/* * HPPA emulation cpu translation for qemu. * * Copyright (c) 2016 Richard Henderson * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "disas/disas.h" #include "qemu/host-utils.h" #include "exec/exec-all.h" #include "tcg-op.h" #include "exec/cpu_ldst.h" #include "exec/helper-proto.h" #include "exec/helper-gen.h" #include "exec/translator.h" #include "trace-tcg.h" #include "exec/log.h" /* Since we have a distinction between register size and address size, we need to redefine all of these. */ #undef TCGv #undef tcg_temp_new #undef tcg_global_reg_new #undef tcg_global_mem_new #undef tcg_temp_local_new #undef tcg_temp_free #if TARGET_LONG_BITS == 64 #define TCGv_tl TCGv_i64 #define tcg_temp_new_tl tcg_temp_new_i64 #define tcg_temp_free_tl tcg_temp_free_i64 #if TARGET_REGISTER_BITS == 64 #define tcg_gen_extu_reg_tl tcg_gen_mov_i64 #else #define tcg_gen_extu_reg_tl tcg_gen_extu_i32_i64 #endif #else #define TCGv_tl TCGv_i32 #define tcg_temp_new_tl tcg_temp_new_i32 #define tcg_temp_free_tl tcg_temp_free_i32 #define tcg_gen_extu_reg_tl tcg_gen_mov_i32 #endif #if TARGET_REGISTER_BITS == 64 #define TCGv_reg TCGv_i64 #define tcg_temp_new tcg_temp_new_i64 #define tcg_global_reg_new tcg_global_reg_new_i64 #define tcg_global_mem_new tcg_global_mem_new_i64 #define tcg_temp_local_new tcg_temp_local_new_i64 #define tcg_temp_free tcg_temp_free_i64 #define tcg_gen_movi_reg tcg_gen_movi_i64 #define tcg_gen_mov_reg tcg_gen_mov_i64 #define tcg_gen_ld8u_reg tcg_gen_ld8u_i64 #define tcg_gen_ld8s_reg tcg_gen_ld8s_i64 #define tcg_gen_ld16u_reg tcg_gen_ld16u_i64 #define tcg_gen_ld16s_reg tcg_gen_ld16s_i64 #define tcg_gen_ld32u_reg tcg_gen_ld32u_i64 #define tcg_gen_ld32s_reg tcg_gen_ld32s_i64 #define tcg_gen_ld_reg tcg_gen_ld_i64 #define tcg_gen_st8_reg tcg_gen_st8_i64 #define tcg_gen_st16_reg tcg_gen_st16_i64 #define tcg_gen_st32_reg tcg_gen_st32_i64 #define tcg_gen_st_reg tcg_gen_st_i64 #define tcg_gen_add_reg tcg_gen_add_i64 #define tcg_gen_addi_reg tcg_gen_addi_i64 #define tcg_gen_sub_reg tcg_gen_sub_i64 #define tcg_gen_neg_reg tcg_gen_neg_i64 #define tcg_gen_subfi_reg tcg_gen_subfi_i64 #define tcg_gen_subi_reg tcg_gen_subi_i64 #define tcg_gen_and_reg tcg_gen_and_i64 #define tcg_gen_andi_reg tcg_gen_andi_i64 #define tcg_gen_or_reg tcg_gen_or_i64 #define tcg_gen_ori_reg tcg_gen_ori_i64 #define tcg_gen_xor_reg tcg_gen_xor_i64 #define tcg_gen_xori_reg tcg_gen_xori_i64 #define tcg_gen_not_reg tcg_gen_not_i64 #define tcg_gen_shl_reg tcg_gen_shl_i64 #define tcg_gen_shli_reg tcg_gen_shli_i64 #define tcg_gen_shr_reg tcg_gen_shr_i64 #define tcg_gen_shri_reg tcg_gen_shri_i64 #define tcg_gen_sar_reg tcg_gen_sar_i64 #define tcg_gen_sari_reg tcg_gen_sari_i64 #define tcg_gen_brcond_reg tcg_gen_brcond_i64 #define tcg_gen_brcondi_reg tcg_gen_brcondi_i64 #define tcg_gen_setcond_reg tcg_gen_setcond_i64 #define tcg_gen_setcondi_reg tcg_gen_setcondi_i64 #define tcg_gen_mul_reg tcg_gen_mul_i64 #define tcg_gen_muli_reg tcg_gen_muli_i64 #define tcg_gen_div_reg tcg_gen_div_i64 #define tcg_gen_rem_reg tcg_gen_rem_i64 #define tcg_gen_divu_reg tcg_gen_divu_i64 #define tcg_gen_remu_reg tcg_gen_remu_i64 #define tcg_gen_discard_reg tcg_gen_discard_i64 #define tcg_gen_trunc_reg_i32 tcg_gen_extrl_i64_i32 #define tcg_gen_trunc_i64_reg tcg_gen_mov_i64 #define tcg_gen_extu_i32_reg tcg_gen_extu_i32_i64 #define tcg_gen_ext_i32_reg tcg_gen_ext_i32_i64 #define tcg_gen_extu_reg_i64 tcg_gen_mov_i64 #define tcg_gen_ext_reg_i64 tcg_gen_mov_i64 #define tcg_gen_ext8u_reg tcg_gen_ext8u_i64 #define tcg_gen_ext8s_reg tcg_gen_ext8s_i64 #define tcg_gen_ext16u_reg tcg_gen_ext16u_i64 #define tcg_gen_ext16s_reg tcg_gen_ext16s_i64 #define tcg_gen_ext32u_reg tcg_gen_ext32u_i64 #define tcg_gen_ext32s_reg tcg_gen_ext32s_i64 #define tcg_gen_bswap16_reg tcg_gen_bswap16_i64 #define tcg_gen_bswap32_reg tcg_gen_bswap32_i64 #define tcg_gen_bswap64_reg tcg_gen_bswap64_i64 #define tcg_gen_concat_reg_i64 tcg_gen_concat32_i64 #define tcg_gen_andc_reg tcg_gen_andc_i64 #define tcg_gen_eqv_reg tcg_gen_eqv_i64 #define tcg_gen_nand_reg tcg_gen_nand_i64 #define tcg_gen_nor_reg tcg_gen_nor_i64 #define tcg_gen_orc_reg tcg_gen_orc_i64 #define tcg_gen_clz_reg tcg_gen_clz_i64 #define tcg_gen_ctz_reg tcg_gen_ctz_i64 #define tcg_gen_clzi_reg tcg_gen_clzi_i64 #define tcg_gen_ctzi_reg tcg_gen_ctzi_i64 #define tcg_gen_clrsb_reg tcg_gen_clrsb_i64 #define tcg_gen_ctpop_reg tcg_gen_ctpop_i64 #define tcg_gen_rotl_reg tcg_gen_rotl_i64 #define tcg_gen_rotli_reg tcg_gen_rotli_i64 #define tcg_gen_rotr_reg tcg_gen_rotr_i64 #define tcg_gen_rotri_reg tcg_gen_rotri_i64 #define tcg_gen_deposit_reg tcg_gen_deposit_i64 #define tcg_gen_deposit_z_reg tcg_gen_deposit_z_i64 #define tcg_gen_extract_reg tcg_gen_extract_i64 #define tcg_gen_sextract_reg tcg_gen_sextract_i64 #define tcg_const_reg tcg_const_i64 #define tcg_const_local_reg tcg_const_local_i64 #define tcg_gen_movcond_reg tcg_gen_movcond_i64 #define tcg_gen_add2_reg tcg_gen_add2_i64 #define tcg_gen_sub2_reg tcg_gen_sub2_i64 #define tcg_gen_qemu_ld_reg tcg_gen_qemu_ld_i64 #define tcg_gen_qemu_st_reg tcg_gen_qemu_st_i64 #define tcg_gen_atomic_xchg_reg tcg_gen_atomic_xchg_i64 #if UINTPTR_MAX == UINT32_MAX # define tcg_gen_trunc_reg_ptr(p, r) \ tcg_gen_trunc_i64_i32(TCGV_PTR_TO_NAT(p), r) #else # define tcg_gen_trunc_reg_ptr(p, r) \ tcg_gen_mov_i64(TCGV_PTR_TO_NAT(p), r) #endif #else #define TCGv_reg TCGv_i32 #define tcg_temp_new tcg_temp_new_i32 #define tcg_global_reg_new tcg_global_reg_new_i32 #define tcg_global_mem_new tcg_global_mem_new_i32 #define tcg_temp_local_new tcg_temp_local_new_i32 #define tcg_temp_free tcg_temp_free_i32 #define tcg_gen_movi_reg tcg_gen_movi_i32 #define tcg_gen_mov_reg tcg_gen_mov_i32 #define tcg_gen_ld8u_reg tcg_gen_ld8u_i32 #define tcg_gen_ld8s_reg tcg_gen_ld8s_i32 #define tcg_gen_ld16u_reg tcg_gen_ld16u_i32 #define tcg_gen_ld16s_reg tcg_gen_ld16s_i32 #define tcg_gen_ld32u_reg tcg_gen_ld_i32 #define tcg_gen_ld32s_reg tcg_gen_ld_i32 #define tcg_gen_ld_reg tcg_gen_ld_i32 #define tcg_gen_st8_reg tcg_gen_st8_i32 #define tcg_gen_st16_reg tcg_gen_st16_i32 #define tcg_gen_st32_reg tcg_gen_st32_i32 #define tcg_gen_st_reg tcg_gen_st_i32 #define tcg_gen_add_reg tcg_gen_add_i32 #define tcg_gen_addi_reg tcg_gen_addi_i32 #define tcg_gen_sub_reg tcg_gen_sub_i32 #define tcg_gen_neg_reg tcg_gen_neg_i32 #define tcg_gen_subfi_reg tcg_gen_subfi_i32 #define tcg_gen_subi_reg tcg_gen_subi_i32 #define tcg_gen_and_reg tcg_gen_and_i32 #define tcg_gen_andi_reg tcg_gen_andi_i32 #define tcg_gen_or_reg tcg_gen_or_i32 #define tcg_gen_ori_reg tcg_gen_ori_i32 #define tcg_gen_xor_reg tcg_gen_xor_i32 #define tcg_gen_xori_reg tcg_gen_xori_i32 #define tcg_gen_not_reg tcg_gen_not_i32 #define tcg_gen_shl_reg tcg_gen_shl_i32 #define tcg_gen_shli_reg tcg_gen_shli_i32 #define tcg_gen_shr_reg tcg_gen_shr_i32 #define tcg_gen_shri_reg tcg_gen_shri_i32 #define tcg_gen_sar_reg tcg_gen_sar_i32 #define tcg_gen_sari_reg tcg_gen_sari_i32 #define tcg_gen_brcond_reg tcg_gen_brcond_i32 #define tcg_gen_brcondi_reg tcg_gen_brcondi_i32 #define tcg_gen_setcond_reg tcg_gen_setcond_i32 #define tcg_gen_setcondi_reg tcg_gen_setcondi_i32 #define tcg_gen_mul_reg tcg_gen_mul_i32 #define tcg_gen_muli_reg tcg_gen_muli_i32 #define tcg_gen_div_reg tcg_gen_div_i32 #define tcg_gen_rem_reg tcg_gen_rem_i32 #define tcg_gen_divu_reg tcg_gen_divu_i32 #define tcg_gen_remu_reg tcg_gen_remu_i32 #define tcg_gen_discard_reg tcg_gen_discard_i32 #define tcg_gen_trunc_reg_i32 tcg_gen_mov_i32 #define tcg_gen_trunc_i64_reg tcg_gen_extrl_i64_i32 #define tcg_gen_extu_i32_reg tcg_gen_mov_i32 #define tcg_gen_ext_i32_reg tcg_gen_mov_i32 #define tcg_gen_extu_reg_i64 tcg_gen_extu_i32_i64 #define tcg_gen_ext_reg_i64 tcg_gen_ext_i32_i64 #define tcg_gen_ext8u_reg tcg_gen_ext8u_i32 #define tcg_gen_ext8s_reg tcg_gen_ext8s_i32 #define tcg_gen_ext16u_reg tcg_gen_ext16u_i32 #define tcg_gen_ext16s_reg tcg_gen_ext16s_i32 #define tcg_gen_ext32u_reg tcg_gen_mov_i32 #define tcg_gen_ext32s_reg tcg_gen_mov_i32 #define tcg_gen_bswap16_reg tcg_gen_bswap16_i32 #define tcg_gen_bswap32_reg tcg_gen_bswap32_i32 #define tcg_gen_concat_reg_i64 tcg_gen_concat_i32_i64 #define tcg_gen_andc_reg tcg_gen_andc_i32 #define tcg_gen_eqv_reg tcg_gen_eqv_i32 #define tcg_gen_nand_reg tcg_gen_nand_i32 #define tcg_gen_nor_reg tcg_gen_nor_i32 #define tcg_gen_orc_reg tcg_gen_orc_i32 #define tcg_gen_clz_reg tcg_gen_clz_i32 #define tcg_gen_ctz_reg tcg_gen_ctz_i32 #define tcg_gen_clzi_reg tcg_gen_clzi_i32 #define tcg_gen_ctzi_reg tcg_gen_ctzi_i32 #define tcg_gen_clrsb_reg tcg_gen_clrsb_i32 #define tcg_gen_ctpop_reg tcg_gen_ctpop_i32 #define tcg_gen_rotl_reg tcg_gen_rotl_i32 #define tcg_gen_rotli_reg tcg_gen_rotli_i32 #define tcg_gen_rotr_reg tcg_gen_rotr_i32 #define tcg_gen_rotri_reg tcg_gen_rotri_i32 #define tcg_gen_deposit_reg tcg_gen_deposit_i32 #define tcg_gen_deposit_z_reg tcg_gen_deposit_z_i32 #define tcg_gen_extract_reg tcg_gen_extract_i32 #define tcg_gen_sextract_reg tcg_gen_sextract_i32 #define tcg_const_reg tcg_const_i32 #define tcg_const_local_reg tcg_const_local_i32 #define tcg_gen_movcond_reg tcg_gen_movcond_i32 #define tcg_gen_add2_reg tcg_gen_add2_i32 #define tcg_gen_sub2_reg tcg_gen_sub2_i32 #define tcg_gen_qemu_ld_reg tcg_gen_qemu_ld_i32 #define tcg_gen_qemu_st_reg tcg_gen_qemu_st_i32 #define tcg_gen_atomic_xchg_reg tcg_gen_atomic_xchg_i32 #if UINTPTR_MAX == UINT32_MAX # define tcg_gen_trunc_reg_ptr(p, r) \ tcg_gen_mov_i32(TCGV_PTR_TO_NAT(p), r) #else # define tcg_gen_trunc_reg_ptr(p, r) \ tcg_gen_extu_i32_i64(TCGV_PTR_TO_NAT(p), r) #endif #endif /* TARGET_REGISTER_BITS */ typedef struct DisasCond { TCGCond c; TCGv_reg a0, a1; bool a0_is_n; bool a1_is_0; } DisasCond; typedef struct DisasContext { DisasContextBase base; CPUState *cs; target_ureg iaoq_f; target_ureg iaoq_b; target_ureg iaoq_n; TCGv_reg iaoq_n_var; int ntempr, ntempl; TCGv_reg tempr[8]; TCGv_tl templ[4]; DisasCond null_cond; TCGLabel *null_lab; uint32_t insn; uint32_t tb_flags; int mmu_idx; int privilege; bool psw_n_nonzero; } DisasContext; /* Target-specific return values from translate_one, indicating the state of the TB. Note that DISAS_NEXT indicates that we are not exiting the TB. */ /* We are not