:
check_nms(ctx);
gen_arith(ctx, OPC_ADDU, rt, rs, rt);
break;
case NM_MUL4X4:
check_nms(ctx);
gen_r6_muldiv(ctx, R6_OPC_MUL, rt, rs, rt);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_LI16:
{
int imm = extract32(ctx->opcode, 0, 7);
imm = (imm == 0x7f ? -1 : imm);
if (rt != 0) {
tcg_gen_movi_tl(cpu_gpr[rt], imm);
}
}
break;
case NM_ANDI16:
{
uint32_t u = extract32(ctx->opcode, 0, 4);
u = (u == 12) ? 0xff :
(u == 13) ? 0xffff : u;
gen_logic_imm(ctx, OPC_ANDI, rt, rs, u);
}
break;
case NM_P16_LB:
offset = extract32(ctx->opcode, 0, 2);
switch (extract32(ctx->opcode, 2, 2)) {
case NM_LB16:
gen_ld(ctx, OPC_LB, rt, rs, offset);
break;
case NM_SB16:
rt = decode_gpr_gpr3_src_store(
NANOMIPS_EXTRACT_RT3(ctx->opcode));
gen_st(ctx, OPC_SB, rt, rs, offset);
break;
case NM_LBU16:
gen_ld(ctx, OPC_LBU, rt, rs, offset);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_P16_LH:
offset = extract32(ctx->opcode, 1, 2) << 1;
switch ((extract32(ctx->opcode, 3, 1) << 1) | (ctx->opcode & 1)) {
case NM_LH16:
gen_ld(ctx, OPC_LH, rt, rs, offset);
break;
case NM_SH16:
rt = decode_gpr_gpr3_src_store(
NANOMIPS_EXTRACT_RT3(ctx->opcode));
gen_st(ctx, OPC_SH, rt, rs, offset);
break;
case NM_LHU16:
gen_ld(ctx, OPC_LHU, rt, rs, offset);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case NM_LW16:
offset = extract32(ctx->opcode, 0, 4) << 2;
gen_ld(ctx, OPC_LW, rt, rs, offset);
break;
case NM_LWSP16:
rt = NANOMIPS_EXTRACT_RD5(ctx->opcode);
offset = extract32(ctx->opcode, 0, 5) << 2;
gen_ld(ctx, OPC_LW, rt, 29, offset);
break;
case NM_LW4X4:
check_nms(ctx);
rt = (extract32(ctx->opcode, 9, 1) << 3) |
extract32(ctx->opcode, 5, 3);
rs = (extract32(ctx->opcode, 4, 1) << 3) |
extract32(ctx->opcode, 0, 3);
offset = (extract32(ctx->opcode, 3, 1) << 3) |
(extract32(ctx->opcode, 8, 1) << 2);
rt = decode_gpr_gpr4(rt);
rs = decode_gpr_gpr4(rs);
gen_ld(ctx, OPC_LW, rt, rs, offset);
break;
case NM_SW4X4:
check_nms(ctx);
rt = (extract32(ctx->opcode, 9, 1) << 3) |
extract32(ctx->opcode, 5, 3);
rs = (extract32(ctx->opcode, 4, 1) << 3) |
extract32(ctx->opcode, 0, 3);
offset = (extract32(ctx->opcode, 3, 1) << 3) |
(extract32(ctx->opcode, 8, 1) << 2);
rt = decode_gpr_gpr4_zero(rt);
rs = decode_gpr_gpr4(rs);
gen_st(ctx, OPC_SW, rt, rs, offset);
break;
case NM_LWGP16:
offset = extract32(ctx->opcode, 0, 7) << 2;
gen_ld(ctx, OPC_LW, rt, 28, offset);
break;
case NM_SWSP16:
rt = NANOMIPS_EXTRACT_RD5(ctx->opcode);
offset = extract32(ctx->opcode, 0, 5) << 2;
gen_st(ctx, OPC_SW, rt, 29, offset);
break;
case NM_SW16:
rt = decode_gpr_gpr3_src_store(
NANOMIPS_EXTRACT_RT3(ctx->opcode));
rs = decode_gpr_gpr3(NANOMIPS_EXTRACT_RS3(ctx->opcode));
offset = extract32(ctx->opcode, 0, 4) << 2;
gen_st(ctx, OPC_SW, rt, rs, offset);
break;
case NM_SWGP16:
rt = decode_gpr_gpr3_src_store(
NANOMIPS_EXTRACT_RT3(ctx->opcode));
offset = extract32(ctx->opcode, 0, 7) << 2;
gen_st(ctx, OPC_SW, rt, 28, offset);
break;
case NM_BC16:
gen_compute_branch_nm(ctx, OPC_BEQ, 2, 0, 0,
(sextract32(ctx->opcode, 0, 1) << 10) |
(extract32(ctx->opcode, 1, 9) << 1));
break;
case NM_BALC16:
gen_compute_branch_nm(ctx, OPC_BGEZAL, 2, 0, 0,
(sextract32(ctx->opcode, 0, 1) << 10) |
(extract32(ctx->opcode, 1, 9) << 1));
break;
case NM_BEQZC16:
gen_compute_branch_nm(ctx, OPC_BEQ, 2, rt, 0,
(sextract32(ctx->opcode, 0, 1) << 7) |
(extract32(ctx->opcode, 1, 6) << 1));
break;
case NM_BNEZC16:
gen_compute_branch_nm(ctx, OPC_BNE, 2, rt, 0,
(sextract32(ctx->opcode, 0, 1) << 7) |
(extract32(ctx->opcode, 1, 6) << 1));
break;
case NM_P16_BR:
switch (ctx->opcode & 0xf) {
case 0:
/* P16.JRC */
switch (extract32(ctx->opcode, 4, 1)) {
case NM_JRC:
gen_compute_branch_nm(ctx, OPC_JR, 2,
extract32(ctx->opcode, 5, 5), 0, 0);
break;
case NM_JALRC16:
gen_compute_branch_nm(ctx, OPC_JALR, 2,
extract32(ctx->opcode, 5, 5), 31, 0);
break;
}
break;
default:
{
/* P16.BRI */
uint32_t opc = extract32(ctx->opcode, 4, 3) <
extract32(ctx->opcode, 7, 3) ? OPC_BEQ : OPC_BNE;
gen_compute_branch_nm(ctx, opc, 2, rs, rt,
extract32(ctx->opcode, 0, 4) << 1);
}
break;
}
break;
case NM_P16_SR:
{
int count = extract32(ctx->opcode, 0, 4);
int u = extract32(ctx->opcode, 4, 4) << 4;
rt = 30 + extract32(ctx->opcode, 9, 1);
switch (extract32(ctx->opcode, 8, 1)) {
case NM_SAVE16:
gen_save(ctx, rt, count, 0, u);
break;
case NM_RESTORE_JRC16:
gen_restore(ctx, rt, count, 0, u);
gen_compute_branch_nm(ctx, OPC_JR, 2, 31, 0, 0);
break;
}
}
break;
case NM_MOVEP:
case NM_MOVEPREV:
check_nms(ctx);
{
static const int gpr2reg1[] = {4, 5, 6, 7};
static const int gpr2reg2[] = {5, 6, 7, 8};
int re;
int rd2 = extract32(ctx->opcode, 3, 1) << 1 |
extract32(ctx->opcode, 8, 1);
int r1 = gpr2reg1[rd2];
int r2 = gpr2reg2[rd2];
int r3 = extract32(ctx->opcode, 4, 1) << 3 |
extract32(ctx->opcode, 0, 3);
int r4 = extract32(ctx->opcode, 9, 1) << 3 |
extract32(ctx->opcode, 5, 3);
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
if (op == NM_MOVEP) {
rd = r1;
re = r2;
rs = decode_gpr_gpr4_zero(r3);
rt = decode_gpr_gpr4_zero(r4);
} else {
rd = decode_gpr_gpr4(r3);
re = decode_gpr_gpr4(r4);
rs = r1;
rt = r2;
}
gen_load_gpr(t0, rs);
gen_load_gpr(t1, rt);
tcg_gen_mov_tl(cpu_gpr[rd], t0);
tcg_gen_mov_tl(cpu_gpr[re], t1);
tcg_temp_free(t0);
tcg_temp_free(t1);
}
break;
default:
return decode_nanomips_32_48_opc(env, ctx);
}
return 2;
}
/* SmartMIPS extension to MIPS32 */
#if defined(TARGET_MIPS64)
/* MDMX extension to MIPS64 */
#endif
/* MIPSDSP functions. */
static void gen_mipsdsp_ld(DisasContext *ctx, uint32_t opc,
int rd, int base, int offset)
{
TCGv t0;
check_dsp(ctx);
t0 = tcg_temp_new();
if (base == 0) {
gen_load_gpr(t0, offset);
} else if (offset == 0) {
gen_load_gpr(t0, base);
} else {
gen_op_addr_add(ctx, t0, cpu_gpr[base], cpu_gpr[offset]);
}
switch (opc) {
case OPC_LBUX:
tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_UB);
gen_store_gpr(t0, rd);
break;
case OPC_LHX:
tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESW);
gen_store_gpr(t0, rd);
break;
case OPC_LWX:
tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESL);
gen_store_gpr(t0, rd);
break;
#if defined(TARGET_MIPS64)
case OPC_LDX:
tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TEQ);
gen_store_gpr(t0, rd);
break;
#endif
}
tcg_temp_free(t0);
}
static void gen_mipsdsp_arith(DisasContext *ctx, uint32_t op1, uint32_t op2,
int ret, int v1, int v2)
{
TCGv v1_t;
TCGv v2_t;
if (ret == 0) {
/* Treat as NOP. */
return;
}
v1_t = tcg_temp_new();
v2_t = tcg_temp_new();
gen_load_gpr(v1_t, v1);
gen_load_gpr(v2_t, v2);
switch (op1) {
/* OPC_MULT_G_2E is equal OPC_ADDUH_QB_DSP */
case OPC_MULT_G_2E:
check_dsp_r2(ctx);
switch (op2) {
case OPC_ADDUH_QB:
gen_helper_adduh_qb(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_ADDUH_R_QB:
gen_helper_adduh_r_qb(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_ADDQH_PH:
gen_helper_addqh_ph(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_ADDQH_R_PH:
gen_helper_addqh_r_ph(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_ADDQH_W:
gen_helper_addqh_w(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_ADDQH_R_W:
gen_helper_addqh_r_w(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SUBUH_QB:
gen_helper_subuh_qb(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SUBUH_R_QB:
gen_helper_subuh_r_qb(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SUBQH_PH:
gen_helper_subqh_ph(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SUBQH_R_PH:
gen_helper_subqh_r_ph(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SUBQH_W:
gen_helper_subqh_w(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SUBQH_R_W:
gen_helper_subqh_r_w(cpu_gpr[ret], v1_t, v2_t);
break;
}
break;
case OPC_ABSQ_S_PH_DSP:
switch (op2) {
case OPC_ABSQ_S_QB:
check_dsp_r2(ctx);
gen_helper_absq_s_qb(cpu_gpr[ret], v2_t, cpu_env);
break;
case OPC_ABSQ_S_PH:
check_dsp(ctx);
gen_helper_absq_s_ph(cpu_gpr[ret], v2_t, cpu_env);
break;
case OPC_ABSQ_S_W:
check_dsp(ctx);
gen_helper_absq_s_w(cpu_gpr[ret], v2_t, cpu_env);
break;
case OPC_PRECEQ_W_PHL:
check_dsp(ctx);
tcg_gen_andi_tl(cpu_gpr[ret], v2_t, 0xFFFF0000);
tcg_gen_ext32s_tl(cpu_gpr[ret], cpu_gpr[ret]);
break;
case OPC_PRECEQ_W_PHR:
check_dsp(ctx);
tcg_gen_andi_tl(cpu_gpr[ret], v2_t, 0x0000FFFF);
tcg_gen_shli_tl(cpu_gpr[ret], cpu_gpr[ret], 16);
tcg_gen_ext32s_tl(cpu_gpr[ret], cpu_gpr[ret]);
break;
case OPC_PRECEQU_PH_QBL:
check_dsp(ctx);
gen_helper_precequ_ph_qbl(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEQU_PH_QBR:
check_dsp(ctx);
gen_helper_precequ_ph_qbr(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEQU_PH_QBLA:
check_dsp(ctx);
gen_helper_precequ_ph_qbla(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEQU_PH_QBRA:
check_dsp(ctx);
gen_helper_precequ_ph_qbra(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEU_PH_QBL:
check_dsp(ctx);
gen_helper_preceu_ph_qbl(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEU_PH_QBR:
check_dsp(ctx);
gen_helper_preceu_ph_qbr(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEU_PH_QBLA:
check_dsp(ctx);
gen_helper_preceu_ph_qbla(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEU_PH_QBRA:
check_dsp(ctx);
gen_helper_preceu_ph_qbra(cpu_gpr[ret], v2_t);
break;
}
break;
case OPC_ADDU_QB_DSP:
switch (op2) {
case OPC_ADDQ_PH:
check_dsp(ctx);
gen_helper_addq_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDQ_S_PH:
check_dsp(ctx);
gen_helper_addq_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDQ_S_W:
check_dsp(ctx);
gen_helper_addq_s_w(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDU_QB:
check_dsp(ctx);
gen_helper_addu_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDU_S_QB:
check_dsp(ctx);
gen_helper_addu_s_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDU_PH:
check_dsp_r2(ctx);
gen_helper_addu_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDU_S_PH:
check_dsp_r2(ctx);
gen_helper_addu_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBQ_PH:
check_dsp(ctx);
gen_helper_subq_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBQ_S_PH:
check_dsp(ctx);
gen_helper_subq_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBQ_S_W:
check_dsp(ctx);
gen_helper_subq_s_w(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBU_QB:
check_dsp(ctx);
gen_helper_subu_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBU_S_QB:
check_dsp(ctx);
gen_helper_subu_s_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBU_PH:
check_dsp_r2(ctx);
gen_helper_subu_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBU_S_PH:
check_dsp_r2(ctx);
gen_helper_subu_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDSC:
check_dsp(ctx);
gen_helper_addsc(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDWC:
check_dsp(ctx);
gen_helper_addwc(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MODSUB:
check_dsp(ctx);
gen_helper_modsub(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_RADDU_W_QB:
check_dsp(ctx);
gen_helper_raddu_w_qb(cpu_gpr[ret], v1_t);
break;
}
break;
case OPC_CMPU_EQ_QB_DSP:
switch (op2) {
case OPC_PRECR_QB_PH:
check_dsp_r2(ctx);
gen_helper_precr_qb_ph(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_PRECRQ_QB_PH:
check_dsp(ctx);
gen_helper_precrq_qb_ph(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_PRECR_SRA_PH_W:
check_dsp_r2(ctx);
{
TCGv_i32 sa_t = tcg_const_i32(v2);
gen_helper_precr_sra_ph_w(cpu_gpr[ret], sa_t, v1_t,
cpu_gpr[ret]);
tcg_temp_free_i32(sa_t);
break;
}
case OPC_PRECR_SRA_R_PH_W:
check_dsp_r2(ctx);
{
TCGv_i32 sa_t = tcg_const_i32(v2);
gen_helper_precr_sra_r_ph_w(cpu_gpr[ret], sa_t, v1_t,
cpu_gpr[ret]);
tcg_temp_free_i32(sa_t);
break;
}
case OPC_PRECRQ_PH_W:
check_dsp(ctx);
gen_helper_precrq_ph_w(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_PRECRQ_RS_PH_W:
check_dsp(ctx);
gen_helper_precrq_rs_ph_w(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_PRECRQU_S_QB_PH:
check_dsp(ctx);
gen_helper_precrqu_s_qb_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
}
break;
#ifdef TARGET_MIPS64
case OPC_ABSQ_S_QH_DSP:
switch (op2) {
case OPC_PRECEQ_L_PWL:
check_dsp(ctx);
tcg_gen_andi_tl(cpu_gpr[ret], v2_t, 0xFFFFFFFF00000000ull);
break;
case OPC_PRECEQ_L_PWR:
check_dsp(ctx);
tcg_gen_shli_tl(cpu_gpr[ret], v2_t, 32);
break;
case OPC_PRECEQ_PW_QHL:
check_dsp(ctx);
gen_helper_preceq_pw_qhl(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEQ_PW_QHR:
check_dsp(ctx);
gen_helper_preceq_pw_qhr(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEQ_PW_QHLA:
check_dsp(ctx);
gen_helper_preceq_pw_qhla(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEQ_PW_QHRA:
check_dsp(ctx);
gen_helper_preceq_pw_qhra(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEQU_QH_OBL:
check_dsp(ctx);
gen_helper_precequ_qh_obl(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEQU_QH_OBR:
check_dsp(ctx);
gen_helper_precequ_qh_obr(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEQU_QH_OBLA:
check_dsp(ctx);
gen_helper_precequ_qh_obla(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEQU_QH_OBRA:
check_dsp(ctx);
gen_helper_precequ_qh_obra(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEU_QH_OBL:
check_dsp(ctx);
gen_helper_preceu_qh_obl(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEU_QH_OBR:
check_dsp(ctx);
gen_helper_preceu_qh_obr(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEU_QH_OBLA:
check_dsp(ctx);
gen_helper_preceu_qh_obla(cpu_gpr[ret], v2_t);
break;
case OPC_PRECEU_QH_OBRA:
check_dsp(ctx);
gen_helper_preceu_qh_obra(cpu_gpr[ret], v2_t);
break;
case OPC_ABSQ_S_OB:
check_dsp_r2(ctx);
gen_helper_absq_s_ob(cpu_gpr[ret], v2_t, cpu_env);
break;
case OPC_ABSQ_S_PW:
check_dsp(ctx);
gen_helper_absq_s_pw(cpu_gpr[ret], v2_t, cpu_env);
break;
case OPC_ABSQ_S_QH:
check_dsp(ctx);
gen_helper_absq_s_qh(cpu_gpr[ret], v2_t, cpu_env);
break;
}
break;
case OPC_ADDU_OB_DSP:
switch (op2) {
case OPC_RADDU_L_OB:
check_dsp(ctx);
gen_helper_raddu_l_ob(cpu_gpr[ret], v1_t);
break;
case OPC_SUBQ_PW:
check_dsp(ctx);
gen_helper_subq_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBQ_S_PW:
check_dsp(ctx);
gen_helper_subq_s_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBQ_QH:
check_dsp(ctx);
gen_helper_subq_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBQ_S_QH:
check_dsp(ctx);
gen_helper_subq_s_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBU_OB:
check_dsp(ctx);
gen_helper_subu_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBU_S_OB:
check_dsp(ctx);
gen_helper_subu_s_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBU_QH:
check_dsp_r2(ctx);
gen_helper_subu_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBU_S_QH:
check_dsp_r2(ctx);
gen_helper_subu_s_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SUBUH_OB:
check_dsp_r2(ctx);
gen_helper_subuh_ob(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SUBUH_R_OB:
check_dsp_r2(ctx);
gen_helper_subuh_r_ob(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_ADDQ_PW:
check_dsp(ctx);
gen_helper_addq_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDQ_S_PW:
check_dsp(ctx);
gen_helper_addq_s_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDQ_QH:
check_dsp(ctx);
gen_helper_addq_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDQ_S_QH:
check_dsp(ctx);
gen_helper_addq_s_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDU_OB:
check_dsp(ctx);
gen_helper_addu_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDU_S_OB:
check_dsp(ctx);
gen_helper_addu_s_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDU_QH:
check_dsp_r2(ctx);
gen_helper_addu_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDU_S_QH:
check_dsp_r2(ctx);
gen_helper_addu_s_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_ADDUH_OB:
check_dsp_r2(ctx);
gen_helper_adduh_ob(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_ADDUH_R_OB:
check_dsp_r2(ctx);
gen_helper_adduh_r_ob(cpu_gpr[ret], v1_t, v2_t);
break;
}
break;
case OPC_CMPU_EQ_OB_DSP:
switch (op2) {
case OPC_PRECR_OB_QH:
check_dsp_r2(ctx);
gen_helper_precr_ob_qh(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_PRECR_SRA_QH_PW:
check_dsp_r2(ctx);
{
TCGv_i32 ret_t = tcg_const_i32(ret);
gen_helper_precr_sra_qh_pw(v2_t, v1_t, v2_t, ret_t);
tcg_temp_free_i32(ret_t);
break;
}
case OPC_PRECR_SRA_R_QH_PW:
check_dsp_r2(ctx);
{
TCGv_i32 sa_v = tcg_const_i32(ret);
gen_helper_precr_sra_r_qh_pw(v2_t, v1_t, v2_t, sa_v);
tcg_temp_free_i32(sa_v);
break;
}
case OPC_PRECRQ_OB_QH:
check_dsp(ctx);
gen_helper_precrq_ob_qh(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_PRECRQ_PW_L:
check_dsp(ctx);
gen_helper_precrq_pw_l(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_PRECRQ_QH_PW:
check_dsp(ctx);
gen_helper_precrq_qh_pw(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_PRECRQ_RS_QH_PW:
check_dsp(ctx);
gen_helper_precrq_rs_qh_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_PRECRQU_S_OB_QH:
check_dsp(ctx);
gen_helper_precrqu_s_ob_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
}
break;
#endif
}
tcg_temp_free(v1_t);
tcg_temp_free(v2_t);
}
static void gen_mipsdsp_shift(DisasContext *ctx, uint32_t opc,
int ret, int v1, int v2)
{
uint32_t op2;
TCGv t0;
TCGv v1_t;
TCGv v2_t;
if (ret == 0) {
/* Treat as NOP. */
return;
}
t0 = tcg_temp_new();
v1_t = tcg_temp_new();
v2_t = tcg_temp_new();
tcg_gen_movi_tl(t0, v1);
gen_load_gpr(v1_t, v1);
gen_load_gpr(v2_t, v2);
switch (opc) {
case OPC_SHLL_QB_DSP:
{
op2 = MASK_SHLL_QB(ctx->opcode);
switch (op2) {
case OPC_SHLL_QB:
check_dsp(ctx);
gen_helper_shll_qb(cpu_gpr[ret], t0, v2_t, cpu_env);
break;
case OPC_SHLLV_QB:
check_dsp(ctx);
gen_helper_shll_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SHLL_PH:
check_dsp(ctx);
gen_helper_shll_ph(cpu_gpr[ret], t0, v2_t, cpu_env);
break;
case OPC_SHLLV_PH:
check_dsp(ctx);
gen_helper_shll_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SHLL_S_PH:
check_dsp(ctx);
gen_helper_shll_s_ph(cpu_gpr[ret], t0, v2_t, cpu_env);
break;
case OPC_SHLLV_S_PH:
check_dsp(ctx);
gen_helper_shll_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SHLL_S_W:
check_dsp(ctx);
gen_helper_shll_s_w(cpu_gpr[ret], t0, v2_t, cpu_env);
break;
case OPC_SHLLV_S_W:
check_dsp(ctx);
gen_helper_shll_s_w(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_SHRL_QB:
check_dsp(ctx);
gen_helper_shrl_qb(cpu_gpr[ret], t0, v2_t);
break;
case OPC_SHRLV_QB:
check_dsp(ctx);
gen_helper_shrl_qb(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SHRL_PH:
check_dsp_r2(ctx);
gen_helper_shrl_ph(cpu_gpr[ret], t0, v2_t);
break;
case OPC_SHRLV_PH:
check_dsp_r2(ctx);
gen_helper_shrl_ph(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SHRA_QB:
check_dsp_r2(ctx);
gen_helper_shra_qb(cpu_gpr[ret], t0, v2_t);
break;
case OPC_SHRA_R_QB:
check_dsp_r2(ctx);
gen_helper_shra_r_qb(cpu_gpr[ret], t0, v2_t);
break;
case OPC_SHRAV_QB:
check_dsp_r2(ctx);
gen_helper_shra_qb(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SHRAV_R_QB:
check_dsp_r2(ctx);
gen_helper_shra_r_qb(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SHRA_PH:
check_dsp(ctx);
gen_helper_shra_ph(cpu_gpr[ret], t0, v2_t);
break;
case OPC_SHRA_R_PH:
check_dsp(ctx);
gen_helper_shra_r_ph(cpu_gpr[ret], t0, v2_t);
break;
case OPC_SHRAV_PH:
check_dsp(ctx);
gen_helper_shra_ph(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SHRAV_R_PH:
check_dsp(ctx);
gen_helper_shra_r_ph(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_SHRA_R_W:
check_dsp(ctx);
gen_helper_shra_r_w(cpu_gpr[ret], t0, v2_t);
break;
case OPC_SHRAV_R_W:
check_dsp(ctx);
gen_helper_shra_r_w(cpu_gpr[ret], v1_t, v2_t);
break;
default: /* Invalid */
MIPS_INVAL("MASK SHLL.QB");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
}
#ifdef TARGET_MIPS64
case OPC_SHLL_OB_DSP:
op2 = MASK_SHLL_OB(ctx->opcode);
switch (op2) {
case OPC_SHLL_PW:
check_dsp(ctx);
gen_helper_shll_pw(cpu_gpr[ret], v2_t, t0, cpu_env);
break;
case OPC_SHLLV_PW:
check_dsp(ctx);
gen_helper_shll_pw(cpu_gpr[ret], v2_t, v1_t, cpu_env);
break;
case OPC_SHLL_S_PW:
check_dsp(ctx);
gen_helper_shll_s_pw(cpu_gpr[ret], v2_t, t0, cpu_env);
break;
case OPC_SHLLV_S_PW:
check_dsp(ctx);
gen_helper_shll_s_pw(cpu_gpr[ret], v2_t, v1_t, cpu_env);
break;
case OPC_SHLL_OB:
check_dsp(ctx);
gen_helper_shll_ob(cpu_gpr[ret], v2_t, t0, cpu_env);
break;
case OPC_SHLLV_OB:
check_dsp(ctx);
gen_helper_shll_ob(cpu_gpr[ret], v2_t, v1_t, cpu_env);
break;
case OPC_SHLL_QH:
check_dsp(ctx);
gen_helper_shll_qh(cpu_gpr[ret], v2_t, t0, cpu_env);
break;
case OPC_SHLLV_QH:
check_dsp(ctx);
gen_helper_shll_qh(cpu_gpr[ret], v2_t, v1_t, cpu_env);
break;
case OPC_SHLL_S_QH:
check_dsp(ctx);
gen_helper_shll_s_qh(cpu_gpr[ret], v2_t, t0, cpu_env);
break;
case OPC_SHLLV_S_QH:
check_dsp(ctx);
gen_helper_shll_s_qh(cpu_gpr[ret], v2_t, v1_t, cpu_env);
break;
case OPC_SHRA_OB:
check_dsp_r2(ctx);
gen_helper_shra_ob(cpu_gpr[ret], v2_t, t0);
break;
case OPC_SHRAV_OB:
check_dsp_r2(ctx);
gen_helper_shra_ob(cpu_gpr[ret], v2_t, v1_t);
break;
case OPC_SHRA_R_OB:
check_dsp_r2(ctx);
gen_helper_shra_r_ob(cpu_gpr[ret], v2_t, t0);
break;
case OPC_SHRAV_R_OB:
check_dsp_r2(ctx);
gen_helper_shra_r_ob(cpu_gpr[ret], v2_t, v1_t);
break;
case OPC_SHRA_PW:
check_dsp(ctx);
gen_helper_shra_pw(cpu_gpr[ret], v2_t, t0);
break;
case OPC_SHRAV_PW:
check_dsp(ctx);
gen_helper_shra_pw(cpu_gpr[ret], v2_t, v1_t);
break;
case OPC_SHRA_R_PW:
check_dsp(ctx);
gen_helper_shra_r_pw(cpu_gpr[ret], v2_t, t0);
break;
case OPC_SHRAV_R_PW:
check_dsp(ctx);
gen_helper_shra_r_pw(cpu_gpr[ret], v2_t, v1_t);
break;
case OPC_SHRA_QH:
check_dsp(ctx);
gen_helper_shra_qh(cpu_gpr[ret], v2_t, t0);
break;
case OPC_SHRAV_QH:
check_dsp(ctx);
gen_helper_shra_qh(cpu_gpr[ret], v2_t, v1_t);
break;
case OPC_SHRA_R_QH:
check_dsp(ctx);
gen_helper_shra_r_qh(cpu_gpr[ret], v2_t, t0);
break;
case OPC_SHRAV_R_QH:
check_dsp(ctx);
gen_helper_shra_r_qh(cpu_gpr[ret], v2_t, v1_t);
break;
case OPC_SHRL_OB:
check_dsp(ctx);
gen_helper_shrl_ob(cpu_gpr[ret], v2_t, t0);
break;
case OPC_SHRLV_OB:
check_dsp(ctx);
gen_helper_shrl_ob(cpu_gpr[ret], v2_t, v1_t);
break;
case OPC_SHRL_QH:
check_dsp_r2(ctx);
gen_helper_shrl_qh(cpu_gpr[ret], v2_t, t0);
break;
case OPC_SHRLV_QH:
check_dsp_r2(ctx);
gen_helper_shrl_qh(cpu_gpr[ret], v2_t, v1_t);
break;
default: /* Invalid */
MIPS_INVAL("MASK SHLL.OB");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
#endif
}
tcg_temp_free(t0);
tcg_temp_free(v1_t);
tcg_temp_free(v2_t);
}
static void gen_mipsdsp_multiply(DisasContext *ctx, uint32_t op1, uint32_t op2,
int ret, int v1, int v2, int check_ret)
{
TCGv_i32 t0;
TCGv v1_t;
TCGv v2_t;
if ((ret == 0) && (check_ret == 1)) {
/* Treat as NOP. */
return;
}
t0 = tcg_temp_new_i32();
v1_t = tcg_temp_new();
v2_t = tcg_temp_new();
tcg_gen_movi_i32(t0, ret);
gen_load_gpr(v1_t, v1);
gen_load_gpr(v2_t, v2);
switch (op1) {
/*
* OPC_MULT_G_2E, OPC_ADDUH_QB_DSP, OPC_MUL_PH_DSP have
* the same mask and op1.
