/* * Copyright (c) 2003-2008 Fabrice Bellard * Copyright (C) 2016 Veertu Inc, * Copyright (C) 2017 Google Inc, * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #include "qemu/osdep.h" #include "x86hvf.h" #include "vmx.h" #include "vmcs.h" #include "cpu.h" #include "x86_descr.h" #include "x86_decode.h" #include "system/hw_accel.h" #include "hw/i386/apic_internal.h" #include #include void hvf_set_segment(CPUState *cs, struct vmx_segment *vmx_seg, SegmentCache *qseg, bool is_tr) { vmx_seg->sel = qseg->selector; vmx_seg->base = qseg->base; vmx_seg->limit = qseg->limit; if (!qseg->selector && !x86_is_real(cs) && !is_tr) { /* the TR register is usable after processor reset despite * having a null selector */ vmx_seg->ar = 1 << 16; return; } vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf; vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15; vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14; vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13; vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12; vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7; vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5; vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4; } void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg) { qseg->limit = vmx_seg->limit; qseg->base = vmx_seg->base; qseg->selector = vmx_seg->sel; qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) | (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) | (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) | (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) | (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) | (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) | (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) | (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT); } void hvf_put_xsave(CPUState *cs) { void *xsave = X86_CPU(cs)->env.xsave_buf; uint32_t xsave_len = X86_CPU(cs)->env.xsave_buf_len; x86_cpu_xsave_all_areas(X86_CPU(cs), xsave, xsave_len); if (hv_vcpu_write_fpstate(cs->accel->fd, xsave, xsave_len)) { abort(); } } static void hvf_put_segments(CPUState *cs) { CPUX86State *env = &X86_CPU(cs)->env; struct vmx_segment seg; wvmcs(cs->accel->fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit); wvmcs(cs->accel->fd, VMCS_GUEST_IDTR_BASE, env->idt.base); wvmcs(cs->accel->fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit); wvmcs(cs->accel->fd, VMCS_GUEST_GDTR_BASE, env->gdt.base); /* wvmcs(cs->accel->fd, VMCS_GUEST_CR2, env->cr[2]); */ wvmcs(cs->accel->fd, VMCS_GUEST_CR3, env->cr[3]); vmx_update_tpr(cs); wvmcs(cs->accel->fd, VMCS_GUEST_IA32_EFER, env->efer); macvm_set_cr4(cs->accel->fd, env->cr[4]); macvm_set_cr0(cs->accel->fd, env->cr[0]); hvf_set_segment(cs, &seg, &env->segs[R_CS], false); vmx_write_segment_descriptor(cs, &seg, R_CS); hvf_set_segment(cs, &seg, &env->segs[R_DS], false); vmx_write_segment_descriptor(cs, &seg, R_DS); hvf_set_segment(cs, &seg, &env->segs[R_ES], false); vmx_write_segment_descriptor(cs, &seg, R_ES); hvf_set_segment(cs, &seg, &env->segs[R_SS], false); vmx_write_segment_descriptor(cs, &seg, R_SS); hvf_set_segment(cs, &seg, &env->segs[R_FS], false); vmx_write_segment_descriptor(cs, &seg, R_FS); hvf_set_segment(cs, &seg, &env->segs[R_GS], false); vmx_write_segment_descriptor(cs, &seg, R_GS); hvf_set_segment(cs, &seg, &env->tr, true); vmx_write_segment_descriptor(cs, &seg, R_TR); hvf_set_segment(cs, &seg, &env->ldt, false); vmx_write_segment_descriptor(cs, &seg, R_LDTR); } void