using a goto_tb (for whatever reason), but have updated the iaq (for whatever reason), so don't do it again on exit. */ #define DISAS_IAQ_N_UPDATED DISAS_TARGET_0 /* We are exiting the TB, but have neither emitted a goto_tb, nor updated the iaq for the next instruction to be executed. */ #define DISAS_IAQ_N_STALE DISAS_TARGET_1 /* Similarly, but we want to return to the main loop immediately to recognize unmasked interrupts. */ #define DISAS_IAQ_N_STALE_EXIT DISAS_TARGET_2 typedef struct DisasInsn { uint32_t insn, mask; DisasJumpType (*trans)(DisasContext *ctx, uint32_t insn, const struct DisasInsn *f); union { void (*ttt)(TCGv_reg, TCGv_reg, TCGv_reg); void (*weww)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32); void (*dedd)(TCGv_i64, TCGv_env, TCGv_i64, TCGv_i64); void (*wew)(TCGv_i32, TCGv_env, TCGv_i32); void (*ded)(TCGv_i64, TCGv_env, TCGv_i64); void (*wed)(TCGv_i32, TCGv_env, TCGv_i64); void (*dew)(TCGv_i64, TCGv_env, TCGv_i32); } f; } DisasInsn; /* global register indexes */ static TCGv_reg cpu_gr[32]; static TCGv_i64 cpu_sr[4]; static TCGv_i64 cpu_srH; static TCGv_reg cpu_iaoq_f; static TCGv_reg cpu_iaoq_b; static TCGv_i64 cpu_iasq_f; static TCGv_i64 cpu_iasq_b; static TCGv_reg cpu_sar; static TCGv_reg cpu_psw_n; static TCGv_reg cpu_psw_v; static TCGv_reg cpu_psw_cb; static TCGv_reg cpu_psw_cb_msb; #include "exec/gen-icount.h" void hppa_translate_init(void) { #define DEF_VAR(V) { &cpu_##V, #V, offsetof(CPUHPPAState, V) } typedef struct { TCGv_reg *var; const char *name; int ofs; } GlobalVar; static const GlobalVar vars[] = { { &cpu_sar, "sar", offsetof(CPUHPPAState, cr[CR_SAR]) }, DEF_VAR(psw_n), DEF_VAR(psw_v), DEF_VAR(psw_cb), DEF_VAR(psw_cb_msb), DEF_VAR(iaoq_f), DEF_VAR(iaoq_b), }; #undef DEF_VAR /* Use the symbolic register names that match the disassembler. */ static const char gr_names[32][4] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" }; /* SR[4-7] are not global registers so that we can index them. */ static const char sr_names[5][4] = { "sr0", "sr1", "sr2", "sr3", "srH" }; int i; cpu_gr[0] = NULL; for (i = 1; i < 32; i++) { cpu_gr[i] = tcg_global_mem_new(cpu_env, offsetof(CPUHPPAState, gr[i]), gr_names[i]); } for (i = 0; i < 4; i++) { cpu_sr[i] = tcg_global_mem_new_i64(cpu_env, offsetof(CPUHPPAState, sr[i]), sr_names[i]); } cpu_srH = tcg_global_mem_new_i64(cpu_env, offsetof(CPUHPPAState, sr[4]), sr_names[4]); for (i = 0; i < ARRAY_SIZE(vars); ++i) { const GlobalVar *v = &vars[i]; *v->var = tcg_global_mem_new(cpu_env, v->ofs, v->name); } cpu_iasq_f = tcg_global_mem_new_i64(cpu_env, offsetof(CPUHPPAState, iasq_f), "iasq_f"); cpu_iasq_b = tcg_global_mem_new_i64(cpu_env, offsetof(CPUHPPAState, iasq_b), "iasq_b"); } static DisasCond cond_make_f(void) { return (DisasCond){ .c = TCG_COND_NEVER, .a0 = NULL, .a1 = NULL, }; } static DisasCond cond_make_n(void) { return (DisasCond){ .c = TCG_COND_NE, .a0 = cpu_psw_n, .a0_is_n = true, .a1 = NULL, .a1_is_0 = true }; } static DisasCond cond_make_0(TCGCond c, TCGv_reg a0) { DisasCond r = { .c = c, .a1 = NULL, .a1_is_0 = true }; assert (c != TCG_COND_NEVER && c != TCG_COND_ALWAYS); r.a0 = tcg_temp_new(); tcg_gen_mov_reg(r.a0, a0); return r; } static DisasCond cond_make(TCGCond c, TCGv_reg a0, TCGv_reg a1) { DisasCond r = { .c = c }; assert (c != TCG_COND_NEVER && c != TCG_COND_ALWAYS); r.a0 = tcg_temp_new(); tcg_gen_mov_reg(r.a0, a0); r.a1 = tcg_temp_new(); tcg_gen_mov_reg(r.a1, a1); return r; } static void cond_prep(DisasCond *cond) { if (cond->a1_is_0) { cond->a1_is_0 = false; cond->a1 = tcg_const_reg(0); } } static void cond_free(DisasCond *cond) { switch (cond->c) { default: if (!cond->a0_is_n) { tcg_temp_free(cond->a0); } if (!cond->a1_is_0) { tcg_temp_free(cond->a1); } cond->a0_is_n = false; cond->a1_is_0 = false; cond->a0 = NULL; cond->a1 = NULL; /* fallthru */ case TCG_COND_ALWAYS: cond->c = TCG_COND_NEVER; break; case TCG_COND_NEVER: break; } } static TCGv_reg get_temp(DisasContext *ctx) { unsigned i = ctx->ntempr++; g_assert(i < ARRAY_SIZE(ctx->tempr)); return ctx->tempr[i] = tcg_temp_new(); } #ifndef CONFIG_USER_ONLY static TCGv_tl get_temp_tl(DisasContext *ctx) { unsigned i = ctx->ntempl++; g_assert(i < ARRAY_SIZE(ctx->templ)); return ctx->templ[i] = tcg_temp_new_tl(); } #endif static TCGv_reg load_const(DisasContext *ctx, target_sreg v) { TCGv_reg t = get_temp(ctx); tcg_gen_movi_reg(t, v); return t; } static TCGv_reg load_gpr(DisasContext *ctx, unsigned reg) { if (reg == 0) { TCGv_reg t = get_temp(ctx); tcg_gen_movi_reg(t, 0); return t; } else { return cpu_gr[reg]; } } static TCGv_reg dest_gpr(DisasContext *ctx, unsigned reg) { if (reg == 0 || ctx->null_cond.c != TCG_COND_NEVER) { return get_temp(ctx); } else { return cpu_gr[reg]; } } static void save_or_nullify(DisasContext *ctx, TCGv_reg dest, TCGv_reg t) { if (ctx->null_cond.c != TCG_COND_NEVER) { cond_prep(&ctx->null_cond); tcg_gen_movcond_reg(ctx->null_cond.c, dest, ctx->null_cond.a0, ctx->null_cond.a1, dest, t); } else { tcg_gen_mov_reg(dest, t); } } static void save_gpr(DisasContext *ctx, unsigned reg, TCGv_reg t) { if (reg != 0) { save_or_nullify(ctx, cpu_gr[reg], t); } } #ifdef HOST_WORDS_BIGENDIAN # define HI_OFS 0 # define LO_OFS 4 #else # define HI_OFS 4 # define LO_OFS 0 #endif static TCGv_i32 load_frw_i32(unsigned rt) { TCGv_i32 ret = tcg_temp_new_i32(); tcg_gen_ld_i32(ret, cpu_env, offsetof(CPUHPPAState, fr[rt & 31]) + (rt & 32 ? LO_OFS : HI_OFS)); return ret; } static TCGv_i32 load_frw0_i32(unsigned rt) { if (rt == 0) { return tcg_const_i32(0); } else { return load_frw_i32(rt); } } static TCGv_i64 load_frw0_i64(unsigned rt) { if (rt == 0) { return tcg_const_i64(0); } else { TCGv_i64 ret = tcg_temp_new_i64(); tcg_gen_ld32u_i64(ret, cpu_env, offsetof(CPUHPPAState, fr[rt & 31]) + (rt & 32 ? LO_OFS : HI_OFS)); return ret; } } static void save_frw_i32(unsigned rt, TCGv_i32 val) { tcg_gen_st_i32(val, cpu_env, offsetof(CPUHPPAState, fr[rt & 31]) + (rt & 32 ? LO_OFS : HI_OFS)); } #undef HI_OFS #undef LO_OFS static TCGv_i64 load_frd(unsigned rt) { TCGv_i64 ret = tcg_temp_new_i64(); tcg_gen_ld_i64(ret, cpu_env, offsetof(CPUHPPAState, fr[rt])); return ret; } static TCGv_i64 load_frd0(unsigned rt) { if (rt == 0) { return tcg_const_i64(0); } else { return load_frd(rt); } } static void save_frd(unsigned rt, TCGv_i64 val) { tcg_gen_st_i64(val, cpu_env, offsetof(CPUHPPAState, fr[rt])); } static void load_spr(DisasContext *ctx, TCGv_i64 dest, unsigned reg) { #ifdef CONFIG_USER_ONLY tcg_gen_movi_i64(dest, 0); #else if (reg < 4) { tcg_gen_mov_i64(dest, cpu_sr[reg]); } else if (ctx->tb_flags & TB_FLAG_SR_SAME) { tcg_gen_mov_i64(dest, cpu_srH); } else { tcg_gen_ld_i64(dest, cpu_env, offsetof(CPUHPPAState, sr[reg])); } #endif } /* Skip over the implementation of an insn that has been nullified. Use this when the insn is too complex for a conditional move. */ static void nullify_over(DisasContext *ctx) { if (ctx->null_cond.c != TCG_COND_NEVER) { /* The always condition should have been handled in the main loop. */ assert(ctx->null_cond.c != TCG_COND_ALWAYS); ctx->null_lab = gen_new_label(); cond_prep(&ctx->null_cond); /* If we're using PSW[N], copy it to a temp because... */ if (ctx->null_cond.a0_is_n) { ctx->null_cond.a0_is_n = false; ctx->null_cond.a0 = tcg_temp_new(); tcg_gen_mov_reg(ctx->null_cond.a0, cpu_psw_n); } /* ... we clear it before branching over the implementation, so that (1) it's clear after nullifying this insn and (2) if this insn nullifies the next, PSW[N] is valid. */ if (ctx->psw_n_nonzero) { ctx->psw_n_nonzero = false; tcg_gen_movi_reg(cpu_psw_n, 0); } tcg_gen_brcond_reg(ctx->null_cond.c, ctx->null_cond.a0, ctx->null_cond.a1, ctx->null_lab); cond_free(&ctx->null_cond); } } /* Save the current nullification state to PSW[N]. */ static void nullify_save(DisasContext *ctx) { if (ctx->null_cond.c == TCG_COND_NEVER) { if (ctx->psw_n_nonzero) { tcg_gen_movi_reg(cpu_psw_n, 0); } return; } if (!ctx->null_cond.a0_is_n) { cond_prep(&ctx->null_cond); tcg_gen_setcond_reg(ctx->null_cond.c, cpu_psw_n, ctx->null_cond.a0, ctx->null_cond.a1); ctx->psw_n_nonzero = true; } cond_free(&ctx->null_cond); } /* Set a PSW[N] to X. The intention is that this is used immediately before a goto_tb/exit_tb, so that there is no fallthru path to other code within the TB. Therefore we do not update psw_n_nonzero. */ static void nullify_set(DisasContext *ctx, bool x) { if (ctx->psw_n_nonzero || x) { tcg_gen_movi_reg(cpu_psw_n, x); } } /* Mark the end of an instruction that may have been nullified. This is the pair to nullify_over. */ static DisasJumpType nullify_end(DisasContext *ctx, DisasJumpType status) { TCGLabel *null_lab = ctx->null_lab; /* For NEXT, NORETURN, STALE, we can easily continue (or exit). For UPDATED, we cannot update on the nullified path. */ assert(status != DISAS_IAQ_N_UPDATED); if (likely(null_lab == NULL)) { /* The current insn wasn't conditional or handled the condition applied to it without a branch, so the (new) setting of NULL_COND can be applied directly to the next insn. */ return status; } ctx->null_lab = NULL; if (likely(ctx->null_cond.c == TCG_COND_NEVER)) { /* The next instruction will be unconditional, and NULL_COND already reflects that. */ gen_set_label(null_lab); } else { /* The insn that we just executed is itself nullifying the next instruction. Store the condition in the PSW[N] global. We asserted PSW[N] = 0 in nullify_over, so that after the label we have the proper value in place. */ nullify_save(ctx); gen_set_label(null_lab); ctx->null_cond = cond_make_n(); } if (status == DISAS_NORETURN) { status = DISAS_NEXT; } return status; } static void copy_iaoq_entry(TCGv_reg dest, target_ureg ival, TCGv_reg vval) { if (unlikely(ival == -1)) { tcg_gen_mov_reg(dest, vval); } else { tcg_gen_movi_reg(dest, ival); } } static inline target_ureg iaoq_dest(DisasContext *ctx, target_sreg disp) { return ctx->iaoq_f + disp + 8; } static void gen_excp_1(int exception) { TCGv_i32 t = tcg_const_i32(exception); gen_helper_excp(cpu_env, t); tcg_temp_free_i32(t); } static DisasJumpType gen_excp(DisasContext *ctx, int