*/
case OPC_MULT_G_2E:
check_dsp_r2(ctx);
switch (op2) {
case OPC_MUL_PH:
gen_helper_mul_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MUL_S_PH:
gen_helper_mul_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MULQ_S_W:
gen_helper_mulq_s_w(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MULQ_RS_W:
gen_helper_mulq_rs_w(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
}
break;
case OPC_DPA_W_PH_DSP:
switch (op2) {
case OPC_DPAU_H_QBL:
check_dsp(ctx);
gen_helper_dpau_h_qbl(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPAU_H_QBR:
check_dsp(ctx);
gen_helper_dpau_h_qbr(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPSU_H_QBL:
check_dsp(ctx);
gen_helper_dpsu_h_qbl(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPSU_H_QBR:
check_dsp(ctx);
gen_helper_dpsu_h_qbr(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPA_W_PH:
check_dsp_r2(ctx);
gen_helper_dpa_w_ph(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPAX_W_PH:
check_dsp_r2(ctx);
gen_helper_dpax_w_ph(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPAQ_S_W_PH:
check_dsp(ctx);
gen_helper_dpaq_s_w_ph(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPAQX_S_W_PH:
check_dsp_r2(ctx);
gen_helper_dpaqx_s_w_ph(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPAQX_SA_W_PH:
check_dsp_r2(ctx);
gen_helper_dpaqx_sa_w_ph(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPS_W_PH:
check_dsp_r2(ctx);
gen_helper_dps_w_ph(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPSX_W_PH:
check_dsp_r2(ctx);
gen_helper_dpsx_w_ph(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPSQ_S_W_PH:
check_dsp(ctx);
gen_helper_dpsq_s_w_ph(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPSQX_S_W_PH:
check_dsp_r2(ctx);
gen_helper_dpsqx_s_w_ph(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPSQX_SA_W_PH:
check_dsp_r2(ctx);
gen_helper_dpsqx_sa_w_ph(t0, v1_t, v2_t, cpu_env);
break;
case OPC_MULSAQ_S_W_PH:
check_dsp(ctx);
gen_helper_mulsaq_s_w_ph(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPAQ_SA_L_W:
check_dsp(ctx);
gen_helper_dpaq_sa_l_w(t0, v1_t, v2_t, cpu_env);
break;
case OPC_DPSQ_SA_L_W:
check_dsp(ctx);
gen_helper_dpsq_sa_l_w(t0, v1_t, v2_t, cpu_env);
break;
case OPC_MAQ_S_W_PHL:
check_dsp(ctx);
gen_helper_maq_s_w_phl(t0, v1_t, v2_t, cpu_env);
break;
case OPC_MAQ_S_W_PHR:
check_dsp(ctx);
gen_helper_maq_s_w_phr(t0, v1_t, v2_t, cpu_env);
break;
case OPC_MAQ_SA_W_PHL:
check_dsp(ctx);
gen_helper_maq_sa_w_phl(t0, v1_t, v2_t, cpu_env);
break;
case OPC_MAQ_SA_W_PHR:
check_dsp(ctx);
gen_helper_maq_sa_w_phr(t0, v1_t, v2_t, cpu_env);
break;
case OPC_MULSA_W_PH:
check_dsp_r2(ctx);
gen_helper_mulsa_w_ph(t0, v1_t, v2_t, cpu_env);
break;
}
break;
#ifdef TARGET_MIPS64
case OPC_DPAQ_W_QH_DSP:
{
int ac = ret & 0x03;
tcg_gen_movi_i32(t0, ac);
switch (op2) {
case OPC_DMADD:
check_dsp(ctx);
gen_helper_dmadd(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DMADDU:
check_dsp(ctx);
gen_helper_dmaddu(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DMSUB:
check_dsp(ctx);
gen_helper_dmsub(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DMSUBU:
check_dsp(ctx);
gen_helper_dmsubu(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DPA_W_QH:
check_dsp_r2(ctx);
gen_helper_dpa_w_qh(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DPAQ_S_W_QH:
check_dsp(ctx);
gen_helper_dpaq_s_w_qh(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DPAQ_SA_L_PW:
check_dsp(ctx);
gen_helper_dpaq_sa_l_pw(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DPAU_H_OBL:
check_dsp(ctx);
gen_helper_dpau_h_obl(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DPAU_H_OBR:
check_dsp(ctx);
gen_helper_dpau_h_obr(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DPS_W_QH:
check_dsp_r2(ctx);
gen_helper_dps_w_qh(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DPSQ_S_W_QH:
check_dsp(ctx);
gen_helper_dpsq_s_w_qh(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DPSQ_SA_L_PW:
check_dsp(ctx);
gen_helper_dpsq_sa_l_pw(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DPSU_H_OBL:
check_dsp(ctx);
gen_helper_dpsu_h_obl(v1_t, v2_t, t0, cpu_env);
break;
case OPC_DPSU_H_OBR:
check_dsp(ctx);
gen_helper_dpsu_h_obr(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MAQ_S_L_PWL:
check_dsp(ctx);
gen_helper_maq_s_l_pwl(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MAQ_S_L_PWR:
check_dsp(ctx);
gen_helper_maq_s_l_pwr(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MAQ_S_W_QHLL:
check_dsp(ctx);
gen_helper_maq_s_w_qhll(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MAQ_SA_W_QHLL:
check_dsp(ctx);
gen_helper_maq_sa_w_qhll(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MAQ_S_W_QHLR:
check_dsp(ctx);
gen_helper_maq_s_w_qhlr(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MAQ_SA_W_QHLR:
check_dsp(ctx);
gen_helper_maq_sa_w_qhlr(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MAQ_S_W_QHRL:
check_dsp(ctx);
gen_helper_maq_s_w_qhrl(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MAQ_SA_W_QHRL:
check_dsp(ctx);
gen_helper_maq_sa_w_qhrl(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MAQ_S_W_QHRR:
check_dsp(ctx);
gen_helper_maq_s_w_qhrr(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MAQ_SA_W_QHRR:
check_dsp(ctx);
gen_helper_maq_sa_w_qhrr(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MULSAQ_S_L_PW:
check_dsp(ctx);
gen_helper_mulsaq_s_l_pw(v1_t, v2_t, t0, cpu_env);
break;
case OPC_MULSAQ_S_W_QH:
check_dsp(ctx);
gen_helper_mulsaq_s_w_qh(v1_t, v2_t, t0, cpu_env);
break;
}
}
break;
#endif
case OPC_ADDU_QB_DSP:
switch (op2) {
case OPC_MULEU_S_PH_QBL:
check_dsp(ctx);
gen_helper_muleu_s_ph_qbl(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MULEU_S_PH_QBR:
check_dsp(ctx);
gen_helper_muleu_s_ph_qbr(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MULQ_RS_PH:
check_dsp(ctx);
gen_helper_mulq_rs_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MULEQ_S_W_PHL:
check_dsp(ctx);
gen_helper_muleq_s_w_phl(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MULEQ_S_W_PHR:
check_dsp(ctx);
gen_helper_muleq_s_w_phr(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MULQ_S_PH:
check_dsp_r2(ctx);
gen_helper_mulq_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
}
break;
#ifdef TARGET_MIPS64
case OPC_ADDU_OB_DSP:
switch (op2) {
case OPC_MULEQ_S_PW_QHL:
check_dsp(ctx);
gen_helper_muleq_s_pw_qhl(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MULEQ_S_PW_QHR:
check_dsp(ctx);
gen_helper_muleq_s_pw_qhr(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MULEU_S_QH_OBL:
check_dsp(ctx);
gen_helper_muleu_s_qh_obl(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MULEU_S_QH_OBR:
check_dsp(ctx);
gen_helper_muleu_s_qh_obr(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_MULQ_RS_QH:
check_dsp(ctx);
gen_helper_mulq_rs_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
}
break;
#endif
}
tcg_temp_free_i32(t0);
tcg_temp_free(v1_t);
tcg_temp_free(v2_t);
}
static void gen_mipsdsp_bitinsn(DisasContext *ctx, uint32_t op1, uint32_t op2,
int ret, int val)
{
int16_t imm;
TCGv t0;
TCGv val_t;
if (ret == 0) {
/* Treat as NOP. */
return;
}
t0 = tcg_temp_new();
val_t = tcg_temp_new();
gen_load_gpr(val_t, val);
switch (op1) {
case OPC_ABSQ_S_PH_DSP:
switch (op2) {
case OPC_BITREV:
check_dsp(ctx);
gen_helper_bitrev(cpu_gpr[ret], val_t);
break;
case OPC_REPL_QB:
check_dsp(ctx);
{
target_long result;
imm = (ctx->opcode >> 16) & 0xFF;
result = (uint32_t)imm << 24 |
(uint32_t)imm << 16 |
(uint32_t)imm << 8 |
(uint32_t)imm;
result = (int32_t)result;
tcg_gen_movi_tl(cpu_gpr[ret], result);
}
break;
case OPC_REPLV_QB:
check_dsp(ctx);
tcg_gen_ext8u_tl(cpu_gpr[ret], val_t);
tcg_gen_shli_tl(t0, cpu_gpr[ret], 8);
tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0);
tcg_gen_shli_tl(t0, cpu_gpr[ret], 16);
tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0);
tcg_gen_ext32s_tl(cpu_gpr[ret], cpu_gpr[ret]);
break;
case OPC_REPL_PH:
check_dsp(ctx);
{
imm = (ctx->opcode >> 16) & 0x03FF;
imm = (int16_t)(imm << 6) >> 6;
tcg_gen_movi_tl(cpu_gpr[ret], \
(target_long)((int32_t)imm << 16 | \
(uint16_t)imm));
}
break;
case OPC_REPLV_PH:
check_dsp(ctx);
tcg_gen_ext16u_tl(cpu_gpr[ret], val_t);
tcg_gen_shli_tl(t0, cpu_gpr[ret], 16);
tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0);
tcg_gen_ext32s_tl(cpu_gpr[ret], cpu_gpr[ret]);
break;
}
break;
#ifdef TARGET_MIPS64
case OPC_ABSQ_S_QH_DSP:
switch (op2) {
case OPC_REPL_OB:
check_dsp(ctx);
{
target_long temp;
imm = (ctx->opcode >> 16) & 0xFF;
temp = ((uint64_t)imm << 8) | (uint64_t)imm;
temp = (temp << 16) | temp;
temp = (temp << 32) | temp;
tcg_gen_movi_tl(cpu_gpr[ret], temp);
break;
}
case OPC_REPL_PW:
check_dsp(ctx);
{
target_long temp;
imm = (ctx->opcode >> 16) & 0x03FF;
imm = (int16_t)(imm << 6) >> 6;
temp = ((target_long)imm << 32) \
| ((target_long)imm & 0xFFFFFFFF);
tcg_gen_movi_tl(cpu_gpr[ret], temp);
break;
}
case OPC_REPL_QH:
check_dsp(ctx);
{
target_long temp;
imm = (ctx->opcode >> 16) & 0x03FF;
imm = (int16_t)(imm << 6) >> 6;
temp = ((uint64_t)(uint16_t)imm << 48) |
((uint64_t)(uint16_t)imm << 32) |
((uint64_t)(uint16_t)imm << 16) |
(uint64_t)(uint16_t)imm;
tcg_gen_movi_tl(cpu_gpr[ret], temp);
break;
}
case OPC_REPLV_OB:
check_dsp(ctx);
tcg_gen_ext8u_tl(cpu_gpr[ret], val_t);
tcg_gen_shli_tl(t0, cpu_gpr[ret], 8);
tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0);
tcg_gen_shli_tl(t0, cpu_gpr[ret], 16);
tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0);
tcg_gen_shli_tl(t0, cpu_gpr[ret], 32);
tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0);
break;
case OPC_REPLV_PW:
check_dsp(ctx);
tcg_gen_ext32u_i64(cpu_gpr[ret], val_t);
tcg_gen_shli_tl(t0, cpu_gpr[ret], 32);
tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0);
break;
case OPC_REPLV_QH:
check_dsp(ctx);
tcg_gen_ext16u_tl(cpu_gpr[ret], val_t);
tcg_gen_shli_tl(t0, cpu_gpr[ret], 16);
tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0);
tcg_gen_shli_tl(t0, cpu_gpr[ret], 32);
tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0);
break;
}
break;
#endif
}
tcg_temp_free(t0);
tcg_temp_free(val_t);
}
static void gen_mipsdsp_add_cmp_pick(DisasContext *ctx,
uint32_t op1, uint32_t op2,
int ret, int v1, int v2, int check_ret)
{
TCGv t1;
TCGv v1_t;
TCGv v2_t;
if ((ret == 0) && (check_ret == 1)) {
/* Treat as NOP. */
return;
}
t1 = tcg_temp_new();
v1_t = tcg_temp_new();
v2_t = tcg_temp_new();
gen_load_gpr(v1_t, v1);
gen_load_gpr(v2_t, v2);
switch (op1) {
case OPC_CMPU_EQ_QB_DSP:
switch (op2) {
case OPC_CMPU_EQ_QB:
check_dsp(ctx);
gen_helper_cmpu_eq_qb(v1_t, v2_t, cpu_env);
break;
case OPC_CMPU_LT_QB:
check_dsp(ctx);
gen_helper_cmpu_lt_qb(v1_t, v2_t, cpu_env);
break;
case OPC_CMPU_LE_QB:
check_dsp(ctx);
gen_helper_cmpu_le_qb(v1_t, v2_t, cpu_env);
break;
case OPC_CMPGU_EQ_QB:
check_dsp(ctx);
gen_helper_cmpgu_eq_qb(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_CMPGU_LT_QB:
check_dsp(ctx);
gen_helper_cmpgu_lt_qb(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_CMPGU_LE_QB:
check_dsp(ctx);
gen_helper_cmpgu_le_qb(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_CMPGDU_EQ_QB:
check_dsp_r2(ctx);
gen_helper_cmpgu_eq_qb(t1, v1_t, v2_t);
tcg_gen_mov_tl(cpu_gpr[ret], t1);
tcg_gen_andi_tl(cpu_dspctrl, cpu_dspctrl, 0xF0FFFFFF);
tcg_gen_shli_tl(t1, t1, 24);
tcg_gen_or_tl(cpu_dspctrl, cpu_dspctrl, t1);
break;
case OPC_CMPGDU_LT_QB:
check_dsp_r2(ctx);
gen_helper_cmpgu_lt_qb(t1, v1_t, v2_t);
tcg_gen_mov_tl(cpu_gpr[ret], t1);
tcg_gen_andi_tl(cpu_dspctrl, cpu_dspctrl, 0xF0FFFFFF);
tcg_gen_shli_tl(t1, t1, 24);
tcg_gen_or_tl(cpu_dspctrl, cpu_dspctrl, t1);
break;
case OPC_CMPGDU_LE_QB:
check_dsp_r2(ctx);
gen_helper_cmpgu_le_qb(t1, v1_t, v2_t);
tcg_gen_mov_tl(cpu_gpr[ret], t1);
tcg_gen_andi_tl(cpu_dspctrl, cpu_dspctrl, 0xF0FFFFFF);
tcg_gen_shli_tl(t1, t1, 24);
tcg_gen_or_tl(cpu_dspctrl, cpu_dspctrl, t1);
break;
case OPC_CMP_EQ_PH:
check_dsp(ctx);
gen_helper_cmp_eq_ph(v1_t, v2_t, cpu_env);
break;
case OPC_CMP_LT_PH:
check_dsp(ctx);
gen_helper_cmp_lt_ph(v1_t, v2_t, cpu_env);
break;
case OPC_CMP_LE_PH:
check_dsp(ctx);
gen_helper_cmp_le_ph(v1_t, v2_t, cpu_env);
break;
case OPC_PICK_QB:
check_dsp(ctx);
gen_helper_pick_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_PICK_PH:
check_dsp(ctx);
gen_helper_pick_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_PACKRL_PH:
check_dsp(ctx);
gen_helper_packrl_ph(cpu_gpr[ret], v1_t, v2_t);
break;
}
break;
#ifdef TARGET_MIPS64
case OPC_CMPU_EQ_OB_DSP:
switch (op2) {
case OPC_CMP_EQ_PW:
check_dsp(ctx);
gen_helper_cmp_eq_pw(v1_t, v2_t, cpu_env);
break;
case OPC_CMP_LT_PW:
check_dsp(ctx);
gen_helper_cmp_lt_pw(v1_t, v2_t, cpu_env);
break;
case OPC_CMP_LE_PW:
check_dsp(ctx);
gen_helper_cmp_le_pw(v1_t, v2_t, cpu_env);
break;
case OPC_CMP_EQ_QH:
check_dsp(ctx);
gen_helper_cmp_eq_qh(v1_t, v2_t, cpu_env);
break;
case OPC_CMP_LT_QH:
check_dsp(ctx);
gen_helper_cmp_lt_qh(v1_t, v2_t, cpu_env);
break;
case OPC_CMP_LE_QH:
check_dsp(ctx);
gen_helper_cmp_le_qh(v1_t, v2_t, cpu_env);
break;
case OPC_CMPGDU_EQ_OB:
check_dsp_r2(ctx);
gen_helper_cmpgdu_eq_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_CMPGDU_LT_OB:
check_dsp_r2(ctx);
gen_helper_cmpgdu_lt_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_CMPGDU_LE_OB:
check_dsp_r2(ctx);
gen_helper_cmpgdu_le_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_CMPGU_EQ_OB:
check_dsp(ctx);
gen_helper_cmpgu_eq_ob(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_CMPGU_LT_OB:
check_dsp(ctx);
gen_helper_cmpgu_lt_ob(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_CMPGU_LE_OB:
check_dsp(ctx);
gen_helper_cmpgu_le_ob(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_CMPU_EQ_OB:
check_dsp(ctx);
gen_helper_cmpu_eq_ob(v1_t, v2_t, cpu_env);
break;
case OPC_CMPU_LT_OB:
check_dsp(ctx);
gen_helper_cmpu_lt_ob(v1_t, v2_t, cpu_env);
break;
case OPC_CMPU_LE_OB:
check_dsp(ctx);
gen_helper_cmpu_le_ob(v1_t, v2_t, cpu_env);
break;
case OPC_PACKRL_PW:
check_dsp(ctx);
gen_helper_packrl_pw(cpu_gpr[ret], v1_t, v2_t);
break;
case OPC_PICK_OB:
check_dsp(ctx);
gen_helper_pick_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_PICK_PW:
check_dsp(ctx);
gen_helper_pick_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
case OPC_PICK_QH:
check_dsp(ctx);
gen_helper_pick_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env);
break;
}
break;
#endif
}
tcg_temp_free(t1);
tcg_temp_free(v1_t);
tcg_temp_free(v2_t);
}
static void gen_mipsdsp_append(CPUMIPSState *env, DisasContext *ctx,
uint32_t op1, int rt, int rs, int sa)
{
TCGv t0;
check_dsp_r2(ctx);
if (rt == 0) {
/* Treat as NOP. */
return;
}
t0 = tcg_temp_new();
gen_load_gpr(t0, rs);
switch (op1) {
case OPC_APPEND_DSP:
switch (MASK_APPEND(ctx->opcode)) {
case OPC_APPEND:
if (sa != 0) {
tcg_gen_deposit_tl(cpu_gpr[rt], t0, cpu_gpr[rt], sa, 32 - sa);
}
tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]);
break;
case OPC_PREPEND:
if (sa != 0) {
tcg_gen_ext32u_tl(cpu_gpr[rt], cpu_gpr[rt]);
tcg_gen_shri_tl(cpu_gpr[rt], cpu_gpr[rt], sa);
tcg_gen_shli_tl(t0, t0, 32 - sa);
tcg_gen_or_tl(cpu_gpr[rt], cpu_gpr[rt], t0);
}
tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]);
break;
case OPC_BALIGN:
sa &= 3;
if (sa != 0 && sa != 2) {
tcg_gen_shli_tl(cpu_gpr[rt], cpu_gpr[rt], 8 * sa);
tcg_gen_ext32u_tl(t0, t0);
tcg_gen_shri_tl(t0, t0, 8 * (4 - sa));
tcg_gen_or_tl(cpu_gpr[rt], cpu_gpr[rt], t0);
}
tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]);
break;
default: /* Invalid */
MIPS_INVAL("MASK APPEND");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
#ifdef TARGET_MIPS64
case OPC_DAPPEND_DSP:
switch (MASK_DAPPEND(ctx->opcode)) {
case OPC_DAPPEND:
if (sa != 0) {
tcg_gen_deposit_tl(cpu_gpr[rt], t0, cpu_gpr[rt], sa, 64 - sa);
}
break;
case OPC_PREPENDD:
tcg_gen_shri_tl(cpu_gpr[rt], cpu_gpr[rt], 0x20 | sa);
tcg_gen_shli_tl(t0, t0, 64 - (0x20 | sa));
tcg_gen_or_tl(cpu_gpr[rt], t0, t0);
break;
case OPC_PREPENDW:
if (sa != 0) {
tcg_gen_shri_tl(cpu_gpr[rt], cpu_gpr[rt], sa);
tcg_gen_shli_tl(t0, t0, 64 - sa);
tcg_gen_or_tl(cpu_gpr[rt], cpu_gpr[rt], t0);
}
break;
case OPC_DBALIGN:
sa &= 7;
if (sa != 0 && sa != 2 && sa != 4) {
tcg_gen_shli_tl(cpu_gpr[rt], cpu_gpr[rt], 8 * sa);
tcg_gen_shri_tl(t0, t0, 8 * (8 - sa));
tcg_gen_or_tl(cpu_gpr[rt], cpu_gpr[rt], t0);
}
break;
default: /* Invalid */
MIPS_INVAL("MASK DAPPEND");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
#endif
}
tcg_temp_free(t0);
}
static void gen_mipsdsp_accinsn(DisasContext *ctx, uint32_t op1, uint32_t op2,
int ret, int v1, int v2, int check_ret)
{
TCGv t0;
TCGv t1;
TCGv v1_t;
TCGv v2_t;
int16_t imm;
if ((ret == 0) && (check_ret == 1)) {
/* Treat as NOP. */
return;
}
t0 = tcg_temp_new();
t1 = tcg_temp_new();
v1_t = tcg_temp_new();
v2_t = tcg_temp_new();
gen_load_gpr(v1_t, v1);
gen_load_gpr(v2_t, v2);
switch (op1) {
case OPC_EXTR_W_DSP:
check_dsp(ctx);
switch (op2) {
case OPC_EXTR_W:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_extr_w(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_EXTR_R_W:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_extr_r_w(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_EXTR_RS_W:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_extr_rs_w(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_EXTR_S_H:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_extr_s_h(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_EXTRV_S_H:
tcg_gen_movi_tl(t0, v2);
gen_helper_extr_s_h(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_EXTRV_W:
tcg_gen_movi_tl(t0, v2);
gen_helper_extr_w(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_EXTRV_R_W:
tcg_gen_movi_tl(t0, v2);
gen_helper_extr_r_w(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_EXTRV_RS_W:
tcg_gen_movi_tl(t0, v2);
gen_helper_extr_rs_w(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_EXTP:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_extp(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_EXTPV:
tcg_gen_movi_tl(t0, v2);
gen_helper_extp(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_EXTPDP:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_extpdp(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_EXTPDPV:
tcg_gen_movi_tl(t0, v2);
gen_helper_extpdp(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_SHILO:
imm = (ctx->opcode >> 20) & 0x3F;
tcg_gen_movi_tl(t0, ret);
tcg_gen_movi_tl(t1, imm);
gen_helper_shilo(t0, t1, cpu_env);
break;
case OPC_SHILOV:
tcg_gen_movi_tl(t0, ret);
gen_helper_shilo(t0, v1_t, cpu_env);
break;
case OPC_MTHLIP:
tcg_gen_movi_tl(t0, ret);
gen_helper_mthlip(t0, v1_t, cpu_env);
break;
case OPC_WRDSP:
imm = (ctx->opcode >> 11) & 0x3FF;
tcg_gen_movi_tl(t0, imm);
gen_helper_wrdsp(v1_t, t0, cpu_env);
break;
case OPC_RDDSP:
imm = (ctx->opcode >> 16) & 0x03FF;
tcg_gen_movi_tl(t0, imm);
gen_helper_rddsp(cpu_gpr[ret], t0, cpu_env);
break;
}
break;
#ifdef TARGET_MIPS64
case OPC_DEXTR_W_DSP:
check_dsp(ctx);
switch (op2) {
case OPC_DMTHLIP:
tcg_gen_movi_tl(t0, ret);
gen_helper_dmthlip(v1_t, t0, cpu_env);
break;
case OPC_DSHILO:
{
int shift = (ctx->opcode >> 19) & 0x7F;
int ac = (ctx->opcode >> 11) & 0x03;
tcg_gen_movi_tl(t0, shift);
tcg_gen_movi_tl(t1, ac);
gen_helper_dshilo(t0, t1, cpu_env);
break;
}
case OPC_DSHILOV:
{
int ac = (ctx->opcode >> 11) & 0x03;
tcg_gen_movi_tl(t0, ac);
gen_helper_dshilo(v1_t, t0, cpu_env);
break;
}
case OPC_DEXTP:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_dextp(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_DEXTPV:
tcg_gen_movi_tl(t0, v2);
gen_helper_dextp(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_DEXTPDP:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_dextpdp(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_DEXTPDPV:
tcg_gen_movi_tl(t0, v2);
gen_helper_dextpdp(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_DEXTR_L:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_dextr_l(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_DEXTR_R_L:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_dextr_r_l(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_DEXTR_RS_L:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_dextr_rs_l(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_DEXTR_W:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_dextr_w(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_DEXTR_R_W:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_dextr_r_w(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_DEXTR_RS_W:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_dextr_rs_w(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_DEXTR_S_H:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_dextr_s_h(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_DEXTRV_S_H:
tcg_gen_movi_tl(t0, v2);
tcg_gen_movi_tl(t1, v1);
gen_helper_dextr_s_h(cpu_gpr[ret], t0, t1, cpu_env);
break;
case OPC_DEXTRV_L:
tcg_gen_movi_tl(t0, v2);
gen_helper_dextr_l(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_DEXTRV_R_L:
tcg_gen_movi_tl(t0, v2);
gen_helper_dextr_r_l(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_DEXTRV_RS_L:
tcg_gen_movi_tl(t0, v2);
gen_helper_dextr_rs_l(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_DEXTRV_W:
tcg_gen_movi_tl(t0, v2);
gen_helper_dextr_w(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_DEXTRV_R_W:
tcg_gen_movi_tl(t0, v2);
gen_helper_dextr_r_w(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
case OPC_DEXTRV_RS_W:
tcg_gen_movi_tl(t0, v2);
gen_helper_dextr_rs_w(cpu_gpr[ret], t0, v1_t, cpu_env);
break;
}
break;
#endif
}
tcg_temp_free(t0);
tcg_temp_free(t1);
tcg_temp_free(v1_t);
tcg_temp_free(v2_t);
}
/* End MIPSDSP functions. */
static void decode_opc_special_r6(CPUMIPSState *env, DisasContext *ctx)
{
int rs, rt, rd, sa;
uint32_t op1, op2;
rs = (ctx->opcode >> 21) & 0x1f;
rt = (ctx->opcode >> 16) & 0x1f;
rd = (ctx->opcode >> 11) & 0x1f;
sa = (ctx->opcode >> 6) & 0x1f;
op1 = MASK_SPECIAL(ctx->opcode);
switch (op1) {
case OPC_LSA:
gen_lsa(ctx, op1, rd, rs, rt, extract32(ctx->opcode, 6, 2));
break;
case OPC_MULT:
case OPC_MULTU:
case OPC_DIV:
case OPC_DIVU:
op2 = MASK_R6_MULDIV(ctx->opcode);
switch (op2) {
case R6_OPC_MUL:
case R6_OPC_MUH:
case R6_OPC_MULU:
case R6_OPC_MUHU:
case R6_OPC_DIV:
case R6_OPC_MOD:
case R6_OPC_DIVU:
case R6_OPC_MODU:
gen_r6_muldiv(ctx, op2, rd, rs, rt);
break;
default:
MIPS_INVAL("special_r6 muldiv");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_SELEQZ:
case OPC_SELNEZ:
gen_cond_move(ctx, op1, rd, rs, rt);
break;
case R6_OPC_CLO:
case R6_OPC_CLZ:
if (rt == 0 && sa == 1) {
/*
* Major opcode and function field is shared with preR6 MFHI/MTHI.
* We need additionally to check other fields.
*/
gen_cl(ctx, op1, rd, rs);
} else {
generate_exception_end(ctx, EXCP_RI);
}
break;
case R6_OPC_SDBBP:
if (is_uhi(extract32(ctx->opcode, 6, 20))) {
gen_helper_do_semihosting(cpu_env);
} else {
if (ctx->hflags & MIPS_HFLAG_SBRI) {
generate_exception_end(ctx, EXCP_RI);
} else {
generate_exception_end(ctx, EXCP_DBp);
}
}
break;
#if defined(TARGET_MIPS64)
case OPC_DLSA:
check_mips_64(ctx);
gen_lsa(ctx, op1, rd, rs, rt, extract32(ctx->opcode, 6, 2));
break;
case R6_OPC_DCLO:
case R6_OPC_DCLZ:
if (rt == 0 && sa == 1) {
/*
* Major opcode and function field is shared with preR6 MFHI/MTHI.
* We need additionally to check other fields.
