/* * MicroBlaze helper routines. * * Copyright (c) 2009 Edgar E. Iglesias * Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "qemu/host-utils.h" #include "exec/log.h" #if defined(CONFIG_USER_ONLY) void mb_cpu_do_interrupt(CPUState *cs) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; cs->exception_index = -1; env->res_addr = RES_ADDR_NONE; env->regs[14] = env->pc; } bool mb_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr) { cs->exception_index = 0xaa; cpu_loop_exit_restore(cs, retaddr); } #else /* !CONFIG_USER_ONLY */ bool mb_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; struct microblaze_mmu_lookup lu; unsigned int hit; int prot; if (mmu_idx == MMU_NOMMU_IDX) { /* MMU disabled or not available. */ address &= TARGET_PAGE_MASK; prot = PAGE_BITS; tlb_set_page(cs, address, address, prot, mmu_idx, TARGET_PAGE_SIZE); return true; } hit = mmu_translate(&env->mmu, &lu, address, access_type, mmu_idx); if (likely(hit)) { uint32_t vaddr = address & TARGET_PAGE_MASK; uint32_t paddr = lu.paddr + vaddr - lu.vaddr; qemu_log_mask(CPU_LOG_MMU, "MMU map mmu=%d v=%x p=%x prot=%x\n", mmu_idx, vaddr, paddr, lu.prot); tlb_set_page(cs, vaddr, paddr, lu.prot, mmu_idx, TARGET_PAGE_SIZE); return true; } /* TLB miss. */ if (probe) { return false; } qemu_log_mask(CPU_LOG_MMU, "mmu=%d miss v=%" VADDR_PRIx "\n", mmu_idx, address); env->ear = address; switch (lu.err) { case ERR_PROT: env->esr = access_type == MMU_INST_FETCH ? 17 : 16; env->esr |= (access_type == MMU_DATA_STORE) << 10; break; case ERR_MISS: env->esr = access_type == MMU_INST_FETCH ? 19 : 18; env->esr |= (access_type == MMU_DATA_STORE) << 10; break; default: abort(); } if (cs->exception_index == EXCP_MMU) { cpu_abort(cs, "recursive faults\n"); } /* TLB miss. */ cs->exception_index = EXCP_MMU; cpu_loop_exit_restore(cs, retaddr); } void mb_cpu_do_interrupt(CPUState *cs) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; uint32_t t, msr = mb_cpu_read_msr(env); /* IMM flag cannot propagate across a branch and into the dslot. */ assert(!((env->iflags & D_FLAG) && (env->iflags & IMM_FLAG))); assert(!(env->iflags & (DRTI_FLAG | DRTE_FLAG | DRTB_FLAG))); env->res_addr = RES_ADDR_NONE; switch (cs->exception_index) { case EXCP_HW_EXCP: if (!(env->pvr.regs[0] & PVR0_USE_EXC_MASK)) { qemu_log_mask(LOG_GUEST_ERROR, "Exception raised on system without exceptions!\n"); return; } env->regs[17] = env->pc + 4; env->esr &= ~(1 << 12); /* Exception breaks branch + dslot sequence? */ if (env->iflags & D_FLAG) { env->esr |= 1 << 12 ; env->btr = env->btarget; } /* Disable the MMU. */ t = (msr & (MSR_VM | MSR_UM)) << 1; msr &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM); msr |= t; /* Exception in progress. */ msr |= MSR_EIP; mb_cpu_write_msr(env, msr); qemu_log_mask(CPU_LOG_INT, "hw exception at pc=%x ear=%" PRIx64 " " "esr=%x iflags=%x\n", env->pc, env->ear, env->esr, env->iflags); log_cpu_state_mask(CPU_LOG_INT, cs, 0); env->iflags &= ~(IMM_FLAG | D_FLAG); env->pc = cpu->cfg.base_vectors + 0x20; break; case EXCP_MMU: env->regs[17] = env->pc; qemu_log_mask(CPU_LOG_INT, "MMU exception at pc=%x iflags=%x ear=%" PRIx64 "\n", env->pc, env->iflags, env->ear); env->esr &= ~(1 << 12); /* Exception breaks branch + dslot sequence? */ if (env->iflags & D_FLAG) { env->esr |= 1 << 12 ; env->btr = env->btarget; /* Reexecute the branch. */ env->regs[17] -= 