exception) { copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_f, cpu_iaoq_f); copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_b, cpu_iaoq_b); nullify_save(ctx); gen_excp_1(exception); return DISAS_NORETURN; } static DisasJumpType gen_excp_iir(DisasContext *ctx, int exc) { TCGv_reg tmp = tcg_const_reg(ctx->insn); tcg_gen_st_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[CR_IIR])); tcg_temp_free(tmp); return gen_excp(ctx, exc); } static DisasJumpType gen_illegal(DisasContext *ctx) { nullify_over(ctx); return nullify_end(ctx, gen_excp_iir(ctx, EXCP_ILL)); } #define CHECK_MOST_PRIVILEGED(EXCP) \ do { \ if (ctx->privilege != 0) { \ nullify_over(ctx); \ return nullify_end(ctx, gen_excp_iir(ctx, EXCP)); \ } \ } while (0) static bool use_goto_tb(DisasContext *ctx, target_ureg dest) { /* Suppress goto_tb in the case of single-steping and IO. */ if ((tb_cflags(ctx->base.tb) & CF_LAST_IO) || ctx->base.singlestep_enabled) { return false; } return true; } /* If the next insn is to be nullified, and it's on the same page, and we're not attempting to set a breakpoint on it, then we can totally skip the nullified insn. This avoids creating and executing a TB that merely branches to the next TB. */ static bool use_nullify_skip(DisasContext *ctx) { return (((ctx->iaoq_b ^ ctx->iaoq_f) & TARGET_PAGE_MASK) == 0 && !cpu_breakpoint_test(ctx->cs, ctx->iaoq_b, BP_ANY)); } static void gen_goto_tb(DisasContext *ctx, int which, target_ureg f, target_ureg b) { if (f != -1 && b != -1 && use_goto_tb(ctx, f)) { tcg_gen_goto_tb(which); tcg_gen_movi_reg(cpu_iaoq_f, f); tcg_gen_movi_reg(cpu_iaoq_b, b); tcg_gen_exit_tb((uintptr_t)ctx->base.tb + which); } else { copy_iaoq_entry(cpu_iaoq_f, f, cpu_iaoq_b); copy_iaoq_entry(cpu_iaoq_b, b, ctx->iaoq_n_var); if (ctx->base.singlestep_enabled) { gen_excp_1(EXCP_DEBUG); } else { tcg_gen_lookup_and_goto_ptr(); } } } /* PA has a habit of taking the LSB of a field and using that as the sign, with the rest of the field becoming the least significant bits. */ static target_sreg low_sextract(uint32_t val, int pos, int len) { target_ureg x = -(target_ureg)extract32(val, pos, 1); x = (x << (len - 1)) | extract32(val, pos + 1, len - 1); return x; } static unsigned assemble_rt64(uint32_t insn) { unsigned r1 = extract32(insn, 6, 1); unsigned r0 = extract32(insn, 0, 5); return r1 * 32 + r0; } static unsigned assemble_ra64(uint32_t insn) { unsigned r1 = extract32(insn, 7, 1); unsigned r0 = extract32(insn, 21, 5); return r1 * 32 + r0; } static unsigned assemble_rb64(uint32_t insn) { unsigned r1 = extract32(insn, 12, 1); unsigned r0 = extract32(insn, 16, 5); return r1 * 32 + r0; } static unsigned assemble_rc64(uint32_t insn) { unsigned r2 = extract32(insn, 8, 1); unsigned r1 = extract32(insn, 13, 3); unsigned r0 = extract32(insn, 9, 2); return r2 * 32 + r1 * 4 + r0; } static unsigned assemble_sr3(uint32_t insn) { unsigned s2 = extract32(insn, 13, 1); unsigned s0 = extract32(insn, 14, 2); return s2 * 4 + s0; } static target_sreg assemble_12(uint32_t insn) { target_ureg x = -(target_ureg)(insn & 1); x = (x << 1) | extract32(insn, 2, 1); x = (x << 10) | extract32(insn, 3, 10); return x; } static target_sreg assemble_16(uint32_t insn) { /* Take the name from PA2.0, which produces a 16-bit number only with wide mode; otherwise a 14-bit number. Since we don't implement wide mode, this is always the 14-bit number. */ return low_sextract(insn, 0, 14); } static target_sreg assemble_16a(uint32_t insn) { /* Take the name from PA2.0, which produces a 14-bit shifted number only with wide mode; otherwise a 12-bit shifted number. Since we don't implement wide mode, this is always the 12-bit number. */ target_ureg x = -(target_ureg)(insn & 1); x = (x << 11) | extract32(insn, 2, 11); return x << 2; } static target_sreg assemble_17(uint32_t insn) { target_ureg x = -(target_ureg)(insn & 1); x = (x << 5) | extract32(insn, 16, 5); x = (x << 1) | extract32(insn, 2, 1); x = (x << 10) | extract32(insn, 3, 10); return x << 2; } static target_sreg assemble_21(uint32_t insn) { target_ureg x = -(target_ureg)(insn & 1); x = (x << 11) | extract32(insn, 1, 11); x = (x << 2) | extract32(insn, 14, 2); x = (x << 5) | extract32(insn, 16, 5); x = (x << 2) | extract32(insn, 12, 2); return x << 11; } static target_sreg assemble_22(uint32_t insn) { target_ureg x = -(target_ureg)(insn & 1); x = (x << 10) | extract32(insn, 16, 10); x = (x << 1) | extract32(insn, 2, 1); x = (x << 10) | extract32(insn, 3, 10); return x << 2; } /* The parisc documentation describes only the general interpretation of the conditions, without describing their exact implementation. The interpretations do not stand up well when considering ADD,C and SUB,B. However, considering the Addition, Subtraction and Logical conditions as a whole it would appear that these relations are similar to what a traditional NZCV set of flags would produce. */ static DisasCond do_cond(unsigned cf, TCGv_reg res, TCGv_reg cb_msb, TCGv_reg sv) { DisasCond cond; TCGv_reg tmp; switch (cf >> 1) { case 0: /* Never / TR */ cond = cond_make_f(); break; case 1: /* = / <> (Z / !Z) */ cond = cond_make_0(TCG_COND_EQ, res); break; case 2: /* < / >= (N / !N) */ cond = cond_make_0(TCG_COND_LT, res); break; case 3: /* <= / > (N | Z / !N & !Z) */ cond = cond_make_0(TCG_COND_LE, res); break; case 4: /* NUV / UV (!C / C) */ cond = cond_make_0(TCG_COND_EQ, cb_msb); break; case 5: /* ZNV / VNZ (!C | Z / C & !Z) */ tmp = tcg_temp_new(); tcg_gen_neg_reg(tmp, cb_msb); tcg_gen_and_reg(tmp, tmp, res); cond = cond_make_0(TCG_COND_EQ, tmp); tcg_temp_free(tmp); break; case 6: /* SV / NSV (V / !V) */ cond = cond_make_0(TCG_COND_LT, sv); break; case 7: /* OD / EV */ tmp = tcg_temp_new(); tcg_gen_andi_reg(tmp, res, 1); cond = cond_make_0(TCG_COND_NE, tmp); tcg_temp_free(tmp); break; default: g_assert_not_reached(); } if (cf & 1) { cond.c = tcg_invert_cond(cond.c); } return cond; } /* Similar, but for the special case of subtraction without borrow, we can use the inputs directly. This can allow other computation to be deleted as unused. */ static DisasCond do_sub_cond(unsigned cf, TCGv_reg res, TCGv_reg in1, TCGv_reg in2, TCGv_reg sv) { DisasCond cond; switch (cf >> 1) { case 1: /* = / <> */ cond = cond_make(TCG_COND_EQ, in1, in2); break; case 2: /* < / >= */ cond = cond_make(TCG_COND_LT, in1, in2); break; case 3: /* <= / > */ cond = cond_make(TCG_COND_LE, in1, in2); break; case 4: /* << / >>= */ cond = cond_make(TCG_COND_LTU, in1, in2); break; case 5: /* <<= / >> */ cond = cond_make(TCG_COND_LEU, in1, in2); break; default: return do_cond(cf, res, sv, sv); } if (cf & 1) { cond.c = tcg_invert_cond(cond.c); } return cond; } /* Similar, but for logicals, where the carry and overflow bits are not computed, and use of them is undefined. */ static DisasCond do_log_cond(unsigned cf, TCGv_reg res) { switch (cf >> 1) { case 4: case 5: case 6: cf &= 1; break; } return do_cond(cf, res, res, res); } /* Similar, but for shift/extract/deposit conditions. */ static DisasCond do_sed_cond(unsigned orig, TCGv_reg res) { unsigned c, f; /* Convert the compressed condition codes to standard. 0-2 are the same as logicals (nv,<,<=), while 3 is OD. 4-7 are the reverse of 0-3. */ c = orig & 3; if (c == 3) { c = 7; } f = (orig & 4) / 4; return do_log_cond(c * 2 + f, res); } /* Similar, but for unit conditions. */ static DisasCond do_unit_cond(unsigned cf, TCGv_reg res, TCGv_reg in1, TCGv_reg in2) { DisasCond cond; TCGv_reg tmp, cb = NULL; if (cf & 8) { /* Since we want to test lots of carry-out bits all at once, do not * do our normal thing and compute carry-in of bit B+1 since that * leaves us with carry bits spread across two words. */ cb = tcg_temp_new(); tmp = tcg_temp_new(); tcg_gen_or_reg(cb, in1, in2); tcg_gen_and_reg(tmp, in1, in2); tcg_gen_andc_reg(cb, cb, res); tcg_gen_or_reg(cb, cb, tmp); tcg_temp_free(tmp); } switch (cf >> 1) { case 0: /* never / TR */ case 1: /* undefined */ case 5: /* undefined */ cond = cond_make_f(); break; case 2: /* SBZ / NBZ */ /* See hasless(v,1) from * https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord */ tmp = tcg_temp_new(); tcg_gen_subi_reg(tmp, res, 0x01010101u); tcg_gen_andc_reg(tmp, tmp, res); tcg_gen_andi_reg(tmp, tmp, 0x80808080u); cond = cond_make_0(TCG_COND_NE, tmp); tcg_temp_free(tmp); break; case 3: /* SHZ / NHZ */ tmp = tcg_temp_new(); tcg_gen_subi_reg(tmp, res, 0x00010001u); tcg_gen_andc_reg(tmp, tmp, res); tcg_gen_andi_reg(tmp, tmp, 0x80008000u); cond = cond_make_0(TCG_COND_NE, tmp); tcg_temp_free(tmp); break; case 4: /* SDC / NDC */ tcg_gen_andi_reg(cb, cb, 0x88888888u); cond = cond_make_0(TCG_COND_NE, cb); break; case 6: /* SBC / NBC */ tcg_gen_andi_reg(cb, cb, 0x80808080u); cond = cond_make_0(TCG_COND_NE, cb); break; case 7: /* SHC / NHC */ tcg_gen_andi_reg(cb, cb, 0x80008000u); cond = cond_make_0(TCG_COND_NE, cb); break; default: g_assert_not_reached(); } if (cf & 8) { tcg_temp_free(cb); } if (cf & 1) { cond.c = tcg_invert_cond(cond.c); } return cond; } /* Compute signed overflow for addition. */ static TCGv_reg do_add_sv(DisasContext *ctx, TCGv_reg res, TCGv_reg in1, TCGv_reg in2) { TCGv_reg sv = get_temp(ctx); TCGv_reg tmp = tcg_temp_new(); tcg_gen_xor_reg(sv, res, in1); tcg_gen_xor_reg(tmp, in1, in2); tcg_gen_andc_reg(sv, sv, tmp); tcg_temp_free(tmp); return sv; } /* Compute signed overflow for subtraction. */ static TCGv_reg do_sub_sv(DisasContext *ctx, TCGv_reg res, TCGv_reg in1, TCGv_reg in2) { TCGv_reg sv = get_temp(ctx); TCGv_reg tmp = tcg_temp_new(); tcg_gen_xor_reg(sv, res, in1); tcg_gen_xor_reg(tmp, in1, in2); tcg_gen_and_reg(sv, sv, tmp); tcg_temp_free(tmp); return sv; } static DisasJumpType do_add(DisasContext *ctx, unsigned rt, TCGv_reg in1, TCGv_reg in2, unsigned shift, bool is_l, bool is_tsv, bool is_tc, bool is_c, unsigned cf) { TCGv_reg dest, cb, cb_msb, sv, tmp; unsigned c = cf >> 1; DisasCond cond; dest = tcg_temp_new(); cb = NULL; cb_msb = NULL; if (shift) { tmp = get_temp(ctx); tcg_gen_shli_reg(tmp, in1, shift); in1 = tmp; } if (!is_l || c == 4 || c == 5) { TCGv_reg zero = tcg_const_reg(0); cb_msb = get_temp(ctx); tcg_gen_add2_reg(dest, cb_msb, in1, zero, in2, zero); if (is_c) { tcg_gen_add2_reg(dest, cb_msb, dest, cb_msb, cpu_psw_cb_msb, zero); } tcg_temp_free(zero); if (!is_l) { cb = get_temp(ctx); tcg_gen_xor_reg(cb, in1, in2); tcg_gen_xor_reg(cb, cb, dest); } } else { tcg_gen_add_reg(dest, in1, in2); if (is_c) { tcg_gen_add_reg(dest, dest, cpu_psw_cb_msb); } } /* Compute signed overflow if required. */ sv = NULL; if (is_tsv || c == 6) { sv = do_add_sv(ctx, dest, in1, in2); if (is_tsv) { /* ??? Need to include overflow from shift. */ gen_helper_tsv(cpu_env, sv); } } /* Emit any conditional trap before any writeback. */ cond = do_cond(cf, dest, cb_msb, sv); if (is_tc) { cond_prep(&cond); tmp = tcg_temp_new(); tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); gen_helper_tcond(cpu_env, tmp); tcg_temp_free(tmp); } /* Write back the result. */ if (!is_l) { save_or_nullify(ctx, cpu_psw_cb, cb); save_or_nullify(ctx, cpu_psw_cb_msb, cb_msb); } save_gpr(ctx, rt, dest); tcg_temp_free(dest); /* Install the new nullification. */ cond_free(&ctx->null_cond); ctx->null_cond = cond; return DISAS_NEXT; } static DisasJumpType do_sub(DisasContext *ctx, unsigned rt, TCGv_reg in1, TCGv_reg in2, bool is_tsv, bool is_b, bool is_tc, unsigned cf) { TCGv_reg dest, sv, cb, cb_msb, zero, tmp; unsigned c = cf >> 1; DisasCond cond; dest = tcg_temp_new(); cb = tcg_temp_new(); cb_msb = tcg_temp_new(); zero = tcg_const_reg(0); if (is_b) { /* DEST,C = IN1 + ~IN2 + C. */ tcg_gen_not_reg(cb, in2); tcg_gen_add2_reg(dest, cb_msb, in1, zero, cpu_psw_cb_msb, zero); tcg_gen_add2_reg(dest, cb_msb, dest, cb_msb, cb, zero); tcg_gen_xor_reg(cb, cb, in1); tcg_gen_xor_reg(cb, cb, dest); } else { /* DEST,C = IN1 + ~IN2 + 1. We can produce the same result in fewer operations by seeding the high word with 1 and subtracting. */ tcg_gen_movi_reg(cb_msb, 1); tcg_gen_sub2_reg(dest, cb_msb, in1, cb_msb, in2, zero); tcg_gen_eqv_reg(cb, in1, in2); tcg_gen_xor_reg(cb, cb, dest); } tcg_temp_free(zero); /* Compute signed overflow if required. */ sv = NULL; if (is_tsv || c == 6) { sv = do_sub_sv(ctx, dest, in1, in2); if (is_tsv) { gen_helper_tsv(cpu_env, sv); } } /* Compute the condition. We cannot use the special case for borrow. */ if (!is_b) { cond = do_sub_cond(cf, dest, in1, in2, sv); } else { cond = do_cond(cf, dest, cb_msb, sv); } /* Emit any conditional trap before any writeback. */ if (is_tc) { cond_prep(&cond); tmp = tcg_temp_new(); tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); gen_helper_tcond(cpu_env, tmp); tcg_temp_free(tmp); } /* Write back the result. */ save_or_nullify(ctx, cpu_psw_cb, cb); save_or_nullify(ctx, cpu_psw_cb_msb, cb_msb); save_gpr(ctx, rt, dest); tcg_temp_free(dest); /* Install the new nullification. */ cond_free(&ctx->null_cond); ctx->null_cond = cond; return DISAS_NEXT; } static DisasJumpType do_cmpclr(DisasContext *ctx, unsigned rt, TCGv_reg in1, TCGv_reg in2, unsigned cf) { TCGv_reg dest, sv; DisasCond cond; dest = tcg_temp_new(); tcg_gen_sub_reg(dest, in1, in2); /* Compute signed overflow if required. */ sv = NULL; if ((cf >> 1) == 6) { sv = do_sub_sv(ctx, dest, in1, in2); } /* Form the condition for the compare. */ cond = do_sub_cond(cf, dest, in1, in2, sv); /* Clear. */ tcg_gen_movi_reg(dest, 0); save_gpr(ctx, rt, dest); tcg_temp_free(dest); /* Install the new nullification. */ cond_free(&ctx->null_cond); ctx->null_cond = cond; return DISAS_NEXT; } static DisasJumpType do_log(DisasContext *ctx, unsigned rt, TCGv_reg in1, TCGv_reg in2, unsigned cf, void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg)) { TCGv_reg dest = dest_gpr(ctx, rt); /* Perform the operation, and writeback. */ fn(dest, in1, in2); save_gpr(ctx, rt, dest); /* Install the new nullification. */ cond_free(&ctx->null_cond); if (cf) { ctx->null_cond = do_log_cond(cf, dest); } return DISAS_NEXT; } static DisasJumpType do_unit(DisasContext *ctx, unsigned rt, TCGv_reg in1, TCGv_reg in2, unsigned cf, bool is_tc, void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg)) { TCGv_reg dest; DisasCond cond; if (cf == 0) { dest = dest_gpr(ctx, rt); fn(dest, in1, in2); save_gpr(ctx, rt, dest); cond_free(&ctx->null_cond); } else { dest = tcg_temp_new(); fn(dest, in1, in2); cond = do_unit_cond(cf, dest, in1, in2); if (is_tc) { TCGv_reg tmp = tcg_temp_new(); cond_prep(&cond); tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); gen_helper_tcond(cpu_env, tmp); tcg_temp_free(tmp); } save_gpr(ctx, rt, dest); cond_free(&ctx->null_cond); ctx->null_cond = cond; } return DISAS_NEXT; } #ifndef CONFIG_USER_ONLY /* The "normal" usage is SP >= 0, wherein SP == 0 selects the space from the top 2 bits of the base register. There are a few system instructions that have a 3-bit space specifier, for which SR0 is not special. To handle this, pass ~SP. */ static TCGv_i64 space_select(DisasContext *ctx, int sp, TCGv_reg base) { TCGv_ptr ptr; TCGv_reg tmp; TCGv_i64 spc; if (sp != 0) { if (sp < 0) { sp = ~sp; } spc = get_temp_tl(ctx); load_spr(ctx, spc, sp); return spc; } if (ctx->tb_flags & TB_FLAG_SR_SAME) { return cpu_srH; } ptr = tcg_temp_new_ptr(); tmp = tcg_temp_new(); spc = get_temp_tl(ctx); tcg_gen_shri_reg(tmp, base, TARGET_REGISTER_BITS - 5); tcg_gen_andi_reg(tmp, tmp, 030); tcg_gen_trunc_reg_ptr(ptr, tmp); tcg_temp_free(tmp); tcg_gen_add_ptr(ptr, ptr, cpu_env); tcg_gen_ld_i64(spc, ptr, offsetof(CPUHPPAState, sr[4])); tcg_temp_free_ptr(ptr); return spc; } #endif static void form_gva(DisasContext *ctx, TCGv_tl *pgva, TCGv_reg *pofs, unsigned rb, unsigned rx, int scale, target_sreg disp, unsigned sp, int modify, bool is_phys) { TCGv_reg base = load_gpr(ctx, rb); TCGv_reg ofs; /* Note that RX is mutually exclusive with DISP. */ if (rx) { ofs = get_temp(ctx); tcg_gen_shli_reg(ofs, cpu_gr[rx], scale); tcg_gen_add_reg(ofs, ofs, base); } else if (disp || modify) { ofs = get_temp(ctx); tcg_gen_addi_reg(ofs, base, disp); } else { ofs = base; } *pofs = ofs; #ifdef CONFIG_USER_ONLY *pgva = (modify <= 0 ? ofs : base); #else TCGv_tl addr = get_temp_tl(ctx); tcg_gen_extu_reg_tl(addr, modify <= 0 ? ofs : base); if (ctx->tb_flags & PSW_W) { tcg_gen_andi_tl(addr, addr, 0x3fffffffffffffffull); } if (!is_phys) { tcg_gen_or_tl(addr, addr, space_select(ctx, sp, base)); } *pgva = addr; #endif } /* Emit a memory load. The modify parameter should be * < 0 for pre-modify, * > 0 for post-modify, * = 0 for no base register update. */ static void do_load_32(DisasContext *ctx, TCGv_i32 dest, unsigned rb, unsigned rx, int scale, target_sreg disp, unsigned sp, int modify, TCGMemOp mop) { TCGv_reg ofs; TCGv_tl addr; /* Caller uses nullify_over/nullify_end. */ assert(ctx->null_cond.c == TCG_COND_NEVER); form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, ctx->mmu_idx == MMU_PHYS_IDX); tcg_gen_qemu_ld_reg(dest, addr, ctx->mmu_idx, mop); if (modify) { save_gpr(ctx, rb, ofs); } } static void do_load_64(DisasContext *ctx, TCGv_i64 dest, unsigned rb, unsigned rx, int scale, target_sreg disp, unsigned sp, int modify, TCGMemOp mop) { TCGv_reg ofs; TCGv_tl addr; /* Caller uses nullify_over/nullify_end. */ assert(ctx->null_cond.c == TCG_COND_NEVER); form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, ctx->mmu_idx == MMU_PHYS_IDX); tcg_gen_qemu_ld_i64(dest, addr, ctx->mmu_idx, mop); if (modify) { save_gpr(ctx, rb, ofs); } } static void do_store_32(DisasContext *ctx, TCGv_i32 src, unsigned rb, unsigned rx, int scale, target_sreg disp, unsigned sp, int modify, TCGMemOp mop) { TCGv_reg ofs; TCGv_tl addr; /* Caller uses nullify_over/nullify_end. */ assert(ctx->null_cond.c == TCG_COND_NEVER); form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, ctx->mmu_idx == MMU_PHYS_IDX); tcg_gen_qemu_st_i32(src, addr, ctx->mmu_idx, mop); if (modify) { save_gpr(ctx, rb, ofs); } } static void do_store_64(DisasContext *ctx, TCGv_i64 src, unsigned rb, unsigned rx, int scale, target_sreg disp, unsigned sp, int modify, TCGMemOp mop) { TCGv_reg ofs; TCGv_tl addr; /* Caller uses nullify_over/nullify_end. */ assert(ctx->null_cond.c == TCG_COND_NEVER); form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, ctx->mmu_idx == MMU_PHYS_IDX); tcg_gen_qemu_st_i64(src, addr, ctx->mmu_idx, mop); if (modify) { save_gpr(ctx, rb, ofs); } } #if TARGET_REGISTER_BITS == 64 #define do_load_reg do_load_64 #define do_store_reg do_store_64 #else #define do_load_reg do_load_32 #define do_store_reg do_store_32 #endif static DisasJumpType do_load(DisasContext *ctx, unsigned rt, unsigned rb, unsigned rx, int scale, target_sreg disp, unsigned sp, int modify, TCGMemOp mop) { TCGv_reg dest; nullify_over(ctx); if (modify == 0) { /* No base register update. */ dest = dest_gpr(ctx, rt); } else { /* Make sure if RT == RB, we see the result of the load. */ dest = get_temp(ctx); } do_load_reg(ctx, dest, rb, rx, scale, disp, sp, modify, mop); save_gpr(ctx, rt, dest); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType do_floadw(DisasContext *ctx, unsigned rt, unsigned rb, unsigned rx, int scale, target_sreg disp, unsigned sp, int modify) { TCGv_i32 tmp; nullify_over(ctx); tmp = tcg_temp_new_i32(); do_load_32(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEUL); save_frw_i32(rt, tmp); tcg_temp_free_i32(tmp); if (rt == 0) { gen_helper_loaded_fr0(cpu_env); } return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType do_floadd(DisasContext *ctx, unsigned rt, unsigned rb, unsigned rx, int scale, target_sreg disp, unsigned sp, int modify) { TCGv_i64 tmp; nullify_over(ctx); tmp = tcg_temp_new_i64(); do_load_64(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEQ); save_frd(rt, tmp); tcg_temp_free_i64(tmp); if (rt == 0) { gen_helper_loaded_fr0(cpu_env); } return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType do_store(DisasContext *ctx, unsigned rt, unsigned rb, target_sreg disp, unsigned sp, int modify, TCGMemOp mop) { nullify_over(ctx); do_store_reg(ctx, load_gpr(ctx, rt), rb, 0, 0, disp, sp, modify, mop); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType do_fstorew(DisasContext *ctx, unsigned rt, unsigned rb, unsigned rx, int scale, target_sreg disp, unsigned sp, int modify) { TCGv_i32 tmp; nullify_over(ctx); tmp = load_frw_i32(rt); do_store_32(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEUL); tcg_temp_free_i32(tmp); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType do_fstored(DisasContext *ctx, unsigned rt, unsigned rb, unsigned rx, int scale, target_sreg disp, unsigned sp, int modify) { TCGv_i64 tmp; nullify_over(ctx); tmp = load_frd(rt); do_store_64(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEQ); tcg_temp_free_i64(tmp); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType do_fop_wew(DisasContext *ctx, unsigned rt, unsigned ra, void (*func)(TCGv_i32, TCGv_env, TCGv_i32)) { TCGv_i32 tmp; nullify_over(ctx); tmp = load_frw0_i32(ra); func(tmp, cpu_env, tmp); save_frw_i32(rt, tmp); tcg_temp_free_i32(tmp); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType do_fop_wed(DisasContext *ctx, unsigned rt, unsigned ra, void (*func)(TCGv_i32, TCGv_env, TCGv_i64)) { TCGv_i32 dst; TCGv_i64 src; nullify_over(ctx); src = load_frd(ra); dst = tcg_temp_new_i32(); func(dst, cpu_env, src); tcg_temp_free_i64(src); save_frw_i32(rt, dst); tcg_temp_free_i32(dst); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType do_fop_ded(DisasContext *ctx, unsigned rt, unsigned ra, void (*func)(TCGv_i64, TCGv_env, TCGv_i64)) { TCGv_i64 tmp; nullify_over(ctx); tmp = load_frd0(ra); func(tmp, cpu_env, tmp); save_frd(rt, tmp); tcg_temp_free_i64(tmp); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType do_fop_dew(DisasContext *ctx, unsigned rt, unsigned ra, void (*func)(TCGv_i64, TCGv_env, TCGv_i32)) { TCGv_i32 src; TCGv_i64 dst; nullify_over(ctx); src = load_frw0_i32(ra); dst = tcg_temp_new_i64(); func(dst, cpu_env, src); tcg_temp_free_i32(src); save_frd(rt, dst); tcg_temp_free_i64(dst); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType do_fop_weww(DisasContext *ctx, unsigned rt, unsigned ra, unsigned rb, void (*func)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32)) { TCGv_i32 a, b; nullify_over(ctx); a = load_frw0_i32(ra); b = load_frw0_i32(rb); func(a, cpu_env, a, b); tcg_temp_free_i32(b); save_frw_i32(rt, a); tcg_temp_free_i32(a); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType do_fop_dedd(DisasContext *ctx, unsigned rt, unsigned ra, unsigned rb, void (*func)(TCGv_i64, TCGv_env, TCGv_i64, TCGv_i64)) { TCGv_i64 a, b; nullify_over(ctx); a = load_frd0(ra); b = load_frd0(rb); func(a, cpu_env, a, b); tcg_temp_free_i64(b); save_frd(rt, a); tcg_temp_free_i64(a); return nullify_end(ctx, DISAS_NEXT); } /* Emit an unconditional branch to a direct target, which may or may not have already had nullification handled. */ static DisasJumpType do_dbranch(DisasContext *ctx, target_ureg dest, unsigned link, bool is_n) { if (ctx->null_cond.c == TCG_COND_NEVER && ctx->null_lab == NULL) { if (link != 0) { copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); } ctx->iaoq_n = dest; if (is_n) { ctx->null_cond.c = TCG_COND_ALWAYS; } return DISAS_NEXT; } else { nullify_over(ctx); if (link != 0) { copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); } if (is_n && use_nullify_skip(ctx)) { nullify_set(ctx, 0); gen_goto_tb(ctx, 0, dest, dest + 4); } else { nullify_set(ctx, is_n); gen_goto_tb(ctx, 0, ctx->iaoq_b, dest); } nullify_end(ctx, DISAS_NEXT); nullify_set(ctx, 0); gen_goto_tb(ctx, 1, ctx->iaoq_b, ctx->iaoq_n); return DISAS_NORETURN; } } /* Emit a conditional branch to a direct target. If the branch itself is nullified, we should have already used nullify_over. */ static DisasJumpType do_cbranch(DisasContext *ctx, target_sreg disp, bool is_n, DisasCond *cond) { target_ureg dest = iaoq_dest(ctx, disp); TCGLabel *taken = NULL; TCGCond c = cond->c; bool n; assert(ctx->null_cond.c == TCG_COND_NEVER); /* Handle TRUE and NEVER as direct branches. */ if (c == TCG_COND_ALWAYS) { return do_dbranch(ctx, dest, 0, is_n && disp >= 0); } if (c == TCG_COND_NEVER) { return do_dbranch(ctx, ctx->iaoq_n, 0, is_n && disp < 0); } taken = gen_new_label(); cond_prep(cond); tcg_gen_brcond_reg(c, cond->a0, cond->a1, taken); cond_free(cond); /* Not taken: Condition not satisfied; nullify on backward branches. */ n = is_n && disp < 0; if (n && use_nullify_skip(ctx)) { nullify_set(ctx, 0); gen_goto_tb(ctx, 0, ctx->iaoq_n, ctx->iaoq_n + 4); } else { if (!n && ctx->null_lab) { gen_set_label(ctx->null_lab); ctx->null_lab = NULL; } nullify_set(ctx, n); if (ctx->iaoq_n == -1) { /* The temporary iaoq_n_var died at the branch above. Regenerate it here instead of saving it. */ tcg_gen_addi_reg(ctx->iaoq_n_var, cpu_iaoq_b, 4); } gen_goto_tb(ctx, 0, ctx->iaoq_b, ctx->iaoq_n); } gen_set_label(taken); /* Taken: Condition satisfied; nullify on forward branches. */ n = is_n && disp >= 0; if (n && use_nullify_skip(ctx)) { nullify_set(ctx, 0); gen_goto_tb(ctx, 1, dest, dest + 4); } else { nullify_set(ctx, n); gen_goto_tb(ctx, 1, ctx->iaoq_b, dest); } /* Not taken: the branch itself was nullified. */ if (ctx->null_lab) { gen_set_label(ctx->null_lab); ctx->null_lab = NULL; return DISAS_IAQ_N_STALE; } else { return DISAS_NORETURN; } } /* Emit an unconditional branch to an indirect target. This handles nullification of the branch itself. */ static DisasJumpType do_ibranch(DisasContext *ctx, TCGv_reg dest, unsigned link, bool is_n) { TCGv_reg a0, a1, next, tmp; TCGCond c; assert(ctx->null_lab == NULL); if (ctx->null_cond.c == TCG_COND_NEVER) { if (link != 0) { copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); } next = get_temp(ctx); tcg_gen_mov_reg(next, dest); if (is_n) { if (use_nullify_skip(ctx)) { tcg_gen_mov_reg(cpu_iaoq_f, next); tcg_gen_addi_reg(cpu_iaoq_b, next, 4); nullify_set(ctx, 0); return DISAS_IAQ_N_UPDATED; } ctx->null_cond.c = TCG_COND_ALWAYS; } ctx->iaoq_n = -1; ctx->iaoq_n_var = next; } else if (is_n && use_nullify_skip(ctx)) { /* The (conditional) branch, B, nullifies the next insn, N, and we're allowed to skip execution N (no single-step or tracepoint in effect). Since the goto_ptr that we must use for the indirect branch consumes no special resources, we can (conditionally) skip B and continue execution. */ /* The use_nullify_skip test implies we have a known control path. */ tcg_debug_assert(ctx->iaoq_b != -1); tcg_debug_assert(ctx->iaoq_n != -1); /* We do have to handle the non-local temporary, DEST, before branching. Since IOAQ_F is not really live at this point, we can simply store DEST optimistically. Similarly with IAOQ_B. */ tcg_gen_mov_reg(cpu_iaoq_f, dest); tcg_gen_addi_reg(cpu_iaoq_b, dest, 4); nullify_over(ctx); if (link != 0) { tcg_gen_movi_reg(cpu_gr[link], ctx->iaoq_n); } tcg_gen_lookup_and_goto_ptr(); return nullify_end(ctx, DISAS_NEXT); } else { cond_prep(&ctx->null_cond); c = ctx->null_cond.c; a0 = ctx->null_cond.a0; a1 = ctx->null_cond.a1; tmp = tcg_temp_new(); next = get_temp(ctx); copy_iaoq_entry(tmp, ctx->iaoq_n, ctx->iaoq_n_var); tcg_gen_movcond_reg(c, next, a0, a1, tmp, dest); ctx->iaoq_n = -1; ctx->iaoq_n_var = next; if (link != 0) { tcg_gen_movcond_reg(c, cpu_gr[link], a0, a1, cpu_gr[link], tmp); } if (is_n) { /* The branch nullifies the next insn, which means the state of N after the branch is the inverse of the state of N that applied to the branch. */ tcg_gen_setcond_reg(tcg_invert_cond(c), cpu_psw_n, a0, a1); cond_free(&ctx->null_cond); ctx->null_cond = cond_make_n(); ctx->psw_n_nonzero = true; } else { cond_free(&ctx->null_cond); } } return DISAS_NEXT; } /* Implement * if (IAOQ_Front{30..31} < GR[b]{30..31}) * IAOQ_Next{30..31} ← GR[b]{30..31}; * else * IAOQ_Next{30..31} ← IAOQ_Front{30..31}; * which keeps the privilege level from being increased. */ static TCGv_reg do_ibranch_priv(DisasContext *ctx, TCGv_reg offset) { #ifdef CONFIG_USER_ONLY return offset; #else TCGv_reg dest; switch (ctx->privilege) { case 0: /* Privilege 0 is maximum and is allowed to decrease. */ return offset; case 3: /* Privilege 3 is minimum and is never allowed increase. */ dest = get_temp(ctx); tcg_gen_ori_reg(dest, offset, 3); break; default: dest = tcg_temp_new(); tcg_gen_andi_reg(dest, offset, -4); tcg_gen_ori_reg(dest, dest, ctx->privilege); tcg_gen_movcond_reg(TCG_COND_GTU, dest, dest, offset, dest, offset); tcg_temp_free(dest); break; } return dest; #endif } #ifdef CONFIG_USER_ONLY /* On Linux, page zero is normally marked execute only + gateway. Therefore normal read or write is supposed to fail, but specific offsets have kernel code mapped to raise permissions to implement system calls. Handling this via an explicit check here, rather in than the "be disp(sr2,r0)" instruction that probably sent us here, is the easiest way to handle the branch delay slot on the aforementioned BE. */ static DisasJumpType do_page_zero(DisasContext *ctx) { /* If by some means we get here with PSW[N]=1, that implies that the B,GATE instruction would be skipped, and we'd fault on the next insn within the privilaged page. */ switch (ctx->null_cond.c) { case TCG_COND_NEVER: break; case TCG_COND_ALWAYS: tcg_gen_movi_reg(cpu_psw_n, 0); goto do_sigill; default: /* Since this is always the first (and only) insn within the TB, we should know the state of PSW[N] from TB->FLAGS. */ g_assert_not_reached(); } /* Check that we didn't arrive here via some means that allowed non-sequential instruction execution. Normally the PSW[B] bit detects this by disallowing the B,GATE instruction to execute under such conditions. */ if (ctx->iaoq_b != ctx->iaoq_f + 4) { goto do_sigill; } switch (ctx->iaoq_f) { case 0x00: /* Null pointer call */ gen_excp_1(EXCP_IMP); return DISAS_NORETURN; case 0xb0: /* LWS */ gen_excp_1(EXCP_SYSCALL_LWS); return DISAS_NORETURN; case 0xe0: /* SET_THREAD_POINTER */ tcg_gen_st_reg(cpu_gr[26], cpu_env, offsetof(CPUHPPAState, cr[27])); tcg_gen_mov_reg(cpu_iaoq_f, cpu_gr[31]); tcg_gen_addi_reg(cpu_iaoq_b, cpu_iaoq_f, 4); return DISAS_IAQ_N_UPDATED; case 0x100: /* SYSCALL */ gen_excp_1(EXCP_SYSCALL); return DISAS_NORETURN; default: do_sigill: gen_excp_1(EXCP_ILL); return DISAS_NORETURN; } } #endif static DisasJumpType trans_nop(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { cond_free(&ctx->null_cond); return DISAS_NEXT; } static DisasJumpType trans_break(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { nullify_over(ctx); return nullify_end(ctx, gen_excp_iir(ctx, EXCP_BREAK)); } static DisasJumpType trans_sync(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { /* No point in nullifying the memory barrier. */ tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL); cond_free(&ctx->null_cond); return DISAS_NEXT; } static DisasJumpType trans_mfia(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); TCGv_reg tmp = dest_gpr(ctx, rt); tcg_gen_movi_reg(tmp, ctx->iaoq_f); save_gpr(ctx, rt, tmp); cond_free(&ctx->null_cond); return DISAS_NEXT; } static DisasJumpType trans_mfsp(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned rs = assemble_sr3(insn); TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_reg t1 = tcg_temp_new(); load_spr(ctx, t0, rs); tcg_gen_shri_i64(t0, t0, 32); tcg_gen_trunc_i64_reg(t1, t0); save_gpr(ctx, rt, t1); tcg_temp_free(t1); tcg_temp_free_i64(t0); cond_free(&ctx->null_cond); return DISAS_NEXT; } static DisasJumpType trans_mfctl(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned ctl = extract32(insn, 21, 5); TCGv_reg tmp; DisasJumpType ret; switch (ctl) { case CR_SAR: #ifdef TARGET_HPPA64 if (extract32(insn, 14, 1) == 0) { /* MFSAR without ,W masks low 5 bits. */ tmp = dest_gpr(ctx, rt); tcg_gen_andi_reg(tmp, cpu_sar, 31); save_gpr(ctx, rt, tmp); goto done; } #endif save_gpr(ctx, rt, cpu_sar); goto done; case CR_IT: /* Interval Timer */ /* FIXME: Respect PSW_S bit. */ nullify_over(ctx); tmp = dest_gpr(ctx, rt); if (ctx->base.tb->cflags & CF_USE_ICOUNT) { gen_io_start(); gen_helper_read_interval_timer(tmp); gen_io_end(); ret = DISAS_IAQ_N_STALE; } else { gen_helper_read_interval_timer(tmp); ret = DISAS_NEXT; } save_gpr(ctx, rt, tmp); return nullify_end(ctx, ret); case 26: case 27: break; default: /* All other control registers are privileged. */ CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); break; } tmp = get_temp(ctx); tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[ctl])); save_gpr(ctx, rt, tmp); done: cond_free(&ctx->null_cond); return DISAS_NEXT; } static DisasJumpType trans_mtsp(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rr = extract32(insn, 16, 5); unsigned rs = assemble_sr3(insn); TCGv_i64 t64; if (rs >= 5) { CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); } nullify_over(ctx); t64 = tcg_temp_new_i64(); tcg_gen_extu_reg_i64(t64, load_gpr(ctx, rr)); tcg_gen_shli_i64(t64, t64, 32); if (rs >= 4) { tcg_gen_st_i64(t64, cpu_env, offsetof(CPUHPPAState, sr[rs])); ctx->tb_flags &= ~TB_FLAG_SR_SAME; } else { tcg_gen_mov_i64(cpu_sr[rs], t64); } tcg_temp_free_i64(t64); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_mtctl(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rin = extract32(insn, 16, 5); unsigned ctl = extract32(insn, 21, 5); TCGv_reg reg = load_gpr(ctx, rin); TCGv_reg tmp; if (ctl == CR_SAR) { tmp = tcg_temp_new(); tcg_gen_andi_reg(tmp, reg, TARGET_REGISTER_BITS - 1); save_or_nullify(ctx, cpu_sar, tmp); tcg_temp_free(tmp); cond_free(&ctx->null_cond); return DISAS_NEXT; } /* All other control registers are privileged or read-only. */ CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); #ifdef CONFIG_USER_ONLY g_assert_not_reached(); #else DisasJumpType ret = DISAS_NEXT; nullify_over(ctx); switch (ctl) { case CR_IT: gen_helper_write_interval_timer(cpu_env, reg); break; case CR_EIRR: gen_helper_write_eirr(cpu_env, reg); break; case CR_EIEM: gen_helper_write_eiem(cpu_env, reg); ret = DISAS_IAQ_N_STALE_EXIT; break; case CR_IIASQ: case CR_IIAOQ: /* FIXME: Respect PSW_Q bit */ /* The write advances the queue and stores to the back element. */ tmp = get_temp(ctx); tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr_back[ctl - CR_IIASQ])); tcg_gen_st_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[ctl])); tcg_gen_st_reg(reg, cpu_env, offsetof(CPUHPPAState, cr_back[ctl - CR_IIASQ])); break; default: tcg_gen_st_reg(reg, cpu_env, offsetof(CPUHPPAState, cr[ctl])); break; } return nullify_end(ctx, ret); #endif } static DisasJumpType trans_mtsarcm(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rin = extract32(insn, 16, 5); TCGv_reg tmp = tcg_temp_new(); tcg_gen_not_reg(tmp, load_gpr(ctx, rin)); tcg_gen_andi_reg(tmp, tmp, TARGET_REGISTER_BITS - 1); save_or_nullify(ctx, cpu_sar, tmp); tcg_temp_free(tmp); cond_free(&ctx->null_cond); return DISAS_NEXT; } static DisasJumpType trans_ldsid(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); TCGv_reg dest = dest_gpr(ctx, rt); #ifdef CONFIG_USER_ONLY /* We don't implement space registers in user mode. */ tcg_gen_movi_reg(dest, 0); #else unsigned rb = extract32(insn, 21, 5); unsigned sp = extract32(insn, 14, 2); TCGv_i64 t0 = tcg_temp_new_i64(); tcg_gen_mov_i64(t0, space_select(ctx, sp, load_gpr(ctx, rb))); tcg_gen_shri_i64(t0, t0, 32); tcg_gen_trunc_i64_reg(dest, t0); tcg_temp_free_i64(t0); #endif save_gpr(ctx, rt, dest); cond_free(&ctx->null_cond); return DISAS_NEXT; } #ifndef CONFIG_USER_ONLY /* Note that ssm/rsm instructions number PSW_W and PSW_E differently. */ static target_ureg extract_sm_imm(uint32_t insn) { target_ureg val = extract32(insn, 16, 10); if (val & PSW_SM_E) { val = (val & ~PSW_SM_E) | PSW_E; } if (val & PSW_SM_W) { val = (val & ~PSW_SM_W) | PSW_W; } return val; } static DisasJumpType trans_rsm(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); target_ureg sm = extract_sm_imm(insn); TCGv_reg tmp; CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); nullify_over(ctx); tmp = get_temp(ctx); tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, psw)); tcg_gen_andi_reg(tmp, tmp, ~sm); gen_helper_swap_system_mask(tmp, cpu_env, tmp); save_gpr(ctx, rt, tmp); /* Exit the TB to recognize new interrupts, e.g. PSW_M. */ return nullify_end(ctx, DISAS_IAQ_N_STALE_EXIT); } static DisasJumpType trans_ssm(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); target_ureg sm = extract_sm_imm(insn); TCGv_reg tmp; CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); nullify_over(ctx); tmp = get_temp(ctx); tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, psw)); tcg_gen_ori_reg(tmp, tmp, sm); gen_helper_swap_system_mask(tmp, cpu_env, tmp); save_gpr(ctx, rt, tmp); /* Exit the TB to recognize new interrupts, e.g. PSW_I. */ return nullify_end(ctx, DISAS_IAQ_N_STALE_EXIT); } static DisasJumpType trans_mtsm(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rr = extract32(insn, 16, 5); TCGv_reg tmp, reg; CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); nullify_over(ctx); reg = load_gpr(ctx, rr); tmp = get_temp(ctx); gen_helper_swap_system_mask(tmp, cpu_env, reg); /* Exit the TB to recognize new interrupts. */ return nullify_end(ctx, DISAS_IAQ_N_STALE_EXIT); } static DisasJumpType trans_rfi(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned comp = extract32(insn, 5, 4); CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); nullify_over(ctx); if (comp == 5) { gen_helper_rfi_r(cpu_env); } else { gen_helper_rfi(cpu_env); } if (ctx->base.singlestep_enabled) { gen_excp_1(EXCP_DEBUG); } else { tcg_gen_exit_tb(0); } /* Exit the TB to recognize new interrupts. */ return nullify_end(ctx, DISAS_NORETURN); } static DisasJumpType gen_hlt(DisasContext *ctx, int reset) { CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); nullify_over(ctx); if (reset) { gen_helper_reset(cpu_env); } else { gen_helper_halt(cpu_env); } return nullify_end(ctx, DISAS_NORETURN); } #endif /* !CONFIG_USER_ONLY */ static const DisasInsn table_system[] = { { 0x00000000u, 0xfc001fe0u, trans_break }, { 0x00001820u, 0xffe01fffu, trans_mtsp }, { 0x00001840u, 0xfc00ffffu, trans_mtctl }, { 0x016018c0u, 0xffe0ffffu, trans_mtsarcm }, { 0x000014a0u, 0xffffffe0u, trans_mfia }, { 0x000004a0u, 0xffff1fe0u, trans_mfsp }, { 0x000008a0u, 0xfc1fbfe0u, trans_mfctl }, { 0x00000400u, 0xffffffffu, trans_sync }, /* sync */ { 0x00100400u, 0xffffffffu, trans_sync }, /* syncdma */ { 0x000010a0u, 0xfc1f3fe0u, trans_ldsid }, #ifndef CONFIG_USER_ONLY { 0x00000e60u, 0xfc00ffe0u, trans_rsm }, { 0x00000d60u, 0xfc00ffe0u, trans_ssm }, { 0x00001860u, 0xffe0ffffu, trans_mtsm }, { 0x00000c00u, 0xfffffe1fu, trans_rfi }, #endif }; static DisasJumpType trans_base_idx_mod(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rb = extract32(insn, 21, 5); unsigned rx = extract32(insn, 16, 5); TCGv_reg dest = dest_gpr(ctx, rb); TCGv_reg src1 = load_gpr(ctx, rb); TCGv_reg src2 = load_gpr(ctx, rx); /* The only thing we need to do is the base register modification. */ tcg_gen_add_reg(dest, src1, src2); save_gpr(ctx, rb, dest); cond_free(&ctx->null_cond); return DISAS_NEXT; } static DisasJumpType trans_probe(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned sp = extract32(insn, 14, 2); unsigned rb = extract32(insn, 21, 5); unsigned is_write = extract32(insn, 6, 1); TCGv_reg dest, ofs; TCGv_tl addr; nullify_over(ctx); /* ??? Do something with priv level operand. */ dest = dest_gpr(ctx, rt); form_gva(ctx, &addr, &ofs, rb, 0, 0, 0, sp, 0, false); if (is_write) { gen_helper_probe_w(dest, addr); } else { gen_helper_probe_r(dest, addr); } save_gpr(ctx, rt, dest); return nullify_end(ctx, DISAS_NEXT); } #ifndef CONFIG_USER_ONLY static DisasJumpType trans_ixtlbx(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned sp; unsigned rr = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); unsigned is_data = insn & 0x1000; unsigned is_addr = insn & 0x40; TCGv_tl addr; TCGv_reg ofs, reg; if (is_data) { sp = extract32(insn, 14, 2); } else { sp = ~assemble_sr3(insn); } CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); nullify_over(ctx); form_gva(ctx, &addr, &ofs, rb, 0, 0, 0, sp, 0, false); reg = load_gpr(ctx, rr); if (is_addr) { gen_helper_itlba(cpu_env, addr, reg); } else { gen_helper_itlbp(cpu_env, addr, reg); } /* Exit TB for ITLB change if mmu is enabled. This *should* not be the case, since the OS TLB fill handler runs with mmu disabled. */ return nullify_end(ctx, !is_data && (ctx->tb_flags & PSW_C) ? DISAS_IAQ_N_STALE : DISAS_NEXT); } static DisasJumpType trans_pxtlbx(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned m = extract32(insn, 5, 1); unsigned sp; unsigned rx = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); unsigned is_data = insn & 0x1000; unsigned is_local = insn & 0x40; TCGv_tl addr; TCGv_reg ofs; if (is_data) { sp = extract32(insn, 