/* * MIPS emulation helpers for qemu. * * Copyright (c) 2004-2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "internal.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "exec/log.h" #include "hw/mips/cpudevs.h" #include "qapi/qapi-commands-machine-target.h" enum { TLBRET_XI = -6, TLBRET_RI = -5, TLBRET_DIRTY = -4, TLBRET_INVALID = -3, TLBRET_NOMATCH = -2, TLBRET_BADADDR = -1, TLBRET_MATCH = 0 }; #if !defined(CONFIG_USER_ONLY) /* no MMU emulation */ int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong address, int rw, int access_type) { *physical = address; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return TLBRET_MATCH; } /* fixed mapping MMU emulation */ int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong address, int rw, int access_type) { if (address <= (int32_t)0x7FFFFFFFUL) { if (!(env->CP0_Status & (1 << CP0St_ERL))) { *physical = address + 0x40000000UL; } else { *physical = address; } } else if (address <= (int32_t)0xBFFFFFFFUL) { *physical = address & 0x1FFFFFFF; } else { *physical = address; } *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return TLBRET_MATCH; } /* MIPS32/MIPS64 R4000-style MMU emulation */ int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong address, int rw, int access_type) { uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; int i; for (i = 0; i < env->tlb->tlb_in_use; i++) { r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); target_ulong tag = address & ~mask; target_ulong VPN = tlb->VPN & ~mask; #if defined(TARGET_MIPS64) tag &= env->SEGMask; #endif /* Check ASID, virtual page number & size */ if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) { /* TLB match */ int n = !!(address & mask & ~(mask >> 1)); /* Check access rights */ if (!(n ? tlb->V1 : tlb->V0)) { return TLBRET_INVALID; } if (rw == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) { return TLBRET_XI; } if (rw == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) { return TLBRET_RI; } if (rw != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) { *physical = tlb->PFN[n] | (address & (mask >> 1)); *prot = PAGE_READ; if (n ? tlb->D1 : tlb->D0) { *prot |= PAGE_WRITE; } if (!(n ? tlb->XI1 : tlb->XI0)) { *prot |= PAGE_EXEC; } return TLBRET_MATCH; } return TLBRET_DIRTY; } } return TLBRET_NOMATCH; } static int is_seg_am_mapped(unsigned int am, bool eu, int mmu_idx) { /* * Interpret access control mode and mmu_idx. * AdE? TLB? * AM K S U E K S U E * UK 0 0 1 1 0 0 - - 0 * MK 1 0 1 1 0 1 - - !eu * MSK 2 0 0 1 0 1 1 - !eu * MUSK 3 0 0 0 0 1 1 1 !eu * MUSUK 4 0 0 0 0 0 1 1 0 * USK 5 0 0 1 0 0 0 - 0 * - 6 - - - - - - - - * UUSK 7 0 0 0 0 0 0 0 0 */ int32_t adetlb_mask; switch (mmu_idx) { case 3: /* ERL */ /* If EU is set, always unmapped */ if (eu) { return 0; } /* fall through */ case MIPS_HFLAG_KM: /* Never AdE, TLB mapped if AM={1,2,3} */ adetlb_mask = 0x70000000; goto check_tlb; case MIPS_HFLAG_SM: /* AdE if AM={0,1}, TLB mapped if AM={2,3,4} */ adetlb_mask = 0xc0380000; goto check_ade; case MIPS_HFLAG_UM: /* AdE if AM={0,1,2,5}, TLB mapped if AM={3,4} */ adetlb_mask = 0xe4180000; /* fall through */ check_ade: /* does this AM cause AdE in current execution mode */ if ((adetlb_mask << am) < 0) { return TLBRET_BADADDR; } adetlb_mask <<= 8; /* fall through */ check_tlb: /* is this AM mapped in current execution mode */ return ((adetlb_mask << am) < 0); default: assert(0); return TLBRET_BADADDR; }; } static int get_seg_physical_address(CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong real_address, int rw, int access_type, int mmu_idx, unsigned int am, bool eu, target_ulong segmask, hwaddr physical_base) { int mapped = is_seg_am_mapped(am, eu, mmu_idx); if (mapped < 0) { /* is_seg_am_mapped can report TLBRET_BADADDR */ return mapped; } else if (mapped) { /* The segment is TLB mapped */ return env->tlb->map_address(env, physical, prot, real_address, rw, access_type); } else { /* The segment is unmapped */ *physical = physical_base | (real_address & segmask); *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return TLBRET_MATCH; } } static int get_segctl_physical_address(CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong real_address, int rw, int access_type, int mmu_idx, uint16_t segctl, target_ulong segmask) { unsigned int am = (segctl & CP0SC_AM_MASK) >> CP0SC_AM; bool eu = (segctl >> CP0SC_EU) & 1; hwaddr pa = ((hwaddr)segctl & CP0SC_PA_MASK) << 20; return get_seg_physical_address(env, physical, prot, real_address, rw, access_type, mmu_idx, am, eu, segmask, pa & ~(hwaddr)segmask); } static int get_physical_address(CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong real_address, int rw, int access_type, int mmu_idx) { /* User mode can only access useg/xuseg */ #if defined(TARGET_MIPS64) int user_mode = mmu_idx == MIPS_HFLAG_UM; int supervisor_mode = mmu_idx == MIPS_HFLAG_SM; int kernel_mode = !user_mode && !supervisor_mode; int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0; int SX = (env->CP0_Status & (1 << CP0St_SX)) != 0; int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0; #endif int ret = TLBRET_MATCH; /* effective address (modified for KVM T&E kernel segments) */ target_ulong address = real_address; #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL) #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL) #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL) #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL) #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL) #define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL) #define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL) if (mips_um_ksegs_enabled()) { /* KVM T&E adds guest kernel segments in useg */ if (real_address >= KVM_KSEG0_BASE) { if (real_address < KVM_KSEG2_BASE) { /* kseg0 */ address += KSEG0_BASE - KVM_KSEG0_BASE; } else if (real_address <= USEG_LIMIT) { /* kseg2/3 */ address += KSEG2_BASE - KVM_KSEG2_BASE; } } } if (address <= USEG_LIMIT) { /* useg */ uint16_t segctl; if (address >= 0x40000000UL) { segctl = env->CP0_SegCtl2; } else { segctl = env->CP0_SegCtl2 >> 16; } ret = get_segctl_physical_address(env, physical, prot, real_address, rw, access_type, mmu_idx, segctl, 0x3FFFFFFF); #if defined(TARGET_MIPS64) } else if (address < 0x4000000000000000ULL) { /* xuseg */ if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) { ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type); } else { ret = TLBRET_BADADDR; } } else if (address < 0x8000000000000000ULL) { /* xsseg */ if ((supervisor_mode || kernel_mode) && SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) { ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type); } else { ret = TLBRET_BADADDR; } } else if (address < 0xC000000000000000ULL) { /* xkphys */ if ((address & 0x07FFFFFFFFFFFFFFULL) <= env->PAMask) { /* KX/SX/UX bit to check for each xkphys EVA access mode */ static const uint8_t am_ksux[8] = { [CP0SC_AM_UK] = (1u << CP0St_KX), [CP0SC_AM_MK] = (1u << CP0St_KX), [CP0SC_AM_MSK] = (1u << CP0St_SX), [CP0SC_AM_MUSK] = (1u << CP0St_UX), [CP0SC_AM_MUSUK] = (1u << CP0St_UX), [CP0SC_AM_USK] = (1u << CP0St_SX), [6] = (1u << CP0St_KX), [CP0SC_AM_UUSK] = (1u << CP0St_UX), }; unsigned int am = CP0SC_AM_UK; unsigned int xr = (env->CP0_SegCtl2 & CP0SC2_XR_MASK) >> CP0SC2_XR; if (xr & (1 << ((address >> 59) & 0x7))) { am = (env->CP0_SegCtl1 & CP0SC1_XAM_MASK) >> CP0SC1_XAM; } /* Does CP0_Status.KX/SX/UX permit the access mode (am) */ if (env->CP0_Status & am_ksux[am]) { ret = get_seg_physical_address(env, physical, prot, real_address, rw, access_type, mmu_idx, am, false, env->PAMask, 0); } else { ret = TLBRET_BADADDR; } } else { ret = TLBRET_BADADDR; } } else if (address < 0xFFFFFFFF80000000ULL) { /* xkseg */ if (kernel_mode && KX && address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) { ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type); } else { ret = TLBRET_BADADDR; } #endif } else if (address < KSEG1_BASE) { /* kseg0 */ ret = get_segctl_physical_address(env, physical, prot, real_address, rw, access_type, mmu_idx, env->CP0_SegCtl1 >> 16, 0x1FFFFFFF); } else if (address < KSEG2_BASE) { /* kseg1 */ ret = get_segctl_physical_address(env, physical, prot, real_address, rw, access_type, mmu_idx, env->CP0_SegCtl1, 0x1FFFFFFF); } else if (address < KSEG3_BASE) { /* sseg (kseg2) */ ret = get_segctl_physical_address(env, physical, prot, real_address, rw, access_type, mmu_idx, env->CP0_SegCtl0 >> 16, 0x1FFFFFFF); } else { /* * kseg3 * XXX: debug segment is not emulated */ ret = get_segctl_physical_address(env, physical, prot, real_address, rw, access_type, mmu_idx, env->CP0_SegCtl0, 0x1FFFFFFF); } return ret; } void cpu_mips_tlb_flush(CPUMIPSState *env) { /* Flush qemu's TLB and discard all shadowed entries. */ tlb_flush(env_cpu(env)); env->tlb->tlb_in_use = env->tlb->nb_tlb; } /* Called for updates to CP0_Status. */ void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc) { int32_t tcstatus, *tcst; uint32_t v = cpu->CP0_Status; uint32_t cu, mx, asid, ksu; uint32_t mask = ((1 << CP0TCSt_TCU3) | (1 << CP0TCSt_TCU2) | (1 << CP0TCSt_TCU1) | (1 << CP0TCSt_TCU0) | (1 << CP0TCSt_TMX) | (3 << CP0TCSt_TKSU) | (0xff << CP0TCSt_TASID)); cu = (v >> CP0St_CU0) & 0xf; mx = (v >> CP0St_MX) & 0x1; ksu = (v >> CP0St_KSU) & 0x3; asid = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; tcstatus = cu << CP0TCSt_TCU0; tcstatus |= mx << CP0TCSt_TMX; tcstatus |= ksu << CP0TCSt_TKSU; tcstatus |= asid; if (tc == cpu->current_tc) { tcst = &cpu->active_tc.CP0_TCStatus; } else { tcst = &cpu->tcs[tc].CP0_TCStatus; } *tcst &= ~mask; *tcst |= tcstatus; compute_hflags(cpu); } void cpu_mips_store_status(CPUMIPSState *env, target_ulong val) { uint32_t mask = env->CP0_Status_rw_bitmask; target_ulong old = env->CP0_Status; if (env->insn_flags & ISA_MIPS32R6) { bool has_supervisor = extract32(mask, CP0St_KSU, 2) == 0x3; #if defined(TARGET_MIPS64) uint32_t ksux = (1 << CP0St_KX) & val; ksux |= (ksux >> 1) & val; /* KX = 0 forces SX to be 0 */ ksux |= (ksux >> 1) & val; /* SX = 0 forces UX to be 0 */ val = (val & ~(7 << CP0St_UX)) | ksux; #endif if (has_supervisor && extract32(val, CP0St_KSU, 2) == 0x3) { mask &= ~(3 << CP0St_KSU); } mask &= ~(((1 << CP0St_SR) | (1 << CP0St_NMI)) & val); } env->CP0_Status = (old & ~mask) | (val & mask); #if defined(TARGET_MIPS64) if ((env->CP0_Status ^ old) & (old & (7 << CP0St_UX))) { /* Access to at least one of the 64-bit segments has been disabled */ tlb_flush(env_cpu(env)); } #endif if (env->CP0_Config3 & (1 << CP0C3_MT)) { sync_c0_status(env, env, env->current_tc); } else { compute_hflags(env); } } void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val) { uint32_t mask = 0x00C00300; uint32_t old = env->CP0_Cause; int i; if (env->insn_flags & ISA_MIPS32R2) { mask |= 1 << CP0Ca_DC; } if (env->insn_flags & ISA_MIPS32R6) { mask &= ~((1 << CP0Ca_WP) & val); } env->CP0_Cause = (env->CP0_Cause & ~mask) | (val & mask); if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) { if (env->CP0_Cause & (1 << CP0Ca_DC)) { cpu_mips_stop_count(env); } else { cpu_mips_start_count(env); } } /* Set/reset software interrupts */ for (i = 0 ; i < 2 ; i++) { if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) { cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i))); } } } #endif static void raise_mmu_exception(CPUMIPSState *env, target_ulong address, int rw, int tlb_error) { CPUState *cs = env_cpu(env); int exception = 0, error_code = 0; if (rw == MMU_INST_FETCH) { error_code |= EXCP_INST_NOTAVAIL; } switch (tlb_error) { default: case TLBRET_BADADDR: /* Reference to kernel address from user mode or supervisor mode */ /* Reference to supervisor address from user mode */ if (rw == MMU_DATA_STORE) { exception = EXCP_AdES; } else { exception = EXCP_AdEL; } break; case TLBRET_NOMATCH: /* No TLB match for a mapped address */ if (rw == MMU_DATA_STORE) { exception = EXCP_TLBS; } else { exception = EXCP_TLBL; } error_code |= EXCP_TLB_NOMATCH; break; case TLBRET_INVALID: /* TLB match with no valid bit */ if (rw == MMU_DATA_STORE) { exception = EXCP_TLBS; } else { exception = EXCP_TLBL; } break; case TLBRET_DIRTY: /* TLB match but 'D' bit is cleared */ exception = EXCP_LTLBL; break; case TLBRET_XI: /* Execute-Inhibit Exception */ if (env->CP0_PageGrain & (1 << CP0PG_IEC)) { exception = EXCP_TLBXI; } else { exception = EXCP_TLBL; } break; case TLBRET_RI: /* Read-Inhibit Exception */ if (env->CP0_PageGrain & (1 << CP0PG_IEC)) { exception = EXCP_TLBRI; } else { exception = EXCP_TLBL; } break; } /* Raise exception */ if (!(env->hflags & MIPS_HFLAG_DM)) { env->CP0_BadVAddr = address; } env->CP0_Context = (env->CP0_Context & ~0x007fffff) | ((address >> 9) & 0x007ffff0); env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) | (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) | (address & (TARGET_PAGE_MASK << 1)); #if defined(TARGET_MIPS64) env->CP0_EntryHi &= env->SEGMask; env->CP0_XContext = (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */ (extract64(address, 62, 2) << (env->SEGBITS - 9)) | /* R */ (extract64(address, 13, env->SEGBITS - 13) << 4); /* BadVPN2 */ #endif cs->exception_index = exception; env->error_code = error_code; } #if !defined(CONFIG_USER_ONLY) hwaddr mips_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; hwaddr phys_addr; int prot; if (get_physical_address(env, &phys_addr, &prot, addr, 0, ACCESS_INT, cpu_mmu_index(env, false)) != 0) { return -1; } return phys_addr; } #endif #if !defined(CONFIG_USER_ONLY) #if !defined(TARGET_MIPS64) /* * Perform hardware page table walk * * Memory accesses are performed using the KERNEL privilege level. * Synchronous exceptions detected on memory accesses cause a silent exit * from page table walking, resulting in a TLB or XTLB Refill exception. * * Implementations are not required to support page table walk memory * accesses from mapped memory regions. When an unsupported access is * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill * exception. * * Note that if an exception is caused by AddressTranslation or LoadMemory * functions, the exception is not taken, a silent exit is taken, * resulting in a TLB or XTLB Refill exception. */ static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size, uint64_t *pte) { if ((vaddr & ((entry_size >> 3) - 1)) != 0) { return false; } if (entry_size == 64) { *pte = cpu_ldq_code(env, vaddr); } else { *pte = cpu_ldl_code(env, vaddr); } return true; } static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry, int entry_size, int ptei) { uint64_t result = entry; uint64_t rixi; if (ptei > entry_size) { ptei -= 32; } result >>= (ptei - 2); rixi = result & 3; result >>= 2; result |= rixi << CP0EnLo_XI; return result; } static int walk_directory(CPUMIPSState *env, uint64_t *vaddr, int directory_index, bool *huge_page, bool *hgpg_directory_hit, uint64_t *pw_entrylo0, uint64_t *pw_entrylo1) { int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1; int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F; int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1; int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F; int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F; int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3; int directory_shift = (ptew > 1) ? -1 : (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift; int leaf_shift = (ptew > 1) ? -1 : (ptew == 1) ? native_shift + 1 : native_shift; uint32_t direntry_size = 1 << (directory_shift + 3); uint32_t leafentry_size = 1 << (leaf_shift + 3); uint64_t entry; uint64_t paddr; int prot; uint64_t lsb = 0; uint64_t w = 0; if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD, ACCESS_INT, cpu_mmu_index(env, false)) != TLBRET_MATCH) { /* wrong base address */ return 0; } if (!get_pte(env, *vaddr, direntry_size, &entry)) { return 0; } if ((entry & (1 << psn)) && hugepg) { *huge_page = true; *hgpg_directory_hit = true; entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew); w = directory_index - 1; if (directory_index & 0x1) { /* Generate adjacent page from same PTE for odd TLB page */ lsb = (1 << w) >> 6; *pw_entrylo0 = entry & ~lsb; /* even page */ *pw_entrylo1 = entry | lsb; /* odd page */ } else if (dph) { int oddpagebit = 1 << leaf_shift; uint64_t vaddr2 = *vaddr ^ oddpagebit; if (*vaddr & oddpagebit) { *pw_entrylo1 = entry; } else { *pw_entrylo0 = entry; } if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD, ACCESS_INT, cpu_mmu_index(env, false)) != TLBRET_MATCH) { return 0; } if (!get_pte(env, vaddr2, leafentry_size, &entry)) { return 0; } entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew); if (*vaddr & oddpagebit) { *pw_entrylo0 = entry; } else { *pw_entrylo1 = entry; } } else { return 0; } return 1; } else { *vaddr = entry; return 2; } } static bool page_table_walk_refill(CPUMIPSState *env, vaddr address, int rw, int mmu_idx) { int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F; int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F; int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F; int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F; int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F; /* Initial values */ bool huge_page = false; bool hgpg_bdhit = false; bool hgpg_gdhit = false; bool hgpg_udhit = false; bool hgpg_mdhit = false; int32_t pw_pagemask = 0; target_ulong pw_entryhi = 0; uint64_t pw_entrylo0 = 0; uint64_t pw_entrylo1 = 0; /* Native pointer size */ /*For the 32-bit architectures, this bit is fixed to 0.*/ int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3; /* Indices from PWField */ int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F; int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F; int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F; int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F; int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F; /* Indices computed from faulting address */ int gindex = (address >> pf_gdw) & ((1 << gdw) - 1); int uindex = (address >> pf_udw) & ((1 << udw) - 1); int mindex = (address >> pf_mdw) & ((1 << mdw) - 1); int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1); /* Other HTW configs */ int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1; /* HTW Shift values (depend on entry size) */ int directory_shift = (ptew > 1) ? -1 : (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift; int leaf_shift = (ptew > 1) ? -1 : (ptew == 1) ? native_shift + 1 : native_shift; /* Offsets into tables */ int goffset = gindex << directory_shift; int uoffset = uindex << directory_shift; int moffset = mindex << directory_shift; int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1); int ptoffset1 = ptoffset0 | (1 << (leaf_shift)); uint32_t leafentry_size = 1 << (leaf_shift + 3); /* Starting address - Page Table Base */ uint64_t vaddr = env->CP0_PWBase; uint64_t dir_entry; uint64_t paddr; int prot; int m; if (!