4; /* was the branch immprefixed?. */ if (env->iflags & BIMM_FLAG) { env->regs[17] -= 4; log_cpu_state_mask(CPU_LOG_INT, cs, 0); } } else if (env->iflags & IMM_FLAG) { env->regs[17] -= 4; } /* Disable the MMU. */ t = (msr & (MSR_VM | MSR_UM)) << 1; msr &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM); msr |= t; /* Exception in progress. */ msr |= MSR_EIP; mb_cpu_write_msr(env, msr); qemu_log_mask(CPU_LOG_INT, "exception at pc=%x ear=%" PRIx64 " iflags=%x\n", env->pc, env->ear, env->iflags); log_cpu_state_mask(CPU_LOG_INT, cs, 0); env->iflags &= ~(IMM_FLAG | D_FLAG); env->pc = cpu->cfg.base_vectors + 0x20; break; case EXCP_IRQ: assert(!(msr & (MSR_EIP | MSR_BIP))); assert(msr & MSR_IE); assert(!(env->iflags & D_FLAG)); t = (msr & (MSR_VM | MSR_UM)) << 1; #if 0 #include "disas/disas.h" /* Useful instrumentation when debugging interrupt issues in either the models or in sw. */ { const char *sym; sym = lookup_symbol(env->pc); if (sym && (!strcmp("netif_rx", sym) || !strcmp("process_backlog", sym))) { qemu_log("interrupt at pc=%x msr=%x %x iflags=%x sym=%s\n", env->pc, msr, t, env->iflags, sym); log_cpu_state(cs, 0); } } #endif qemu_log_mask(CPU_LOG_INT, "interrupt at pc=%x msr=%x %x iflags=%x\n", env->pc, msr, t, env->iflags); msr &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM | MSR_IE); msr |= t; mb_cpu_write_msr(env, msr); env->regs[14] = env->pc; env->pc = cpu->cfg.base_vectors + 0x10; //log_cpu_state_mask(CPU_LOG_INT, cs, 0); break; case EXCP_HW_BREAK: assert(!(env->iflags & IMM_FLAG)); assert(!(env->iflags & D_FLAG)); t = (msr & (MSR_VM | MSR_UM)) << 1; qemu_log_mask(CPU_LOG_INT, "break at pc=%x msr=%x %x iflags=%x\n", env->pc, msr, t, env->iflags); log_cpu_state_mask(CPU_LOG_INT, cs, 0); msr &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM); msr |= t; msr |= MSR_BIP; env->regs[16] = env->pc; env->pc = cpu->cfg.base_vectors + 0x18; mb_cpu_write_msr(env, msr); break; default: cpu_abort(cs, "unhandled exception type=%d\n", cs->exception_index); break; } } hwaddr mb_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; target_ulong vaddr, paddr = 0; struct microblaze_mmu_lookup lu; int mmu_idx = cpu_mmu_index(env, false); unsigned int hit; if (mmu_idx != MMU_NOMMU_IDX) { hit = mmu_translate(&env->mmu, &lu, addr, 0, 0); if (hit) { vaddr = addr & TARGET_PAGE_MASK; paddr = lu.paddr + vaddr - lu.vaddr; } else paddr = 0; /* ???. */ } else paddr = addr & TARGET_PAGE_MASK; return paddr; } #endif bool mb_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->msr & MSR_IE) && !(env->msr & (MSR_EIP | MSR_BIP)) && !(env->iflags & (D_FLAG | IMM_FLAG))) { cs->exception_index = EXCP_IRQ; mb_cpu_do_interrupt(cs); return true; } return false; } void mb_cpu_do_unaligned_access(CPUState *cs, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); uint32_t esr, iflags; /* Recover the pc and iflags from the corresponding insn_start. */ cpu_restore_state(cs, retaddr, true); iflags = cpu->env.iflags; qemu_log_mask(CPU_LOG_INT, "Unaligned access addr=" TARGET_FMT_lx " pc=%x iflags=%x\n", addr, cpu->env.pc, iflags); esr = ESR_EC_UNALIGNED_DATA; if (likely(iflags & ESR_ESS_FLAG)) { esr |= iflags & ESR_ESS_MASK; } else { qemu_log_mask(LOG_UNIMP, "Unaligned access without ESR_ESS_FLAG\n"); } cpu->env.ear = addr; cpu->env.esr = esr; cs->exception_index = EXCP_HW_EXCP; cpu_loop_exit(cs); }