*/
check_mips_64(ctx);
gen_cl(ctx, op1, rd, rs);
} else {
generate_exception_end(ctx, EXCP_RI);
}
break;
case OPC_DMULT:
case OPC_DMULTU:
case OPC_DDIV:
case OPC_DDIVU:
op2 = MASK_R6_MULDIV(ctx->opcode);
switch (op2) {
case R6_OPC_DMUL:
case R6_OPC_DMUH:
case R6_OPC_DMULU:
case R6_OPC_DMUHU:
case R6_OPC_DDIV:
case R6_OPC_DMOD:
case R6_OPC_DDIVU:
case R6_OPC_DMODU:
check_mips_64(ctx);
gen_r6_muldiv(ctx, op2, rd, rs, rt);
break;
default:
MIPS_INVAL("special_r6 muldiv");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
#endif
default: /* Invalid */
MIPS_INVAL("special_r6");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void decode_opc_special_tx79(CPUMIPSState *env, DisasContext *ctx)
{
int rs = extract32(ctx->opcode, 21, 5);
int rt = extract32(ctx->opcode, 16, 5);
int rd = extract32(ctx->opcode, 11, 5);
uint32_t op1 = MASK_SPECIAL(ctx->opcode);
switch (op1) {
case OPC_MOVN: /* Conditional move */
case OPC_MOVZ:
gen_cond_move(ctx, op1, rd, rs, rt);
break;
case OPC_MFHI: /* Move from HI/LO */
case OPC_MFLO:
gen_HILO(ctx, op1, 0, rd);
break;
case OPC_MTHI:
case OPC_MTLO: /* Move to HI/LO */
gen_HILO(ctx, op1, 0, rs);
break;
case OPC_MULT:
case OPC_MULTU:
gen_mul_txx9(ctx, op1, rd, rs, rt);
break;
case OPC_DIV:
case OPC_DIVU:
gen_muldiv(ctx, op1, 0, rs, rt);
break;
#if defined(TARGET_MIPS64)
case OPC_DMULT:
case OPC_DMULTU:
case OPC_DDIV:
case OPC_DDIVU:
check_insn_opc_user_only(ctx, INSN_R5900);
gen_muldiv(ctx, op1, 0, rs, rt);
break;
#endif
case OPC_JR:
gen_compute_branch(ctx, op1, 4, rs, 0, 0, 4);
break;
default: /* Invalid */
MIPS_INVAL("special_tx79");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void decode_opc_special_legacy(CPUMIPSState *env, DisasContext *ctx)
{
int rs, rt, rd, sa;
uint32_t op1;
rs = (ctx->opcode >> 21) & 0x1f;
rt = (ctx->opcode >> 16) & 0x1f;
rd = (ctx->opcode >> 11) & 0x1f;
sa = (ctx->opcode >> 6) & 0x1f;
op1 = MASK_SPECIAL(ctx->opcode);
switch (op1) {
case OPC_MOVN: /* Conditional move */
case OPC_MOVZ:
check_insn(ctx, ISA_MIPS4 | ISA_MIPS32 |
INSN_LOONGSON2E | INSN_LOONGSON2F);
gen_cond_move(ctx, op1, rd, rs, rt);
break;
case OPC_MFHI: /* Move from HI/LO */
case OPC_MFLO:
gen_HILO(ctx, op1, rs & 3, rd);
break;
case OPC_MTHI:
case OPC_MTLO: /* Move to HI/LO */
gen_HILO(ctx, op1, rd & 3, rs);
break;
case OPC_MOVCI:
check_insn(ctx, ISA_MIPS4 | ISA_MIPS32);
if (env->CP0_Config1 & (1 << CP0C1_FP)) {
check_cp1_enabled(ctx);
gen_movci(ctx, rd, rs, (ctx->opcode >> 18) & 0x7,
(ctx->opcode >> 16) & 1);
} else {
generate_exception_err(ctx, EXCP_CpU, 1);
}
break;
case OPC_MULT:
case OPC_MULTU:
if (sa) {
check_insn(ctx, INSN_VR54XX);
op1 = MASK_MUL_VR54XX(ctx->opcode);
gen_mul_vr54xx(ctx, op1, rd, rs, rt);
} else {
gen_muldiv(ctx, op1, rd & 3, rs, rt);
}
break;
case OPC_DIV:
case OPC_DIVU:
gen_muldiv(ctx, op1, 0, rs, rt);
break;
#if defined(TARGET_MIPS64)
case OPC_DMULT:
case OPC_DMULTU:
case OPC_DDIV:
case OPC_DDIVU:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_muldiv(ctx, op1, 0, rs, rt);
break;
#endif
case OPC_JR:
gen_compute_branch(ctx, op1, 4, rs, rd, sa, 4);
break;
case OPC_SPIM:
#ifdef MIPS_STRICT_STANDARD
MIPS_INVAL("SPIM");
generate_exception_end(ctx, EXCP_RI);
#else
/* Implemented as RI exception for now. */
MIPS_INVAL("spim (unofficial)");
generate_exception_end(ctx, EXCP_RI);
#endif
break;
default: /* Invalid */
MIPS_INVAL("special_legacy");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void decode_opc_special(CPUMIPSState *env, DisasContext *ctx)
{
int rs, rt, rd, sa;
uint32_t op1;
rs = (ctx->opcode >> 21) & 0x1f;
rt = (ctx->opcode >> 16) & 0x1f;
rd = (ctx->opcode >> 11) & 0x1f;
sa = (ctx->opcode >> 6) & 0x1f;
op1 = MASK_SPECIAL(ctx->opcode);
switch (op1) {
case OPC_SLL: /* Shift with immediate */
if (sa == 5 && rd == 0 &&
rs == 0 && rt == 0) { /* PAUSE */
if ((ctx->insn_flags & ISA_MIPS32R6) &&
(ctx->hflags & MIPS_HFLAG_BMASK)) {
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/* Fallthrough */
case OPC_SRA:
gen_shift_imm(ctx, op1, rd, rt, sa);
break;
case OPC_SRL:
switch ((ctx->opcode >> 21) & 0x1f) {
case 1:
/* rotr is decoded as srl on non-R2 CPUs */
if (ctx->insn_flags & ISA_MIPS32R2) {
op1 = OPC_ROTR;
}
/* Fallthrough */
case 0:
gen_shift_imm(ctx, op1, rd, rt, sa);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_ADD:
case OPC_ADDU:
case OPC_SUB:
case OPC_SUBU:
gen_arith(ctx, op1, rd, rs, rt);
break;
case OPC_SLLV: /* Shifts */
case OPC_SRAV:
gen_shift(ctx, op1, rd, rs, rt);
break;
case OPC_SRLV:
switch ((ctx->opcode >> 6) & 0x1f) {
case 1:
/* rotrv is decoded as srlv on non-R2 CPUs */
if (ctx->insn_flags & ISA_MIPS32R2) {
op1 = OPC_ROTRV;
}
/* Fallthrough */
case 0:
gen_shift(ctx, op1, rd, rs, rt);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_SLT: /* Set on less than */
case OPC_SLTU:
gen_slt(ctx, op1, rd, rs, rt);
break;
case OPC_AND: /* Logic*/
case OPC_OR:
case OPC_NOR:
case OPC_XOR:
gen_logic(ctx, op1, rd, rs, rt);
break;
case OPC_JALR:
gen_compute_branch(ctx, op1, 4, rs, rd, sa, 4);
break;
case OPC_TGE: /* Traps */
case OPC_TGEU:
case OPC_TLT:
case OPC_TLTU:
case OPC_TEQ:
case OPC_TNE:
check_insn(ctx, ISA_MIPS2);
gen_trap(ctx, op1, rs, rt, -1);
break;
case OPC_LSA: /* OPC_PMON */
if ((ctx->insn_flags & ISA_MIPS32R6) ||
(env->CP0_Config3 & (1 << CP0C3_MSAP))) {
decode_opc_special_r6(env, ctx);
} else {
/* Pmon entry point, also R4010 selsl */
#ifdef MIPS_STRICT_STANDARD
MIPS_INVAL("PMON / selsl");
generate_exception_end(ctx, EXCP_RI);
#else
gen_helper_0e0i(pmon, sa);
#endif
}
break;
case OPC_SYSCALL:
generate_exception_end(ctx, EXCP_SYSCALL);
break;
case OPC_BREAK:
generate_exception_end(ctx, EXCP_BREAK);
break;
case OPC_SYNC:
check_insn(ctx, ISA_MIPS2);
gen_sync(extract32(ctx->opcode, 6, 5));
break;
#if defined(TARGET_MIPS64)
/* MIPS64 specific opcodes */
case OPC_DSLL:
case OPC_DSRA:
case OPC_DSLL32:
case OPC_DSRA32:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_shift_imm(ctx, op1, rd, rt, sa);
break;
case OPC_DSRL:
switch ((ctx->opcode >> 21) & 0x1f) {
case 1:
/* drotr is decoded as dsrl on non-R2 CPUs */
if (ctx->insn_flags & ISA_MIPS32R2) {
op1 = OPC_DROTR;
}
/* Fallthrough */
case 0:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_shift_imm(ctx, op1, rd, rt, sa);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_DSRL32:
switch ((ctx->opcode >> 21) & 0x1f) {
case 1:
/* drotr32 is decoded as dsrl32 on non-R2 CPUs */
if (ctx->insn_flags & ISA_MIPS32R2) {
op1 = OPC_DROTR32;
}
/* Fallthrough */
case 0:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_shift_imm(ctx, op1, rd, rt, sa);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_DADD:
case OPC_DADDU:
case OPC_DSUB:
case OPC_DSUBU:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_arith(ctx, op1, rd, rs, rt);
break;
case OPC_DSLLV:
case OPC_DSRAV:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_shift(ctx, op1, rd, rs, rt);
break;
case OPC_DSRLV:
switch ((ctx->opcode >> 6) & 0x1f) {
case 1:
/* drotrv is decoded as dsrlv on non-R2 CPUs */
if (ctx->insn_flags & ISA_MIPS32R2) {
op1 = OPC_DROTRV;
}
/* Fallthrough */
case 0:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_shift(ctx, op1, rd, rs, rt);
break;
default:
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_DLSA:
if ((ctx->insn_flags & ISA_MIPS32R6) ||
(env->CP0_Config3 & (1 << CP0C3_MSAP))) {
decode_opc_special_r6(env, ctx);
}
break;
#endif
default:
if (ctx->insn_flags & ISA_MIPS32R6) {
decode_opc_special_r6(env, ctx);
} else if (ctx->insn_flags & INSN_R5900) {
decode_opc_special_tx79(env, ctx);
} else {
decode_opc_special_legacy(env, ctx);
}
}
}
#if defined(TARGET_MIPS64)
/*
*
* MMI (MultiMedia Interface) ASE instructions
* ===========================================
*/
/*
* MMI instructions category: data communication
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* PCPYH PEXCH PEXTLB PINTH PPACB PEXT5 PREVH
* PCPYLD PEXCW PEXTLH PINTEH PPACH PPAC5 PROT3W
* PCPYUD PEXEH PEXTLW PPACW
* PEXEW PEXTUB
* PEXTUH
* PEXTUW
*/
/*
* PCPYH rd, rt
*
* Parallel Copy Halfword
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+---------+---------+---------+-----------+
* | MMI |0 0 0 0 0| rt | rd | PCPYH | MMI3 |
* +-----------+---------+---------+---------+---------+-----------+
*/
static void gen_mmi_pcpyh(DisasContext *ctx)
{
uint32_t pd, rt, rd;
uint32_t opcode;
opcode = ctx->opcode;
pd = extract32(opcode, 21, 5);
rt = extract32(opcode, 16, 5);
rd = extract32(opcode, 11, 5);
if (unlikely(pd != 0)) {
generate_exception_end(ctx, EXCP_RI);
} else if (rd == 0) {
/* nop */
} else if (rt == 0) {
tcg_gen_movi_i64(cpu_gpr[rd], 0);
tcg_gen_movi_i64(cpu_mmr[rd], 0);
} else {
TCGv_i64 t0 = tcg_temp_new();
TCGv_i64 t1 = tcg_temp_new();
uint64_t mask = (1ULL << 16) - 1;
tcg_gen_andi_i64(t0, cpu_gpr[rt], mask);
tcg_gen_movi_i64(t1, 0);
tcg_gen_or_i64(t1, t0, t1);
tcg_gen_shli_i64(t0, t0, 16);
tcg_gen_or_i64(t1, t0, t1);
tcg_gen_shli_i64(t0, t0, 16);
tcg_gen_or_i64(t1, t0, t1);
tcg_gen_shli_i64(t0, t0, 16);
tcg_gen_or_i64(t1, t0, t1);
tcg_gen_mov_i64(cpu_gpr[rd], t1);
tcg_gen_andi_i64(t0, cpu_mmr[rt], mask);
tcg_gen_movi_i64(t1, 0);
tcg_gen_or_i64(t1, t0, t1);
tcg_gen_shli_i64(t0, t0, 16);
tcg_gen_or_i64(t1, t0, t1);
tcg_gen_shli_i64(t0, t0, 16);
tcg_gen_or_i64(t1, t0, t1);
tcg_gen_shli_i64(t0, t0, 16);
tcg_gen_or_i64(t1, t0, t1);
tcg_gen_mov_i64(cpu_mmr[rd], t1);
tcg_temp_free(t0);
tcg_temp_free(t1);
}
}
/*
* PCPYLD rd, rs, rt
*
* Parallel Copy Lower Doubleword
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+---------+---------+---------+-----------+
* | MMI | rs | rt | rd | PCPYLD | MMI2 |
* +-----------+---------+---------+---------+---------+-----------+
*/
static void gen_mmi_pcpyld(DisasContext *ctx)
{
uint32_t rs, rt, rd;
uint32_t opcode;
opcode = ctx->opcode;
rs = extract32(opcode, 21, 5);
rt = extract32(opcode, 16, 5);
rd = extract32(opcode, 11, 5);
if (rd == 0) {
/* nop */
} else {
if (rs == 0) {
tcg_gen_movi_i64(cpu_mmr[rd], 0);
} else {
tcg_gen_mov_i64(cpu_mmr[rd], cpu_gpr[rs]);
}
if (rt == 0) {
tcg_gen_movi_i64(cpu_gpr[rd], 0);
} else {
if (rd != rt) {
tcg_gen_mov_i64(cpu_gpr[rd], cpu_gpr[rt]);
}
}
}
}
/*
* PCPYUD rd, rs, rt
*
* Parallel Copy Upper Doubleword
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+---------+---------+---------+-----------+
* | MMI | rs | rt | rd | PCPYUD | MMI3 |
* +-----------+---------+---------+---------+---------+-----------+
*/
static void gen_mmi_pcpyud(DisasContext *ctx)
{
uint32_t rs, rt, rd;
uint32_t opcode;
opcode = ctx->opcode;
rs = extract32(opcode, 21, 5);
rt = extract32(opcode, 16, 5);
rd = extract32(opcode, 11, 5);
if (rd == 0) {
/* nop */
} else {
if (rs == 0) {
tcg_gen_movi_i64(cpu_gpr[rd], 0);
} else {
tcg_gen_mov_i64(cpu_gpr[rd], cpu_mmr[rs]);
}
if (rt == 0) {
tcg_gen_movi_i64(cpu_mmr[rd], 0);
} else {
if (rd != rt) {
tcg_gen_mov_i64(cpu_mmr[rd], cpu_mmr[rt]);
}
}
}
}
#endif
#if !defined(TARGET_MIPS64)
/* MXU accumulate add/subtract 1-bit pattern 'aptn1' */
#define MXU_APTN1_A 0
#define MXU_APTN1_S 1
/* MXU accumulate add/subtract 2-bit pattern 'aptn2' */
#define MXU_APTN2_AA 0
#define MXU_APTN2_AS 1
#define MXU_APTN2_SA 2
#define MXU_APTN2_SS 3
/* MXU execute add/subtract 2-bit pattern 'eptn2' */
#define MXU_EPTN2_AA 0
#define MXU_EPTN2_AS 1
#define MXU_EPTN2_SA 2
#define MXU_EPTN2_SS 3
/* MXU operand getting pattern 'optn2' */
#define MXU_OPTN2_PTN0 0
#define MXU_OPTN2_PTN1 1
#define MXU_OPTN2_PTN2 2
#define MXU_OPTN2_PTN3 3
/* alternative naming scheme for 'optn2' */
#define MXU_OPTN2_WW 0
#define MXU_OPTN2_LW 1
#define MXU_OPTN2_HW 2
#define MXU_OPTN2_XW 3
/* MXU operand getting pattern 'optn3' */
#define MXU_OPTN3_PTN0 0
#define MXU_OPTN3_PTN1 1
#define MXU_OPTN3_PTN2 2
#define MXU_OPTN3_PTN3 3
#define MXU_OPTN3_PTN4 4
#define MXU_OPTN3_PTN5 5
#define MXU_OPTN3_PTN6 6
#define MXU_OPTN3_PTN7 7
/*
* S32I2M XRa, rb - Register move from GRF to XRF
*/
static void gen_mxu_s32i2m(DisasContext *ctx)
{
TCGv t0;
uint32_t XRa, Rb;
t0 = tcg_temp_new();
XRa = extract32(ctx->opcode, 6, 5);
Rb = extract32(ctx->opcode, 16, 5);
gen_load_gpr(t0, Rb);
if (XRa <= 15) {
gen_store_mxu_gpr(t0, XRa);
} else if (XRa == 16) {
gen_store_mxu_cr(t0);
}
tcg_temp_free(t0);
}
/*
* S32M2I XRa, rb - Register move from XRF to GRF
*/
static void gen_mxu_s32m2i(DisasContext *ctx)
{
TCGv t0;
uint32_t XRa, Rb;
t0 = tcg_temp_new();
XRa = extract32(ctx->opcode, 6, 5);
Rb = extract32(ctx->opcode, 16, 5);
if (XRa <= 15) {
gen_load_mxu_gpr(t0, XRa);
} else if (XRa == 16) {
gen_load_mxu_cr(t0);
}
gen_store_gpr(t0, Rb);
tcg_temp_free(t0);
}
/*
* S8LDD XRa, Rb, s8, optn3 - Load a byte from memory to XRF
*/
static void gen_mxu_s8ldd(DisasContext *ctx)
{
TCGv t0, t1;
uint32_t XRa, Rb, s8, optn3;
t0 = tcg_temp_new();
t1 = tcg_temp_new();
XRa = extract32(ctx->opcode, 6, 4);
s8 = extract32(ctx->opcode, 10, 8);
optn3 = extract32(ctx->opcode, 18, 3);
Rb = extract32(ctx->opcode, 21, 5);
gen_load_gpr(t0, Rb);
tcg_gen_addi_tl(t0, t0, (int8_t)s8);
switch (optn3) {
/* XRa[7:0] = tmp8 */
case MXU_OPTN3_PTN0:
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
gen_load_mxu_gpr(t0, XRa);
tcg_gen_deposit_tl(t0, t0, t1, 0, 8);
break;
/* XRa[15:8] = tmp8 */
case MXU_OPTN3_PTN1:
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
gen_load_mxu_gpr(t0, XRa);
tcg_gen_deposit_tl(t0, t0, t1, 8, 8);
break;
/* XRa[23:16] = tmp8 */
case MXU_OPTN3_PTN2:
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
gen_load_mxu_gpr(t0, XRa);
tcg_gen_deposit_tl(t0, t0, t1, 16, 8);
break;
/* XRa[31:24] = tmp8 */
case MXU_OPTN3_PTN3:
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
gen_load_mxu_gpr(t0, XRa);
tcg_gen_deposit_tl(t0, t0, t1, 24, 8);
break;
/* XRa = {8'b0, tmp8, 8'b0, tmp8} */
case MXU_OPTN3_PTN4:
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
break;
/* XRa = {tmp8, 8'b0, tmp8, 8'b0} */
case MXU_OPTN3_PTN5:
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
tcg_gen_shli_tl(t1, t1, 8);
tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
break;
/* XRa = {{8{sign of tmp8}}, tmp8, {8{sign of tmp8}}, tmp8} */
case MXU_OPTN3_PTN6:
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_SB);
tcg_gen_mov_tl(t0, t1);
tcg_gen_andi_tl(t0, t0, 0xFF00FFFF);
tcg_gen_shli_tl(t1, t1, 16);
tcg_gen_or_tl(t0, t0, t1);
break;
/* XRa = {tmp8, tmp8, tmp8, tmp8} */
case MXU_OPTN3_PTN7:
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
tcg_gen_deposit_tl(t1, t1, t1, 8, 8);
tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
break;
}
gen_store_mxu_gpr(t0, XRa);
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/*
* D16MUL XRa, XRb, XRc, XRd, optn2 - Signed 16 bit pattern multiplication
*/
static void gen_mxu_d16mul(DisasContext *ctx)
{
TCGv t0, t1, t2, t3;
uint32_t XRa, XRb, XRc, XRd, optn2;
t0 = tcg_temp_new();
t1 = tcg_temp_new();
t2 = tcg_temp_new();
t3 = tcg_temp_new();
XRa = extract32(ctx->opcode, 6, 4);
XRb = extract32(ctx->opcode, 10, 4);
XRc = extract32(ctx->opcode, 14, 4);
XRd = extract32(ctx->opcode, 18, 4);
optn2 = extract32(ctx->opcode, 22, 2);
gen_load_mxu_gpr(t1, XRb);
tcg_gen_sextract_tl(t0, t1, 0, 16);
tcg_gen_sextract_tl(t1, t1, 16, 16);
gen_load_mxu_gpr(t3, XRc);
tcg_gen_sextract_tl(t2, t3, 0, 16);
tcg_gen_sextract_tl(t3, t3, 16, 16);
switch (optn2) {
case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
tcg_gen_mul_tl(t3, t1, t3);
tcg_gen_mul_tl(t2, t0, t2);
break;
case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
tcg_gen_mul_tl(t3, t0, t3);
tcg_gen_mul_tl(t2, t0, t2);
break;
case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
tcg_gen_mul_tl(t3, t1, t3);
tcg_gen_mul_tl(t2, t1, t2);
break;
case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
tcg_gen_mul_tl(t3, t0, t3);
tcg_gen_mul_tl(t2, t1, t2);
break;
}
gen_store_mxu_gpr(t3, XRa);
gen_store_mxu_gpr(t2, XRd);
tcg_temp_free(t0);
tcg_temp_free(t1);
tcg_temp_free(t2);
tcg_temp_free(t3);
}
/*
* D16MAC XRa, XRb, XRc, XRd, aptn2, optn2 - Signed 16 bit pattern multiply
* and accumulate
*/
static void gen_mxu_d16mac(DisasContext *ctx)
{
TCGv t0, t1, t2, t3;
uint32_t XRa, XRb, XRc, XRd, optn2, aptn2;
t0 = tcg_temp_new();
t1 = tcg_temp_new();
t2 = tcg_temp_new();
t3 = tcg_temp_new();
XRa = extract32(ctx->opcode, 6, 4);
XRb = extract32(ctx->opcode, 10, 4);
XRc = extract32(ctx->opcode, 14, 4);
XRd = extract32(ctx->opcode, 18, 4);
optn2 = extract32(ctx->opcode, 22, 2);
aptn2 = extract32(ctx->opcode, 24, 2);
gen_load_mxu_gpr(t1, XRb);
tcg_gen_sextract_tl(t0, t1, 0, 16);
tcg_gen_sextract_tl(t1, t1, 16, 16);
gen_load_mxu_gpr(t3, XRc);
tcg_gen_sextract_tl(t2, t3, 0, 16);
tcg_gen_sextract_tl(t3, t3, 16, 16);
switch (optn2) {
case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
tcg_gen_mul_tl(t3, t1, t3);
tcg_gen_mul_tl(t2, t0, t2);
break;
case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
tcg_gen_mul_tl(t3, t0, t3);
tcg_gen_mul_tl(t2, t0, t2);
break;
case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
tcg_gen_mul_tl(t3, t1, t3);
tcg_gen_mul_tl(t2, t1, t2);
break;
case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
tcg_gen_mul_tl(t3, t0, t3);
tcg_gen_mul_tl(t2, t1, t2);
break;
}
gen_load_mxu_gpr(t0, XRa);
gen_load_mxu_gpr(t1, XRd);
switch (aptn2) {
case MXU_APTN2_AA:
tcg_gen_add_tl(t3, t0, t3);
tcg_gen_add_tl(t2, t1, t2);
break;
case MXU_APTN2_AS:
tcg_gen_add_tl(t3, t0, t3);
tcg_gen_sub_tl(t2, t1, t2);
break;
case MXU_APTN2_SA:
tcg_gen_sub_tl(t3, t0, t3);
tcg_gen_add_tl(t2, t1, t2);
break;
case MXU_APTN2_SS:
tcg_gen_sub_tl(t3, t0, t3);
tcg_gen_sub_tl(t2, t1, t2);
break;
}
gen_store_mxu_gpr(t3, XRa);
gen_store_mxu_gpr(t2, XRd);
tcg_temp_free(t0);
tcg_temp_free(t1);
tcg_temp_free(t2);
tcg_temp_free(t3);
}
/*
* Q8MUL XRa, XRb, XRc, XRd - Parallel unsigned 8 bit pattern multiply
* Q8MULSU XRa, XRb, XRc, XRd - Parallel signed 8 bit pattern multiply
*/
static void gen_mxu_q8mul_q8mulsu(DisasContext *ctx)
{
TCGv t0, t1, t2, t3, t4, t5, t6, t7;
uint32_t XRa, XRb, XRc, XRd, sel;
t0 = tcg_temp_new();
t1 = tcg_temp_new();
t2 = tcg_temp_new();
t3 = tcg_temp_new();
t4 = tcg_temp_new();
t5 = tcg_temp_new();
t6 = tcg_temp_new();
t7 = tcg_temp_new();
XRa = extract32(ctx->opcode, 6, 4);
XRb = extract32(ctx->opcode, 10, 4);
XRc = extract32(ctx->opcode, 14, 4);
XRd = extract32(ctx->opcode, 18, 4);
sel = extract32(ctx->opcode, 22, 2);
gen_load_mxu_gpr(t3, XRb);
gen_load_mxu_gpr(t7, XRc);
if (sel == 0x2) {
/* Q8MULSU */
tcg_gen_ext8s_tl(t0, t3);
tcg_gen_shri_tl(t3, t3, 8);
tcg_gen_ext8s_tl(t1, t3);
tcg_gen_shri_tl(t3, t3, 8);
tcg_gen_ext8s_tl(t2, t3);
tcg_gen_shri_tl(t3, t3, 8);
tcg_gen_ext8s_tl(t3, t3);
} else {
/* Q8MUL */
tcg_gen_ext8u_tl(t0, t3);
tcg_gen_shri_tl(t3, t3, 8);
tcg_gen_ext8u_tl(t1, t3);
tcg_gen_shri_tl(t3, t3, 8);
tcg_gen_ext8u_tl(t2, t3);
tcg_gen_shri_tl(t3, t3, 8);
tcg_gen_ext8u_tl(t3, t3);
}
tcg_gen_ext8u_tl(t4, t7);
tcg_gen_shri_tl(t7, t7, 8);
tcg_gen_ext8u_tl(t5, t7);
tcg_gen_shri_tl(t7, t7, 8);
tcg_gen_ext8u_tl(t6, t7);
tcg_gen_shri_tl(t7, t7, 8);
tcg_gen_ext8u_tl(t7, t7);
tcg_gen_mul_tl(t0, t0, t4);
tcg_gen_mul_tl(t1, t1, t5);
tcg_gen_mul_tl(t2, t2, t6);
tcg_gen_mul_tl(t3, t3, t7);
tcg_gen_andi_tl(t0, t0, 0xFFFF);
tcg_gen_andi_tl(t1, t1, 0xFFFF);
tcg_gen_andi_tl(t2, t2, 0xFFFF);
tcg_gen_andi_tl(t3, t3, 0xFFFF);
tcg_gen_shli_tl(t1, t1, 16);
tcg_gen_shli_tl(t3, t3, 16);
tcg_gen_or_tl(t0, t0, t1);
tcg_gen_or_tl(t1, t2, t3);
gen_store_mxu_gpr(t0, XRd);
gen_store_mxu_gpr(t1, XRa);
tcg_temp_free(t0);
tcg_temp_free(t1);
tcg_temp_free(t2);
tcg_temp_free(t3);
tcg_temp_free(t4);
tcg_temp_free(t5);
tcg_temp_free(t6);
tcg_temp_free(t7);
}
/*
* S32LDD XRa, Rb, S12 - Load a word from memory to XRF
* S32LDDR XRa, Rb, S12 - Load a word from memory to XRF, reversed byte seq.
*/
static void gen_mxu_s32ldd_s32lddr(DisasContext *ctx)
{
TCGv t0, t1;
uint32_t XRa, Rb, s12, sel;
t0 = tcg_temp_new();
t1 = tcg_temp_new();
XRa = extract32(ctx->opcode, 6, 4);
s12 = extract32(ctx->opcode, 10, 10);
sel = extract32(ctx->opcode, 20, 1);
Rb = extract32(ctx->opcode, 21, 5);
gen_load_gpr(t0, Rb);
tcg_gen_movi_tl(t1, s12);
tcg_gen_shli_tl(t1, t1, 2);
if (s12 & 0x200) {
tcg_gen_ori_tl(t1, t1, 0xFFFFF000);
}
tcg_gen_add_tl(t1, t0, t1);
tcg_gen_qemu_ld_tl(t1, t1, ctx->mem_idx, MO_SL);
if (sel == 1) {
/* S32LDDR */
tcg_gen_bswap32_tl(t1, t1);
}
gen_store_mxu_gpr(t1, XRa);
tcg_temp_free(t0);
tcg_temp_free(t1);
}
/*
* MXU instruction category: logic
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* S32NOR S32AND S32OR S32XOR
*/
/*
* S32NOR XRa, XRb, XRc
* Update XRa with the result of logical bitwise 'nor' operation
* applied to the content of XRb and XRc.
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL16|
* +-----------+---------+-----+-------+-------+-------+-----------+
*/
static void gen_mxu_S32NOR(DisasContext *ctx)
{
uint32_t pad, XRc, XRb, XRa;
pad = extract32(ctx->opcode, 21, 5);
XRc = extract32(ctx->opcode, 14, 4);
XRb = extract32(ctx->opcode, 10, 4);
XRa = extract32(ctx->opcode, 6, 4);
if (unlikely(pad != 0)) {
/* opcode padding incorrect -> do nothing */
} else if (unlikely(XRa == 0)) {
/* destination is zero register -> do nothing */
} else if (unlikely((XRb == 0) && (XRc == 0))) {
/* both operands zero registers -> just set destination to all 1s */
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0xFFFFFFFF);
} else if (unlikely(XRb == 0)) {
/* XRb zero register -> just set destination to the negation of XRc */
tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
} else if (unlikely(XRc == 0)) {
/* XRa zero register -> just set destination to the negation of XRb */
tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
} else if (unlikely(XRb == XRc)) {
/* both operands same -> just set destination to the negation of XRb */
tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
} else {
/* the most general case */
tcg_gen_nor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
}
}
/*
* S32AND XRa, XRb, XRc
* Update XRa with the result of logical bitwise 'and' operation
* applied to the content of XRb and XRc.
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL16|
* +-----------+---------+-----+-------+-------+-------+-----------+
*/
static void gen_mxu_S32AND(DisasContext *ctx)
{
uint32_t pad, XRc, XRb, XRa;
pad = extract32(ctx->opcode, 21, 5);
XRc = extract32(ctx->opcode, 14, 4);
XRb = extract32(ctx->opcode, 10, 4);
XRa = extract32(ctx->opcode, 6, 4);
if (unlikely(pad != 0)) {
/* opcode padding incorrect -> do nothing */
} else if (unlikely(XRa == 0)) {
/* destination is zero register -> do nothing */
} else if (unlikely((XRb == 0) || (XRc == 0))) {
/* one of operands zero register -> just set destination to all 0s */
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
} else if (unlikely(XRb == XRc)) {
/* both operands same -> just set destination to one of them */
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
} else {
/* the most general case */
tcg_gen_and_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
}
}
/*
* S32OR XRa, XRb, XRc
* Update XRa with the result of logical bitwise 'or' operation
* applied to the content of XRb and XRc.
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL16|
* +-----------+---------+-----+-------+-------+-------+-----------+
*/
static void gen_mxu_S32OR(DisasContext *ctx)
{
uint32_t pad, XRc, XRb, XRa;
pad = extract32(ctx->opcode, 21, 5);
XRc = extract32(ctx->opcode, 14, 4);
XRb = extract32(ctx->opcode, 10, 4);
XRa = extract32(ctx->opcode, 6, 4);
if (unlikely(pad != 0)) {
/* opcode padding incorrect -> do nothing */
} else if (unlikely(XRa == 0)) {
/* destination is zero register -> do nothing */
} else if (unlikely((XRb == 0) && (XRc == 0))) {
/* both operands zero registers -> just set destination to all 0s */
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
} else if (unlikely(XRb == 0)) {
/* XRb zero register -> just set destination to the content of XRc */
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
} else if (unlikely(XRc == 0)) {
/* XRc zero register -> just set destination to the content of XRb */
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
} else if (unlikely(XRb == XRc)) {
/* both operands same -> just set destination to one of them */
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
} else {
/* the most general case */
tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
}
}
/*
* S32XOR XRa, XRb, XRc
* Update XRa with the result of logical bitwise 'xor' operation
* applied to the content of XRb and XRc.
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL16|
* +-----------+---------+-----+-------+-------+-------+-----------+
*/
static void gen_mxu_S32XOR(DisasContext *ctx)
{
uint32_t pad, XRc, XRb, XRa;
pad = extract32(ctx->opcode, 21, 5);
XRc = extract32(ctx->opcode, 14, 4);
XRb = extract32(ctx->opcode, 10, 4);
XRa = extract32(ctx->opcode, 6, 4);
if (unlikely(pad != 0)) {
/* opcode padding incorrect -> do nothing */
} else if (unlikely(XRa == 0)) {
/* destination is zero register -> do nothing */
} else if (unlikely((XRb == 0) && (XRc == 0))) {
/* both operands zero registers -> just set destination to all 0s */
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
} else if (unlikely(XRb == 0)) {
/* XRb zero register -> just set destination to the content of XRc */
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
} else if (unlikely(XRc == 0)) {
/* XRc zero register -> just set destination to the content of XRb */
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
} else if (unlikely(XRb == XRc)) {
/* both operands same -> just set destination to all 0s */
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
} else {
/* the most general case */
tcg_gen_xor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
}
}
/*
* MXU instruction category max/min
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* S32MAX D16MAX Q8MAX
* S32MIN D16MIN Q8MIN
*/
/*
* S32MAX XRa, XRb, XRc
* Update XRa with the maximum of signed 32-bit integers contained
* in XRb and XRc.
*
* S32MIN XRa, XRb, XRc
* Update XRa with the minimum of signed 32-bit integers contained
* in XRb and XRc.
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL00|
* +-----------+---------+-----+-------+-------+-------+-----------+
*/
static void gen_mxu_S32MAX_S32MIN(DisasContext *ctx)
{
uint32_t pad, opc, XRc, XRb, XRa;
pad = extract32(ctx->opcode, 21, 5);
opc = extract32(ctx->opcode, 18, 3);
XRc = extract32(ctx->opcode, 14, 4);
XRb = extract32(ctx->opcode, 10, 4);
XRa = extract32(ctx->opcode, 6, 4);
if (unlikely(pad != 0)) {
/* opcode padding incorrect -> do nothing */
} else if (unlikely(XRa == 0)) {
/* destination is zero register -> do nothing */
} else if (unlikely((XRb == 0) && (XRc == 0))) {
/* both operands zero registers -> just set destination to zero */
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
} else if (unlikely((XRb == 0) || (XRc == 0))) {
/* exactly one operand is zero register - find which one is not...*/
uint32_t XRx = XRb ? XRb : XRc;
/* ...and do max/min operation with one operand 0 */
if (opc == OPC_MXU_S32MAX) {
tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
} else {
tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
}
} else if (unlikely(XRb == XRc)) {
/* both operands same -> just set destination to one of them */
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
} else {
/* the most general case */
if (opc == OPC_MXU_S32MAX) {
tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
mxu_gpr[XRc - 1]);
} else {
tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
mxu_gpr[XRc - 1]);
}
}
}
/*
* D16MAX
* Update XRa with the 16-bit-wise maximums of signed integers
* contained in XRb and XRc.
*
* D16MIN
* Update XRa with the 16-bit-wise minimums of signed integers
* contained in XRb and XRc.
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL00|
* +-----------+---------+-----+-------+-------+-------+-----------+
*/
static void gen_mxu_D16MAX_D16MIN(DisasContext *ctx)
{
uint32_t pad, opc, XRc, XRb, XRa;
pad = extract32(ctx->opcode, 21, 5);
opc = extract32(ctx->opcode, 18, 3);
XRc = extract32(ctx->opcode, 14, 4);
XRb = extract32(ctx->opcode, 10, 4);
XRa = extract32(ctx->opcode, 6, 4);
if (unlikely(pad != 0)) {
/* opcode padding incorrect -> do nothing */
} else if (unlikely(XRc == 0)) {
/* destination is zero register -> do nothing */
} else if (unlikely((XRb == 0) && (XRa == 0))) {
/* both operands zero registers -> just set destination to zero */
tcg_gen_movi_i32(mxu_gpr[XRc - 1], 0);
} else if (unlikely((XRb == 0) || (XRa == 0))) {
/* exactly one operand is zero register - find which one is not...*/
uint32_t XRx = XRb ? XRb : XRc;
/* ...and do half-word-wise max/min with one operand 0 */
TCGv_i32 t0 = tcg_temp_new();
TCGv_i32 t1 = tcg_const_i32(0);
/* the left half-word first */
tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFFFF0000);
if (opc == OPC_MXU_D16MAX) {
tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
} else {
tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
}
/* the right half-word */
tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0x0000FFFF);
/* move half-words to the leftmost position */
tcg_gen_shli_i32(t0, t0, 16);
/* t0 will be max/min of t0 and t1 */
if (opc == OPC_MXU_D16MAX) {
tcg_gen_smax_i32(t0, t0, t1);
} else {
tcg_gen_smin_i32(t0, t0, t1);
}
/* return resulting half-words to its original position */
tcg_gen_shri_i32(t0, t0, 16);
/* finaly update the destination */
tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
tcg_temp_free(t1);
tcg_temp_free(t0);
} else if (unlikely(XRb == XRc)) {
/* both operands same -> just set destination to one of them */
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
} else {
/* the most general case */
TCGv_i32 t0 = tcg_temp_new();
TCGv_i32 t1 = tcg_temp_new();
/* the left half-word first */
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFFFF0000);
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
if (opc == OPC_MXU_D16MAX) {
tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
} else {
tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
}
/* the right half-word */
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0x0000FFFF);
/* move half-words to the leftmost position */
tcg_gen_shli_i32(t0, t0, 16);
tcg_gen_shli_i32(t1, t1, 16);
/* t0 will be max/min of t0 and t1 */
if (opc == OPC_MXU_D16MAX) {
tcg_gen_smax_i32(t0, t0, t1);
} else {
tcg_gen_smin_i32(t0, t0, t1);
}
/* return resulting half-words to its original position */
tcg_gen_shri_i32(t0, t0, 16);
/* finaly update the destination */
tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
tcg_temp_free(t1);
tcg_temp_free(t0);
}
}
/*
* Q8MAX
* Update XRa with the 8-bit-wise maximums of signed integers
* contained in XRb and XRc.