(env->CP0_Config3 & (1 << CP0C3_PW))) { /* walker is unimplemented */ return false; } if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) { /* walker is disabled */ return false; } if (!(gdw > 0 || udw > 0 || mdw > 0)) { /* no structure to walk */ return false; } if ((directory_shift == -1) || (leaf_shift == -1)) { return false; } /* Global Directory */ if (gdw > 0) { vaddr |= goffset; switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit, &pw_entrylo0, &pw_entrylo1)) { case 0: return false; case 1: goto refill; case 2: default: break; } } /* Upper directory */ if (udw > 0) { vaddr |= uoffset; switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit, &pw_entrylo0, &pw_entrylo1)) { case 0: return false; case 1: goto refill; case 2: default: break; } } /* Middle directory */ if (mdw > 0) { vaddr |= moffset; switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit, &pw_entrylo0, &pw_entrylo1)) { case 0: return false; case 1: goto refill; case 2: default: break; } } /* Leaf Level Page Table - First half of PTE pair */ vaddr |= ptoffset0; if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD, ACCESS_INT, cpu_mmu_index(env, false)) != TLBRET_MATCH) { return false; } if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) { return false; } dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew); pw_entrylo0 = dir_entry; /* Leaf Level Page Table - Second half of PTE pair */ vaddr |= ptoffset1; if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD, ACCESS_INT, cpu_mmu_index(env, false)) != TLBRET_MATCH) { return false; } if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) { return false; } dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew); pw_entrylo1 = dir_entry; refill: m = (1 << pf_ptw) - 1; if (huge_page) { switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 | hgpg_mdhit) { case 4: m = (1 << pf_gdw) - 1; if (pf_gdw & 1) { m >>= 1; } break; case 2: m = (1 << pf_udw) - 1; if (pf_udw & 1) { m >>= 1; } break; case 1: m = (1 << pf_mdw) - 1; if (pf_mdw & 1) { m >>= 1; } break; } } pw_pagemask = m >> 12; update_pagemask(env, pw_pagemask << 13, &pw_pagemask); pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF); { target_ulong tmp_entryhi = env->CP0_EntryHi; int32_t tmp_pagemask = env->CP0_PageMask; uint64_t tmp_entrylo0 = env->CP0_EntryLo0; uint64_t tmp_entrylo1 = env->CP0_EntryLo1; env->CP0_EntryHi = pw_entryhi; env->CP0_PageMask = pw_pagemask; env->CP0_EntryLo0 = pw_entrylo0; env->CP0_EntryLo1 = pw_entrylo1; /* * The hardware page walker inserts a page into the TLB in a manner * identical to a TLBWR instruction as executed by the software refill * handler. */ r4k_helper_tlbwr(env); env->CP0_EntryHi = tmp_entryhi; env->CP0_PageMask = tmp_pagemask; env->CP0_EntryLo0 = tmp_entrylo0; env->CP0_EntryLo1 = tmp_entrylo1; } return true; } #endif #endif bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; #if !defined(CONFIG_USER_ONLY) hwaddr physical; int prot; int mips_access_type; #endif int ret = TLBRET_BADADDR; /* data access */ #if !defined(CONFIG_USER_ONLY) /* XXX: put correct access by using cpu_restore_state() correctly */ mips_access_type = ACCESS_INT; ret = get_physical_address(env, &physical, &prot, address, access_type, mips_access_type, mmu_idx); switch (ret) { case TLBRET_MATCH: qemu_log_mask(CPU_LOG_MMU, "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx " prot %d\n", __func__, address, physical, prot); break; default: qemu_log_mask(CPU_LOG_MMU, "%s address=%" VADDR_PRIx " ret %d\n", __func__, address, ret); break; } if (ret == TLBRET_MATCH) { tlb_set_page(cs, address & TARGET_PAGE_MASK, physical & TARGET_PAGE_MASK, prot, mmu_idx, TARGET_PAGE_SIZE); return true; } #if !defined(TARGET_MIPS64) if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) { /* * Memory reads during hardware page table walking are performed * as if they were kernel-mode load instructions. */ int mode = (env->hflags & MIPS_HFLAG_KSU); bool ret_walker; env->hflags &= ~MIPS_HFLAG_KSU; ret_walker = page_table_walk_refill(env, address, access_type, mmu_idx); env->hflags |= mode; if (ret_walker) { ret = get_physical_address(env, &physical, &prot, address, access_type, mips_access_type, mmu_idx); if (ret == TLBRET_MATCH) { tlb_set_page(cs, address & TARGET_PAGE_MASK, physical & TARGET_PAGE_MASK, prot, mmu_idx, TARGET_PAGE_SIZE); return