hvf_put_msrs(CPUState *cs) { CPUX86State *env = &X86_CPU(cs)->env; hv_vcpu_write_msr(cs->accel->fd, MSR_IA32_SYSENTER_CS, env->sysenter_cs); hv_vcpu_write_msr(cs->accel->fd, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); hv_vcpu_write_msr(cs->accel->fd, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); hv_vcpu_write_msr(cs->accel->fd, MSR_STAR, env->star); #ifdef TARGET_X86_64 hv_vcpu_write_msr(cs->accel->fd, MSR_CSTAR, env->cstar); hv_vcpu_write_msr(cs->accel->fd, MSR_KERNELGSBASE, env->kernelgsbase); hv_vcpu_write_msr(cs->accel->fd, MSR_FMASK, env->fmask); hv_vcpu_write_msr(cs->accel->fd, MSR_LSTAR, env->lstar); #endif hv_vcpu_write_msr(cs->accel->fd, MSR_GSBASE, env->segs[R_GS].base); hv_vcpu_write_msr(cs->accel->fd, MSR_FSBASE, env->segs[R_FS].base); } void hvf_get_xsave(CPUState *cs) { void *xsave = X86_CPU(cs)->env.xsave_buf; uint32_t xsave_len = X86_CPU(cs)->env.xsave_buf_len; if (hv_vcpu_read_fpstate(cs->accel->fd, xsave, xsave_len)) { abort(); } x86_cpu_xrstor_all_areas(X86_CPU(cs), xsave, xsave_len); } static void hvf_get_segments(CPUState *cs) { CPUX86State *env = &X86_CPU(cs)->env; struct vmx_segment seg; env->interrupt_injected = -1; vmx_read_segment_descriptor(cs, &seg, R_CS); hvf_get_segment(&env->segs[R_CS], &seg); vmx_read_segment_descriptor(cs, &seg, R_DS); hvf_get_segment(&env->segs[R_DS], &seg); vmx_read_segment_descriptor(cs, &seg, R_ES); hvf_get_segment(&env->segs[R_ES], &seg); vmx_read_segment_descriptor(cs, &seg, R_FS); hvf_get_segment(&env->segs[R_FS], &seg); vmx_read_segment_descriptor(cs, &seg, R_GS); hvf_get_segment(&env->segs[R_GS], &seg); vmx_read_segment_descriptor(cs, &seg, R_SS); hvf_get_segment(&env->segs[R_SS], &seg); vmx_read_segment_descriptor(cs, &seg, R_TR); hvf_get_segment(&env->tr, &seg); vmx_read_segment_descriptor(cs, &seg, R_LDTR); hvf_get_segment(&env->ldt, &seg); env->idt.limit = rvmcs(cs->accel->fd, VMCS_GUEST_IDTR_LIMIT); env->idt.base = rvmcs(cs->accel->fd, VMCS_GUEST_IDTR_BASE); env->gdt.limit = rvmcs(cs->accel->fd, VMCS_GUEST_GDTR_LIMIT); env->gdt.base = rvmcs(cs->accel->fd, VMCS_GUEST_GDTR_BASE); env->cr[0] = rvmcs(cs->accel->fd, VMCS_GUEST_CR0); env->cr[2] = 0; env->cr[3] = rvmcs(cs->accel->fd, VMCS_GUEST_CR3); env->cr[4] = rvmcs(cs->accel->fd, VMCS_GUEST_CR4); env->efer = rvmcs(cs->accel->fd, VMCS_GUEST_IA32_EFER); } void hvf_get_msrs(CPUState *cs) { CPUX86State *env = &X86_CPU(cs)->env; uint64_t tmp; hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_SYSENTER_CS, &tmp); env->sysenter_cs = tmp; hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_SYSENTER_ESP, &tmp); env->sysenter_esp = tmp; hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_SYSENTER_EIP, &tmp); env->sysenter_eip = tmp; hv_vcpu_read_msr(cs->accel->fd, MSR_STAR, &env->star); #ifdef TARGET_X86_64 hv_vcpu_read_msr(cs->accel->fd, MSR_CSTAR, &env->cstar); hv_vcpu_read_msr(cs->accel->fd, MSR_KERNELGSBASE, &env->kernelgsbase); hv_vcpu_read_msr(cs->accel->fd, MSR_FMASK, &env->fmask); hv_vcpu_read_msr(cs->accel->fd, MSR_LSTAR, &env->lstar); #endif hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_APICBASE, &tmp); env->tsc = rdtscp() + rvmcs(cs->accel->fd, VMCS_TSC_OFFSET); } int hvf_put_registers(CPUState *cs) { X86CPU *x86cpu = X86_CPU(cs); CPUX86State *env = &x86cpu->env; wreg(cs->accel->fd, HV_X86_RAX, env->regs[R_EAX]); wreg(cs->accel->fd, HV_X86_RBX, env->regs[R_EBX]); wreg(cs->accel->fd, HV_X86_RCX, env->regs[R_ECX]); wreg(cs->accel->fd, HV_X86_RDX, env->regs[R_EDX]); wreg(cs->accel->fd, HV_X86_RBP, env->regs[R_EBP]); wreg(cs->accel->fd, HV_X86_RSP, env->regs[R_ESP]); wreg(cs->accel->fd, HV_X86_RSI, env->regs[R_ESI]); wreg(cs->accel->fd, HV_X86_RDI, env->regs[R_EDI]); wreg(cs->accel->fd, HV_X86_R8, env->regs[8]); wreg(cs->accel->fd, HV_X86_R9, env->regs[9]); wreg(cs->accel->fd, HV_X86_R10, env->regs[10]); wreg(cs->accel->fd, HV_X86_R11, env->regs[11]); wreg(cs->accel->fd, HV_X86_R12, env->regs[12]); wreg(cs->accel->fd, HV_X86_R13, env->regs[13]); wreg(cs->accel->fd, HV_X86_R14, env->regs[14]); wreg(cs->accel->fd, HV_X86_R15, env->regs[15]); wreg(cs->accel->fd, HV_X86_RFLAGS, env->eflags); wreg(cs->accel->fd, HV_X86_RIP, env->eip); wreg(cs->accel->fd, HV_X86_XCR0, env->xcr0); hvf_put_xsave(cs); hvf_put_segments(cs); hvf_put_msrs(cs); wreg(cs->accel->fd, HV_X86_DR0, env->dr[0]); wreg(cs->accel->fd, HV_X86_DR1, env->dr[1]); wreg(cs->accel->fd, HV_X86_DR2, env->dr[2]); wreg(cs->accel->fd, HV_X86_DR3, env->dr[3]); wreg(cs->accel->fd, HV_X86_DR4, env->dr[4]); wreg(cs->accel->fd, HV_X86_DR5, env->dr[5]); wreg(cs->accel->fd, HV_X86_DR6, env->dr[6]); wreg(cs->accel->fd, HV_X86_DR7, env->dr[7]); return 0; } int hvf_get_registers(CPUState *cs) { X86CPU *x86cpu = X86_CPU(cs); CPUX86State *env = &x86cpu->env; env->regs[R_EAX] = rreg(cs->accel->fd, HV_X86_RAX); env->regs[R_EBX] = rreg(cs->accel->fd, HV_X86_RBX); env->regs[R_ECX] = rreg(cs->accel->fd, HV_X86_RCX); env->regs[R_EDX] = rreg(cs->accel->fd, HV_X86_RDX); env->regs[R_EBP] = rreg(cs->accel->fd, HV_X86_RBP); env->regs[R_ESP] = rreg(cs->accel->fd, HV_X86_RSP); env->regs[R_ESI] = rreg(cs->accel->fd, HV_X86_RSI); env->regs[R_EDI] = rreg(cs->accel->fd, HV_X86_RDI); env->regs[8] = rreg(cs->accel->fd, HV_X86_R8); env->regs[9] = rreg(cs->accel->fd, HV_X86_R9); env->regs[10] = rreg(cs->accel->fd, HV_X86_R10); env->regs[11] = rreg(cs->accel->fd, HV_X86_R11); env->regs[12] = rreg(cs->accel->fd, HV_X86_R12); env->regs[13] = rreg(cs->accel->fd, HV_X86_R13); env->regs[14] = rreg(cs->accel->fd, HV_X86_R14); env->regs[15] = rreg(cs->accel->fd, HV_X86_R15); env->eflags = rreg(cs->accel->fd, HV_X86_RFLAGS); env->eip = rreg(cs->accel->fd, HV_X86_RIP); hvf_get_xsave(cs); env->xcr0 = rreg(cs->accel->fd, HV_X86_XCR0); hvf_get_segments(cs); hvf_get_msrs(cs); env->dr[0] = rreg(cs->accel->fd, HV_X86_DR0); env->dr[1] = rreg(cs->accel->fd, HV_X86_DR1); env->dr[2] = rreg(cs->accel->fd, HV_X86_DR2); env->dr[3] = rreg(cs->accel->fd, HV_X86_DR3); env->dr[4] = rreg(cs->accel->fd, HV_X86_DR4); env->dr[5] = rreg(cs->accel->fd, HV_X86_DR5); env->dr[6] = rreg(cs->accel->fd, HV_X86_DR6); env->dr[7] = rreg(cs->accel->fd, HV_X86_DR7); x86_update_hflags(env); return 0; } static void vmx_set_int_window_exiting(CPUState *cs) { uint64_t val; val = rvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS); wvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS, val | VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING); } void