*
* Q8MIN
* Update XRa with the 8-bit-wise minimums of signed integers
* contained in XRb and XRc.
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL00|
* +-----------+---------+-----+-------+-------+-------+-----------+
*/
static void gen_mxu_Q8MAX_Q8MIN(DisasContext *ctx)
{
uint32_t pad, opc, XRc, XRb, XRa;
pad = extract32(ctx->opcode, 21, 5);
opc = extract32(ctx->opcode, 18, 3);
XRc = extract32(ctx->opcode, 14, 4);
XRb = extract32(ctx->opcode, 10, 4);
XRa = extract32(ctx->opcode, 6, 4);
if (unlikely(pad != 0)) {
/* opcode padding incorrect -> do nothing */
} else if (unlikely(XRa == 0)) {
/* destination is zero register -> do nothing */
} else if (unlikely((XRb == 0) && (XRc == 0))) {
/* both operands zero registers -> just set destination to zero */
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
} else if (unlikely((XRb == 0) || (XRc == 0))) {
/* exactly one operand is zero register - make it be the first...*/
uint32_t XRx = XRb ? XRb : XRc;
/* ...and do byte-wise max/min with one operand 0 */
TCGv_i32 t0 = tcg_temp_new();
TCGv_i32 t1 = tcg_const_i32(0);
int32_t i;
/* the leftmost byte (byte 3) first */
tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF000000);
if (opc == OPC_MXU_Q8MAX) {
tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
} else {
tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
}
/* bytes 2, 1, 0 */
for (i = 2; i >= 0; i--) {
/* extract the byte */
tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF << (8 * i));
/* move the byte to the leftmost position */
tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
/* t0 will be max/min of t0 and t1 */
if (opc == OPC_MXU_Q8MAX) {
tcg_gen_smax_i32(t0, t0, t1);
} else {
tcg_gen_smin_i32(t0, t0, t1);
}
/* return resulting byte to its original position */
tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
/* finaly update the destination */
tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
}
tcg_temp_free(t1);
tcg_temp_free(t0);
} else if (unlikely(XRb == XRc)) {
/* both operands same -> just set destination to one of them */
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
} else {
/* the most general case */
TCGv_i32 t0 = tcg_temp_new();
TCGv_i32 t1 = tcg_temp_new();
int32_t i;
/* the leftmost bytes (bytes 3) first */
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF000000);
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
if (opc == OPC_MXU_Q8MAX) {
tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
} else {
tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
}
/* bytes 2, 1, 0 */
for (i = 2; i >= 0; i--) {
/* extract corresponding bytes */
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF << (8 * i));
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF << (8 * i));
/* move the bytes to the leftmost position */
tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
tcg_gen_shli_i32(t1, t1, 8 * (3 - i));
/* t0 will be max/min of t0 and t1 */
if (opc == OPC_MXU_Q8MAX) {
tcg_gen_smax_i32(t0, t0, t1);
} else {
tcg_gen_smin_i32(t0, t0, t1);
}
/* return resulting byte to its original position */
tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
/* finaly update the destination */
tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
}
tcg_temp_free(t1);
tcg_temp_free(t0);
}
}
/*
* MXU instruction category: align
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* S32ALN S32ALNI
*/
/*
* S32ALNI XRc, XRb, XRa, optn3
* Arrange bytes from XRb and XRc according to one of five sets of
* rules determined by optn3, and place the result in XRa.
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+-----+---+-----+-------+-------+-------+-----------+
* | SPECIAL2 |optn3|0 0|x x x| XRc | XRb | XRa |MXU__POOL16|
* +-----------+-----+---+-----+-------+-------+-------+-----------+
*
*/
static void gen_mxu_S32ALNI(DisasContext *ctx)
{
uint32_t optn3, pad, XRc, XRb, XRa;
optn3 = extract32(ctx->opcode, 23, 3);
pad = extract32(ctx->opcode, 21, 2);
XRc = extract32(ctx->opcode, 14, 4);
XRb = extract32(ctx->opcode, 10, 4);
XRa = extract32(ctx->opcode, 6, 4);
if (unlikely(pad != 0)) {
/* opcode padding incorrect -> do nothing */
} else if (unlikely(XRa == 0)) {
/* destination is zero register -> do nothing */
} else if (unlikely((XRb == 0) && (XRc == 0))) {
/* both operands zero registers -> just set destination to all 0s */
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
} else if (unlikely(XRb == 0)) {
/* XRb zero register -> just appropriatelly shift XRc into XRa */
switch (optn3) {
case MXU_OPTN3_PTN0:
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
break;
case MXU_OPTN3_PTN1:
case MXU_OPTN3_PTN2:
case MXU_OPTN3_PTN3:
tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1],
8 * (4 - optn3));
break;
case MXU_OPTN3_PTN4:
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
break;
}
} else if (unlikely(XRc == 0)) {
/* XRc zero register -> just appropriatelly shift XRb into XRa */
switch (optn3) {
case MXU_OPTN3_PTN0:
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
break;
case MXU_OPTN3_PTN1:
case MXU_OPTN3_PTN2:
case MXU_OPTN3_PTN3:
tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
break;
case MXU_OPTN3_PTN4:
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
break;
}
} else if (unlikely(XRb == XRc)) {
/* both operands same -> just rotation or moving from any of them */
switch (optn3) {
case MXU_OPTN3_PTN0:
case MXU_OPTN3_PTN4:
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
break;
case MXU_OPTN3_PTN1:
case MXU_OPTN3_PTN2:
case MXU_OPTN3_PTN3:
tcg_gen_rotli_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
break;
}
} else {
/* the most general case */
switch (optn3) {
case MXU_OPTN3_PTN0:
{
/* */
/* XRb XRc */
/* +---------------+ */
/* | A B C D | E F G H */
/* +-------+-------+ */
/* | */
/* XRa */
/* */
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
}
break;
case MXU_OPTN3_PTN1:
{
/* */
/* XRb XRc */
/* +-------------------+ */
/* A | B C D E | F G H */
/* +---------+---------+ */
/* | */
/* XRa */
/* */
TCGv_i32 t0 = tcg_temp_new();
TCGv_i32 t1 = tcg_temp_new();
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x00FFFFFF);
tcg_gen_shli_i32(t0, t0, 8);
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
tcg_gen_shri_i32(t1, t1, 24);
tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
tcg_temp_free(t1);
tcg_temp_free(t0);
}
break;
case MXU_OPTN3_PTN2:
{
/* */
/* XRb XRc */
/* +-------------------+ */
/* A B | C D E F | G H */
/* +---------+---------+ */
/* | */
/* XRa */
/* */
TCGv_i32 t0 = tcg_temp_new();
TCGv_i32 t1 = tcg_temp_new();
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
tcg_gen_shli_i32(t0, t0, 16);
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
tcg_gen_shri_i32(t1, t1, 16);
tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
tcg_temp_free(t1);
tcg_temp_free(t0);
}
break;
case MXU_OPTN3_PTN3:
{
/* */
/* XRb XRc */
/* +-------------------+ */
/* A B C | D E F G | H */
/* +---------+---------+ */
/* | */
/* XRa */
/* */
TCGv_i32 t0 = tcg_temp_new();
TCGv_i32 t1 = tcg_temp_new();
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x000000FF);
tcg_gen_shli_i32(t0, t0, 24);
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFFFF00);
tcg_gen_shri_i32(t1, t1, 8);
tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
tcg_temp_free(t1);
tcg_temp_free(t0);
}
break;
case MXU_OPTN3_PTN4:
{
/* */
/* XRb XRc */
/* +---------------+ */
/* A B C D | E F G H | */
/* +-------+-------+ */
/* | */
/* XRa */
/* */
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
}
break;
}
}
}
/*
* Decoding engine for MXU
* =======================
*/
/*
*
* Decode MXU pool00
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0|x x x| XRc | XRb | XRa |MXU__POOL00|
* +-----------+---------+-----+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool00(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 18, 3);
switch (opcode) {
case OPC_MXU_S32MAX:
case OPC_MXU_S32MIN:
gen_mxu_S32MAX_S32MIN(ctx);
break;
case OPC_MXU_D16MAX:
case OPC_MXU_D16MIN:
gen_mxu_D16MAX_D16MIN(ctx);
break;
case OPC_MXU_Q8MAX:
case OPC_MXU_Q8MIN:
gen_mxu_Q8MAX_Q8MIN(ctx);
break;
case OPC_MXU_Q8SLT:
/* TODO: Implement emulation of Q8SLT instruction. */
MIPS_INVAL("OPC_MXU_Q8SLT");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q8SLTU:
/* TODO: Implement emulation of Q8SLTU instruction. */
MIPS_INVAL("OPC_MXU_Q8SLTU");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool01
*
* S32SLT, D16SLT, D16AVG, D16AVGR, Q8AVG, Q8AVGR:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0|x x x| XRc | XRb | XRa |MXU__POOL01|
* +-----------+---------+-----+-------+-------+-------+-----------+
*
* Q8ADD:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---+-----+-----+-------+-------+-------+-----------+
* | SPECIAL2 |en2|0 0 0|x x x| XRc | XRb | XRa |MXU__POOL01|
* +-----------+---+-----+-----+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool01(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 18, 3);
switch (opcode) {
case OPC_MXU_S32SLT:
/* TODO: Implement emulation of S32SLT instruction. */
MIPS_INVAL("OPC_MXU_S32SLT");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D16SLT:
/* TODO: Implement emulation of D16SLT instruction. */
MIPS_INVAL("OPC_MXU_D16SLT");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D16AVG:
/* TODO: Implement emulation of D16AVG instruction. */
MIPS_INVAL("OPC_MXU_D16AVG");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D16AVGR:
/* TODO: Implement emulation of D16AVGR instruction. */
MIPS_INVAL("OPC_MXU_D16AVGR");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q8AVG:
/* TODO: Implement emulation of Q8AVG instruction. */
MIPS_INVAL("OPC_MXU_Q8AVG");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q8AVGR:
/* TODO: Implement emulation of Q8AVGR instruction. */
MIPS_INVAL("OPC_MXU_Q8AVGR");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q8ADD:
/* TODO: Implement emulation of Q8ADD instruction. */
MIPS_INVAL("OPC_MXU_Q8ADD");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool02
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0|x x x| XRc | XRb | XRa |MXU__POOL02|
* +-----------+---------+-----+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool02(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 18, 3);
switch (opcode) {
case OPC_MXU_S32CPS:
/* TODO: Implement emulation of S32CPS instruction. */
MIPS_INVAL("OPC_MXU_S32CPS");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D16CPS:
/* TODO: Implement emulation of D16CPS instruction. */
MIPS_INVAL("OPC_MXU_D16CPS");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q8ABD:
/* TODO: Implement emulation of Q8ABD instruction. */
MIPS_INVAL("OPC_MXU_Q8ABD");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q16SAT:
/* TODO: Implement emulation of Q16SAT instruction. */
MIPS_INVAL("OPC_MXU_Q16SAT");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool03
*
* D16MULF:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---+---+-------+-------+-------+-------+-----------+
* | SPECIAL2 |x x|on2|0 0 0 0| XRc | XRb | XRa |MXU__POOL03|
* +-----------+---+---+-------+-------+-------+-------+-----------+
*
* D16MULE:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---+---+-------+-------+-------+-------+-----------+
* | SPECIAL2 |x x|on2| Xd | XRc | XRb | XRa |MXU__POOL03|
* +-----------+---+---+-------+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool03(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 24, 2);
switch (opcode) {
case OPC_MXU_D16MULF:
/* TODO: Implement emulation of D16MULF instruction. */
MIPS_INVAL("OPC_MXU_D16MULF");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D16MULE:
/* TODO: Implement emulation of D16MULE instruction. */
MIPS_INVAL("OPC_MXU_D16MULE");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool04
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-+-------------------+-------+-----------+
* | SPECIAL2 | rb |x| s12 | XRa |MXU__POOL04|
* +-----------+---------+-+-------------------+-------+-----------+
*
*/
static void decode_opc_mxu__pool04(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 20, 1);
switch (opcode) {
case OPC_MXU_S32LDD:
case OPC_MXU_S32LDDR:
gen_mxu_s32ldd_s32lddr(ctx);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool05
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-+-------------------+-------+-----------+
* | SPECIAL2 | rb |x| s12 | XRa |MXU__POOL05|
* +-----------+---------+-+-------------------+-------+-----------+
*
*/
static void decode_opc_mxu__pool05(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 20, 1);
switch (opcode) {
case OPC_MXU_S32STD:
/* TODO: Implement emulation of S32STD instruction. */
MIPS_INVAL("OPC_MXU_S32STD");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32STDR:
/* TODO: Implement emulation of S32STDR instruction. */
MIPS_INVAL("OPC_MXU_S32STDR");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool06
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+---------+---+-------+-------+-----------+
* | SPECIAL2 | rb | rc |st2|x x x x| XRa |MXU__POOL06|
* +-----------+---------+---------+---+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool06(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 10, 4);
switch (opcode) {
case OPC_MXU_S32LDDV:
/* TODO: Implement emulation of S32LDDV instruction. */
MIPS_INVAL("OPC_MXU_S32LDDV");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32LDDVR:
/* TODO: Implement emulation of S32LDDVR instruction. */
MIPS_INVAL("OPC_MXU_S32LDDVR");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool07
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+---------+---+-------+-------+-----------+
* | SPECIAL2 | rb | rc |st2|x x x x| XRa |MXU__POOL07|
* +-----------+---------+---------+---+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool07(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 10, 4);
switch (opcode) {
case OPC_MXU_S32STDV:
/* TODO: Implement emulation of S32TDV instruction. */
MIPS_INVAL("OPC_MXU_S32TDV");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32STDVR:
/* TODO: Implement emulation of S32TDVR instruction. */
MIPS_INVAL("OPC_MXU_S32TDVR");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool08
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-+-------------------+-------+-----------+
* | SPECIAL2 | rb |x| s12 | XRa |MXU__POOL08|
* +-----------+---------+-+-------------------+-------+-----------+
*
*/
static void decode_opc_mxu__pool08(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 20, 1);
switch (opcode) {
case OPC_MXU_S32LDI:
/* TODO: Implement emulation of S32LDI instruction. */
MIPS_INVAL("OPC_MXU_S32LDI");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32LDIR:
/* TODO: Implement emulation of S32LDIR instruction. */
MIPS_INVAL("OPC_MXU_S32LDIR");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool09
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-+-------------------+-------+-----------+
* | SPECIAL2 | rb |x| s12 | XRa |MXU__POOL09|
* +-----------+---------+-+-------------------+-------+-----------+
*
*/
static void decode_opc_mxu__pool09(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 5, 0);
switch (opcode) {
case OPC_MXU_S32SDI:
/* TODO: Implement emulation of S32SDI instruction. */
MIPS_INVAL("OPC_MXU_S32SDI");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32SDIR:
/* TODO: Implement emulation of S32SDIR instruction. */
MIPS_INVAL("OPC_MXU_S32SDIR");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool10
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+---------+---+-------+-------+-----------+
* | SPECIAL2 | rb | rc |st2|x x x x| XRa |MXU__POOL10|
* +-----------+---------+---------+---+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool10(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 5, 0);
switch (opcode) {
case OPC_MXU_S32LDIV:
/* TODO: Implement emulation of S32LDIV instruction. */
MIPS_INVAL("OPC_MXU_S32LDIV");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32LDIVR:
/* TODO: Implement emulation of S32LDIVR instruction. */
MIPS_INVAL("OPC_MXU_S32LDIVR");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool11
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+---------+---+-------+-------+-----------+
* | SPECIAL2 | rb | rc |st2|x x x x| XRa |MXU__POOL11|
* +-----------+---------+---------+---+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool11(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 10, 4);
switch (opcode) {
case OPC_MXU_S32SDIV:
/* TODO: Implement emulation of S32SDIV instruction. */
MIPS_INVAL("OPC_MXU_S32SDIV");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32SDIVR:
/* TODO: Implement emulation of S32SDIVR instruction. */
MIPS_INVAL("OPC_MXU_S32SDIVR");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool12
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---+---+-------+-------+-------+-------+-----------+
* | SPECIAL2 |an2|x x| Xd | XRc | XRb | XRa |MXU__POOL12|
* +-----------+---+---+-------+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool12(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 22, 2);
switch (opcode) {
case OPC_MXU_D32ACC:
/* TODO: Implement emulation of D32ACC instruction. */
MIPS_INVAL("OPC_MXU_D32ACC");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D32ACCM:
/* TODO: Implement emulation of D32ACCM instruction. */
MIPS_INVAL("OPC_MXU_D32ACCM");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D32ASUM:
/* TODO: Implement emulation of D32ASUM instruction. */
MIPS_INVAL("OPC_MXU_D32ASUM");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool13
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---+---+-------+-------+-------+-------+-----------+
* | SPECIAL2 |en2|x x|0 0 0 0| XRc | XRb | XRa |MXU__POOL13|
* +-----------+---+---+-------+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool13(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 22, 2);
switch (opcode) {
case OPC_MXU_Q16ACC:
/* TODO: Implement emulation of Q16ACC instruction. */
MIPS_INVAL("OPC_MXU_Q16ACC");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q16ACCM:
/* TODO: Implement emulation of Q16ACCM instruction. */
MIPS_INVAL("OPC_MXU_Q16ACCM");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q16ASUM:
/* TODO: Implement emulation of Q16ASUM instruction. */
MIPS_INVAL("OPC_MXU_Q16ASUM");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool14
*
* Q8ADDE, Q8ACCE:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---+---+-------+-------+-------+-------+-----------+
* | SPECIAL2 |0 0|x x| XRd | XRc | XRb | XRa |MXU__POOL14|
* +-----------+---+---+-------+-------+-------+-------+-----------+
*
* D8SUM, D8SUMC:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---+---+-------+-------+-------+-------+-----------+
* | SPECIAL2 |en2|x x|0 0 0 0| XRc | XRb | XRa |MXU__POOL14|
* +-----------+---+---+-------+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool14(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 22, 2);
switch (opcode) {
case OPC_MXU_Q8ADDE:
/* TODO: Implement emulation of Q8ADDE instruction. */
MIPS_INVAL("OPC_MXU_Q8ADDE");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D8SUM:
/* TODO: Implement emulation of D8SUM instruction. */
MIPS_INVAL("OPC_MXU_D8SUM");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D8SUMC:
/* TODO: Implement emulation of D8SUMC instruction. */
MIPS_INVAL("OPC_MXU_D8SUMC");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool15
*
* S32MUL, S32MULU, S32EXTRV:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+---------+---+-------+-------+-----------+
* | SPECIAL2 | rs | rt |x x| XRd | XRa |MXU__POOL15|
* +-----------+---------+---------+---+-------+-------+-----------+
*
* S32EXTR:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+---------+---+-------+-------+-----------+
* | SPECIAL2 | rb | sft5 |x x| XRd | XRa |MXU__POOL15|
* +-----------+---------+---------+---+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool15(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 14, 2);
switch (opcode) {
case OPC_MXU_S32MUL:
/* TODO: Implement emulation of S32MUL instruction. */
MIPS_INVAL("OPC_MXU_S32MUL");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32MULU:
/* TODO: Implement emulation of S32MULU instruction. */
MIPS_INVAL("OPC_MXU_S32MULU");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32EXTR:
/* TODO: Implement emulation of S32EXTR instruction. */
MIPS_INVAL("OPC_MXU_S32EXTR");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32EXTRV:
/* TODO: Implement emulation of S32EXTRV instruction. */
MIPS_INVAL("OPC_MXU_S32EXTRV");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool16
*
* D32SARW:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 | rb |x x x| XRc | XRb | XRa |MXU__POOL16|
* +-----------+---------+-----+-------+-------+-------+-----------+
*
* S32ALN:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 | rs |x x x| XRc | XRb | XRa |MXU__POOL16|
* +-----------+---------+-----+-------+-------+-------+-----------+
*
* S32ALNI:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+-----+---+-----+-------+-------+-------+-----------+
* | SPECIAL2 | s3 |0 0|x x x| XRc | XRb | XRa |MXU__POOL16|
* +-----------+-----+---+-----+-------+-------+-------+-----------+
*
* S32LUI:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+-----+---+-----+-------+---------------+-----------+
* | SPECIAL2 |optn3|0 0|x x x| XRc | s8 |MXU__POOL16|
* +-----------+-----+---+-----+-------+---------------+-----------+
*
* S32NOR, S32AND, S32OR, S32XOR:
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0|x x x| XRc | XRb | XRa |MXU__POOL16|
* +-----------+---------+-----+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool16(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 18, 3);
switch (opcode) {
case OPC_MXU_D32SARW:
/* TODO: Implement emulation of D32SARW instruction. */
MIPS_INVAL("OPC_MXU_D32SARW");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32ALN:
/* TODO: Implement emulation of S32ALN instruction. */
MIPS_INVAL("OPC_MXU_S32ALN");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32ALNI:
gen_mxu_S32ALNI(ctx);
break;
case OPC_MXU_S32LUI:
/* TODO: Implement emulation of S32LUI instruction. */
MIPS_INVAL("OPC_MXU_S32LUI");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32NOR:
gen_mxu_S32NOR(ctx);
break;
case OPC_MXU_S32AND:
gen_mxu_S32AND(ctx);
break;
case OPC_MXU_S32OR:
gen_mxu_S32OR(ctx);
break;
case OPC_MXU_S32XOR:
gen_mxu_S32XOR(ctx);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool17
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+---------+---+---------+-----+-----------+
* | SPECIAL2 | rs | rt |0 0| rd |x x x|MXU__POOL15|
* +-----------+---------+---------+---+---------+-----+-----------+
*
*/
static void decode_opc_mxu__pool17(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 6, 2);
switch (opcode) {
case OPC_MXU_LXW:
/* TODO: Implement emulation of LXW instruction. */
MIPS_INVAL("OPC_MXU_LXW");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_LXH:
/* TODO: Implement emulation of LXH instruction. */
MIPS_INVAL("OPC_MXU_LXH");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_LXHU:
/* TODO: Implement emulation of LXHU instruction. */
MIPS_INVAL("OPC_MXU_LXHU");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_LXB:
/* TODO: Implement emulation of LXB instruction. */
MIPS_INVAL("OPC_MXU_LXB");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_LXBU:
/* TODO: Implement emulation of LXBU instruction. */
MIPS_INVAL("OPC_MXU_LXBU");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool18
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 | rb |x x x| XRd | XRa |0 0 0 0|MXU__POOL18|
* +-----------+---------+-----+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool18(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 18, 3);
switch (opcode) {
case OPC_MXU_D32SLLV:
/* TODO: Implement emulation of D32SLLV instruction. */
MIPS_INVAL("OPC_MXU_D32SLLV");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D32SLRV:
/* TODO: Implement emulation of D32SLRV instruction. */
MIPS_INVAL("OPC_MXU_D32SLRV");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D32SARV:
/* TODO: Implement emulation of D32SARV instruction. */
MIPS_INVAL("OPC_MXU_D32SARV");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q16SLLV:
/* TODO: Implement emulation of Q16SLLV instruction. */
MIPS_INVAL("OPC_MXU_Q16SLLV");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q16SLRV:
/* TODO: Implement emulation of Q16SLRV instruction. */
MIPS_INVAL("OPC_MXU_Q16SLRV");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q16SARV:
/* TODO: Implement emulation of Q16SARV instruction. */
MIPS_INVAL("OPC_MXU_Q16SARV");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool19
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---+---+-------+-------+-------+-------+-----------+
* | SPECIAL2 |0 0|x x| XRd | XRc | XRb | XRa |MXU__POOL19|
* +-----------+---+---+-------+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool19(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 22, 2);
switch (opcode) {
case OPC_MXU_Q8MUL:
case OPC_MXU_Q8MULSU:
gen_mxu_q8mul_q8mulsu(ctx);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool20
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------+-----+-------+-------+-------+-----------+
* | SPECIAL2 |0 0 0 0 0|x x x| XRc | XRb | XRa |MXU__POOL20|
* +-----------+---------+-----+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool20(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 18, 3);
switch (opcode) {
case OPC_MXU_Q8MOVZ:
/* TODO: Implement emulation of Q8MOVZ instruction. */
MIPS_INVAL("OPC_MXU_Q8MOVZ");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q8MOVN:
/* TODO: Implement emulation of Q8MOVN instruction. */
MIPS_INVAL("OPC_MXU_Q8MOVN");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D16MOVZ:
/* TODO: Implement emulation of D16MOVZ instruction. */
MIPS_INVAL("OPC_MXU_D16MOVZ");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D16MOVN:
/* TODO: Implement emulation of D16MOVN instruction. */
MIPS_INVAL("OPC_MXU_D16MOVN");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32MOVZ:
/* TODO: Implement emulation of S32MOVZ instruction. */
MIPS_INVAL("OPC_MXU_S32MOVZ");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32MOVN:
/* TODO: Implement emulation of S32MOVN instruction. */
MIPS_INVAL("OPC_MXU_S32MOVN");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
*
* Decode MXU pool21
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---+---+-------+-------+-------+-------+-----------+
* | SPECIAL2 |an2|x x| XRd | XRc | XRb | XRa |MXU__POOL21|
* +-----------+---+---+-------+-------+-------+-------+-----------+
*
*/
static void decode_opc_mxu__pool21(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = extract32(ctx->opcode, 22, 2);
switch (opcode) {
case OPC_MXU_Q8MAC:
/* TODO: Implement emulation of Q8MAC instruction. */
MIPS_INVAL("OPC_MXU_Q8MAC");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q8MACSU:
/* TODO: Implement emulation of Q8MACSU instruction. */
MIPS_INVAL("OPC_MXU_Q8MACSU");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
/*
* Main MXU decoding function
*
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------+---------------------------------------+-----------+
* | SPECIAL2 | |x x x x x x|
* +-----------+---------------------------------------+-----------+
*
*/
static void decode_opc_mxu(CPUMIPSState *env, DisasContext *ctx)
{
/*
* TODO: Investigate necessity of including handling of
* CLZ, CLO, SDBB in this function, as they belong to
* SPECIAL2 opcode space for regular pre-R6 MIPS ISAs.
*/
uint32_t opcode = extract32(ctx->opcode, 0, 6);
if (opcode == OPC__MXU_MUL) {
uint32_t rs, rt, rd, op1;
rs = extract32(ctx->opcode, 21, 5);
rt = extract32(ctx->opcode, 16, 5);
rd = extract32(ctx->opcode, 11, 5);
op1 = MASK_SPECIAL2(ctx->opcode);
gen_arith(ctx, op1, rd, rs, rt);
return;
}
if (opcode == OPC_MXU_S32M2I) {
gen_mxu_s32m2i(ctx);
return;
}
if (opcode == OPC_MXU_S32I2M) {
gen_mxu_s32i2m(ctx);
return;
}
{
TCGv t_mxu_cr = tcg_temp_new();
TCGLabel *l_exit = gen_new_label();
gen_load_mxu_cr(t_mxu_cr);
tcg_gen_andi_tl(t_mxu_cr, t_mxu_cr, MXU_CR_MXU_EN);
tcg_gen_brcondi_tl(TCG_COND_NE, t_mxu_cr, MXU_CR_MXU_EN, l_exit);
switch (opcode) {
case OPC_MXU_S32MADD:
/* TODO: Implement emulation of S32MADD instruction. */
MIPS_INVAL("OPC_MXU_S32MADD");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32MADDU:
/* TODO: Implement emulation of S32MADDU instruction. */
MIPS_INVAL("OPC_MXU_S32MADDU");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU__POOL00:
decode_opc_mxu__pool00(env, ctx);
break;
case OPC_MXU_S32MSUB:
/* TODO: Implement emulation of S32MSUB instruction. */
MIPS_INVAL("OPC_MXU_S32MSUB");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32MSUBU:
/* TODO: Implement emulation of S32MSUBU instruction. */
MIPS_INVAL("OPC_MXU_S32MSUBU");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU__POOL01:
decode_opc_mxu__pool01(env, ctx);
break;
case OPC_MXU__POOL02:
decode_opc_mxu__pool02(env, ctx);
break;
case OPC_MXU_D16MUL:
gen_mxu_d16mul(ctx);
break;
case OPC_MXU__POOL03:
decode_opc_mxu__pool03(env, ctx);
break;
case OPC_MXU_D16MAC:
gen_mxu_d16mac(ctx);
break;
case OPC_MXU_D16MACF:
/* TODO: Implement emulation of D16MACF instruction. */
MIPS_INVAL("OPC_MXU_D16MACF");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D16MADL:
/* TODO: Implement emulation of D16MADL instruction. */
MIPS_INVAL("OPC_MXU_D16MADL");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S16MAD:
/* TODO: Implement emulation of S16MAD instruction. */
MIPS_INVAL("OPC_MXU_S16MAD");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q16ADD:
/* TODO: Implement emulation of Q16ADD instruction. */
MIPS_INVAL("OPC_MXU_Q16ADD");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D16MACE:
/* TODO: Implement emulation of D16MACE instruction. */
MIPS_INVAL("OPC_MXU_D16MACE");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU__POOL04:
decode_opc_mxu__pool04(env, ctx);
break;
case OPC_MXU__POOL05:
decode_opc_mxu__pool05(env, ctx);
break;
case OPC_MXU__POOL06:
decode_opc_mxu__pool06(env, ctx);
break;
case OPC_MXU__POOL07:
decode_opc_mxu__pool07(env, ctx);
break;
case OPC_MXU__POOL08:
decode_opc_mxu__pool08(env, ctx);
break;
case OPC_MXU__POOL09:
decode_opc_mxu__pool09(env, ctx);
break;
case OPC_MXU__POOL10:
decode_opc_mxu__pool10(env, ctx);
break;
case OPC_MXU__POOL11:
decode_opc_mxu__pool11(env, ctx);
break;
case OPC_MXU_D32ADD:
/* TODO: Implement emulation of D32ADD instruction. */
MIPS_INVAL("OPC_MXU_D32ADD");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU__POOL12:
decode_opc_mxu__pool12(env, ctx);
break;
case OPC_MXU__POOL13:
decode_opc_mxu__pool13(env, ctx);
break;
case OPC_MXU__POOL14:
decode_opc_mxu__pool14(env, ctx);
break;
case OPC_MXU_Q8ACCE:
/* TODO: Implement emulation of Q8ACCE instruction. */
MIPS_INVAL("OPC_MXU_Q8ACCE");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S8LDD:
gen_mxu_s8ldd(ctx);
break;
case OPC_MXU_S8STD:
/* TODO: Implement emulation of S8STD instruction. */
MIPS_INVAL("OPC_MXU_S8STD");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S8LDI:
/* TODO: Implement emulation of S8LDI instruction. */
MIPS_INVAL("OPC_MXU_S8LDI");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S8SDI:
/* TODO: Implement emulation of S8SDI instruction. */
MIPS_INVAL("OPC_MXU_S8SDI");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU__POOL15:
decode_opc_mxu__pool15(env, ctx);
break;
case OPC_MXU__POOL16:
decode_opc_mxu__pool16(env, ctx);
break;
case OPC_MXU__POOL17:
decode_opc_mxu__pool17(env, ctx);
break;
case OPC_MXU_S16LDD:
/* TODO: Implement emulation of S16LDD instruction. */
MIPS_INVAL("OPC_MXU_S16LDD");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S16STD:
/* TODO: Implement emulation of S16STD instruction. */
MIPS_INVAL("OPC_MXU_S16STD");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S16LDI:
/* TODO: Implement emulation of S16LDI instruction. */
MIPS_INVAL("OPC_MXU_S16LDI");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S16SDI:
/* TODO: Implement emulation of S16SDI instruction. */
MIPS_INVAL("OPC_MXU_S16SDI");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D32SLL:
/* TODO: Implement emulation of D32SLL instruction. */
MIPS_INVAL("OPC_MXU_D32SLL");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D32SLR:
/* TODO: Implement emulation of D32SLR instruction. */
MIPS_INVAL("OPC_MXU_D32SLR");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D32SARL:
/* TODO: Implement emulation of D32SARL instruction. */
MIPS_INVAL("OPC_MXU_D32SARL");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_D32SAR:
/* TODO: Implement emulation of D32SAR instruction. */
MIPS_INVAL("OPC_MXU_D32SAR");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q16SLL:
/* TODO: Implement emulation of Q16SLL instruction. */
MIPS_INVAL("OPC_MXU_Q16SLL");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q16SLR:
/* TODO: Implement emulation of Q16SLR instruction. */
MIPS_INVAL("OPC_MXU_Q16SLR");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU__POOL18:
decode_opc_mxu__pool18(env, ctx);
break;
case OPC_MXU_Q16SAR:
/* TODO: Implement emulation of Q16SAR instruction. */
MIPS_INVAL("OPC_MXU_Q16SAR");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU__POOL19:
decode_opc_mxu__pool19(env, ctx);
break;
case OPC_MXU__POOL20:
decode_opc_mxu__pool20(env, ctx);
break;
case OPC_MXU__POOL21:
decode_opc_mxu__pool21(env, ctx);
break;
case OPC_MXU_Q16SCOP:
/* TODO: Implement emulation of Q16SCOP instruction. */
MIPS_INVAL("OPC_MXU_Q16SCOP");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q8MADL:
/* TODO: Implement emulation of Q8MADL instruction. */
MIPS_INVAL("OPC_MXU_Q8MADL");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_S32SFL:
/* TODO: Implement emulation of S32SFL instruction. */
MIPS_INVAL("OPC_MXU_S32SFL");
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_MXU_Q8SAD:
/* TODO: Implement emulation of Q8SAD instruction. */
MIPS_INVAL("OPC_MXU_Q8SAD");
generate_exception_end(ctx, EXCP_RI);
break;
default:
MIPS_INVAL("decode_opc_mxu");
generate_exception_end(ctx, EXCP_RI);
}
gen_set_label(l_exit);
tcg_temp_free(t_mxu_cr);
}
}
#endif /* !defined(TARGET_MIPS64) */
static void decode_opc_special2_legacy(CPUMIPSState *env, DisasContext *ctx)
{
int rs, rt, rd;
uint32_t op1;
check_insn_opc_removed(ctx, ISA_MIPS32R6);
rs = (ctx->opcode >> 21) & 0x1f;
rt = (ctx->opcode >> 16) & 0x1f;
rd = (ctx->opcode >> 11) & 0x1f;
op1 = MASK_SPECIAL2(ctx->opcode);
switch (op1) {
case OPC_MADD: /* Multiply and add/sub */
case OPC_MADDU:
case OPC_MSUB:
case OPC_MSUBU:
check_insn(ctx, ISA_MIPS32);
gen_muldiv(ctx, op1, rd & 3, rs, rt);
break;
case OPC_MUL:
gen_arith(ctx, op1, rd, rs, rt);
break;
case OPC_DIV_G_2F:
case OPC_DIVU_G_2F:
case OPC_MULT_G_2F:
case OPC_MULTU_G_2F:
case OPC_MOD_G_2F:
case OPC_MODU_G_2F:
check_insn(ctx, INSN_LOONGSON2F);
gen_loongson_integer(ctx, op1, rd, rs, rt);
break;
case OPC_CLO:
case OPC_CLZ:
check_insn(ctx, ISA_MIPS32);
gen_cl(ctx, op1, rd, rs);
break;
case OPC_SDBBP:
if (is_uhi(extract32(ctx->opcode, 6, 20))) {
gen_helper_do_semihosting(cpu_env);
} else {
/*
* XXX: not clear which exception should be raised
* when in debug mode...