true; } } } #endif if (probe) { return false; } #endif raise_mmu_exception(env, address, access_type, ret); do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr); } #ifndef CONFIG_USER_ONLY hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address, int rw) { hwaddr physical; int prot; int access_type; int ret = 0; /* data access */ access_type = ACCESS_INT; ret = get_physical_address(env, &physical, &prot, address, rw, access_type, cpu_mmu_index(env, false)); if (ret != TLBRET_MATCH) { raise_mmu_exception(env, address, rw, ret); return -1LL; } else { return physical; } } static const char * const excp_names[EXCP_LAST + 1] = { [EXCP_RESET] = "reset", [EXCP_SRESET] = "soft reset", [EXCP_DSS] = "debug single step", [EXCP_DINT] = "debug interrupt", [EXCP_NMI] = "non-maskable interrupt", [EXCP_MCHECK] = "machine check", [EXCP_EXT_INTERRUPT] = "interrupt", [EXCP_DFWATCH] = "deferred watchpoint", [EXCP_DIB] = "debug instruction breakpoint", [EXCP_IWATCH] = "instruction fetch watchpoint", [EXCP_AdEL] = "address error load", [EXCP_AdES] = "address error store", [EXCP_TLBF] = "TLB refill", [EXCP_IBE] = "instruction bus error", [EXCP_DBp] = "debug breakpoint", [EXCP_SYSCALL] = "syscall", [EXCP_BREAK] = "break", [EXCP_CpU] = "coprocessor unusable", [EXCP_RI] = "reserved instruction", [EXCP_OVERFLOW] = "arithmetic overflow", [EXCP_TRAP] = "trap", [EXCP_FPE] = "floating point", [EXCP_DDBS] = "debug data break store", [EXCP_DWATCH] = "data watchpoint", [EXCP_LTLBL] = "TLB modify", [EXCP_TLBL] = "TLB load", [EXCP_TLBS] = "TLB store", [EXCP_DBE] = "data bus error", [EXCP_DDBL] = "debug data break load", [EXCP_THREAD] = "thread", [EXCP_MDMX] = "MDMX", [EXCP_C2E] = "precise coprocessor 2", [EXCP_CACHE] = "cache error", [EXCP_TLBXI] = "TLB execute-inhibit", [EXCP_TLBRI] = "TLB read-inhibit", [EXCP_MSADIS] = "MSA disabled", [EXCP_MSAFPE] = "MSA floating point", }; #endif target_ulong exception_resume_pc(CPUMIPSState *env) { target_ulong bad_pc; target_ulong isa_mode; isa_mode = !!(env->hflags & MIPS_HFLAG_M16); bad_pc = env->active_tc.PC | isa_mode; if (env->hflags & MIPS_HFLAG_BMASK) { /* * If the exception was raised from a delay slot, come back to * the jump. */ bad_pc -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); } return bad_pc; } #if !defined(CONFIG_USER_ONLY) static void set_hflags_for_handler(CPUMIPSState *env) { /* Exception handlers are entered in 32-bit mode. */ env->hflags &= ~(MIPS_HFLAG_M16); /* ...except that microMIPS lets you choose. */ if (env->insn_flags & ASE_MICROMIPS) { env->hflags |= (!!(env->CP0_Config3 & (1 << CP0C3_ISA_ON_EXC)) << MIPS_HFLAG_M16_SHIFT); } } static inline void set_badinstr_registers(CPUMIPSState *env) { if (env->insn_flags & ISA_NANOMIPS32) { if (env->CP0_Config3 & (1 << CP0C3_BI)) { uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16; if ((instr & 0x10000000) == 0) { instr |= cpu_lduw_code(env, env->active_tc.PC + 2); } env->CP0_BadInstr = instr; if ((instr & 0xFC000000) == 0x60000000) { instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16; env->CP0_BadInstrX = instr; } } return; } if (env->hflags & MIPS_HFLAG_M16) { /* TODO: add BadInstr support for microMIPS */ return; } if (env->CP0_Config3 & (1 << CP0C3_BI)) { env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC); } if ((env->CP0_Config3 & (1 << CP0C3_BP)) && (env->hflags & MIPS_HFLAG_BMASK)) { env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4); } } #endif void mips_cpu_do_interrupt(CPUState *cs) { #if !defined(CONFIG_USER_ONLY) MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; bool update_badinstr = 0; target_ulong offset; int cause = -1; const char *name; if (qemu_loglevel_mask(CPU_LOG_INT) && cs->exception_index != EXCP_EXT_INTERRUPT) { if (cs->exception_index < 0 || cs->exception_index > EXCP_LAST) { name = "unknown"; } else { name = excp_names[cs->exception_index]; } qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " %s exception\n", __func__, env->active_tc.PC, env->CP0_EPC, name); } if (cs->exception_index == EXCP_EXT_INTERRUPT && (env->hflags & MIPS_HFLAG_DM)) { cs->exception_index = EXCP_DINT; } offset = 0x180; switch (cs->exception_index) { case EXCP_DSS: env->CP0_Debug |= 1 << CP0DB_DSS; /* * Debug single step cannot be raised inside a delay slot and * resume will always occur on the next instruction * (but we assume the pc has always been updated during * code translation). */ env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16); goto enter_debug_mode; case EXCP_DINT: env->CP0_Debug |= 1 << CP0DB_DINT; goto set_DEPC; case EXCP_DIB: env->CP0_Debug |= 1 << CP0DB_DIB; goto set_DEPC; case EXCP_DBp: env->CP0_Debug |= 1 << CP0DB_DBp; /* Setup DExcCode - SDBBP instruction */ env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) | (9 << CP0DB_DEC); goto set_DEPC; case EXCP_DDBS: env->CP0_Debug |= 1 << CP0DB_DDBS; goto set_DEPC; case EXCP_DDBL: env->CP0_Debug |= 1 << CP0DB_DDBL; set_DEPC: env->CP0_DEPC = exception_resume_pc(env); env->hflags &= ~MIPS_HFLAG_BMASK; enter_debug_mode: if (env->insn_flags & ISA_MIPS3) { env->hflags |= MIPS_HFLAG_64; if (!