14, 2); } else { sp = ~assemble_sr3(insn); } CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); nullify_over(ctx); form_gva(ctx, &addr, &ofs, rb, rx, 0, 0, sp, m, false); if (m) { save_gpr(ctx, rb, ofs); } if (is_local) { gen_helper_ptlbe(cpu_env); } else { gen_helper_ptlb(cpu_env, addr); } /* Exit TB for TLB change if mmu is enabled. */ return nullify_end(ctx, !is_data && (ctx->tb_flags & PSW_C) ? DISAS_IAQ_N_STALE : DISAS_NEXT); } static DisasJumpType trans_lpa(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned m = extract32(insn, 5, 1); unsigned sp = extract32(insn, 14, 2); unsigned rx = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); TCGv_tl vaddr; TCGv_reg ofs, paddr; CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); nullify_over(ctx); form_gva(ctx, &vaddr, &ofs, rb, rx, 0, 0, sp, m, false); paddr = tcg_temp_new(); gen_helper_lpa(paddr, cpu_env, vaddr); /* Note that physical address result overrides base modification. */ if (m) { save_gpr(ctx, rb, ofs); } save_gpr(ctx, rt, paddr); tcg_temp_free(paddr); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_lci(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); TCGv_reg ci; CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); /* The Coherence Index is an implementation-defined function of the physical address. Two addresses with the same CI have a coherent view of the cache. Our implementation is to return 0 for all, since the entire address space is coherent. */ ci = tcg_const_reg(0); save_gpr(ctx, rt, ci); tcg_temp_free(ci); return DISAS_NEXT; } #endif /* !CONFIG_USER_ONLY */ static const DisasInsn table_mem_mgmt[] = { { 0x04003280u, 0xfc003fffu, trans_nop }, /* fdc, disp */ { 0x04001280u, 0xfc003fffu, trans_nop }, /* fdc, index */ { 0x040012a0u, 0xfc003fffu, trans_base_idx_mod }, /* fdc, index, base mod */ { 0x040012c0u, 0xfc003fffu, trans_nop }, /* fdce */ { 0x040012e0u, 0xfc003fffu, trans_base_idx_mod }, /* fdce, base mod */ { 0x04000280u, 0xfc001fffu, trans_nop }, /* fic 0a */ { 0x040002a0u, 0xfc001fffu, trans_base_idx_mod }, /* fic 0a, base mod */ { 0x040013c0u, 0xfc003fffu, trans_nop }, /* fic 4f */ { 0x040013e0u, 0xfc003fffu, trans_base_idx_mod }, /* fic 4f, base mod */ { 0x040002c0u, 0xfc001fffu, trans_nop }, /* fice */ { 0x040002e0u, 0xfc001fffu, trans_base_idx_mod }, /* fice, base mod */ { 0x04002700u, 0xfc003fffu, trans_nop }, /* pdc */ { 0x04002720u, 0xfc003fffu, trans_base_idx_mod }, /* pdc, base mod */ { 0x04001180u, 0xfc003fa0u, trans_probe }, /* probe */ { 0x04003180u, 0xfc003fa0u, trans_probe }, /* probei */ #ifndef CONFIG_USER_ONLY { 0x04000000u, 0xfc001fffu, trans_ixtlbx }, /* iitlbp */ { 0x04000040u, 0xfc001fffu, trans_ixtlbx }, /* iitlba */ { 0x04001000u, 0xfc001fffu, trans_ixtlbx }, /* idtlbp */ { 0x04001040u, 0xfc001fffu, trans_ixtlbx }, /* idtlba */ { 0x04000200u, 0xfc001fdfu, trans_pxtlbx }, /* pitlb */ { 0x04000240u, 0xfc001fdfu, trans_pxtlbx }, /* pitlbe */ { 0x04001200u, 0xfc001fdfu, trans_pxtlbx }, /* pdtlb */ { 0x04001240u, 0xfc001fdfu, trans_pxtlbx }, /* pdtlbe */ { 0x04001340u, 0xfc003fc0u, trans_lpa }, { 0x04001300u, 0xfc003fe0u, trans_lci }, #endif }; static DisasJumpType trans_add(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned r2 = extract32(insn, 21, 5); unsigned r1 = extract32(insn, 16, 5); unsigned cf = extract32(insn, 12, 4); unsigned ext = extract32(insn, 8, 4); unsigned shift = extract32(insn, 6, 2); unsigned rt = extract32(insn, 0, 5); TCGv_reg tcg_r1, tcg_r2; bool is_c = false; bool is_l = false; bool is_tc = false; bool is_tsv = false; DisasJumpType ret; switch (ext) { case 0x6: /* ADD, SHLADD */ break; case 0xa: /* ADD,L, SHLADD,L */ is_l = true; break; case 0xe: /* ADD,TSV, SHLADD,TSV (1) */ is_tsv = true; break; case 0x7: /* ADD,C */ is_c = true; break; case 0xf: /* ADD,C,TSV */ is_c = is_tsv = true; break; default: return gen_illegal(ctx); } if (cf) { nullify_over(ctx); } tcg_r1 = load_gpr(ctx, r1); tcg_r2 = load_gpr(ctx, r2); ret = do_add(ctx, rt, tcg_r1, tcg_r2, shift, is_l, is_tsv, is_tc, is_c, cf); return nullify_end(ctx, ret); } static DisasJumpType trans_sub(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned r2 = extract32(insn, 21, 5); unsigned r1 = extract32(insn, 16, 5); unsigned cf = extract32(insn, 12, 4); unsigned ext = extract32(insn, 6, 6); unsigned rt = extract32(insn, 0, 5); TCGv_reg tcg_r1, tcg_r2; bool is_b = false; bool is_tc = false; bool is_tsv = false; DisasJumpType ret; switch (ext) { case 0x10: /* SUB */ break; case 0x30: /* SUB,TSV */ is_tsv = true; break; case 0x14: /* SUB,B */ is_b = true; break; case 0x34: /* SUB,B,TSV */ is_b = is_tsv = true; break; case 0x13: /* SUB,TC */ is_tc = true; break; case 0x33: /* SUB,TSV,TC */ is_tc = is_tsv = true; break; default: return gen_illegal(ctx); } if (cf) { nullify_over(ctx); } tcg_r1 = load_gpr(ctx, r1); tcg_r2 = load_gpr(ctx, r2); ret = do_sub(ctx, rt, tcg_r1, tcg_r2, is_tsv, is_b, is_tc, cf); return nullify_end(ctx, ret); } static DisasJumpType trans_log(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned r2 = extract32(insn, 21, 5); unsigned r1 = extract32(insn, 16, 5); unsigned cf = extract32(insn, 12, 4); unsigned rt = extract32(insn, 0, 5); TCGv_reg tcg_r1, tcg_r2; DisasJumpType ret; if (cf) { nullify_over(ctx); } tcg_r1 = load_gpr(ctx, r1); tcg_r2 = load_gpr(ctx, r2); ret = do_log(ctx, rt, tcg_r1, tcg_r2, cf, di->f.ttt); return nullify_end(ctx, ret); } /* OR r,0,t -> COPY (according to gas) */ static DisasJumpType trans_copy(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned r1 = extract32(insn, 16, 5); unsigned rt = extract32(insn, 0, 5); if (r1 == 0) { TCGv_reg dest = dest_gpr(ctx, rt); tcg_gen_movi_reg(dest, 0); save_gpr(ctx, rt, dest); } else { save_gpr(ctx, rt, cpu_gr[r1]); } cond_free(&ctx->null_cond); return DISAS_NEXT; } static DisasJumpType trans_cmpclr(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned r2 = extract32(insn, 21, 5); unsigned r1 = extract32(insn, 16, 5); unsigned cf = extract32(insn, 12, 4); unsigned rt = extract32(insn, 0, 5); TCGv_reg tcg_r1, tcg_r2; DisasJumpType ret; if (cf) { nullify_over(ctx); } tcg_r1 = load_gpr(ctx, r1); tcg_r2 = load_gpr(ctx, r2); ret = do_cmpclr(ctx, rt, tcg_r1, tcg_r2, cf); return nullify_end(ctx, ret); } static DisasJumpType trans_uxor(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned r2 = extract32(insn, 21, 5); unsigned r1 = extract32(insn, 16, 5); unsigned cf = extract32(insn, 12, 4); unsigned rt = extract32(insn, 0, 5); TCGv_reg tcg_r1, tcg_r2; DisasJumpType ret; if (cf) { nullify_over(ctx); } tcg_r1 = load_gpr(ctx, r1); tcg_r2 = load_gpr(ctx, r2); ret = do_unit(ctx, rt, tcg_r1, tcg_r2, cf, false, tcg_gen_xor_reg); return nullify_end(ctx, ret); } static DisasJumpType trans_uaddcm(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned r2 = extract32(insn, 21, 5); unsigned r1 = extract32(insn, 16, 5); unsigned cf = extract32(insn, 12, 4); unsigned is_tc = extract32(insn, 6, 1); unsigned rt = extract32(insn, 0, 5); TCGv_reg tcg_r1, tcg_r2, tmp; DisasJumpType ret; if (cf) { nullify_over(ctx); } tcg_r1 = load_gpr(ctx, r1); tcg_r2 = load_gpr(ctx, r2); tmp = get_temp(ctx); tcg_gen_not_reg(tmp, tcg_r2); ret = do_unit(ctx, rt, tcg_r1, tmp, cf, is_tc, tcg_gen_add_reg); return nullify_end(ctx, ret); } static DisasJumpType trans_dcor(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned r2 = extract32(insn, 21, 5); unsigned cf = extract32(insn, 12, 4); unsigned is_i = extract32(insn, 6, 1); unsigned rt = extract32(insn, 0, 5); TCGv_reg tmp; DisasJumpType ret; nullify_over(ctx); tmp = get_temp(ctx); tcg_gen_shri_reg(tmp, cpu_psw_cb, 3); if (!is_i) { tcg_gen_not_reg(tmp, tmp); } tcg_gen_andi_reg(tmp, tmp, 0x11111111); tcg_gen_muli_reg(tmp, tmp, 6); ret = do_unit(ctx, rt, tmp, load_gpr(ctx, r2), cf, false, is_i ? tcg_gen_add_reg : tcg_gen_sub_reg); return nullify_end(ctx, ret); } static DisasJumpType trans_ds(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned r2 = extract32(insn, 21, 5); unsigned r1 = extract32(insn, 16, 5); unsigned cf = extract32(insn, 12, 4); unsigned rt = extract32(insn, 0, 5); TCGv_reg dest, add1, add2, addc, zero, in1, in2; nullify_over(ctx); in1 = load_gpr(ctx, r1); in2 = load_gpr(ctx, r2); add1 = tcg_temp_new(); add2 = tcg_temp_new(); addc = tcg_temp_new(); dest = tcg_temp_new(); zero = tcg_const_reg(0); /* Form R1 << 1 | PSW[CB]{8}. */ tcg_gen_add_reg(add1, in1, in1); tcg_gen_add_reg(add1, add1, cpu_psw_cb_msb); /* Add or subtract R2, depending on PSW[V]. Proper computation of carry{8} requires that we subtract via + ~R2 + 1, as described in the manual. By extracting and masking V, we can produce the proper inputs to the addition without movcond. */ tcg_gen_sari_reg(addc, cpu_psw_v, TARGET_REGISTER_BITS - 1); tcg_gen_xor_reg(add2, in2, addc); tcg_gen_andi_reg(addc, addc, 1); /* ??? This is only correct for 32-bit. */ tcg_gen_add2_i32(dest, cpu_psw_cb_msb, add1, zero, add2, zero); tcg_gen_add2_i32(dest, cpu_psw_cb_msb, dest, cpu_psw_cb_msb, addc, zero); tcg_temp_free(addc); tcg_temp_free(zero); /* Write back the result register. */ save_gpr(ctx, rt, dest); /* Write back PSW[CB]. */ tcg_gen_xor_reg(cpu_psw_cb, add1, add2); tcg_gen_xor_reg(cpu_psw_cb, cpu_psw_cb, dest); /* Write back PSW[V] for the division step. */ tcg_gen_neg_reg(cpu_psw_v, cpu_psw_cb_msb); tcg_gen_xor_reg(cpu_psw_v, cpu_psw_v, in2); /* Install the new nullification. */ if (cf) { TCGv_reg sv = NULL; if (cf >> 1 == 6) { /* ??? The lshift is supposed to contribute to overflow. */ sv = do_add_sv(ctx, dest, add1, add2); } ctx->null_cond = do_cond(cf, dest, cpu_psw_cb_msb, sv); } tcg_temp_free(add1); tcg_temp_free(add2); tcg_temp_free(dest); return nullify_end(ctx, DISAS_NEXT); } #ifndef CONFIG_USER_ONLY /* These are QEMU extensions and are nops in the real architecture: * * or %r10,%r10,%r10 -- idle loop; wait for interrupt * or %r31,%r31,%r31 -- death loop; offline cpu * currently implemented as idle. */ static DisasJumpType trans_pause(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { TCGv_i32 tmp; /* No need to check for supervisor, as userland can only pause until the next timer interrupt. */ nullify_over(ctx); /* Advance