*/
check_insn(ctx, ISA_MIPS32);
generate_exception_end(ctx, EXCP_DBp);
}
break;
#if defined(TARGET_MIPS64)
case OPC_DCLO:
case OPC_DCLZ:
check_insn(ctx, ISA_MIPS64);
check_mips_64(ctx);
gen_cl(ctx, op1, rd, rs);
break;
case OPC_DMULT_G_2F:
case OPC_DMULTU_G_2F:
case OPC_DDIV_G_2F:
case OPC_DDIVU_G_2F:
case OPC_DMOD_G_2F:
case OPC_DMODU_G_2F:
check_insn(ctx, INSN_LOONGSON2F);
gen_loongson_integer(ctx, op1, rd, rs, rt);
break;
#endif
default: /* Invalid */
MIPS_INVAL("special2_legacy");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void decode_opc_special3_r6(CPUMIPSState *env, DisasContext *ctx)
{
int rs, rt, rd, sa;
uint32_t op1, op2;
int16_t imm;
rs = (ctx->opcode >> 21) & 0x1f;
rt = (ctx->opcode >> 16) & 0x1f;
rd = (ctx->opcode >> 11) & 0x1f;
sa = (ctx->opcode >> 6) & 0x1f;
imm = (int16_t)ctx->opcode >> 7;
op1 = MASK_SPECIAL3(ctx->opcode);
switch (op1) {
case R6_OPC_PREF:
if (rt >= 24) {
/* hint codes 24-31 are reserved and signal RI */
generate_exception_end(ctx, EXCP_RI);
}
/* Treat as NOP. */
break;
case R6_OPC_CACHE:
check_cp0_enabled(ctx);
if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) {
gen_cache_operation(ctx, rt, rs, imm);
}
break;
case R6_OPC_SC:
gen_st_cond(ctx, rt, rs, imm, MO_TESL, false);
break;
case R6_OPC_LL:
gen_ld(ctx, op1, rt, rs, imm);
break;
case OPC_BSHFL:
{
if (rd == 0) {
/* Treat as NOP. */
break;
}
op2 = MASK_BSHFL(ctx->opcode);
switch (op2) {
case OPC_ALIGN:
case OPC_ALIGN_1:
case OPC_ALIGN_2:
case OPC_ALIGN_3:
gen_align(ctx, 32, rd, rs, rt, sa & 3);
break;
case OPC_BITSWAP:
gen_bitswap(ctx, op2, rd, rt);
break;
}
}
break;
#if defined(TARGET_MIPS64)
case R6_OPC_SCD:
gen_st_cond(ctx, rt, rs, imm, MO_TEQ, false);
break;
case R6_OPC_LLD:
gen_ld(ctx, op1, rt, rs, imm);
break;
case OPC_DBSHFL:
check_mips_64(ctx);
{
if (rd == 0) {
/* Treat as NOP. */
break;
}
op2 = MASK_DBSHFL(ctx->opcode);
switch (op2) {
case OPC_DALIGN:
case OPC_DALIGN_1:
case OPC_DALIGN_2:
case OPC_DALIGN_3:
case OPC_DALIGN_4:
case OPC_DALIGN_5:
case OPC_DALIGN_6:
case OPC_DALIGN_7:
gen_align(ctx, 64, rd, rs, rt, sa & 7);
break;
case OPC_DBITSWAP:
gen_bitswap(ctx, op2, rd, rt);
break;
}
}
break;
#endif
default: /* Invalid */
MIPS_INVAL("special3_r6");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void decode_opc_special3_legacy(CPUMIPSState *env, DisasContext *ctx)
{
int rs, rt, rd;
uint32_t op1, op2;
rs = (ctx->opcode >> 21) & 0x1f;
rt = (ctx->opcode >> 16) & 0x1f;
rd = (ctx->opcode >> 11) & 0x1f;
op1 = MASK_SPECIAL3(ctx->opcode);
switch (op1) {
case OPC_DIV_G_2E:
case OPC_DIVU_G_2E:
case OPC_MOD_G_2E:
case OPC_MODU_G_2E:
case OPC_MULT_G_2E:
case OPC_MULTU_G_2E:
/*
* OPC_MULT_G_2E, OPC_ADDUH_QB_DSP, OPC_MUL_PH_DSP have
* the same mask and op1.
*/
if ((ctx->insn_flags & ASE_DSP_R2) && (op1 == OPC_MULT_G_2E)) {
op2 = MASK_ADDUH_QB(ctx->opcode);
switch (op2) {
case OPC_ADDUH_QB:
case OPC_ADDUH_R_QB:
case OPC_ADDQH_PH:
case OPC_ADDQH_R_PH:
case OPC_ADDQH_W:
case OPC_ADDQH_R_W:
case OPC_SUBUH_QB:
case OPC_SUBUH_R_QB:
case OPC_SUBQH_PH:
case OPC_SUBQH_R_PH:
case OPC_SUBQH_W:
case OPC_SUBQH_R_W:
gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt);
break;
case OPC_MUL_PH:
case OPC_MUL_S_PH:
case OPC_MULQ_S_W:
case OPC_MULQ_RS_W:
gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 1);
break;
default:
MIPS_INVAL("MASK ADDUH.QB");
generate_exception_end(ctx, EXCP_RI);
break;
}
} else if (ctx->insn_flags & INSN_LOONGSON2E) {
gen_loongson_integer(ctx, op1, rd, rs, rt);
} else {
generate_exception_end(ctx, EXCP_RI);
}
break;
case OPC_LX_DSP:
op2 = MASK_LX(ctx->opcode);
switch (op2) {
#if defined(TARGET_MIPS64)
case OPC_LDX:
#endif
case OPC_LBUX:
case OPC_LHX:
case OPC_LWX:
gen_mipsdsp_ld(ctx, op2, rd, rs, rt);
break;
default: /* Invalid */
MIPS_INVAL("MASK LX");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_ABSQ_S_PH_DSP:
op2 = MASK_ABSQ_S_PH(ctx->opcode);
switch (op2) {
case OPC_ABSQ_S_QB:
case OPC_ABSQ_S_PH:
case OPC_ABSQ_S_W:
case OPC_PRECEQ_W_PHL:
case OPC_PRECEQ_W_PHR:
case OPC_PRECEQU_PH_QBL:
case OPC_PRECEQU_PH_QBR:
case OPC_PRECEQU_PH_QBLA:
case OPC_PRECEQU_PH_QBRA:
case OPC_PRECEU_PH_QBL:
case OPC_PRECEU_PH_QBR:
case OPC_PRECEU_PH_QBLA:
case OPC_PRECEU_PH_QBRA:
gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt);
break;
case OPC_BITREV:
case OPC_REPL_QB:
case OPC_REPLV_QB:
case OPC_REPL_PH:
case OPC_REPLV_PH:
gen_mipsdsp_bitinsn(ctx, op1, op2, rd, rt);
break;
default:
MIPS_INVAL("MASK ABSQ_S.PH");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_ADDU_QB_DSP:
op2 = MASK_ADDU_QB(ctx->opcode);
switch (op2) {
case OPC_ADDQ_PH:
case OPC_ADDQ_S_PH:
case OPC_ADDQ_S_W:
case OPC_ADDU_QB:
case OPC_ADDU_S_QB:
case OPC_ADDU_PH:
case OPC_ADDU_S_PH:
case OPC_SUBQ_PH:
case OPC_SUBQ_S_PH:
case OPC_SUBQ_S_W:
case OPC_SUBU_QB:
case OPC_SUBU_S_QB:
case OPC_SUBU_PH:
case OPC_SUBU_S_PH:
case OPC_ADDSC:
case OPC_ADDWC:
case OPC_MODSUB:
case OPC_RADDU_W_QB:
gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt);
break;
case OPC_MULEU_S_PH_QBL:
case OPC_MULEU_S_PH_QBR:
case OPC_MULQ_RS_PH:
case OPC_MULEQ_S_W_PHL:
case OPC_MULEQ_S_W_PHR:
case OPC_MULQ_S_PH:
gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 1);
break;
default: /* Invalid */
MIPS_INVAL("MASK ADDU.QB");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_CMPU_EQ_QB_DSP:
op2 = MASK_CMPU_EQ_QB(ctx->opcode);
switch (op2) {
case OPC_PRECR_SRA_PH_W:
case OPC_PRECR_SRA_R_PH_W:
gen_mipsdsp_arith(ctx, op1, op2, rt, rs, rd);
break;
case OPC_PRECR_QB_PH:
case OPC_PRECRQ_QB_PH:
case OPC_PRECRQ_PH_W:
case OPC_PRECRQ_RS_PH_W:
case OPC_PRECRQU_S_QB_PH:
gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt);
break;
case OPC_CMPU_EQ_QB:
case OPC_CMPU_LT_QB:
case OPC_CMPU_LE_QB:
case OPC_CMP_EQ_PH:
case OPC_CMP_LT_PH:
case OPC_CMP_LE_PH:
gen_mipsdsp_add_cmp_pick(ctx, op1, op2, rd, rs, rt, 0);
break;
case OPC_CMPGU_EQ_QB:
case OPC_CMPGU_LT_QB:
case OPC_CMPGU_LE_QB:
case OPC_CMPGDU_EQ_QB:
case OPC_CMPGDU_LT_QB:
case OPC_CMPGDU_LE_QB:
case OPC_PICK_QB:
case OPC_PICK_PH:
case OPC_PACKRL_PH:
gen_mipsdsp_add_cmp_pick(ctx, op1, op2, rd, rs, rt, 1);
break;
default: /* Invalid */
MIPS_INVAL("MASK CMPU.EQ.QB");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_SHLL_QB_DSP:
gen_mipsdsp_shift(ctx, op1, rd, rs, rt);
break;
case OPC_DPA_W_PH_DSP:
op2 = MASK_DPA_W_PH(ctx->opcode);
switch (op2) {
case OPC_DPAU_H_QBL:
case OPC_DPAU_H_QBR:
case OPC_DPSU_H_QBL:
case OPC_DPSU_H_QBR:
case OPC_DPA_W_PH:
case OPC_DPAX_W_PH:
case OPC_DPAQ_S_W_PH:
case OPC_DPAQX_S_W_PH:
case OPC_DPAQX_SA_W_PH:
case OPC_DPS_W_PH:
case OPC_DPSX_W_PH:
case OPC_DPSQ_S_W_PH:
case OPC_DPSQX_S_W_PH:
case OPC_DPSQX_SA_W_PH:
case OPC_MULSAQ_S_W_PH:
case OPC_DPAQ_SA_L_W:
case OPC_DPSQ_SA_L_W:
case OPC_MAQ_S_W_PHL:
case OPC_MAQ_S_W_PHR:
case OPC_MAQ_SA_W_PHL:
case OPC_MAQ_SA_W_PHR:
case OPC_MULSA_W_PH:
gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 0);
break;
default: /* Invalid */
MIPS_INVAL("MASK DPAW.PH");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_INSV_DSP:
op2 = MASK_INSV(ctx->opcode);
switch (op2) {
case OPC_INSV:
check_dsp(ctx);
{
TCGv t0, t1;
if (rt == 0) {
break;
}
t0 = tcg_temp_new();
t1 = tcg_temp_new();
gen_load_gpr(t0, rt);
gen_load_gpr(t1, rs);
gen_helper_insv(cpu_gpr[rt], cpu_env, t1, t0);
tcg_temp_free(t0);
tcg_temp_free(t1);
break;
}
default: /* Invalid */
MIPS_INVAL("MASK INSV");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_APPEND_DSP:
gen_mipsdsp_append(env, ctx, op1, rt, rs, rd);
break;
case OPC_EXTR_W_DSP:
op2 = MASK_EXTR_W(ctx->opcode);
switch (op2) {
case OPC_EXTR_W:
case OPC_EXTR_R_W:
case OPC_EXTR_RS_W:
case OPC_EXTR_S_H:
case OPC_EXTRV_S_H:
case OPC_EXTRV_W:
case OPC_EXTRV_R_W:
case OPC_EXTRV_RS_W:
case OPC_EXTP:
case OPC_EXTPV:
case OPC_EXTPDP:
case OPC_EXTPDPV:
gen_mipsdsp_accinsn(ctx, op1, op2, rt, rs, rd, 1);
break;
case OPC_RDDSP:
gen_mipsdsp_accinsn(ctx, op1, op2, rd, rs, rt, 1);
break;
case OPC_SHILO:
case OPC_SHILOV:
case OPC_MTHLIP:
case OPC_WRDSP:
gen_mipsdsp_accinsn(ctx, op1, op2, rd, rs, rt, 0);
break;
default: /* Invalid */
MIPS_INVAL("MASK EXTR.W");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
#if defined(TARGET_MIPS64)
case OPC_DDIV_G_2E:
case OPC_DDIVU_G_2E:
case OPC_DMULT_G_2E:
case OPC_DMULTU_G_2E:
case OPC_DMOD_G_2E:
case OPC_DMODU_G_2E:
check_insn(ctx, INSN_LOONGSON2E);
gen_loongson_integer(ctx, op1, rd, rs, rt);
break;
case OPC_ABSQ_S_QH_DSP:
op2 = MASK_ABSQ_S_QH(ctx->opcode);
switch (op2) {
case OPC_PRECEQ_L_PWL:
case OPC_PRECEQ_L_PWR:
case OPC_PRECEQ_PW_QHL:
case OPC_PRECEQ_PW_QHR:
case OPC_PRECEQ_PW_QHLA:
case OPC_PRECEQ_PW_QHRA:
case OPC_PRECEQU_QH_OBL:
case OPC_PRECEQU_QH_OBR:
case OPC_PRECEQU_QH_OBLA:
case OPC_PRECEQU_QH_OBRA:
case OPC_PRECEU_QH_OBL:
case OPC_PRECEU_QH_OBR:
case OPC_PRECEU_QH_OBLA:
case OPC_PRECEU_QH_OBRA:
case OPC_ABSQ_S_OB:
case OPC_ABSQ_S_PW:
case OPC_ABSQ_S_QH:
gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt);
break;
case OPC_REPL_OB:
case OPC_REPL_PW:
case OPC_REPL_QH:
case OPC_REPLV_OB:
case OPC_REPLV_PW:
case OPC_REPLV_QH:
gen_mipsdsp_bitinsn(ctx, op1, op2, rd, rt);
break;
default: /* Invalid */
MIPS_INVAL("MASK ABSQ_S.QH");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_ADDU_OB_DSP:
op2 = MASK_ADDU_OB(ctx->opcode);
switch (op2) {
case OPC_RADDU_L_OB:
case OPC_SUBQ_PW:
case OPC_SUBQ_S_PW:
case OPC_SUBQ_QH:
case OPC_SUBQ_S_QH:
case OPC_SUBU_OB:
case OPC_SUBU_S_OB:
case OPC_SUBU_QH:
case OPC_SUBU_S_QH:
case OPC_SUBUH_OB:
case OPC_SUBUH_R_OB:
case OPC_ADDQ_PW:
case OPC_ADDQ_S_PW:
case OPC_ADDQ_QH:
case OPC_ADDQ_S_QH:
case OPC_ADDU_OB:
case OPC_ADDU_S_OB:
case OPC_ADDU_QH:
case OPC_ADDU_S_QH:
case OPC_ADDUH_OB:
case OPC_ADDUH_R_OB:
gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt);
break;
case OPC_MULEQ_S_PW_QHL:
case OPC_MULEQ_S_PW_QHR:
case OPC_MULEU_S_QH_OBL:
case OPC_MULEU_S_QH_OBR:
case OPC_MULQ_RS_QH:
gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 1);
break;
default: /* Invalid */
MIPS_INVAL("MASK ADDU.OB");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_CMPU_EQ_OB_DSP:
op2 = MASK_CMPU_EQ_OB(ctx->opcode);
switch (op2) {
case OPC_PRECR_SRA_QH_PW:
case OPC_PRECR_SRA_R_QH_PW:
/* Return value is rt. */
gen_mipsdsp_arith(ctx, op1, op2, rt, rs, rd);
break;
case OPC_PRECR_OB_QH:
case OPC_PRECRQ_OB_QH:
case OPC_PRECRQ_PW_L:
case OPC_PRECRQ_QH_PW:
case OPC_PRECRQ_RS_QH_PW:
case OPC_PRECRQU_S_OB_QH:
gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt);
break;
case OPC_CMPU_EQ_OB:
case OPC_CMPU_LT_OB:
case OPC_CMPU_LE_OB:
case OPC_CMP_EQ_QH:
case OPC_CMP_LT_QH:
case OPC_CMP_LE_QH:
case OPC_CMP_EQ_PW:
case OPC_CMP_LT_PW:
case OPC_CMP_LE_PW:
gen_mipsdsp_add_cmp_pick(ctx, op1, op2, rd, rs, rt, 0);
break;
case OPC_CMPGDU_EQ_OB:
case OPC_CMPGDU_LT_OB:
case OPC_CMPGDU_LE_OB:
case OPC_CMPGU_EQ_OB:
case OPC_CMPGU_LT_OB:
case OPC_CMPGU_LE_OB:
case OPC_PACKRL_PW:
case OPC_PICK_OB:
case OPC_PICK_PW:
case OPC_PICK_QH:
gen_mipsdsp_add_cmp_pick(ctx, op1, op2, rd, rs, rt, 1);
break;
default: /* Invalid */
MIPS_INVAL("MASK CMPU_EQ.OB");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_DAPPEND_DSP:
gen_mipsdsp_append(env, ctx, op1, rt, rs, rd);
break;
case OPC_DEXTR_W_DSP:
op2 = MASK_DEXTR_W(ctx->opcode);
switch (op2) {
case OPC_DEXTP:
case OPC_DEXTPDP:
case OPC_DEXTPDPV:
case OPC_DEXTPV:
case OPC_DEXTR_L:
case OPC_DEXTR_R_L:
case OPC_DEXTR_RS_L:
case OPC_DEXTR_W:
case OPC_DEXTR_R_W:
case OPC_DEXTR_RS_W:
case OPC_DEXTR_S_H:
case OPC_DEXTRV_L:
case OPC_DEXTRV_R_L:
case OPC_DEXTRV_RS_L:
case OPC_DEXTRV_S_H:
case OPC_DEXTRV_W:
case OPC_DEXTRV_R_W:
case OPC_DEXTRV_RS_W:
gen_mipsdsp_accinsn(ctx, op1, op2, rt, rs, rd, 1);
break;
case OPC_DMTHLIP:
case OPC_DSHILO:
case OPC_DSHILOV:
gen_mipsdsp_accinsn(ctx, op1, op2, rd, rs, rt, 0);
break;
default: /* Invalid */
MIPS_INVAL("MASK EXTR.W");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_DPAQ_W_QH_DSP:
op2 = MASK_DPAQ_W_QH(ctx->opcode);
switch (op2) {
case OPC_DPAU_H_OBL:
case OPC_DPAU_H_OBR:
case OPC_DPSU_H_OBL:
case OPC_DPSU_H_OBR:
case OPC_DPA_W_QH:
case OPC_DPAQ_S_W_QH:
case OPC_DPS_W_QH:
case OPC_DPSQ_S_W_QH:
case OPC_MULSAQ_S_W_QH:
case OPC_DPAQ_SA_L_PW:
case OPC_DPSQ_SA_L_PW:
case OPC_MULSAQ_S_L_PW:
gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 0);
break;
case OPC_MAQ_S_W_QHLL:
case OPC_MAQ_S_W_QHLR:
case OPC_MAQ_S_W_QHRL:
case OPC_MAQ_S_W_QHRR:
case OPC_MAQ_SA_W_QHLL:
case OPC_MAQ_SA_W_QHLR:
case OPC_MAQ_SA_W_QHRL:
case OPC_MAQ_SA_W_QHRR:
case OPC_MAQ_S_L_PWL:
case OPC_MAQ_S_L_PWR:
case OPC_DMADD:
case OPC_DMADDU:
case OPC_DMSUB:
case OPC_DMSUBU:
gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 0);
break;
default: /* Invalid */
MIPS_INVAL("MASK DPAQ.W.QH");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_DINSV_DSP:
op2 = MASK_INSV(ctx->opcode);
switch (op2) {
case OPC_DINSV:
{
TCGv t0, t1;
if (rt == 0) {
break;
}
check_dsp(ctx);
t0 = tcg_temp_new();
t1 = tcg_temp_new();
gen_load_gpr(t0, rt);
gen_load_gpr(t1, rs);
gen_helper_dinsv(cpu_gpr[rt], cpu_env, t1, t0);
tcg_temp_free(t0);
tcg_temp_free(t1);
break;
}
default: /* Invalid */
MIPS_INVAL("MASK DINSV");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_SHLL_OB_DSP:
gen_mipsdsp_shift(ctx, op1, rd, rs, rt);
break;
#endif
default: /* Invalid */
MIPS_INVAL("special3_legacy");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
#if defined(TARGET_MIPS64)
static void decode_mmi0(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opc = MASK_MMI0(ctx->opcode);
switch (opc) {
case MMI_OPC_0_PADDW: /* TODO: MMI_OPC_0_PADDW */
case MMI_OPC_0_PSUBW: /* TODO: MMI_OPC_0_PSUBW */
case MMI_OPC_0_PCGTW: /* TODO: MMI_OPC_0_PCGTW */
case MMI_OPC_0_PMAXW: /* TODO: MMI_OPC_0_PMAXW */
case MMI_OPC_0_PADDH: /* TODO: MMI_OPC_0_PADDH */
case MMI_OPC_0_PSUBH: /* TODO: MMI_OPC_0_PSUBH */
case MMI_OPC_0_PCGTH: /* TODO: MMI_OPC_0_PCGTH */
case MMI_OPC_0_PMAXH: /* TODO: MMI_OPC_0_PMAXH */
case MMI_OPC_0_PADDB: /* TODO: MMI_OPC_0_PADDB */
case MMI_OPC_0_PSUBB: /* TODO: MMI_OPC_0_PSUBB */
case MMI_OPC_0_PCGTB: /* TODO: MMI_OPC_0_PCGTB */
case MMI_OPC_0_PADDSW: /* TODO: MMI_OPC_0_PADDSW */
case MMI_OPC_0_PSUBSW: /* TODO: MMI_OPC_0_PSUBSW */
case MMI_OPC_0_PEXTLW: /* TODO: MMI_OPC_0_PEXTLW */
case MMI_OPC_0_PPACW: /* TODO: MMI_OPC_0_PPACW */
case MMI_OPC_0_PADDSH: /* TODO: MMI_OPC_0_PADDSH */
case MMI_OPC_0_PSUBSH: /* TODO: MMI_OPC_0_PSUBSH */
case MMI_OPC_0_PEXTLH: /* TODO: MMI_OPC_0_PEXTLH */
case MMI_OPC_0_PPACH: /* TODO: MMI_OPC_0_PPACH */
case MMI_OPC_0_PADDSB: /* TODO: MMI_OPC_0_PADDSB */
case MMI_OPC_0_PSUBSB: /* TODO: MMI_OPC_0_PSUBSB */
case MMI_OPC_0_PEXTLB: /* TODO: MMI_OPC_0_PEXTLB */
case MMI_OPC_0_PPACB: /* TODO: MMI_OPC_0_PPACB */
case MMI_OPC_0_PEXT5: /* TODO: MMI_OPC_0_PEXT5 */
case MMI_OPC_0_PPAC5: /* TODO: MMI_OPC_0_PPAC5 */
generate_exception_end(ctx, EXCP_RI); /* TODO: MMI_OPC_CLASS_MMI0 */
break;
default:
MIPS_INVAL("TX79 MMI class MMI0");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void decode_mmi1(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opc = MASK_MMI1(ctx->opcode);
switch (opc) {
case MMI_OPC_1_PABSW: /* TODO: MMI_OPC_1_PABSW */
case MMI_OPC_1_PCEQW: /* TODO: MMI_OPC_1_PCEQW */
case MMI_OPC_1_PMINW: /* TODO: MMI_OPC_1_PMINW */
case MMI_OPC_1_PADSBH: /* TODO: MMI_OPC_1_PADSBH */
case MMI_OPC_1_PABSH: /* TODO: MMI_OPC_1_PABSH */
case MMI_OPC_1_PCEQH: /* TODO: MMI_OPC_1_PCEQH */
case MMI_OPC_1_PMINH: /* TODO: MMI_OPC_1_PMINH */
case MMI_OPC_1_PCEQB: /* TODO: MMI_OPC_1_PCEQB */
case MMI_OPC_1_PADDUW: /* TODO: MMI_OPC_1_PADDUW */
case MMI_OPC_1_PSUBUW: /* TODO: MMI_OPC_1_PSUBUW */
case MMI_OPC_1_PEXTUW: /* TODO: MMI_OPC_1_PEXTUW */
case MMI_OPC_1_PADDUH: /* TODO: MMI_OPC_1_PADDUH */
case MMI_OPC_1_PSUBUH: /* TODO: MMI_OPC_1_PSUBUH */
case MMI_OPC_1_PEXTUH: /* TODO: MMI_OPC_1_PEXTUH */
case MMI_OPC_1_PADDUB: /* TODO: MMI_OPC_1_PADDUB */
case MMI_OPC_1_PSUBUB: /* TODO: MMI_OPC_1_PSUBUB */
case MMI_OPC_1_PEXTUB: /* TODO: MMI_OPC_1_PEXTUB */
case MMI_OPC_1_QFSRV: /* TODO: MMI_OPC_1_QFSRV */
generate_exception_end(ctx, EXCP_RI); /* TODO: MMI_OPC_CLASS_MMI1 */
break;
default:
MIPS_INVAL("TX79 MMI class MMI1");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void decode_mmi2(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opc = MASK_MMI2(ctx->opcode);
switch (opc) {
case MMI_OPC_2_PMADDW: /* TODO: MMI_OPC_2_PMADDW */
case MMI_OPC_2_PSLLVW: /* TODO: MMI_OPC_2_PSLLVW */
case MMI_OPC_2_PSRLVW: /* TODO: MMI_OPC_2_PSRLVW */
case MMI_OPC_2_PMSUBW: /* TODO: MMI_OPC_2_PMSUBW */
case MMI_OPC_2_PMFHI: /* TODO: MMI_OPC_2_PMFHI */
case MMI_OPC_2_PMFLO: /* TODO: MMI_OPC_2_PMFLO */
case MMI_OPC_2_PINTH: /* TODO: MMI_OPC_2_PINTH */
case MMI_OPC_2_PMULTW: /* TODO: MMI_OPC_2_PMULTW */
case MMI_OPC_2_PDIVW: /* TODO: MMI_OPC_2_PDIVW */
case MMI_OPC_2_PMADDH: /* TODO: MMI_OPC_2_PMADDH */
case MMI_OPC_2_PHMADH: /* TODO: MMI_OPC_2_PHMADH */
case MMI_OPC_2_PAND: /* TODO: MMI_OPC_2_PAND */
case MMI_OPC_2_PXOR: /* TODO: MMI_OPC_2_PXOR */
case MMI_OPC_2_PMSUBH: /* TODO: MMI_OPC_2_PMSUBH */
case MMI_OPC_2_PHMSBH: /* TODO: MMI_OPC_2_PHMSBH */
case MMI_OPC_2_PEXEH: /* TODO: MMI_OPC_2_PEXEH */
case MMI_OPC_2_PREVH: /* TODO: MMI_OPC_2_PREVH */
case MMI_OPC_2_PMULTH: /* TODO: MMI_OPC_2_PMULTH */
case MMI_OPC_2_PDIVBW: /* TODO: MMI_OPC_2_PDIVBW */
case MMI_OPC_2_PEXEW: /* TODO: MMI_OPC_2_PEXEW */
case MMI_OPC_2_PROT3W: /* TODO: MMI_OPC_2_PROT3W */
generate_exception_end(ctx, EXCP_RI); /* TODO: MMI_OPC_CLASS_MMI2 */
break;
case MMI_OPC_2_PCPYLD:
gen_mmi_pcpyld(ctx);
break;
default:
MIPS_INVAL("TX79 MMI class MMI2");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void decode_mmi3(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opc = MASK_MMI3(ctx->opcode);
switch (opc) {
case MMI_OPC_3_PMADDUW: /* TODO: MMI_OPC_3_PMADDUW */
case MMI_OPC_3_PSRAVW: /* TODO: MMI_OPC_3_PSRAVW */
case MMI_OPC_3_PMTHI: /* TODO: MMI_OPC_3_PMTHI */
case MMI_OPC_3_PMTLO: /* TODO: MMI_OPC_3_PMTLO */
case MMI_OPC_3_PINTEH: /* TODO: MMI_OPC_3_PINTEH */
case MMI_OPC_3_PMULTUW: /* TODO: MMI_OPC_3_PMULTUW */
case MMI_OPC_3_PDIVUW: /* TODO: MMI_OPC_3_PDIVUW */
case MMI_OPC_3_POR: /* TODO: MMI_OPC_3_POR */
case MMI_OPC_3_PNOR: /* TODO: MMI_OPC_3_PNOR */
case MMI_OPC_3_PEXCH: /* TODO: MMI_OPC_3_PEXCH */
case MMI_OPC_3_PEXCW: /* TODO: MMI_OPC_3_PEXCW */
generate_exception_end(ctx, EXCP_RI); /* TODO: MMI_OPC_CLASS_MMI3 */
break;
case MMI_OPC_3_PCPYH:
gen_mmi_pcpyh(ctx);
break;
case MMI_OPC_3_PCPYUD:
gen_mmi_pcpyud(ctx);
break;
default:
MIPS_INVAL("TX79 MMI class MMI3");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void decode_mmi(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opc = MASK_MMI(ctx->opcode);
int rs = extract32(ctx->opcode, 21, 5);
int rt = extract32(ctx->opcode, 16, 5);
int rd = extract32(ctx->opcode, 11, 5);
switch (opc) {
case MMI_OPC_CLASS_MMI0:
decode_mmi0(env, ctx);
break;
case MMI_OPC_CLASS_MMI1:
decode_mmi1(env, ctx);
break;
case MMI_OPC_CLASS_MMI2:
decode_mmi2(env, ctx);
break;
case MMI_OPC_CLASS_MMI3:
decode_mmi3(env, ctx);
break;
case MMI_OPC_MULT1:
case MMI_OPC_MULTU1:
case MMI_OPC_MADD:
case MMI_OPC_MADDU:
case MMI_OPC_MADD1:
case MMI_OPC_MADDU1:
gen_mul_txx9(ctx, opc, rd, rs, rt);
break;
case MMI_OPC_DIV1:
case MMI_OPC_DIVU1:
gen_div1_tx79(ctx, opc, rs, rt);
break;
case MMI_OPC_MTLO1:
case MMI_OPC_MTHI1:
gen_HILO1_tx79(ctx, opc, rs);
break;
case MMI_OPC_MFLO1:
case MMI_OPC_MFHI1:
gen_HILO1_tx79(ctx, opc, rd);
break;
case MMI_OPC_PLZCW: /* TODO: MMI_OPC_PLZCW */
case MMI_OPC_PMFHL: /* TODO: MMI_OPC_PMFHL */
case MMI_OPC_PMTHL: /* TODO: MMI_OPC_PMTHL */
case MMI_OPC_PSLLH: /* TODO: MMI_OPC_PSLLH */
case MMI_OPC_PSRLH: /* TODO: MMI_OPC_PSRLH */
case MMI_OPC_PSRAH: /* TODO: MMI_OPC_PSRAH */
case MMI_OPC_PSLLW: /* TODO: MMI_OPC_PSLLW */
case MMI_OPC_PSRLW: /* TODO: MMI_OPC_PSRLW */
case MMI_OPC_PSRAW: /* TODO: MMI_OPC_PSRAW */
generate_exception_end(ctx, EXCP_RI); /* TODO: MMI_OPC_CLASS_MMI */
break;
default:
MIPS_INVAL("TX79 MMI class");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void gen_mmi_lq(CPUMIPSState *env, DisasContext *ctx)
{
generate_exception_end(ctx, EXCP_RI); /* TODO: MMI_OPC_LQ */
}
static void gen_mmi_sq(DisasContext *ctx, int base, int rt, int offset)
{
generate_exception_end(ctx, EXCP_RI); /* TODO: MMI_OPC_SQ */
}
/*
* The TX79-specific instruction Store Quadword
*
* +--------+-------+-------+------------------------+
* | 011111 | base | rt | offset | SQ
* +--------+-------+-------+------------------------+
* 6 5 5 16
*
* has the same opcode as the Read Hardware Register instruction
*
* +--------+-------+-------+-------+-------+--------+
* | 011111 | 00000 | rt | rd | 00000 | 111011 | RDHWR
* +--------+-------+-------+-------+-------+--------+
* 6 5 5 5 5 6
*
* that is required, trapped and emulated by the Linux kernel. However, all
* RDHWR encodings yield address error exceptions on the TX79 since the SQ
* offset is odd. Therefore all valid SQ instructions can execute normally.