(env->insn_flags & ISA_MIPS64R6) || env->CP0_Status & (1 << CP0St_KX)) { env->hflags &= ~MIPS_HFLAG_AWRAP; } } env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0; env->hflags &= ~(MIPS_HFLAG_KSU); /* EJTAG probe trap enable is not implemented... */ if (!(env->CP0_Status & (1 << CP0St_EXL))) { env->CP0_Cause &= ~(1U << CP0Ca_BD); } env->active_tc.PC = env->exception_base + 0x480; set_hflags_for_handler(env); break; case EXCP_RESET: cpu_reset(CPU(cpu)); break; case EXCP_SRESET: env->CP0_Status |= (1 << CP0St_SR); memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo)); goto set_error_EPC; case EXCP_NMI: env->CP0_Status |= (1 << CP0St_NMI); set_error_EPC: env->CP0_ErrorEPC = exception_resume_pc(env); env->hflags &= ~MIPS_HFLAG_BMASK; env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV); if (env->insn_flags & ISA_MIPS3) { env->hflags |= MIPS_HFLAG_64; if (!(env->insn_flags & ISA_MIPS64R6) || env->CP0_Status & (1 << CP0St_KX)) { env->hflags &= ~MIPS_HFLAG_AWRAP; } } env->hflags |= MIPS_HFLAG_CP0; env->hflags &= ~(MIPS_HFLAG_KSU); if (!(env->CP0_Status & (1 << CP0St_EXL))) { env->CP0_Cause &= ~(1U << CP0Ca_BD); } env->active_tc.PC = env->exception_base; set_hflags_for_handler(env); break; case EXCP_EXT_INTERRUPT: cause = 0; if (env->CP0_Cause & (1 << CP0Ca_IV)) { uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f; if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) { offset = 0x200; } else { uint32_t vector = 0; uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP; if (env->CP0_Config3 & (1 << CP0C3_VEIC)) { /* * For VEIC mode, the external interrupt controller feeds * the vector through the CP0Cause IP lines. */ vector = pending; } else { /* * Vectored Interrupts * Mask with Status.IM7-IM0 to get enabled interrupts. */ pending &= (env->CP0_Status >> CP0St_IM) & 0xff; /* Find the highest-priority interrupt. */ while (pending >>= 1) { vector++; } } offset = 0x200 + (vector * (spacing << 5)); } } goto set_EPC; case EXCP_LTLBL: cause = 1; update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL); goto set_EPC; case EXCP_TLBL: cause = 2; update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL); if ((env->error_code & EXCP_TLB_NOMATCH) && !(env->CP0_Status & (1 << CP0St_EXL))) { #if defined(TARGET_MIPS64) int R = env->CP0_BadVAddr >> 62; int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0; int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0; if ((R != 0 || UX) && (R != 3 || KX) && (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) { offset = 0x080; } else { #endif offset = 0x000; #if defined(TARGET_MIPS64) } #endif } goto set_EPC; case EXCP_TLBS: cause = 3; update_badinstr = 1; if ((env->error_code & EXCP_TLB_NOMATCH) && !(env->CP0_Status & (1 << CP0St_EXL))) { #if defined(TARGET_MIPS64) int R = env->CP0_BadVAddr >> 62; int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0; int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0; if ((R != 0 || UX) && (R != 3 || KX) && (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) { offset = 0x080; } else { #endif offset = 0x000; #if defined(TARGET_MIPS64) } #endif } goto set_EPC; case EXCP_AdEL: cause = 4; update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL); goto set_EPC; case EXCP_AdES: cause = 5; update_badinstr = 1; goto set_EPC; case EXCP_IBE: cause = 6; goto set_EPC; case EXCP_DBE: cause = 7; goto set_EPC; case EXCP_SYSCALL: cause = 8; update_badinstr = 1; goto set_EPC; case EXCP_BREAK: cause = 9; update_badinstr = 1; goto set_EPC; case EXCP_RI: cause = 10; update_badinstr = 1; goto set_EPC; case EXCP_CpU: cause = 11; update_badinstr = 1; env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) | (env->error_code << CP0Ca_CE); goto set_EPC; case EXCP_OVERFLOW: cause = 12; update_badinstr = 1; goto set_EPC; case EXCP_TRAP: cause = 13; update_badinstr = 1; goto set_EPC; case EXCP_MSAFPE: cause = 14; update_badinstr = 1; goto set_EPC; case EXCP_FPE: cause = 15; update_badinstr = 1; goto set_EPC; case EXCP_C2E: cause = 18; goto set_EPC; case EXCP_TLBRI: cause = 19; update_badinstr = 1; goto set_EPC; case EXCP_TLBXI: cause = 20; goto set_EPC; case EXCP_MSADIS: cause = 21; update_badinstr = 1; goto set_EPC; case EXCP_MDMX: cause = 22; goto set_EPC; case EXCP_DWATCH: cause = 23; /* XXX: TODO: manage deferred watch exceptions */ goto set_EPC; case EXCP_MCHECK: cause = 24; goto set_EPC; case EXCP_THREAD: cause = 25; goto set_EPC; case EXCP_DSPDIS: cause = 26; goto set_EPC; case EXCP_CACHE: cause = 30; offset = 0x100; set_EPC: if (!