vmx_clear_int_window_exiting(CPUState *cs) { uint64_t val; val = rvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS); wvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS, val & ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING); } bool hvf_inject_interrupts(CPUState *cs) { X86CPU *x86cpu = X86_CPU(cs); CPUX86State *env = &x86cpu->env; uint8_t vector; uint64_t intr_type; bool have_event = true; if (env->interrupt_injected != -1) { vector = env->interrupt_injected; if (env->ins_len) { intr_type = VMCS_INTR_T_SWINTR; } else { intr_type = VMCS_INTR_T_HWINTR; } } else if (env->exception_nr != -1) { vector = env->exception_nr; if (vector == EXCP03_INT3 || vector == EXCP04_INTO) { intr_type = VMCS_INTR_T_SWEXCEPTION; } else { intr_type = VMCS_INTR_T_HWEXCEPTION; } } else if (env->nmi_injected) { vector = EXCP02_NMI; intr_type = VMCS_INTR_T_NMI; } else { have_event = false; } uint64_t info = 0; if (have_event) { info = vector | intr_type | VMCS_INTR_VALID; uint64_t reason = rvmcs(cs->accel->fd, VMCS_EXIT_REASON); if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) { vmx_clear_nmi_blocking(cs); } if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) { info &= ~(1 << 12); /* clear undefined bit */ if (intr_type == VMCS_INTR_T_SWINTR || intr_type == VMCS_INTR_T_SWEXCEPTION) { wvmcs(cs->accel->fd, VMCS_ENTRY_INST_LENGTH, env->ins_len); } if (env->has_error_code) { wvmcs(cs->accel->fd, VMCS_ENTRY_EXCEPTION_ERROR, env->error_code); /* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */ info |= VMCS_INTR_DEL_ERRCODE; } /*printf("reinject %lx err %d\n", info, err);*/ wvmcs(cs->accel->fd, VMCS_ENTRY_INTR_INFO, info); }; } if (cs->interrupt_request & CPU_INTERRUPT_NMI) { if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) { cs->interrupt_request &= ~CPU_INTERRUPT_NMI; info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI; wvmcs(cs->accel->fd, VMCS_ENTRY_INTR_INFO, info); } else { vmx_set_nmi_window_exiting(cs); } } if (!(env->hflags & HF_INHIBIT_IRQ_MASK) && (cs->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) { int line = cpu_get_pic_interrupt(env); cs->interrupt_request &= ~CPU_INTERRUPT_HARD; if (line >= 0) { wvmcs(cs->accel->fd, VMCS_ENTRY_INTR_INFO, line | VMCS_INTR_VALID | VMCS_INTR_T_HWINTR); } } if (cs->interrupt_request & CPU_INTERRUPT_HARD) { vmx_set_int_window_exiting(cs); } return (cs->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)); } int hvf_process_events(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; if (!cs->accel->dirty) { /* light weight sync for CPU_INTERRUPT_HARD and IF_MASK */ env->eflags = rreg(cs->accel->fd, HV_X86_RFLAGS); } if (cs->interrupt_request & CPU_INTERRUPT_INIT) { cpu_synchronize_state(cs); do_cpu_init(cpu); } if (cs->interrupt_request & CPU_INTERRUPT_POLL) { cs->interrupt_request &= ~CPU_INTERRUPT_POLL; apic_poll_irq(cpu->apic_state); } if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) || (cs->interrupt_request & CPU_INTERRUPT_NMI)) { cs->halted = 0; } if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { cpu_synchronize_state(cs); do_cpu_sipi(cpu); } if (cs->interrupt_request & CPU_INTERRUPT_TPR) { cs->interrupt_request &= ~CPU_INTERRUPT_TPR; cpu_synchronize_state(cs); apic_handle_tpr_access_report(cpu->apic_state, env->eip, env->tpr_access_type); } return cs->halted; }