* In user mode, QEMU must verify the upper and lower 11 bits to distinguish
* between SQ and RDHWR, as the Linux kernel does.
*/
static void decode_mmi_sq(CPUMIPSState *env, DisasContext *ctx)
{
int base = extract32(ctx->opcode, 21, 5);
int rt = extract32(ctx->opcode, 16, 5);
int offset = extract32(ctx->opcode, 0, 16);
#ifdef CONFIG_USER_ONLY
uint32_t op1 = MASK_SPECIAL3(ctx->opcode);
uint32_t op2 = extract32(ctx->opcode, 6, 5);
if (base == 0 && op2 == 0 && op1 == OPC_RDHWR) {
int rd = extract32(ctx->opcode, 11, 5);
gen_rdhwr(ctx, rt, rd, 0);
return;
}
#endif
gen_mmi_sq(ctx, base, rt, offset);
}
#endif
static void decode_opc_special3(CPUMIPSState *env, DisasContext *ctx)
{
int rs, rt, rd, sa;
uint32_t op1, op2;
int16_t imm;
rs = (ctx->opcode >> 21) & 0x1f;
rt = (ctx->opcode >> 16) & 0x1f;
rd = (ctx->opcode >> 11) & 0x1f;
sa = (ctx->opcode >> 6) & 0x1f;
imm = sextract32(ctx->opcode, 7, 9);
op1 = MASK_SPECIAL3(ctx->opcode);
/*
* EVA loads and stores overlap Loongson 2E instructions decoded by
* decode_opc_special3_legacy(), so be careful to allow their decoding when
* EVA is absent.
*/
if (ctx->eva) {
switch (op1) {
case OPC_LWLE:
case OPC_LWRE:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
/* fall through */
case OPC_LBUE:
case OPC_LHUE:
case OPC_LBE:
case OPC_LHE:
case OPC_LLE:
case OPC_LWE:
check_cp0_enabled(ctx);
gen_ld(ctx, op1, rt, rs, imm);
return;
case OPC_SWLE:
case OPC_SWRE:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
/* fall through */
case OPC_SBE:
case OPC_SHE:
case OPC_SWE:
check_cp0_enabled(ctx);
gen_st(ctx, op1, rt, rs, imm);
return;
case OPC_SCE:
check_cp0_enabled(ctx);
gen_st_cond(ctx, rt, rs, imm, MO_TESL, true);
return;
case OPC_CACHEE:
check_cp0_enabled(ctx);
if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) {
gen_cache_operation(ctx, rt, rs, imm);
}
/* Treat as NOP. */
return;
case OPC_PREFE:
check_cp0_enabled(ctx);
/* Treat as NOP. */
return;
}
}
switch (op1) {
case OPC_EXT:
case OPC_INS:
check_insn(ctx, ISA_MIPS32R2);
gen_bitops(ctx, op1, rt, rs, sa, rd);
break;
case OPC_BSHFL:
op2 = MASK_BSHFL(ctx->opcode);
switch (op2) {
case OPC_ALIGN:
case OPC_ALIGN_1:
case OPC_ALIGN_2:
case OPC_ALIGN_3:
case OPC_BITSWAP:
check_insn(ctx, ISA_MIPS32R6);
decode_opc_special3_r6(env, ctx);
break;
default:
check_insn(ctx, ISA_MIPS32R2);
gen_bshfl(ctx, op2, rt, rd);
break;
}
break;
#if defined(TARGET_MIPS64)
case OPC_DEXTM:
case OPC_DEXTU:
case OPC_DEXT:
case OPC_DINSM:
case OPC_DINSU:
case OPC_DINS:
check_insn(ctx, ISA_MIPS64R2);
check_mips_64(ctx);
gen_bitops(ctx, op1, rt, rs, sa, rd);
break;
case OPC_DBSHFL:
op2 = MASK_DBSHFL(ctx->opcode);
switch (op2) {
case OPC_DALIGN:
case OPC_DALIGN_1:
case OPC_DALIGN_2:
case OPC_DALIGN_3:
case OPC_DALIGN_4:
case OPC_DALIGN_5:
case OPC_DALIGN_6:
case OPC_DALIGN_7:
case OPC_DBITSWAP:
check_insn(ctx, ISA_MIPS32R6);
decode_opc_special3_r6(env, ctx);
break;
default:
check_insn(ctx, ISA_MIPS64R2);
check_mips_64(ctx);
op2 = MASK_DBSHFL(ctx->opcode);
gen_bshfl(ctx, op2, rt, rd);
break;
}
break;
#endif
case OPC_RDHWR:
gen_rdhwr(ctx, rt, rd, extract32(ctx->opcode, 6, 3));
break;
case OPC_FORK:
check_mt(ctx);
{
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
gen_load_gpr(t0, rt);
gen_load_gpr(t1, rs);
gen_helper_fork(t0, t1);
tcg_temp_free(t0);
tcg_temp_free(t1);
}
break;
case OPC_YIELD:
check_mt(ctx);
{
TCGv t0 = tcg_temp_new();
gen_load_gpr(t0, rs);
gen_helper_yield(t0, cpu_env, t0);
gen_store_gpr(t0, rd);
tcg_temp_free(t0);
}
break;
default:
if (ctx->insn_flags & ISA_MIPS32R6) {
decode_opc_special3_r6(env, ctx);
} else {
decode_opc_special3_legacy(env, ctx);
}
}
}
/* MIPS SIMD Architecture (MSA) */
static inline int check_msa_access(DisasContext *ctx)
{
if (unlikely((ctx->hflags & MIPS_HFLAG_FPU) &&
!(ctx->hflags & MIPS_HFLAG_F64))) {
generate_exception_end(ctx, EXCP_RI);
return 0;
}
if (unlikely(!(ctx->hflags & MIPS_HFLAG_MSA))) {
if (ctx->insn_flags & ASE_MSA) {
generate_exception_end(ctx, EXCP_MSADIS);
return 0;
} else {
generate_exception_end(ctx, EXCP_RI);
return 0;
}
}
return 1;
}
static void gen_check_zero_element(TCGv tresult, uint8_t df, uint8_t wt)
{
/* generates tcg ops to check if any element is 0 */
/* Note this function only works with MSA_WRLEN = 128 */
uint64_t eval_zero_or_big = 0;
uint64_t eval_big = 0;
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
switch (df) {
case DF_BYTE:
eval_zero_or_big = 0x0101010101010101ULL;
eval_big = 0x8080808080808080ULL;
break;
case DF_HALF:
eval_zero_or_big = 0x0001000100010001ULL;
eval_big = 0x8000800080008000ULL;
break;
case DF_WORD:
eval_zero_or_big = 0x0000000100000001ULL;
eval_big = 0x8000000080000000ULL;
break;
case DF_DOUBLE:
eval_zero_or_big = 0x0000000000000001ULL;
eval_big = 0x8000000000000000ULL;
break;
}
tcg_gen_subi_i64(t0, msa_wr_d[wt << 1], eval_zero_or_big);
tcg_gen_andc_i64(t0, t0, msa_wr_d[wt << 1]);
tcg_gen_andi_i64(t0, t0, eval_big);
tcg_gen_subi_i64(t1, msa_wr_d[(wt << 1) + 1], eval_zero_or_big);
tcg_gen_andc_i64(t1, t1, msa_wr_d[(wt << 1) + 1]);
tcg_gen_andi_i64(t1, t1, eval_big);
tcg_gen_or_i64(t0, t0, t1);
/* if all bits are zero then all elements are not zero */
/* if some bit is non-zero then some element is zero */
tcg_gen_setcondi_i64(TCG_COND_NE, t0, t0, 0);
tcg_gen_trunc_i64_tl(tresult, t0);
tcg_temp_free_i64(t0);
tcg_temp_free_i64(t1);
}
static void gen_msa_branch(CPUMIPSState *env, DisasContext *ctx, uint32_t op1)
{
uint8_t df = (ctx->opcode >> 21) & 0x3;
uint8_t wt = (ctx->opcode >> 16) & 0x1f;
int64_t s16 = (int16_t)ctx->opcode;
check_msa_access(ctx);
if (ctx->hflags & MIPS_HFLAG_BMASK) {
generate_exception_end(ctx, EXCP_RI);
return;
}
switch (op1) {
case OPC_BZ_V:
case OPC_BNZ_V:
{
TCGv_i64 t0 = tcg_temp_new_i64();
tcg_gen_or_i64(t0, msa_wr_d[wt << 1], msa_wr_d[(wt << 1) + 1]);
tcg_gen_setcondi_i64((op1 == OPC_BZ_V) ?
TCG_COND_EQ : TCG_COND_NE, t0, t0, 0);
tcg_gen_trunc_i64_tl(bcond, t0);
tcg_temp_free_i64(t0);
}
break;
case OPC_BZ_B:
case OPC_BZ_H:
case OPC_BZ_W:
case OPC_BZ_D:
gen_check_zero_element(bcond, df, wt);
break;
case OPC_BNZ_B:
case OPC_BNZ_H:
case OPC_BNZ_W:
case OPC_BNZ_D:
gen_check_zero_element(bcond, df, wt);
tcg_gen_setcondi_tl(TCG_COND_EQ, bcond, bcond, 0);
break;
}
ctx->btarget = ctx->base.pc_next + (s16 << 2) + 4;
ctx->hflags |= MIPS_HFLAG_BC;
ctx->hflags |= MIPS_HFLAG_BDS32;
}
static void gen_msa_i8(CPUMIPSState *env, DisasContext *ctx)
{
#define MASK_MSA_I8(op) (MASK_MSA_MINOR(op) | (op & (0x03 << 24)))
uint8_t i8 = (ctx->opcode >> 16) & 0xff;
uint8_t ws = (ctx->opcode >> 11) & 0x1f;
uint8_t wd = (ctx->opcode >> 6) & 0x1f;
TCGv_i32 twd = tcg_const_i32(wd);
TCGv_i32 tws = tcg_const_i32(ws);
TCGv_i32 ti8 = tcg_const_i32(i8);
switch (MASK_MSA_I8(ctx->opcode)) {
case OPC_ANDI_B:
gen_helper_msa_andi_b(cpu_env, twd, tws, ti8);
break;
case OPC_ORI_B:
gen_helper_msa_ori_b(cpu_env, twd, tws, ti8);
break;
case OPC_NORI_B:
gen_helper_msa_nori_b(cpu_env, twd, tws, ti8);
break;
case OPC_XORI_B:
gen_helper_msa_xori_b(cpu_env, twd, tws, ti8);
break;
case OPC_BMNZI_B:
gen_helper_msa_bmnzi_b(cpu_env, twd, tws, ti8);
break;
case OPC_BMZI_B:
gen_helper_msa_bmzi_b(cpu_env, twd, tws, ti8);
break;
case OPC_BSELI_B:
gen_helper_msa_bseli_b(cpu_env, twd, tws, ti8);
break;
case OPC_SHF_B:
case OPC_SHF_H:
case OPC_SHF_W:
{
uint8_t df = (ctx->opcode >> 24) & 0x3;
if (df == DF_DOUBLE) {
generate_exception_end(ctx, EXCP_RI);
} else {
TCGv_i32 tdf = tcg_const_i32(df);
gen_helper_msa_shf_df(cpu_env, tdf, twd, tws, ti8);
tcg_temp_free_i32(tdf);
}
}
break;
default:
MIPS_INVAL("MSA instruction");
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free_i32(twd);
tcg_temp_free_i32(tws);
tcg_temp_free_i32(ti8);
}
static void gen_msa_i5(CPUMIPSState *env, DisasContext *ctx)
{
#define MASK_MSA_I5(op) (MASK_MSA_MINOR(op) | (op & (0x7 << 23)))
uint8_t df = (ctx->opcode >> 21) & 0x3;
int8_t s5 = (int8_t) sextract32(ctx->opcode, 16, 5);
uint8_t u5 = (ctx->opcode >> 16) & 0x1f;
uint8_t ws = (ctx->opcode >> 11) & 0x1f;
uint8_t wd = (ctx->opcode >> 6) & 0x1f;
TCGv_i32 tdf = tcg_const_i32(df);
TCGv_i32 twd = tcg_const_i32(wd);
TCGv_i32 tws = tcg_const_i32(ws);
TCGv_i32 timm = tcg_temp_new_i32();
tcg_gen_movi_i32(timm, u5);
switch (MASK_MSA_I5(ctx->opcode)) {
case OPC_ADDVI_df:
gen_helper_msa_addvi_df(cpu_env, tdf, twd, tws, timm);
break;
case OPC_SUBVI_df:
gen_helper_msa_subvi_df(cpu_env, tdf, twd, tws, timm);
break;
case OPC_MAXI_S_df:
tcg_gen_movi_i32(timm, s5);
gen_helper_msa_maxi_s_df(cpu_env, tdf, twd, tws, timm);
break;
case OPC_MAXI_U_df:
gen_helper_msa_maxi_u_df(cpu_env, tdf, twd, tws, timm);
break;
case OPC_MINI_S_df:
tcg_gen_movi_i32(timm, s5);
gen_helper_msa_mini_s_df(cpu_env, tdf, twd, tws, timm);
break;
case OPC_MINI_U_df:
gen_helper_msa_mini_u_df(cpu_env, tdf, twd, tws, timm);
break;
case OPC_CEQI_df:
tcg_gen_movi_i32(timm, s5);
gen_helper_msa_ceqi_df(cpu_env, tdf, twd, tws, timm);
break;
case OPC_CLTI_S_df:
tcg_gen_movi_i32(timm, s5);
gen_helper_msa_clti_s_df(cpu_env, tdf, twd, tws, timm);
break;
case OPC_CLTI_U_df:
gen_helper_msa_clti_u_df(cpu_env, tdf, twd, tws, timm);
break;
case OPC_CLEI_S_df:
tcg_gen_movi_i32(timm, s5);
gen_helper_msa_clei_s_df(cpu_env, tdf, twd, tws, timm);
break;
case OPC_CLEI_U_df:
gen_helper_msa_clei_u_df(cpu_env, tdf, twd, tws, timm);
break;
case OPC_LDI_df:
{
int32_t s10 = sextract32(ctx->opcode, 11, 10);
tcg_gen_movi_i32(timm, s10);
gen_helper_msa_ldi_df(cpu_env, tdf, twd, timm);
}
break;
default:
MIPS_INVAL("MSA instruction");
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free_i32(tdf);
tcg_temp_free_i32(twd);
tcg_temp_free_i32(tws);
tcg_temp_free_i32(timm);
}
static void gen_msa_bit(CPUMIPSState *env, DisasContext *ctx)
{
#define MASK_MSA_BIT(op) (MASK_MSA_MINOR(op) | (op & (0x7 << 23)))
uint8_t dfm = (ctx->opcode >> 16) & 0x7f;
uint32_t df = 0, m = 0;
uint8_t ws = (ctx->opcode >> 11) & 0x1f;
uint8_t wd = (ctx->opcode >> 6) & 0x1f;
TCGv_i32 tdf;
TCGv_i32 tm;
TCGv_i32 twd;
TCGv_i32 tws;
if ((dfm & 0x40) == 0x00) {
m = dfm & 0x3f;
df = DF_DOUBLE;
} else if ((dfm & 0x60) == 0x40) {
m = dfm & 0x1f;
df = DF_WORD;
} else if ((dfm & 0x70) == 0x60) {
m = dfm & 0x0f;
df = DF_HALF;
} else if ((dfm & 0x78) == 0x70) {
m = dfm & 0x7;
df = DF_BYTE;
} else {
generate_exception_end(ctx, EXCP_RI);
return;
}
tdf = tcg_const_i32(df);
tm = tcg_const_i32(m);
twd = tcg_const_i32(wd);
tws = tcg_const_i32(ws);
switch (MASK_MSA_BIT(ctx->opcode)) {
case OPC_SLLI_df:
gen_helper_msa_slli_df(cpu_env, tdf, twd, tws, tm);
break;
case OPC_SRAI_df:
gen_helper_msa_srai_df(cpu_env, tdf, twd, tws, tm);
break;
case OPC_SRLI_df:
gen_helper_msa_srli_df(cpu_env, tdf, twd, tws, tm);
break;
case OPC_BCLRI_df:
gen_helper_msa_bclri_df(cpu_env, tdf, twd, tws, tm);
break;
case OPC_BSETI_df:
gen_helper_msa_bseti_df(cpu_env, tdf, twd, tws, tm);
break;
case OPC_BNEGI_df:
gen_helper_msa_bnegi_df(cpu_env, tdf, twd, tws, tm);
break;
case OPC_BINSLI_df:
gen_helper_msa_binsli_df(cpu_env, tdf, twd, tws, tm);
break;
case OPC_BINSRI_df:
gen_helper_msa_binsri_df(cpu_env, tdf, twd, tws, tm);
break;
case OPC_SAT_S_df:
gen_helper_msa_sat_s_df(cpu_env, tdf, twd, tws, tm);
break;
case OPC_SAT_U_df:
gen_helper_msa_sat_u_df(cpu_env, tdf, twd, tws, tm);
break;
case OPC_SRARI_df:
gen_helper_msa_srari_df(cpu_env, tdf, twd, tws, tm);
break;
case OPC_SRLRI_df:
gen_helper_msa_srlri_df(cpu_env, tdf, twd, tws, tm);
break;
default:
MIPS_INVAL("MSA instruction");
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free_i32(tdf);
tcg_temp_free_i32(tm);
tcg_temp_free_i32(twd);
tcg_temp_free_i32(tws);
}
static void gen_msa_3r(CPUMIPSState *env, DisasContext *ctx)
{
#define MASK_MSA_3R(op) (MASK_MSA_MINOR(op) | (op & (0x7 << 23)))
uint8_t df = (ctx->opcode >> 21) & 0x3;
uint8_t wt = (ctx->opcode >> 16) & 0x1f;
uint8_t ws = (ctx->opcode >> 11) & 0x1f;
uint8_t wd = (ctx->opcode >> 6) & 0x1f;
TCGv_i32 tdf = tcg_const_i32(df);
TCGv_i32 twd = tcg_const_i32(wd);
TCGv_i32 tws = tcg_const_i32(ws);
TCGv_i32 twt = tcg_const_i32(wt);
switch (MASK_MSA_3R(ctx->opcode)) {
case OPC_SLL_df:
gen_helper_msa_sll_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_ADDV_df:
gen_helper_msa_addv_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_CEQ_df:
gen_helper_msa_ceq_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_ADD_A_df:
gen_helper_msa_add_a_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_SUBS_S_df:
gen_helper_msa_subs_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MULV_df:
gen_helper_msa_mulv_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_SLD_df:
gen_helper_msa_sld_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_VSHF_df:
gen_helper_msa_vshf_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_SRA_df:
gen_helper_msa_sra_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_SUBV_df:
gen_helper_msa_subv_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_ADDS_A_df:
gen_helper_msa_adds_a_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_SUBS_U_df:
gen_helper_msa_subs_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MADDV_df:
gen_helper_msa_maddv_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_SPLAT_df:
gen_helper_msa_splat_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_SRAR_df:
gen_helper_msa_srar_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_SRL_df:
gen_helper_msa_srl_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MAX_S_df:
gen_helper_msa_max_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_CLT_S_df:
gen_helper_msa_clt_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_ADDS_S_df:
gen_helper_msa_adds_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_SUBSUS_U_df:
gen_helper_msa_subsus_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MSUBV_df:
gen_helper_msa_msubv_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_PCKEV_df:
gen_helper_msa_pckev_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_SRLR_df:
gen_helper_msa_srlr_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_BCLR_df:
gen_helper_msa_bclr_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MAX_U_df:
gen_helper_msa_max_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_CLT_U_df:
gen_helper_msa_clt_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_ADDS_U_df:
gen_helper_msa_adds_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_SUBSUU_S_df:
gen_helper_msa_subsuu_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_PCKOD_df:
gen_helper_msa_pckod_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_BSET_df:
gen_helper_msa_bset_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MIN_S_df:
gen_helper_msa_min_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_CLE_S_df:
gen_helper_msa_cle_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_AVE_S_df:
gen_helper_msa_ave_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_ASUB_S_df:
gen_helper_msa_asub_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_DIV_S_df:
gen_helper_msa_div_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_ILVL_df:
gen_helper_msa_ilvl_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_BNEG_df:
gen_helper_msa_bneg_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MIN_U_df:
gen_helper_msa_min_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_CLE_U_df:
gen_helper_msa_cle_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_AVE_U_df:
gen_helper_msa_ave_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_ASUB_U_df:
gen_helper_msa_asub_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_DIV_U_df:
gen_helper_msa_div_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_ILVR_df:
gen_helper_msa_ilvr_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_BINSL_df:
gen_helper_msa_binsl_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MAX_A_df:
gen_helper_msa_max_a_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_AVER_S_df:
gen_helper_msa_aver_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MOD_S_df:
gen_helper_msa_mod_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_ILVEV_df:
gen_helper_msa_ilvev_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_BINSR_df:
gen_helper_msa_binsr_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MIN_A_df:
gen_helper_msa_min_a_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_AVER_U_df:
gen_helper_msa_aver_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MOD_U_df:
gen_helper_msa_mod_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_ILVOD_df:
gen_helper_msa_ilvod_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_DOTP_S_df:
case OPC_DOTP_U_df:
case OPC_DPADD_S_df:
case OPC_DPADD_U_df:
case OPC_DPSUB_S_df:
case OPC_HADD_S_df:
case OPC_DPSUB_U_df:
case OPC_HADD_U_df:
case OPC_HSUB_S_df:
case OPC_HSUB_U_df:
if (df == DF_BYTE) {
generate_exception_end(ctx, EXCP_RI);
break;
}
switch (MASK_MSA_3R(ctx->opcode)) {
case OPC_DOTP_S_df:
gen_helper_msa_dotp_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_DOTP_U_df:
gen_helper_msa_dotp_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_DPADD_S_df:
gen_helper_msa_dpadd_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_DPADD_U_df:
gen_helper_msa_dpadd_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_DPSUB_S_df:
gen_helper_msa_dpsub_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_HADD_S_df:
gen_helper_msa_hadd_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_DPSUB_U_df:
gen_helper_msa_dpsub_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_HADD_U_df:
gen_helper_msa_hadd_u_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_HSUB_S_df:
gen_helper_msa_hsub_s_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_HSUB_U_df:
gen_helper_msa_hsub_u_df(cpu_env, tdf, twd, tws, twt);
break;
}
break;
default:
MIPS_INVAL("MSA instruction");
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free_i32(twd);
tcg_temp_free_i32(tws);
tcg_temp_free_i32(twt);
tcg_temp_free_i32(tdf);
}
static void gen_msa_elm_3e(CPUMIPSState *env, DisasContext *ctx)
{
#define MASK_MSA_ELM_DF3E(op) (MASK_MSA_MINOR(op) | (op & (0x3FF << 16)))
uint8_t source = (ctx->opcode >> 11) & 0x1f;
uint8_t dest = (ctx->opcode >> 6) & 0x1f;
TCGv telm = tcg_temp_new();
TCGv_i32 tsr = tcg_const_i32(source);
TCGv_i32 tdt = tcg_const_i32(dest);
switch (MASK_MSA_ELM_DF3E(ctx->opcode)) {
case OPC_CTCMSA:
gen_load_gpr(telm, source);
gen_helper_msa_ctcmsa(cpu_env, telm, tdt);
break;
case OPC_CFCMSA:
gen_helper_msa_cfcmsa(telm, cpu_env, tsr);
gen_store_gpr(telm, dest);
break;
case OPC_MOVE_V:
gen_helper_msa_move_v(cpu_env, tdt, tsr);
break;
default:
MIPS_INVAL("MSA instruction");
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free(telm);
tcg_temp_free_i32(tdt);
tcg_temp_free_i32(tsr);
}
static void gen_msa_elm_df(CPUMIPSState *env, DisasContext *ctx, uint32_t df,
uint32_t n)
{
#define MASK_MSA_ELM(op) (MASK_MSA_MINOR(op) | (op & (0xf << 22)))
uint8_t ws = (ctx->opcode >> 11) & 0x1f;
uint8_t wd = (ctx->opcode >> 6) & 0x1f;
TCGv_i32 tws = tcg_const_i32(ws);
TCGv_i32 twd = tcg_const_i32(wd);
TCGv_i32 tn = tcg_const_i32(n);
TCGv_i32 tdf = tcg_const_i32(df);
switch (MASK_MSA_ELM(ctx->opcode)) {
case OPC_SLDI_df:
gen_helper_msa_sldi_df(cpu_env, tdf, twd, tws, tn);
break;
case OPC_SPLATI_df:
gen_helper_msa_splati_df(cpu_env, tdf, twd, tws, tn);
break;
case OPC_INSVE_df:
gen_helper_msa_insve_df(cpu_env, tdf, twd, tws, tn);
break;
case OPC_COPY_S_df:
case OPC_COPY_U_df:
case OPC_INSERT_df:
#if !defined(TARGET_MIPS64)
/* Double format valid only for MIPS64 */
if (df == DF_DOUBLE) {
generate_exception_end(ctx, EXCP_RI);
break;
}
if ((MASK_MSA_ELM(ctx->opcode) == OPC_COPY_U_df) &&
(df == DF_WORD)) {
generate_exception_end(ctx, EXCP_RI);
break;
}
#endif
switch (MASK_MSA_ELM(ctx->opcode)) {
case OPC_COPY_S_df:
if (likely(wd != 0)) {
switch (df) {
case DF_BYTE:
gen_helper_msa_copy_s_b(cpu_env, twd, tws, tn);
break;
case DF_HALF:
gen_helper_msa_copy_s_h(cpu_env, twd, tws, tn);
break;
case DF_WORD:
gen_helper_msa_copy_s_w(cpu_env, twd, tws, tn);
break;
#if defined(TARGET_MIPS64)
case DF_DOUBLE:
gen_helper_msa_copy_s_d(cpu_env, twd, tws, tn);
break;
#endif
default:
assert(0);
}
}
break;
case OPC_COPY_U_df:
if (likely(wd != 0)) {
switch (df) {
case DF_BYTE:
gen_helper_msa_copy_u_b(cpu_env, twd, tws, tn);
break;
case DF_HALF:
gen_helper_msa_copy_u_h(cpu_env, twd, tws, tn);
break;
#if defined(TARGET_MIPS64)
case DF_WORD:
gen_helper_msa_copy_u_w(cpu_env, twd, tws, tn);
break;
#endif
default:
assert(0);
}
}
break;
case OPC_INSERT_df:
switch (df) {
case DF_BYTE:
gen_helper_msa_insert_b(cpu_env, twd, tws, tn);
break;
case DF_HALF:
gen_helper_msa_insert_h(cpu_env, twd, tws, tn);
break;
case DF_WORD:
gen_helper_msa_insert_w(cpu_env, twd, tws, tn);
break;
#if defined(TARGET_MIPS64)
case DF_DOUBLE:
gen_helper_msa_insert_d(cpu_env, twd, tws, tn);
break;
#endif
default:
assert(0);
}
break;
}
break;
default:
MIPS_INVAL("MSA instruction");
generate_exception_end(ctx, EXCP_RI);
}
tcg_temp_free_i32(twd);
tcg_temp_free_i32(tws);
tcg_temp_free_i32(tn);
tcg_temp_free_i32(tdf);
}
static void gen_msa_elm(CPUMIPSState *env, DisasContext *ctx)
{
uint8_t dfn = (ctx->opcode >> 16) & 0x3f;
uint32_t df = 0, n = 0;
if ((dfn & 0x30) == 0x00) {
n = dfn & 0x0f;
df = DF_BYTE;
} else if ((dfn & 0x38) == 0x20) {
n = dfn & 0x07;
df = DF_HALF;
} else if ((dfn & 0x3c) == 0x30) {
n = dfn & 0x03;
df = DF_WORD;
} else if ((dfn & 0x3e) == 0x38) {
n = dfn & 0x01;
df = DF_DOUBLE;
} else if (dfn == 0x3E) {
/* CTCMSA, CFCMSA, MOVE.V */
gen_msa_elm_3e(env, ctx);
return;
} else {
generate_exception_end(ctx, EXCP_RI);
return;
}
gen_msa_elm_df(env, ctx, df, n);
}
static void gen_msa_3rf(CPUMIPSState *env, DisasContext *ctx)
{
#define MASK_MSA_3RF(op) (MASK_MSA_MINOR(op) | (op & (0xf << 22)))
uint8_t df = (ctx->opcode >> 21) & 0x1;
uint8_t wt = (ctx->opcode >> 16) & 0x1f;
uint8_t ws = (ctx->opcode >> 11) & 0x1f;
uint8_t wd = (ctx->opcode >> 6) & 0x1f;
TCGv_i32 twd = tcg_const_i32(wd);
TCGv_i32 tws = tcg_const_i32(ws);
TCGv_i32 twt = tcg_const_i32(wt);
TCGv_i32 tdf = tcg_temp_new_i32();
/* adjust df value for floating-point instruction */
tcg_gen_movi_i32(tdf, df + 2);
switch (MASK_MSA_3RF(ctx->opcode)) {
case OPC_FCAF_df:
gen_helper_msa_fcaf_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FADD_df:
gen_helper_msa_fadd_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FCUN_df:
gen_helper_msa_fcun_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSUB_df:
gen_helper_msa_fsub_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FCOR_df:
gen_helper_msa_fcor_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FCEQ_df:
gen_helper_msa_fceq_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FMUL_df:
gen_helper_msa_fmul_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FCUNE_df:
gen_helper_msa_fcune_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FCUEQ_df:
gen_helper_msa_fcueq_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FDIV_df:
gen_helper_msa_fdiv_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FCNE_df:
gen_helper_msa_fcne_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FCLT_df:
gen_helper_msa_fclt_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FMADD_df:
gen_helper_msa_fmadd_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MUL_Q_df:
tcg_gen_movi_i32(tdf, df + 1);
gen_helper_msa_mul_q_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FCULT_df:
gen_helper_msa_fcult_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FMSUB_df:
gen_helper_msa_fmsub_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MADD_Q_df:
tcg_gen_movi_i32(tdf, df + 1);
gen_helper_msa_madd_q_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FCLE_df:
gen_helper_msa_fcle_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MSUB_Q_df:
tcg_gen_movi_i32(tdf, df + 1);
gen_helper_msa_msub_q_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FCULE_df:
gen_helper_msa_fcule_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FEXP2_df:
gen_helper_msa_fexp2_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSAF_df:
gen_helper_msa_fsaf_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FEXDO_df:
gen_helper_msa_fexdo_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSUN_df:
gen_helper_msa_fsun_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSOR_df:
gen_helper_msa_fsor_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSEQ_df:
gen_helper_msa_fseq_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FTQ_df:
gen_helper_msa_ftq_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSUNE_df:
gen_helper_msa_fsune_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSUEQ_df:
gen_helper_msa_fsueq_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSNE_df:
gen_helper_msa_fsne_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSLT_df:
gen_helper_msa_fslt_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FMIN_df:
gen_helper_msa_fmin_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MULR_Q_df:
tcg_gen_movi_i32(tdf, df + 1);
gen_helper_msa_mulr_q_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSULT_df:
gen_helper_msa_fsult_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FMIN_A_df:
gen_helper_msa_fmin_a_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MADDR_Q_df:
tcg_gen_movi_i32(tdf, df + 1);
gen_helper_msa_maddr_q_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSLE_df:
gen_helper_msa_fsle_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FMAX_df:
gen_helper_msa_fmax_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_MSUBR_Q_df:
tcg_gen_movi_i32(tdf, df + 1);
gen_helper_msa_msubr_q_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FSULE_df:
gen_helper_msa_fsule_df(cpu_env, tdf, twd, tws, twt);
break;
case OPC_FMAX_A_df:
gen_helper_msa_fmax_a_df(cpu_env, tdf, twd, tws, twt);
break;
default:
MIPS_INVAL("MSA instruction");
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free_i32(twd);
tcg_temp_free_i32(tws);
tcg_temp_free_i32(twt);
tcg_temp_free_i32(tdf);
}
static void gen_msa_2r(CPUMIPSState *env, DisasContext *ctx)
{
#define MASK_MSA_2R(op) (MASK_MSA_MINOR(op) | (op & (0x1f << 21)) | \
(op & (0x7 << 18)))
uint8_t wt = (ctx->opcode >> 16) & 0x1f;
uint8_t ws = (ctx->opcode >> 11) & 0x1f;
uint8_t wd = (ctx->opcode >> 6) & 0x1f;
uint8_t df = (ctx->opcode >> 16) & 0x3;
TCGv_i32 twd = tcg_const_i32(wd);
TCGv_i32 tws = tcg_const_i32(ws);
TCGv_i32 twt = tcg_const_i32(wt);
TCGv_i32 tdf = tcg_const_i32(df);
switch (MASK_MSA_2R(ctx->opcode)) {
case OPC_FILL_df:
#if !defined(TARGET_MIPS64)
/* Double format valid only for MIPS64 */
if (df == DF_DOUBLE) {
generate_exception_end(ctx, EXCP_RI);
break;
}
#endif
gen_helper_msa_fill_df(cpu_env, tdf, twd, tws); /* trs */
break;
case OPC_PCNT_df:
gen_helper_msa_pcnt_df(cpu_env, tdf, twd, tws);
break;
case OPC_NLOC_df:
gen_helper_msa_nloc_df(cpu_env, tdf, twd, tws);
break;
case OPC_NLZC_df:
gen_helper_msa_nlzc_df(cpu_env, tdf, twd, tws);
break;
default:
MIPS_INVAL("MSA instruction");
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free_i32(twd);
tcg_temp_free_i32(tws);
tcg_temp_free_i32(twt);
tcg_temp_free_i32(tdf);
}
static void gen_msa_2rf(CPUMIPSState *env, DisasContext *ctx)
{
#define MASK_MSA_2RF(op) (MASK_MSA_MINOR(op) | (op & (0x1f << 21)) | \
(op & (0xf << 17)))
uint8_t wt = (ctx->opcode >> 16) & 0x1f;
uint8_t ws = (ctx->opcode >> 11) & 0x1f;
uint8_t wd = (ctx->opcode >> 6) & 0x1f;
uint8_t df = (ctx->opcode >> 16) & 0x1;
TCGv_i32 twd = tcg_const_i32(wd);
TCGv_i32 tws = tcg_const_i32(ws);
TCGv_i32 twt = tcg_const_i32(wt);
/* adjust df value for floating-point instruction */
TCGv_i32 tdf = tcg_const_i32(df + 2);
switch (MASK_MSA_2RF(ctx->opcode)) {
case OPC_FCLASS_df:
gen_helper_msa_fclass_df(cpu_env, tdf, twd, tws);
break;
case OPC_FTRUNC_S_df:
gen_helper_msa_ftrunc_s_df(cpu_env, tdf, twd, tws);
break;
case OPC_FTRUNC_U_df:
gen_helper_msa_ftrunc_u_df(cpu_env, tdf, twd, tws);
break;
case OPC_FSQRT_df:
gen_helper_msa_fsqrt_df(cpu_env, tdf, twd, tws);
break;
case OPC_FRSQRT_df:
gen_helper_msa_frsqrt_df(cpu_env, tdf, twd, tws);
break;
case OPC_FRCP_df:
gen_helper_msa_frcp_df(cpu_env, tdf, twd, tws);
break;
case OPC_FRINT_df:
gen_helper_msa_frint_df(cpu_env, tdf, twd, tws);
break;
case OPC_FLOG2_df:
gen_helper_msa_flog2_df(cpu_env, tdf, twd, tws);
break;
case OPC_FEXUPL_df:
gen_helper_msa_fexupl_df(cpu_env, tdf, twd, tws);
break;
case OPC_FEXUPR_df:
gen_helper_msa_fexupr_df(cpu_env, tdf, twd, tws);
break;
case OPC_FFQL_df:
gen_helper_msa_ffql_df(cpu_env, tdf, twd, tws);
break;
case OPC_FFQR_df:
gen_helper_msa_ffqr_df(cpu_env, tdf, twd, tws);
break;
case OPC_FTINT_S_df:
gen_helper_msa_ftint_s_df(cpu_env, tdf, twd, tws);
break;
case OPC_FTINT_U_df:
gen_helper_msa_ftint_u_df(cpu_env, tdf, twd, tws);
break;
case OPC_FFINT_S_df:
gen_helper_msa_ffint_s_df(cpu_env, tdf, twd, tws);
break;
case OPC_FFINT_U_df:
gen_helper_msa_ffint_u_df(cpu_env, tdf, twd, tws);
break;
}
tcg_temp_free_i32(twd);
tcg_temp_free_i32(tws);
tcg_temp_free_i32(twt);
tcg_temp_free_i32(tdf);
}
static void gen_msa_vec_v(CPUMIPSState *env, DisasContext *ctx)
{
#define MASK_MSA_VEC(op) (MASK_MSA_MINOR(op) | (op & (0x1f << 21)))
uint8_t wt = (ctx->opcode >> 16) & 0x1f;
uint8_t ws = (ctx->opcode >> 11) & 0x1f;
uint8_t wd = (ctx->opcode >> 6) & 0x1f;
TCGv_i32 twd = tcg_const_i32(wd);
TCGv_i32 tws = tcg_const_i32(ws);
TCGv_i32 twt = tcg_const_i32(wt);
switch (MASK_MSA_VEC(ctx->opcode)) {
case OPC_AND_V:
gen_helper_msa_and_v(cpu_env, twd, tws, twt);
break;
case OPC_OR_V:
gen_helper_msa_or_v(cpu_env, twd, tws, twt);
break;
case OPC_NOR_V:
gen_helper_msa_nor_v(cpu_env, twd, tws, twt);
break;
case OPC_XOR_V:
gen_helper_msa_xor_v(cpu_env, twd, tws, twt);
break;
case OPC_BMNZ_V:
gen_helper_msa_bmnz_v(cpu_env, twd, tws, twt);
break;
case OPC_BMZ_V:
gen_helper_msa_bmz_v(cpu_env, twd, tws, twt);
break;
case OPC_BSEL_V:
gen_helper_msa_bsel_v(cpu_env, twd, tws, twt);
break;
default:
MIPS_INVAL("MSA instruction");
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free_i32(twd);
tcg_temp_free_i32(tws);
tcg_temp_free_i32(twt);
}
static void gen_msa_vec(CPUMIPSState *env, DisasContext *ctx)
{
switch (MASK_MSA_VEC(ctx->opcode)) {
case OPC_AND_V:
case OPC_OR_V:
case OPC_NOR_V:
case OPC_XOR_V:
case OPC_BMNZ_V:
case OPC_BMZ_V:
case OPC_BSEL_V:
gen_msa_vec_v(env, ctx);
break;
case OPC_MSA_2R:
gen_msa_2r(env, ctx);
break;
case OPC_MSA_2RF:
gen_msa_2rf(env, ctx);
break;
default:
MIPS_INVAL("MSA instruction");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void gen_msa(CPUMIPSState *env, DisasContext *ctx)
{
uint32_t opcode = ctx->opcode;
check_insn(ctx, ASE_MSA);
check_msa_access(ctx);
switch (MASK_MSA_MINOR(opcode)) {
case OPC_MSA_I8_00:
case OPC_MSA_I8_01:
case OPC_MSA_I8_02:
gen_msa_i8(env, ctx);
break;
case OPC_MSA_I5_06:
case OPC_MSA_I5_07:
gen_msa_i5(env, ctx);
break;
case OPC_MSA_BIT_09:
case OPC_MSA_BIT_0A:
gen_msa_bit(env, ctx);
break;
case OPC_MSA_3R_0D:
case OPC_MSA_3R_0E:
case OPC_MSA_3R_0F:
case OPC_MSA_3R_10:
case OPC_MSA_3R_11:
case OPC_MSA_3R_12:
case OPC_MSA_3R_13:
case OPC_MSA_3R_14:
case OPC_MSA_3R_15:
gen_msa_3r(env, ctx);
break;
case OPC_MSA_ELM:
gen_msa_elm(env, ctx);
break;
case OPC_MSA_3RF_1A:
case OPC_MSA_3RF_1B:
case OPC_MSA_3RF_1C:
gen_msa_3rf(env, ctx);
break;
case OPC_MSA_VEC:
gen_msa_vec(env, ctx);
break;
case OPC_LD_B:
case OPC_LD_H:
case OPC_LD_W:
case OPC_LD_D:
case OPC_ST_B:
case OPC_ST_H:
case OPC_ST_W:
case OPC_ST_D:
{
int32_t s10 = sextract32(ctx->opcode, 16, 10);
uint8_t rs = (ctx->opcode >> 11) & 0x1f;
uint8_t wd = (ctx->opcode >> 6) & 0x1f;
uint8_t df = (ctx->opcode >> 0) & 0x3;
TCGv_i32 twd = tcg_const_i32(wd);
TCGv taddr = tcg_temp_new();
gen_base_offset_addr(ctx, taddr, rs, s10 << df);
switch (MASK_MSA_MINOR(opcode)) {
case OPC_LD_B:
gen_helper_msa_ld_b(cpu_env, twd, taddr);
break;
case OPC_LD_H:
gen_helper_msa_ld_h(cpu_env, twd, taddr);
break;
case OPC_LD_W:
gen_helper_msa_ld_w(cpu_env, twd, taddr);
break;
case OPC_LD_D:
gen_helper_msa_ld_d(cpu_env, twd, taddr);
break;
case OPC_ST_B:
gen_helper_msa_st_b(cpu_env, twd, taddr);
break;
case OPC_ST_H:
gen_helper_msa_st_h(cpu_env, twd, taddr);
break;
case OPC_ST_W:
gen_helper_msa_st_w(cpu_env, twd, taddr);
break;
case OPC_ST_D:
gen_helper_msa_st_d(cpu_env, twd, taddr);
break;
}
tcg_temp_free_i32(twd);
tcg_temp_free(taddr);
}
break;
default:
MIPS_INVAL("MSA instruction");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void decode_opc(CPUMIPSState *env, DisasContext *ctx)
{
int32_t offset;
int rs, rt, rd, sa;
uint32_t op, op1;
int16_t imm;
/* make sure instructions are on a word boundary */
if (ctx->base.pc_next & 0x3) {
env->CP0_BadVAddr = ctx->base.pc_next;
generate_exception_err(ctx, EXCP_AdEL, EXCP_INST_NOTAVAIL);
return;
}
/* Handle blikely not taken case */
if ((ctx->hflags & MIPS_HFLAG_BMASK_BASE) == MIPS_HFLAG_BL) {
TCGLabel *l1 = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_NE, bcond, 0, l1);
tcg_gen_movi_i32(hflags, ctx->hflags & ~MIPS_HFLAG_BMASK);
gen_goto_tb(ctx, 1, ctx->base.pc_next + 4);
gen_set_label(l1);
}
op = MASK_OP_MAJOR(ctx->opcode);
rs = (ctx->opcode >> 21) & 0x1f;
rt = (ctx->opcode >> 16) & 0x1f;
rd = (ctx->opcode >> 11) & 0x1f;
sa = (ctx->opcode >> 6) & 0x1f;
imm = (int16_t)ctx->opcode;
switch (op) {
case OPC_SPECIAL:
decode_opc_special(env, ctx);
break;
case OPC_SPECIAL2:
#if defined(TARGET_MIPS64)
if ((ctx->insn_flags & INSN_R5900) && (ctx->insn_flags & ASE_MMI)) {
decode_mmi(env, ctx);
#else
if (ctx->insn_flags & ASE_MXU) {
decode_opc_mxu(env, ctx);
#endif
} else {
decode_opc_special2_legacy(env, ctx);
}
break;
case OPC_SPECIAL3:
#if defined(TARGET_MIPS64)
if (ctx->insn_flags & INSN_R5900) {
decode_mmi_sq(env, ctx); /* MMI_OPC_SQ */
} else {
decode_opc_special3(env, ctx);
}
#else
decode_opc_special3(env, ctx);
#endif
break;
case OPC_REGIMM:
op1 = MASK_REGIMM(ctx->opcode);
switch (op1) {
case OPC_BLTZL: /* REGIMM branches */
case OPC_BGEZL:
case OPC_BLTZALL:
case OPC_BGEZALL:
check_insn(ctx, ISA_MIPS2);
check_insn_opc_removed(ctx, ISA_MIPS32R6);
/* Fallthrough */
case OPC_BLTZ:
case OPC_BGEZ:
gen_compute_branch(ctx, op1, 4, rs, -1, imm << 2, 4);
break;
case OPC_BLTZAL:
case OPC_BGEZAL:
if (ctx->insn_flags & ISA_MIPS32R6) {
if (rs == 0) {
/* OPC_NAL, OPC_BAL */
gen_compute_branch(ctx, op1, 4, 0, -1, imm << 2, 4);
} else {
generate_exception_end(ctx, EXCP_RI);
}
} else {
gen_compute_branch(ctx, op1, 4, rs, -1, imm << 2, 4);
}
break;
case OPC_TGEI: /* REGIMM traps */
case OPC_TGEIU:
case OPC_TLTI:
case OPC_TLTIU:
case OPC_TEQI:
case OPC_TNEI:
check_insn(ctx, ISA_MIPS2);
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_trap(ctx, op1, rs, -1, imm);
break;
case OPC_SIGRIE:
check_insn(ctx, ISA_MIPS32R6);
generate_exception_end(ctx, EXCP_RI);
break;
case OPC_SYNCI:
check_insn(ctx, ISA_MIPS32R2);
/*
* Break the TB to be able to sync copied instructions
* immediately.
*/
ctx->base.is_jmp = DISAS_STOP;
break;
case OPC_BPOSGE32: /* MIPS DSP branch */
#if defined(TARGET_MIPS64)
case OPC_BPOSGE64:
#endif
check_dsp(ctx);
gen_compute_branch(ctx, op1, 4, -1, -2, (int32_t)imm << 2, 4);
break;
#if defined(TARGET_MIPS64)
case OPC_DAHI:
check_insn(ctx, ISA_MIPS32R6);
check_mips_64(ctx);
if (rs != 0) {
tcg_gen_addi_tl(cpu_gpr[rs], cpu_gpr[rs], (int64_t)imm << 32);
}
break;
case OPC_DATI:
check_insn(ctx, ISA_MIPS32R6);
check_mips_64(ctx);
if (rs != 0) {
tcg_gen_addi_tl(cpu_gpr[rs], cpu_gpr[rs], (int64_t)imm << 48);
}
break;
#endif
default: /* Invalid */
MIPS_INVAL("regimm");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_CP0:
check_cp0_enabled(ctx);
op1 = MASK_CP0(ctx->opcode);
switch (op1) {
case OPC_MFC0:
case OPC_MTC0:
case OPC_MFTR:
case OPC_MTTR:
case OPC_MFHC0:
case OPC_MTHC0:
#if defined(TARGET_MIPS64)
case OPC_DMFC0:
case OPC_DMTC0:
#endif
#ifndef CONFIG_USER_ONLY
gen_cp0(env, ctx, op1, rt, rd);
#endif /* !CONFIG_USER_ONLY */
break;
case OPC_C0:
case OPC_C0_1:
case OPC_C0_2:
case OPC_C0_3:
case OPC_C0_4:
case OPC_C0_5:
case OPC_C0_6:
case OPC_C0_7:
case OPC_C0_8:
case OPC_C0_9:
case OPC_C0_A:
case OPC_C0_B:
case OPC_C0_C:
case OPC_C0_D:
case OPC_C0_E:
case OPC_C0_F:
#ifndef CONFIG_USER_ONLY
gen_cp0(env, ctx, MASK_C0(ctx->opcode), rt, rd);
#endif /* !CONFIG_USER_ONLY */
break;
case OPC_MFMC0:
#ifndef CONFIG_USER_ONLY
{
uint32_t op2;
TCGv t0 = tcg_temp_new();
op2 = MASK_MFMC0(ctx->opcode);
switch (op2) {
case OPC_DMT:
check_cp0_mt(ctx);
gen_helper_dmt(t0);
gen_store_gpr(t0, rt);
break;
case OPC_EMT:
check_cp0_mt(ctx);
gen_helper_emt(t0);
gen_store_gpr(t0, rt);
break;
case OPC_DVPE:
check_cp0_mt(ctx);
gen_helper_dvpe(t0, cpu_env);
gen_store_gpr(t0, rt);
break;
case OPC_EVPE:
check_cp0_mt(ctx);
gen_helper_evpe(t0, cpu_env);
gen_store_gpr(t0, rt);
break;
case OPC_DVP:
check_insn(ctx, ISA_MIPS32R6);
if (ctx->vp) {
gen_helper_dvp(t0, cpu_env);
gen_store_gpr(t0, rt);
}
break;
case OPC_EVP:
check_insn(ctx, ISA_MIPS32R6);
if (ctx->vp) {
gen_helper_evp(t0, cpu_env);
gen_store_gpr(t0, rt);
}
break;
case OPC_DI:
check_insn(ctx, ISA_MIPS32R2);
save_cpu_state(ctx, 1);
gen_helper_di(t0, cpu_env);
gen_store_gpr(t0, rt);
/*
* Stop translation as we may have switched
* the execution mode.
*/
ctx->base.is_jmp = DISAS_STOP;
break;
case OPC_EI:
check_insn(ctx, ISA_MIPS32R2);
save_cpu_state(ctx, 1);
gen_helper_ei(t0, cpu_env);
gen_store_gpr(t0, rt);
/*
* DISAS_STOP isn't sufficient, we need to ensure we break
* out of translated code to check for pending interrupts.
*/
gen_save_pc(ctx->base.pc_next + 4);
ctx->base.is_jmp = DISAS_EXIT;
break;
default: /* Invalid */
MIPS_INVAL("mfmc0");
generate_exception_end(ctx, EXCP_RI);
break;
}
tcg_temp_free(t0);
}
#endif /* !CONFIG_USER_ONLY */
break;
case OPC_RDPGPR:
check_insn(ctx, ISA_MIPS32R2);
gen_load_srsgpr(rt, rd);
break;
case OPC_WRPGPR:
check_insn(ctx, ISA_MIPS32R2);
gen_store_srsgpr(rt, rd);
break;
default:
MIPS_INVAL("cp0");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
case OPC_BOVC: /* OPC_BEQZALC, OPC_BEQC, OPC_ADDI */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_BOVC, OPC_BEQZALC, OPC_BEQC */
gen_compute_compact_branch(ctx, op, rs, rt, imm << 2);
} else {
/* OPC_ADDI */
/* Arithmetic with immediate opcode */
gen_arith_imm(ctx, op, rt, rs, imm);
}
break;
case OPC_ADDIU:
gen_arith_imm(ctx, op, rt, rs, imm);
break;
case OPC_SLTI: /* Set on less than with immediate opcode */
case OPC_SLTIU:
gen_slt_imm(ctx, op, rt, rs, imm);
break;
case OPC_ANDI: /* Arithmetic with immediate opcode */
case OPC_LUI: /* OPC_AUI */
case OPC_ORI:
case OPC_XORI:
gen_logic_imm(ctx, op, rt, rs, imm);
break;
case OPC_J: /* Jump */
case OPC_JAL:
offset = (int32_t)(ctx->opcode & 0x3FFFFFF) << 2;
gen_compute_branch(ctx, op, 4, rs, rt, offset, 4);
break;
/* Branch */
case OPC_BLEZC: /* OPC_BGEZC, OPC_BGEC, OPC_BLEZL */
if (ctx->insn_flags & ISA_MIPS32R6) {
if (rt == 0) {
generate_exception_end(ctx, EXCP_RI);
break;
}
/* OPC_BLEZC, OPC_BGEZC, OPC_BGEC */
gen_compute_compact_branch(ctx, op, rs, rt, imm << 2);
} else {
/* OPC_BLEZL */
gen_compute_branch(ctx, op, 4, rs, rt, imm << 2, 4);
}
break;
case OPC_BGTZC: /* OPC_BLTZC, OPC_BLTC, OPC_BGTZL */
if (ctx->insn_flags & ISA_MIPS32R6) {
if (rt == 0) {
generate_exception_end(ctx, EXCP_RI);
break;
}
/* OPC_BGTZC, OPC_BLTZC, OPC_BLTC */
gen_compute_compact_branch(ctx, op, rs, rt, imm << 2);
} else {
/* OPC_BGTZL */
gen_compute_branch(ctx, op, 4, rs, rt, imm << 2, 4);
}
break;
case OPC_BLEZALC: /* OPC_BGEZALC, OPC_BGEUC, OPC_BLEZ */
if (rt == 0) {
/* OPC_BLEZ */
gen_compute_branch(ctx, op, 4, rs, rt, imm << 2, 4);
} else {
check_insn(ctx, ISA_MIPS32R6);
/* OPC_BLEZALC, OPC_BGEZALC, OPC_BGEUC */
gen_compute_compact_branch(ctx, op, rs, rt, imm << 2);
}
break;
case OPC_BGTZALC: /* OPC_BLTZALC, OPC_BLTUC, OPC_BGTZ */
if (rt == 0) {
/* OPC_BGTZ */
gen_compute_branch(ctx, op, 4, rs, rt, imm << 2, 4);
} else {
check_insn(ctx, ISA_MIPS32R6);
/* OPC_BGTZALC, OPC_BLTZALC, OPC_BLTUC */
gen_compute_compact_branch(ctx, op, rs, rt, imm << 2);
}
break;
case OPC_BEQL:
case OPC_BNEL:
check_insn(ctx, ISA_MIPS2);
check_insn_opc_removed(ctx, ISA_MIPS32R6);
/* Fallthrough */
case OPC_BEQ:
case OPC_BNE:
gen_compute_branch(ctx, op, 4, rs, rt, imm << 2, 4);
break;
case OPC_LL: /* Load and stores */
check_insn(ctx, ISA_MIPS2);
if (ctx->insn_flags & INSN_R5900) {
check_insn_opc_user_only(ctx, INSN_R5900);
}
/* Fallthrough */
case OPC_LWL:
case OPC_LWR:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
/* Fallthrough */
case OPC_LB:
case OPC_LH:
case OPC_LW:
case OPC_LWPC:
case OPC_LBU:
case OPC_LHU:
gen_ld(ctx, op, rt, rs, imm);
break;
case OPC_SWL:
case OPC_SWR:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
/* fall through */
case OPC_SB:
case OPC_SH:
case OPC_SW:
gen_st(ctx, op, rt, rs, imm);
break;
case OPC_SC:
check_insn(ctx, ISA_MIPS2);
check_insn_opc_removed(ctx, ISA_MIPS32R6);
if (ctx->insn_flags & INSN_R5900) {
check_insn_opc_user_only(ctx, INSN_R5900);
}
gen_st_cond(ctx, rt, rs, imm, MO_TESL, false);
break;
case OPC_CACHE:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
check_cp0_enabled(ctx);
check_insn(ctx, ISA_MIPS3 | ISA_MIPS32);
if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) {
gen_cache_operation(ctx, rt, rs, imm);
}
/* Treat as NOP. */
break;
case OPC_PREF:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
if (ctx->insn_flags & INSN_R5900) {
/* Treat as NOP. */
} else {
check_insn(ctx, ISA_MIPS4 | ISA_MIPS32);
/* Treat as NOP. */
}
break;
/* Floating point (COP1). */
case OPC_LWC1:
case OPC_LDC1:
case OPC_SWC1:
case OPC_SDC1:
gen_cop1_ldst(ctx, op, rt, rs, imm);
break;
case OPC_CP1:
op1 = MASK_CP1(ctx->opcode);
switch (op1) {
case OPC_MFHC1:
case OPC_MTHC1:
check_cp1_enabled(ctx);
check_insn(ctx, ISA_MIPS32R2);
/* fall through */
case OPC_MFC1:
case OPC_CFC1:
case OPC_MTC1:
case OPC_CTC1:
check_cp1_enabled(ctx);
gen_cp1(ctx, op1, rt, rd);
break;
#if defined(TARGET_MIPS64)
case OPC_DMFC1:
case OPC_DMTC1:
check_cp1_enabled(ctx);
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_cp1(ctx, op1, rt, rd);
break;
#endif
case OPC_BC1EQZ: /* OPC_BC1ANY2 */
check_cp1_enabled(ctx);
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_BC1EQZ */
gen_compute_branch1_r6(ctx, MASK_CP1(ctx->opcode),
rt, imm << 2, 4);
} else {
/* OPC_BC1ANY2 */
check_cop1x(ctx);
check_insn(ctx, ASE_MIPS3D);
gen_compute_branch1(ctx, MASK_BC1(ctx->opcode),
(rt >> 2) & 0x7, imm << 2);
}
break;
case OPC_BC1NEZ:
check_cp1_enabled(ctx);
check_insn(ctx, ISA_MIPS32R6);
gen_compute_branch1_r6(ctx, MASK_CP1(ctx->opcode),
rt, imm << 2, 4);
break;
case OPC_BC1ANY4:
check_cp1_enabled(ctx);
check_insn_opc_removed(ctx, ISA_MIPS32R6);
check_cop1x(ctx);
check_insn(ctx, ASE_MIPS3D);
/* fall through */
case OPC_BC1:
check_cp1_enabled(ctx);
check_insn_opc_removed(ctx, ISA_MIPS32R6);
gen_compute_branch1(ctx, MASK_BC1(ctx->opcode),
(rt >> 2) & 0x7, imm << 2);
break;
case OPC_PS_FMT:
check_ps(ctx);
/* fall through */
case OPC_S_FMT:
case OPC_D_FMT:
check_cp1_enabled(ctx);
gen_farith(ctx, ctx->opcode & FOP(0x3f, 0x1f), rt, rd, sa,
(imm >> 8) & 0x7);
break;
case OPC_W_FMT:
case OPC_L_FMT:
{
int r6_op = ctx->opcode & FOP(0x3f, 0x1f);
check_cp1_enabled(ctx);
if (ctx->insn_flags & ISA_MIPS32R6) {
switch (r6_op) {
case R6_OPC_CMP_AF_S:
case R6_OPC_CMP_UN_S:
case R6_OPC_CMP_EQ_S:
case R6_OPC_CMP_UEQ_S:
case R6_OPC_CMP_LT_S:
case R6_OPC_CMP_ULT_S:
case R6_OPC_CMP_LE_S:
case R6_OPC_CMP_ULE_S:
case R6_OPC_CMP_SAF_S:
case R6_OPC_CMP_SUN_S:
case R6_OPC_CMP_SEQ_S:
case R6_OPC_CMP_SEUQ_S:
case R6_OPC_CMP_SLT_S:
case R6_OPC_CMP_SULT_S:
case R6_OPC_CMP_SLE_S:
case R6_OPC_CMP_SULE_S:
case R6_OPC_CMP_OR_S:
case R6_OPC_CMP_UNE_S:
case R6_OPC_CMP_NE_S:
case R6_OPC_CMP_SOR_S:
case R6_OPC_CMP_SUNE_S:
case R6_OPC_CMP_SNE_S:
gen_r6_cmp_s(ctx, ctx->opcode & 0x1f, rt, rd, sa);
break;
case R6_OPC_CMP_AF_D:
case R6_OPC_CMP_UN_D:
case R6_OPC_CMP_EQ_D:
case R6_OPC_CMP_UEQ_D:
case R6_OPC_CMP_LT_D:
case R6_OPC_CMP_ULT_D:
case R6_OPC_CMP_LE_D:
case R6_OPC_CMP_ULE_D:
case R6_OPC_CMP_SAF_D:
case R6_OPC_CMP_SUN_D:
case R6_OPC_CMP_SEQ_D:
case R6_OPC_CMP_SEUQ_D:
case R6_OPC_CMP_SLT_D:
case R6_OPC_CMP_SULT_D:
case R6_OPC_CMP_SLE_D:
case R6_OPC_CMP_SULE_D:
case R6_OPC_CMP_OR_D:
case R6_OPC_CMP_UNE_D:
case R6_OPC_CMP_NE_D:
case R6_OPC_CMP_SOR_D:
case R6_OPC_CMP_SUNE_D:
case R6_OPC_CMP_SNE_D:
gen_r6_cmp_d(ctx, ctx->opcode & 0x1f, rt, rd, sa);
break;
default:
gen_farith(ctx, ctx->opcode & FOP(0x3f, 0x1f),
rt, rd, sa, (imm >> 8) & 0x7);
break;
}
} else {
gen_farith(ctx, ctx->opcode & FOP(0x3f, 0x1f), rt, rd, sa,
(imm >> 8) & 0x7);
}
break;
}
case OPC_BZ_V:
case OPC_BNZ_V:
case OPC_BZ_B:
case OPC_BZ_H:
case OPC_BZ_W:
case OPC_BZ_D:
case OPC_BNZ_B:
case OPC_BNZ_H:
case OPC_BNZ_W:
case OPC_BNZ_D:
check_insn(ctx, ASE_MSA);
gen_msa_branch(env, ctx, op1);
break;
default:
MIPS_INVAL("cp1");
generate_exception_end(ctx, EXCP_RI);
break;
}
break;
/* Compact branches [R6] and COP2 [non-R6] */
case OPC_BC: /* OPC_LWC2 */
case OPC_BALC: /* OPC_SWC2 */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_BC, OPC_BALC */
gen_compute_compact_branch(ctx, op, 0, 0,
sextract32(ctx->opcode << 2, 0, 28));
} else {
/* OPC_LWC2, OPC_SWC2 */
/* COP2: Not implemented. */
generate_exception_err(ctx, EXCP_CpU, 2);
}
break;
case OPC_BEQZC: /* OPC_JIC, OPC_LDC2 */
case OPC_BNEZC: /* OPC_JIALC, OPC_SDC2 */
if (ctx->insn_flags & ISA_MIPS32R6) {
if (rs != 0) {
/* OPC_BEQZC, OPC_BNEZC */
gen_compute_compact_branch(ctx, op, rs, 0,
sextract32(ctx->opcode << 2, 0, 23));
} else {
/* OPC_JIC, OPC_JIALC */
gen_compute_compact_branch(ctx, op, 0, rt, imm);
}
} else {
/* OPC_LWC2, OPC_SWC2 */
/* COP2: Not implemented. */
generate_exception_err(ctx, EXCP_CpU, 2);
}
break;
case OPC_CP2:
check_insn(ctx, INSN_LOONGSON2F);
/* Note that these instructions use different fields. */
gen_loongson_multimedia(ctx, sa, rd, rt);
break;
case OPC_CP3:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
if (ctx->CP0_Config1 & (1 << CP0C1_FP)) {
check_cp1_enabled(ctx);
op1 = MASK_CP3(ctx->opcode);
switch (op1) {
case OPC_LUXC1:
case OPC_SUXC1:
check_insn(ctx, ISA_MIPS5 | ISA_MIPS32R2);
/* Fallthrough */
case OPC_LWXC1:
case OPC_LDXC1:
case OPC_SWXC1:
case OPC_SDXC1:
check_insn(ctx, ISA_MIPS4 | ISA_MIPS32R2);
gen_flt3_ldst(ctx, op1, sa, rd, rs, rt);
break;
case OPC_PREFX:
check_insn(ctx, ISA_MIPS4 | ISA_MIPS32R2);
/* Treat as NOP. */
break;
case OPC_ALNV_PS:
check_insn(ctx, ISA_MIPS5 | ISA_MIPS32R2);
/* Fallthrough */
case OPC_MADD_S:
case OPC_MADD_D:
case OPC_MADD_PS:
case OPC_MSUB_S:
case OPC_MSUB_D:
case OPC_MSUB_PS:
case OPC_NMADD_S:
case OPC_NMADD_D:
case OPC_NMADD_PS:
case OPC_NMSUB_S:
case OPC_NMSUB_D:
case OPC_NMSUB_PS:
check_insn(ctx, ISA_MIPS4 | ISA_MIPS32R2);
gen_flt3_arith(ctx, op1, sa, rs, rd, rt);
break;
default:
MIPS_INVAL("cp3");
generate_exception_end(ctx, EXCP_RI);
break;
}
} else {
generate_exception_err(ctx, EXCP_CpU, 1);
}
break;
#if defined(TARGET_MIPS64)
/* MIPS64 opcodes */
case OPC_LLD:
if (ctx->insn_flags & INSN_R5900) {
check_insn_opc_user_only(ctx, INSN_R5900);
}
/* fall through */
case OPC_LDL:
case OPC_LDR:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
/* fall through */
case OPC_LWU:
case OPC_LD:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_ld(ctx, op, rt, rs, imm);
break;
case OPC_SDL:
case OPC_SDR:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
/* fall through */
case OPC_SD:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_st(ctx, op, rt, rs, imm);
break;
case OPC_SCD:
check_insn_opc_removed(ctx, ISA_MIPS32R6);
check_insn(ctx, ISA_MIPS3);
if (ctx->insn_flags & INSN_R5900) {
check_insn_opc_user_only(ctx, INSN_R5900);
}
check_mips_64(ctx);
gen_st_cond(ctx, rt, rs, imm, MO_TEQ, false);
break;
case OPC_BNVC: /* OPC_BNEZALC, OPC_BNEC, OPC_DADDI */
if (ctx->insn_flags & ISA_MIPS32R6) {
/* OPC_BNVC, OPC_BNEZALC, OPC_BNEC */
gen_compute_compact_branch(ctx, op, rs, rt, imm << 2);
} else {
/* OPC_DADDI */
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_arith_imm(ctx, op, rt, rs, imm);
}
break;
case OPC_DADDIU:
check_insn(ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_arith_imm(ctx, op, rt, rs, imm);
break;
#else
case OPC_BNVC: /* OPC_BNEZALC, OPC_BNEC */
if (ctx->insn_flags & ISA_MIPS32R6) {
gen_compute_compact_branch(ctx, op, rs, rt, imm << 2);
} else {
MIPS_INVAL("major opcode");
generate_exception_end(ctx, EXCP_RI);
}
break;
#endif
case OPC_DAUI: /* OPC_JALX */
if (ctx->insn_flags & ISA_MIPS32R6) {
#if defined(TARGET_MIPS64)
/* OPC_DAUI */
check_mips_64(ctx);
if (rs == 0) {
generate_exception(ctx, EXCP_RI);
} else if (rt != 0) {
TCGv t0 = tcg_temp_new();
gen_load_gpr(t0, rs);
tcg_gen_addi_tl(cpu_gpr[rt], t0, imm << 16);
tcg_temp_free(t0);
}
#else
generate_exception_end(ctx, EXCP_RI);
MIPS_INVAL("major opcode");
#endif
} else {
/* OPC_JALX */
check_insn(ctx, ASE_MIPS16 | ASE_MICROMIPS);
offset = (int32_t)(ctx->opcode & 0x3FFFFFF) << 2;
gen_compute_branch(ctx, op, 4, rs, rt, offset, 4);
}
break;
case OPC_MSA: /* OPC_MDMX */
if (ctx->insn_flags & INSN_R5900) {
#if defined(TARGET_MIPS64)
gen_mmi_lq(env, ctx); /* MMI_OPC_LQ */
#endif
} else {
/* MDMX: Not implemented. */
gen_msa(env, ctx);
}
break;
case OPC_PCREL:
check_insn(ctx, ISA_MIPS32R6);
gen_pcrel(ctx, ctx->opcode, ctx->base.pc_next, rs);
break;
default: /* Invalid */
MIPS_INVAL("major opcode");
generate_exception_end(ctx, EXCP_RI);
break;
}
}
static void mips_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
CPUMIPSState *env = cs->env_ptr;
ctx->page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
ctx->saved_pc = -1;
ctx->insn_flags = env->insn_flags;
ctx->CP0_Config1 = env->CP0_Config1;
ctx->CP0_Config2 = env->CP0_Config2;
ctx->CP0_Config3 = env->CP0_Config3;
ctx->CP0_Config5 = env->CP0_Config5;
ctx->btarget = 0;
ctx->kscrexist = (env->CP0_Config4 >> CP0C4_KScrExist) & 0xff;
ctx->rxi = (env->CP0_Config3 >> CP0C3_RXI) & 1;
ctx->ie = (env->CP0_Config4 >> CP0C4_IE) & 3;
ctx->bi = (env->CP0_Config3 >> CP0C3_BI) & 1;
ctx->bp = (env->CP0_Config3 >> CP0C3_BP) & 1;
ctx->PAMask = env->PAMask;
ctx->mvh = (env->CP0_Config5 >> CP0C5_MVH) & 1;
ctx->eva = (env->CP0_Config5 >> CP0C5_EVA) & 1;
ctx->sc = (env->CP0_Config3 >> CP0C3_SC) & 1;
ctx->CP0_LLAddr_shift = env->CP0_LLAddr_shift;
ctx->cmgcr = (env->CP0_Config3 >> CP0C3_CMGCR) & 1;
/* Restore delay slot state from the tb context. */
ctx->hflags = (uint32_t)ctx->base.tb->flags; /* FIXME: maybe use 64 bits? */
ctx->ulri = (env->CP0_Config3 >> CP0C3_ULRI) & 1;
ctx->ps = ((env->active_fpu.fcr0 >> FCR0_PS) & 1) ||
(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F));
ctx->vp = (env->CP0_Config5 >> CP0C5_VP) & 1;
ctx->mrp = (env->CP0_Config5 >> CP0C5_MRP) & 1;
ctx->nan2008 = (env->active_fpu.fcr31 >> FCR31_NAN2008) & 1;
ctx->abs2008 = (env->active_fpu.fcr31 >> FCR31_ABS2008) & 1;
restore_cpu_state(env, ctx);
#ifdef CONFIG_USER_ONLY
ctx->mem_idx = MIPS_HFLAG_UM;
#else
ctx->mem_idx = hflags_mmu_index(ctx->hflags);
#endif
ctx->default_tcg_memop_mask = (ctx->insn_flags & ISA_MIPS32R6) ?