(env->CP0_Status & (1 << CP0St_EXL))) { env->CP0_EPC = exception_resume_pc(env); if (update_badinstr) { set_badinstr_registers(env); } if (env->hflags & MIPS_HFLAG_BMASK) { env->CP0_Cause |= (1U << CP0Ca_BD); } else { env->CP0_Cause &= ~(1U << CP0Ca_BD); } env->CP0_Status |= (1 << CP0St_EXL); if (env->insn_flags & ISA_MIPS3) { env->hflags |= MIPS_HFLAG_64; if (!(env->insn_flags & ISA_MIPS64R6) || env->CP0_Status & (1 << CP0St_KX)) { env->hflags &= ~MIPS_HFLAG_AWRAP; } } env->hflags |= MIPS_HFLAG_CP0; env->hflags &= ~(MIPS_HFLAG_KSU); } env->hflags &= ~MIPS_HFLAG_BMASK; if (env->CP0_Status & (1 << CP0St_BEV)) { env->active_tc.PC = env->exception_base + 0x200; } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) && env->CP0_Config5 & (1 << CP0C5_CV))) { /* Force KSeg1 for cache errors */ env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000); } else { env->active_tc.PC = env->CP0_EBase & ~0xfff; } env->active_tc.PC += offset; set_hflags_for_handler(env); env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) | (cause << CP0Ca_EC); break; default: abort(); } if (qemu_loglevel_mask(CPU_LOG_INT) && cs->exception_index != EXCP_EXT_INTERRUPT) { qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n" " S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n", __func__, env->active_tc.PC, env->CP0_EPC, cause, env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr, env->CP0_DEPC); } #endif cs->exception_index = EXCP_NONE; } bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { if (interrupt_request & CPU_INTERRUPT_HARD) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; if (cpu_mips_hw_interrupts_enabled(env) && cpu_mips_hw_interrupts_pending(env)) { /* Raise it */ cs->exception_index = EXCP_EXT_INTERRUPT; env->error_code = 0; mips_cpu_do_interrupt(cs); return true; } } return false; } #if !defined(CONFIG_USER_ONLY) void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra) { CPUState *cs = env_cpu(env); r4k_tlb_t *tlb; target_ulong addr; target_ulong end; uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; target_ulong mask; tlb = &env->tlb->mmu.r4k.tlb[idx]; /* * The qemu TLB is flushed when the ASID changes, so no need to * flush these entries again. */ if (tlb->G == 0 && tlb->ASID != ASID) { return; } if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) { /* * For tlbwr, we can shadow the discarded entry into * a new (fake) TLB entry, as long as the guest can not * tell that it's there. */ env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb; env->tlb->tlb_in_use++; return; } /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); if (tlb->V0) { addr = tlb->VPN & ~mask; #if defined(TARGET_MIPS64) if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) { addr |= 0x3FFFFF0000000000ULL; } #endif end = addr | (mask >> 1); while (addr < end) { tlb_flush_page(cs, addr); addr += TARGET_PAGE_SIZE; } } if (tlb->V1) { addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1); #if defined(TARGET_MIPS64) if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) { addr |= 0x3FFFFF0000000000ULL; } #endif end = addr | mask; while (addr - 1 < end) { tlb_flush_page(cs, addr); addr += TARGET_PAGE_SIZE; } } } #endif void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception, int error_code, uintptr_t pc) { CPUState *cs = env_cpu(env); qemu_log_mask(CPU_LOG_INT, "%s: %d %d\n", __func__, exception, error_code); cs->exception_index = exception; env->error_code = error_code; cpu_loop_exit_restore(cs, pc); } static void mips_cpu_add_definition(gpointer data, gpointer user_data) { ObjectClass *oc = data; CpuDefinitionInfoList **cpu_list = user_data; CpuDefinitionInfoList *entry; CpuDefinitionInfo *info; const char *typename; typename = object_class_get_name(oc); info = g_malloc0(sizeof(*info)); info->name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_MIPS_CPU)); info->q_typename = g_strdup(typename); entry = g_malloc0(sizeof(*entry)); entry->value = info; entry->next = *cpu_list; *cpu_list = entry; } CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) { CpuDefinitionInfoList *cpu_list = NULL; GSList *list; list = object_class_get_list(TYPE_MIPS_CPU, false); g_slist_foreach(list, mips_cpu_add_definition, &cpu_list); g_slist_free(list); return cpu_list; }