MO_UNALN : MO_ALIGN;
LOG_DISAS("\ntb %p idx %d hflags %04x\n", ctx->base.tb, ctx->mem_idx,
ctx->hflags);
}
static void mips_tr_tb_start(DisasContextBase *dcbase, CPUState *cs)
{
}
static void mips_tr_insn_start(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
tcg_gen_insn_start(ctx->base.pc_next, ctx->hflags & MIPS_HFLAG_BMASK,
ctx->btarget);
}
static bool mips_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cs,
const CPUBreakpoint *bp)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
save_cpu_state(ctx, 1);
ctx->base.is_jmp = DISAS_NORETURN;
gen_helper_raise_exception_debug(cpu_env);
/*
* The address covered by the breakpoint must be included in
* [tb->pc, tb->pc + tb->size) in order to for it to be
* properly cleared -- thus we increment the PC here so that
* the logic setting tb->size below does the right thing.
*/
ctx->base.pc_next += 4;
return true;
}
static void mips_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs)
{
CPUMIPSState *env = cs->env_ptr;
DisasContext *ctx = container_of(dcbase, DisasContext, base);
int insn_bytes;
int is_slot;
is_slot = ctx->hflags & MIPS_HFLAG_BMASK;
if (ctx->insn_flags & ISA_NANOMIPS32) {
ctx->opcode = cpu_lduw_code(env, ctx->base.pc_next);
insn_bytes = decode_nanomips_opc(env, ctx);
} else if (!(ctx->hflags & MIPS_HFLAG_M16)) {
ctx->opcode = cpu_ldl_code(env, ctx->base.pc_next);
insn_bytes = 4;
decode_opc(env, ctx);
} else if (ctx->insn_flags & ASE_MICROMIPS) {
ctx->opcode = cpu_lduw_code(env, ctx->base.pc_next);
insn_bytes = decode_micromips_opc(env, ctx);
} else if (ctx->insn_flags & ASE_MIPS16) {
ctx->opcode = cpu_lduw_code(env, ctx->base.pc_next);
insn_bytes = decode_mips16_opc(env, ctx);
} else {
generate_exception_end(ctx, EXCP_RI);
g_assert(ctx->base.is_jmp == DISAS_NORETURN);
return;
}
if (ctx->hflags & MIPS_HFLAG_BMASK) {
if (!(ctx->hflags & (MIPS_HFLAG_BDS16 | MIPS_HFLAG_BDS32 |
MIPS_HFLAG_FBNSLOT))) {
/*
* Force to generate branch as there is neither delay nor
* forbidden slot.
*/
is_slot = 1;
}
if ((ctx->hflags & MIPS_HFLAG_M16) &&
(ctx->hflags & MIPS_HFLAG_FBNSLOT)) {
/*
* Force to generate branch as microMIPS R6 doesn't restrict
* branches in the forbidden slot.
*/
is_slot = 1;
}
}
if (is_slot) {
gen_branch(ctx, insn_bytes);
}
ctx->base.pc_next += insn_bytes;
if (ctx->base.is_jmp != DISAS_NEXT) {
return;
}
/*
* Execute a branch and its delay slot as a single instruction.
* This is what GDB expects and is consistent with what the
* hardware does (e.g. if a delay slot instruction faults, the
* reported PC is the PC of the branch).
*/
if (ctx->base.singlestep_enabled &&
(ctx->hflags & MIPS_HFLAG_BMASK) == 0) {
ctx->base.is_jmp = DISAS_TOO_MANY;
}
if (ctx->base.pc_next - ctx->page_start >= TARGET_PAGE_SIZE) {
ctx->base.is_jmp = DISAS_TOO_MANY;
}
}
static void mips_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
if (ctx->base.singlestep_enabled && ctx->base.is_jmp != DISAS_NORETURN) {
save_cpu_state(ctx, ctx->base.is_jmp != DISAS_EXIT);
gen_helper_raise_exception_debug(cpu_env);
} else {
switch (ctx->base.is_jmp) {
case DISAS_STOP:
gen_save_pc(ctx->base.pc_next);
tcg_gen_lookup_and_goto_ptr();
break;
case DISAS_NEXT:
case DISAS_TOO_MANY:
save_cpu_state(ctx, 0);
gen_goto_tb(ctx, 0, ctx->base.pc_next);
break;
case DISAS_EXIT:
tcg_gen_exit_tb(NULL, 0);
break;
case DISAS_NORETURN:
break;
default:
g_assert_not_reached();
}
}
}
static void mips_tr_disas_log(const DisasContextBase *dcbase, CPUState *cs)
{
qemu_log("IN: %s\n", lookup_symbol(dcbase->pc_first));
log_target_disas(cs, dcbase->pc_first, dcbase->tb->size);
}
static const TranslatorOps mips_tr_ops = {
.init_disas_context = mips_tr_init_disas_context,
.tb_start = mips_tr_tb_start,
.insn_start = mips_tr_insn_start,
.breakpoint_check = mips_tr_breakpoint_check,
.translate_insn = mips_tr_translate_insn,
.tb_stop = mips_tr_tb_stop,
.disas_log = mips_tr_disas_log,
};
void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns)
{
DisasContext ctx;
translator_loop(&mips_tr_ops, &ctx.base, cs, tb, max_insns);
}
static void fpu_dump_state(CPUMIPSState *env, FILE *f, int flags)
{
int i;
int is_fpu64 = !!(env->hflags & MIPS_HFLAG_F64);
#define printfpr(fp) \
do { \
if (is_fpu64) \
qemu_fprintf(f, "w:%08x d:%016" PRIx64 \
" fd:%13g fs:%13g psu: %13g\n", \
(fp)->w[FP_ENDIAN_IDX], (fp)->d, \
(double)(fp)->fd, \
(double)(fp)->fs[FP_ENDIAN_IDX], \
(double)(fp)->fs[!FP_ENDIAN_IDX]); \
else { \
fpr_t tmp; \
tmp.w[FP_ENDIAN_IDX] = (fp)->w[FP_ENDIAN_IDX]; \
tmp.w[!FP_ENDIAN_IDX] = ((fp) + 1)->w[FP_ENDIAN_IDX]; \
qemu_fprintf(f, "w:%08x d:%016" PRIx64 \
" fd:%13g fs:%13g psu:%13g\n", \
tmp.w[FP_ENDIAN_IDX], tmp.d, \
(double)tmp.fd, \
(double)tmp.fs[FP_ENDIAN_IDX], \
(double)tmp.fs[!FP_ENDIAN_IDX]); \
} \
} while(0)
qemu_fprintf(f,
"CP1 FCR0 0x%08x FCR31 0x%08x SR.FR %d fp_status 0x%02x\n",
env->active_fpu.fcr0, env->active_fpu.fcr31, is_fpu64,
get_float_exception_flags(&env->active_fpu.fp_status));
for (i = 0; i < 32; (is_fpu64) ? i++ : (i += 2)) {
qemu_fprintf(f, "%3s: ", fregnames[i]);
printfpr(&env->active_fpu.fpr[i]);
}
#undef printfpr
}
void mips_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
int i;
qemu_fprintf(f, "pc=0x" TARGET_FMT_lx " HI=0x" TARGET_FMT_lx
" LO=0x" TARGET_FMT_lx " ds %04x "
TARGET_FMT_lx " " TARGET_FMT_ld "\n",
env->active_tc.PC, env->active_tc.HI[0], env->active_tc.LO[0],
env->hflags, env->btarget, env->bcond);
for (i = 0; i < 32; i++) {
if ((i & 3) == 0) {
qemu_fprintf(f, "GPR%02d:", i);
}
qemu_fprintf(f, " %s " TARGET_FMT_lx,
regnames[i], env->active_tc.gpr[i]);
if ((i & 3) == 3) {
qemu_fprintf(f, "\n");
}
}
qemu_fprintf(f, "CP0 Status 0x%08x Cause 0x%08x EPC 0x" TARGET_FMT_lx "\n",
env->CP0_Status, env->CP0_Cause, env->CP0_EPC);
qemu_fprintf(f, " Config0 0x%08x Config1 0x%08x LLAddr 0x%016"
PRIx64 "\n",
env->CP0_Config0, env->CP0_Config1, env->CP0_LLAddr);
qemu_fprintf(f, " Config2 0x%08x Config3 0x%08x\n",
env->CP0_Config2, env->CP0_Config3);
qemu_fprintf(f, " Config4 0x%08x Config5 0x%08x\n",
env->CP0_Config4, env->CP0_Config5);
if ((flags & CPU_DUMP_FPU) && (env->hflags & MIPS_HFLAG_FPU)) {
fpu_dump_state(env, f, flags);
}
}
void mips_tcg_init(void)
{
int i;
cpu_gpr[0] = NULL;
for (i = 1; i < 32; i++)
cpu_gpr[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUMIPSState, active_tc.gpr[i]),
regnames[i]);
for (i = 0; i < 32; i++) {
int off = offsetof(CPUMIPSState, active_fpu.fpr[i].wr.d[0]);
msa_wr_d[i * 2] =
tcg_global_mem_new_i64(cpu_env, off, msaregnames[i * 2]);
/*
* The scalar floating-point unit (FPU) registers are mapped on
* the MSA vector registers.
*/
fpu_f64[i] = msa_wr_d[i * 2];
off = offsetof(CPUMIPSState, active_fpu.fpr[i].wr.d[1]);
msa_wr_d[i * 2 + 1] =
tcg_global_mem_new_i64(cpu_env, off, msaregnames[i * 2 + 1]);
}
cpu_PC = tcg_global_mem_new(cpu_env,
offsetof(CPUMIPSState, active_tc.PC), "PC");
for (i = 0; i < MIPS_DSP_ACC; i++) {
cpu_HI[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUMIPSState, active_tc.HI[i]),
regnames_HI[i]);
cpu_LO[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUMIPSState, active_tc.LO[i]),
regnames_LO[i]);
}
cpu_dspctrl = tcg_global_mem_new(cpu_env,
offsetof(CPUMIPSState, active_tc.DSPControl),
"DSPControl");
bcond = tcg_global_mem_new(cpu_env,
offsetof(CPUMIPSState, bcond), "bcond");
btarget = tcg_global_mem_new(cpu_env,
offsetof(CPUMIPSState, btarget), "btarget");
hflags = tcg_global_mem_new_i32(cpu_env,
offsetof(CPUMIPSState, hflags), "hflags");
fpu_fcr0 = tcg_global_mem_new_i32(cpu_env,
offsetof(CPUMIPSState, active_fpu.fcr0),
"fcr0");
fpu_fcr31 = tcg_global_mem_new_i32(cpu_env,
offsetof(CPUMIPSState, active_fpu.fcr31),
"fcr31");
cpu_lladdr = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, lladdr),
"lladdr");
cpu_llval = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, llval),
"llval");
#if defined(TARGET_MIPS64)
cpu_mmr[0] = NULL;
for (i = 1; i < 32; i++) {
cpu_mmr[i] = tcg_global_mem_new_i64(cpu_env,
offsetof(CPUMIPSState,
active_tc.mmr[i]),
regnames[i]);
}
#endif
#if !defined(TARGET_MIPS64)
for (i = 0; i < NUMBER_OF_MXU_REGISTERS - 1; i++) {
mxu_gpr[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUMIPSState,
active_tc.mxu_gpr[i]),
mxuregnames[i]);
}
mxu_CR = tcg_global_mem_new(cpu_env,
offsetof(CPUMIPSState, active_tc.mxu_cr),
mxuregnames[NUMBER_OF_MXU_REGISTERS - 1]);
#endif
}
#include "translate_init.inc.c"
void cpu_mips_realize_env(CPUMIPSState *env)
{
env->exception_base = (int32_t)0xBFC00000;
#ifndef CONFIG_USER_ONLY
mmu_init(env, env->cpu_model);
#endif
fpu_init(env, env->cpu_model);
mvp_init(env, env->cpu_model);
}
bool cpu_supports_cps_smp(const char *cpu_type)
{
const MIPSCPUClass *mcc = MIPS_CPU_CLASS(object_class_by_name(cpu_type));
return (mcc->cpu_def->CP0_Config3 & (1 << CP0C3_CMGCR)) != 0;
}
bool cpu_supports_isa(const char *cpu_type, uint64_t isa)
{
const MIPSCPUClass *mcc = MIPS_CPU_CLASS(object_class_by_name(cpu_type));
return (mcc->cpu_def->insn_flags & isa) != 0;
}
void cpu_set_exception_base(int vp_index, target_ulong address)
{
MIPSCPU *vp = MIPS_CPU(qemu_get_cpu(vp_index));
vp->env.exception_base = address;
}
void cpu_state_reset(CPUMIPSState *env)
{
CPUState *cs = env_cpu(env);
/* Reset registers to their default values */
env->CP0_PRid = env->cpu_model->CP0_PRid;
env->CP0_Config0 = env->cpu_model->CP0_Config0;
#ifdef TARGET_WORDS_BIGENDIAN
env->CP0_Config0 |= (1 << CP0C0_BE);
#endif
env->CP0_Config1 = env->cpu_model->CP0_Config1;
env->CP0_Config2 = env->cpu_model->CP0_Config2;
env->CP0_Config3 = env->cpu_model->CP0_Config3;
env->CP0_Config4 = env->cpu_model->CP0_Config4;
env->CP0_Config4_rw_bitmask = env->cpu_model->CP0_Config4_rw_bitmask;
env->CP0_Config5 = env->cpu_model->CP0_Config5;
env->CP0_Config5_rw_bitmask = env->cpu_model->CP0_Config5_rw_bitmask;
env->CP0_Config6 = env->cpu_model->CP0_Config6;
env->CP0_Config7 = env->cpu_model->CP0_Config7;
env->CP0_LLAddr_rw_bitmask = env->cpu_model->CP0_LLAddr_rw_bitmask
<< env->cpu_model->CP0_LLAddr_shift;
env->CP0_LLAddr_shift = env->cpu_model->CP0_LLAddr_shift;
env->SYNCI_Step = env->cpu_model->SYNCI_Step;
env->CCRes = env->cpu_model->CCRes;
env->CP0_Status_rw_bitmask = env->cpu_model->CP0_Status_rw_bitmask;
env->CP0_TCStatus_rw_bitmask = env->cpu_model->CP0_TCStatus_rw_bitmask;
env->CP0_SRSCtl = env->cpu_model->CP0_SRSCtl;
env->current_tc = 0;
env->SEGBITS = env->cpu_model->SEGBITS;
env->SEGMask = (target_ulong)((1ULL << env->cpu_model->SEGBITS) - 1);
#if defined(TARGET_MIPS64)
if (env->cpu_model->insn_flags & ISA_MIPS3) {
env->SEGMask |= 3ULL << 62;
}
#endif
env->PABITS = env->cpu_model->PABITS;
env->CP0_SRSConf0_rw_bitmask = env->cpu_model->CP0_SRSConf0_rw_bitmask;
env->CP0_SRSConf0 = env->cpu_model->CP0_SRSConf0;
env->CP0_SRSConf1_rw_bitmask = env->cpu_model->CP0_SRSConf1_rw_bitmask;
env->CP0_SRSConf1 = env->cpu_model->CP0_SRSConf1;
env->CP0_SRSConf2_rw_bitmask = env->cpu_model->CP0_SRSConf2_rw_bitmask;
env->CP0_SRSConf2 = env->cpu_model->CP0_SRSConf2;
env->CP0_SRSConf3_rw_bitmask = env->cpu_model->CP0_SRSConf3_rw_bitmask;
env->CP0_SRSConf3 = env->cpu_model->CP0_SRSConf3;
env->CP0_SRSConf4_rw_bitmask = env->cpu_model->CP0_SRSConf4_rw_bitmask;
env->CP0_SRSConf4 = env->cpu_model->CP0_SRSConf4;
env->CP0_PageGrain_rw_bitmask = env->cpu_model->CP0_PageGrain_rw_bitmask;
env->CP0_PageGrain = env->cpu_model->CP0_PageGrain;
env->CP0_EBaseWG_rw_bitmask = env->cpu_model->CP0_EBaseWG_rw_bitmask;
env->active_fpu.fcr0 = env->cpu_model->CP1_fcr0;
env->active_fpu.fcr31_rw_bitmask = env->cpu_model->CP1_fcr31_rw_bitmask;
env->active_fpu.fcr31 = env->cpu_model->CP1_fcr31;
env->msair = env->cpu_model->MSAIR;
env->insn_flags = env->cpu_model->insn_flags;
#if defined(CONFIG_USER_ONLY)
env->CP0_Status = (MIPS_HFLAG_UM << CP0St_KSU);
# ifdef TARGET_MIPS64
/* Enable 64-bit register mode. */
env->CP0_Status |= (1 << CP0St_PX);
# endif
# ifdef TARGET_ABI_MIPSN64
/* Enable 64-bit address mode. */
env->CP0_Status |= (1 << CP0St_UX);
# endif
/*
* Enable access to the CPUNum, SYNCI_Step, CC, and CCRes RDHWR
* hardware registers.
*/
env->CP0_HWREna |= 0x0000000F;
if (env->CP0_Config1 & (1 << CP0C1_FP)) {
env->CP0_Status |= (1 << CP0St_CU1);
}
if (env->CP0_Config3 & (1 << CP0C3_DSPP)) {
env->CP0_Status |= (1 << CP0St_MX);
}
# if defined(TARGET_MIPS64)
/* For MIPS64, init FR bit to 1 if FPU unit is there and bit is writable. */
if ((env->CP0_Config1 & (1 << CP0C1_FP)) &&
(env->CP0_Status_rw_bitmask & (1 << CP0St_FR))) {
env->CP0_Status |= (1 << CP0St_FR);
}
# endif
#else
if (env->hflags & MIPS_HFLAG_BMASK) {
/*
* If the exception was raised from a delay slot,
* come back to the jump.
*/
env->CP0_ErrorEPC = (env->active_tc.PC
- (env->hflags & MIPS_HFLAG_B16 ? 2 : 4));
} else {
env->CP0_ErrorEPC = env->active_tc.PC;
}
env->active_tc.PC = env->exception_base;
env->CP0_Random = env->tlb->nb_tlb - 1;
env->tlb->tlb_in_use = env->tlb->nb_tlb;
env->CP0_Wired = 0;
env->CP0_GlobalNumber = (cs->cpu_index & 0xFF) << CP0GN_VPId;
env->CP0_EBase = (cs->cpu_index & 0x3FF);
if (mips_um_ksegs_enabled()) {
env->CP0_EBase |= 0x40000000;
} else {
env->CP0_EBase |= (int32_t)0x80000000;
}
if (env->CP0_Config3 & (1 << CP0C3_CMGCR)) {
env->CP0_CMGCRBase = 0x1fbf8000 >> 4;
}
env->CP0_EntryHi_ASID_mask = (env->CP0_Config4 & (1 << CP0C4_AE)) ?
0x3ff : 0xff;
env->CP0_Status = (1 << CP0St_BEV) | (1 << CP0St_ERL);
/*
* Vectored interrupts not implemented, timer on int 7,
* no performance counters.
*/
env->CP0_IntCtl = 0xe0000000;
{
int i;
for (i = 0; i < 7; i++) {
env->CP0_WatchLo[i] = 0;
env->CP0_WatchHi[i] = 0x80000000;
}
env->CP0_WatchLo[7] = 0;
env->CP0_WatchHi[7] = 0;
}
/* Count register increments in debug mode, EJTAG version 1 */
env->CP0_Debug = (1 << CP0DB_CNT) | (0x1 << CP0DB_VER);
cpu_mips_store_count(env, 1);
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
int i;
/* Only TC0 on VPE 0 starts as active. */
for (i = 0; i < ARRAY_SIZE(env->tcs); i++) {
env->tcs[i].CP0_TCBind = cs->cpu_index << CP0TCBd_CurVPE;
env->tcs[i].CP0_TCHalt = 1;
}
env->active_tc.CP0_TCHalt = 1;
cs->halted = 1;
if (cs->cpu_index == 0) {
/* VPE0 starts up enabled. */
env->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
env->CP0_VPEConf0 |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
/* TC0 starts up unhalted. */
cs->halted = 0;
env->active_tc.CP0_TCHalt = 0;
env->tcs[0].CP0_TCHalt = 0;
/* With thread 0 active. */
env->active_tc.CP0_TCStatus = (1 << CP0TCSt_A);
env->tcs[0].CP0_TCStatus = (1 << CP0TCSt_A);
}
}
/*
* Configure default legacy segmentation control. We use this regardless of
* whether segmentation control is presented to the guest.
*/
/* KSeg3 (seg0 0xE0000000..0xFFFFFFFF) */
env->CP0_SegCtl0 = (CP0SC_AM_MK << CP0SC_AM);
/* KSeg2 (seg1 0xC0000000..0xDFFFFFFF) */
env->CP0_SegCtl0 |= ((CP0SC_AM_MSK << CP0SC_AM)) << 16;
/* KSeg1 (seg2 0xA0000000..0x9FFFFFFF) */
env->CP0_SegCtl1 = (0 << CP0SC_PA) | (CP0SC_AM_UK << CP0SC_AM) |
(2 << CP0SC_C);
/* KSeg0 (seg3 0x80000000..0x9FFFFFFF) */
env->CP0_SegCtl1 |= ((0 << CP0SC_PA) | (CP0SC_AM_UK << CP0SC_AM) |
(3 << CP0SC_C)) << 16;
/* USeg (seg4 0x40000000..0x7FFFFFFF) */
env->CP0_SegCtl2 = (2 << CP0SC_PA) | (CP0SC_AM_MUSK << CP0SC_AM) |
(1 << CP0SC_EU) | (2 << CP0SC_C);
/* USeg (seg5 0x00000000..0x3FFFFFFF) */
env->CP0_SegCtl2 |= ((0 << CP0SC_PA) | (CP0SC_AM_MUSK << CP0SC_AM) |
(1 << CP0SC_EU) | (2 << CP0SC_C)) << 16;
/* XKPhys (note, SegCtl2.XR = 0, so XAM won't be used) */
env->CP0_SegCtl1 |= (CP0SC_AM_UK << CP0SC1_XAM);
#endif
if ((env->insn_flags & ISA_MIPS32R6) &&
(env->active_fpu.fcr0 & (1 << FCR0_F64))) {
/* Status.FR = 0 mode in 64-bit FPU not allowed in R6 */
env->CP0_Status |= (1 << CP0St_FR);
}
if (env->insn_flags & ISA_MIPS32R6) {
/* PTW = 1 */
env->CP0_PWSize = 0x40;
/* GDI = 12 */
/* UDI = 12 */
/* MDI = 12 */
/* PRI = 12 */
/* PTEI = 2 */
env->CP0_PWField = 0x0C30C302;
} else {
/* GDI = 0 */
/* UDI = 0 */
/* MDI = 0 */
/* PRI = 0 */
/* PTEI = 2 */
env->CP0_PWField = 0x02;
}
if (env->CP0_Config3 & (1 << CP0C3_ISA) & (1 << (CP0C3_ISA + 1))) {
/* microMIPS on reset when Config3.ISA is 3 */
env->hflags |= MIPS_HFLAG_M16;
}
/* MSA */
if (env->CP0_Config3 & (1 << CP0C3_MSAP)) {
msa_reset(env);
}
compute_hflags(env);
restore_fp_status(env);
restore_pamask(env);
cs->exception_index = EXCP_NONE;
if (semihosting_get_argc()) {
/* UHI interface can be used to obtain argc and argv */
env->active_tc.gpr[4] = -1;
}
}
void restore_state_to_opc(CPUMIPSState *env, TranslationBlock *tb,
target_ulong *data)
{
env->active_tc.PC = data[0];
env->hflags &= ~MIPS_HFLAG_BMASK;
env->hflags |= data[1];
switch (env->hflags & MIPS_HFLAG_BMASK_BASE) {
case MIPS_HFLAG_BR:
break;
case MIPS_HFLAG_BC:
case MIPS_HFLAG_BL:
case MIPS_HFLAG_B:
env->btarget = data[2];
break;
}
}