the instruction queue. */ copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_n, ctx->iaoq_n_var); nullify_set(ctx, 0); /* Tell the qemu main loop to halt until this cpu has work. */ tmp = tcg_const_i32(1); tcg_gen_st_i32(tmp, cpu_env, -offsetof(HPPACPU, env) + offsetof(CPUState, halted)); tcg_temp_free_i32(tmp); gen_excp_1(EXCP_HALTED); return nullify_end(ctx, DISAS_NORETURN); } #endif static const DisasInsn table_arith_log[] = { { 0x08000240u, 0xfc00ffffu, trans_nop }, /* or x,y,0 */ { 0x08000240u, 0xffe0ffe0u, trans_copy }, /* or x,0,t */ #ifndef CONFIG_USER_ONLY { 0x094a024au, 0xffffffffu, trans_pause }, /* or r10,r10,r10 */ { 0x0bff025fu, 0xffffffffu, trans_pause }, /* or r31,r31,r31 */ #endif { 0x08000000u, 0xfc000fe0u, trans_log, .f.ttt = tcg_gen_andc_reg }, { 0x08000200u, 0xfc000fe0u, trans_log, .f.ttt = tcg_gen_and_reg }, { 0x08000240u, 0xfc000fe0u, trans_log, .f.ttt = tcg_gen_or_reg }, { 0x08000280u, 0xfc000fe0u, trans_log, .f.ttt = tcg_gen_xor_reg }, { 0x08000880u, 0xfc000fe0u, trans_cmpclr }, { 0x08000380u, 0xfc000fe0u, trans_uxor }, { 0x08000980u, 0xfc000fa0u, trans_uaddcm }, { 0x08000b80u, 0xfc1f0fa0u, trans_dcor }, { 0x08000440u, 0xfc000fe0u, trans_ds }, { 0x08000700u, 0xfc0007e0u, trans_add }, /* add */ { 0x08000400u, 0xfc0006e0u, trans_sub }, /* sub; sub,b; sub,tsv */ { 0x080004c0u, 0xfc0007e0u, trans_sub }, /* sub,tc; sub,tsv,tc */ { 0x08000200u, 0xfc000320u, trans_add }, /* shladd */ }; static DisasJumpType trans_addi(DisasContext *ctx, uint32_t insn) { target_sreg im = low_sextract(insn, 0, 11); unsigned e1 = extract32(insn, 11, 1); unsigned cf = extract32(insn, 12, 4); unsigned rt = extract32(insn, 16, 5); unsigned r2 = extract32(insn, 21, 5); unsigned o1 = extract32(insn, 26, 1); TCGv_reg tcg_im, tcg_r2; DisasJumpType ret; if (cf) { nullify_over(ctx); } tcg_im = load_const(ctx, im); tcg_r2 = load_gpr(ctx, r2); ret = do_add(ctx, rt, tcg_im, tcg_r2, 0, false, e1, !o1, false, cf); return nullify_end(ctx, ret); } static DisasJumpType trans_subi(DisasContext *ctx, uint32_t insn) { target_sreg im = low_sextract(insn, 0, 11); unsigned e1 = extract32(insn, 11, 1); unsigned cf = extract32(insn, 12, 4); unsigned rt = extract32(insn, 16, 5); unsigned r2 = extract32(insn, 21, 5); TCGv_reg tcg_im, tcg_r2; DisasJumpType ret; if (cf) { nullify_over(ctx); } tcg_im = load_const(ctx, im); tcg_r2 = load_gpr(ctx, r2); ret = do_sub(ctx, rt, tcg_im, tcg_r2, e1, false, false, cf); return nullify_end(ctx, ret); } static DisasJumpType trans_cmpiclr(DisasContext *ctx, uint32_t insn) { target_sreg im = low_sextract(insn, 0, 11); unsigned cf = extract32(insn, 12, 4); unsigned rt = extract32(insn, 16, 5); unsigned r2 = extract32(insn, 21, 5); TCGv_reg tcg_im, tcg_r2; DisasJumpType ret; if (cf) { nullify_over(ctx); } tcg_im = load_const(ctx, im); tcg_r2 = load_gpr(ctx, r2); ret = do_cmpclr(ctx, rt, tcg_im, tcg_r2, cf); return nullify_end(ctx, ret); } static DisasJumpType trans_ld_idx_i(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned m = extract32(insn, 5, 1); unsigned sz = extract32(insn, 6, 2); unsigned a = extract32(insn, 13, 1); unsigned sp = extract32(insn, 14, 2); int disp = low_sextract(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); int modify = (m ? (a ? -1 : 1) : 0); TCGMemOp mop = MO_TE | sz; return do_load(ctx, rt, rb, 0, 0, disp, sp, modify, mop); } static DisasJumpType trans_ld_idx_x(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned m = extract32(insn, 5, 1); unsigned sz = extract32(insn, 6, 2); unsigned u = extract32(insn, 13, 1); unsigned sp = extract32(insn, 14, 2); unsigned rx = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); TCGMemOp mop = MO_TE | sz; return do_load(ctx, rt, rb, rx, u ? sz : 0, 0, sp, m, mop); } static DisasJumpType trans_st_idx_i(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { int disp = low_sextract(insn, 0, 5); unsigned m = extract32(insn, 5, 1); unsigned sz = extract32(insn, 6, 2); unsigned a = extract32(insn, 13, 1); unsigned sp = extract32(insn, 14, 2); unsigned rr = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); int modify = (m ? (a ? -1 : 1) : 0); TCGMemOp mop = MO_TE | sz; return do_store(ctx, rr, rb, disp, sp, modify, mop); } static DisasJumpType trans_ldcw(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned m = extract32(insn, 5, 1); unsigned i = extract32(insn, 12, 1); unsigned au = extract32(insn, 13, 1); unsigned sp = extract32(insn, 14, 2); unsigned rx = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); TCGMemOp mop = MO_TEUL | MO_ALIGN_16; TCGv_reg zero, dest, ofs; TCGv_tl addr; int modify, disp = 0, scale = 0; nullify_over(ctx); if (i) { modify = (m ? (au ? -1 : 1) : 0); disp = low_sextract(rx, 0, 5); rx = 0; } else { modify = m; if (au) { scale = mop & MO_SIZE; } } if (modify) { /* Base register modification. Make sure if RT == RB, we see the result of the load. */ dest = get_temp(ctx); } else { dest = dest_gpr(ctx, rt); } form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, ctx->mmu_idx == MMU_PHYS_IDX); zero = tcg_const_reg(0); tcg_gen_atomic_xchg_reg(dest, addr, zero, ctx->mmu_idx, mop); if (modify) { save_gpr(ctx, rb, ofs); } save_gpr(ctx, rt, dest); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_stby(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { target_sreg disp = low_sextract(insn, 0, 5); unsigned m = extract32(insn, 5, 1); unsigned a = extract32(insn, 13, 1); unsigned sp = extract32(insn, 14, 2); unsigned rt = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); TCGv_reg ofs, val; TCGv_tl addr; nullify_over(ctx); form_gva(ctx, &addr, &ofs, rb, 0, 0, disp, sp, m, ctx->mmu_idx == MMU_PHYS_IDX); val = load_gpr(ctx, rt); if (a) { if (tb_cflags(ctx->base.tb) & CF_PARALLEL) { gen_helper_stby_e_parallel(cpu_env, addr, val); } else { gen_helper_stby_e(cpu_env, addr, val); } } else { if (tb_cflags(ctx->base.tb) & CF_PARALLEL) { gen_helper_stby_b_parallel(cpu_env, addr, val); } else { gen_helper_stby_b(cpu_env, addr, val); } } if (m) { tcg_gen_andi_reg(ofs, ofs, ~3); save_gpr(ctx, rb, ofs); } return nullify_end(ctx, DISAS_NEXT); } #ifndef CONFIG_USER_ONLY static DisasJumpType trans_ldwa_idx_i(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { int hold_mmu_idx = ctx->mmu_idx; DisasJumpType ret; CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); /* ??? needs fixing for hppa64 -- ldda does not follow the same format wrt the sub-opcode in bits 6:9. */ ctx->mmu_idx = MMU_PHYS_IDX; ret = trans_ld_idx_i(ctx, insn, di); ctx->mmu_idx = hold_mmu_idx; return ret; } static DisasJumpType trans_ldwa_idx_x(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { int hold_mmu_idx = ctx->mmu_idx; DisasJumpType ret; CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); /* ??? needs fixing for hppa64 -- ldda does not follow the same format wrt the sub-opcode in bits 6:9. */ ctx->mmu_idx = MMU_PHYS_IDX; ret = trans_ld_idx_x(ctx, insn, di); ctx->mmu_idx = hold_mmu_idx; return ret; } static DisasJumpType trans_stwa_idx_i(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { int hold_mmu_idx = ctx->mmu_idx; DisasJumpType ret; CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); /* ??? needs fixing for hppa64 -- ldda does not follow the same format wrt the sub-opcode in bits 6:9. */ ctx->mmu_idx = MMU_PHYS_IDX; ret = trans_st_idx_i(ctx, insn, di); ctx->mmu_idx = hold_mmu_idx; return ret; } #endif static const DisasInsn table_index_mem[] = { { 0x0c001000u, 0xfc001300, trans_ld_idx_i }, /* LD[BHWD], im */ { 0x0c000000u, 0xfc001300, trans_ld_idx_x }, /* LD[BHWD], rx */ { 0x0c001200u, 0xfc001300, trans_st_idx_i }, /* ST[BHWD] */ { 0x0c0001c0u, 0xfc0003c0, trans_ldcw }, { 0x0c001300u, 0xfc0013c0, trans_stby }, #ifndef CONFIG_USER_ONLY { 0x0c000180u, 0xfc00d3c0, trans_ldwa_idx_x }, /* LDWA, rx */ { 0x0c001180u, 0xfc00d3c0, trans_ldwa_idx_i }, /* LDWA, im */ { 0x0c001380u, 0xfc00d3c0, trans_stwa_idx_i }, /* STWA, im */ #endif }; static DisasJumpType trans_ldil(DisasContext *ctx, uint32_t insn) { unsigned rt = extract32(insn, 21, 5); target_sreg i = assemble_21(insn); TCGv_reg tcg_rt = dest_gpr(ctx, rt); tcg_gen_movi_reg(tcg_rt, i); save_gpr(ctx, rt, tcg_rt); cond_free(&ctx->null_cond); return DISAS_NEXT; } static DisasJumpType trans_addil(DisasContext *ctx, uint32_t insn) { unsigned rt = extract32(insn, 21, 5); target_sreg i = assemble_21(insn); TCGv_reg tcg_rt = load_gpr(ctx, rt); TCGv_reg tcg_r1 = dest_gpr(ctx, 1); tcg_gen_addi_reg(tcg_r1, tcg_rt, i); save_gpr(ctx, 1, tcg_r1); cond_free(&ctx->null_cond); return DISAS_NEXT; } static DisasJumpType trans_ldo(DisasContext *ctx, uint32_t insn) { unsigned rb = extract32(insn, 21, 5); unsigned rt = extract32(insn, 16, 5); target_sreg i = assemble_16(insn); TCGv_reg tcg_rt = dest_gpr(ctx, rt); /* Special case rb == 0, for the LDI pseudo-op. The COPY pseudo-op is handled for free within tcg_gen_addi_tl. */ if (rb == 0) { tcg_gen_movi_reg(tcg_rt, i); } else { tcg_gen_addi_reg(tcg_rt, cpu_gr[rb], i); } save_gpr(ctx, rt, tcg_rt); cond_free(&ctx->null_cond); return DISAS_NEXT; } static DisasJumpType trans_load(DisasContext *ctx, uint32_t insn, bool is_mod, TCGMemOp mop) { unsigned rb = extract32(insn, 21, 5); unsigned rt = extract32(insn, 16, 5); unsigned sp = extract32(insn, 14, 2); target_sreg i = assemble_16(insn); return do_load(ctx, rt, rb, 0, 0, i, sp, is_mod ? (i < 0 ? -1 : 1) : 0, mop); } static DisasJumpType trans_load_w(DisasContext *ctx, uint32_t insn) { unsigned rb = extract32(insn, 21, 5); unsigned rt = extract32(insn, 16, 5); unsigned sp = extract32(insn, 14, 2); target_sreg i = assemble_16a(insn); unsigned ext2 = extract32(insn, 1, 2); switch (ext2) { case 0: case 1: /* FLDW without modification. */ return do_floadw(ctx, ext2 * 32 + rt, rb, 0, 0, i, sp, 0); case 2: /* LDW with modification. Note that the sign of I selects post-dec vs pre-inc. */ return do_load(ctx, rt, rb, 0, 0, i, sp, (i < 0 ? 1 : -1), MO_TEUL); default: return gen_illegal(ctx); } } static DisasJumpType trans_fload_mod(DisasContext *ctx, uint32_t insn) { target_sreg i = assemble_16a(insn); unsigned t1 = extract32(insn, 1, 1); unsigned a = extract32(insn, 2, 1); unsigned sp = extract32(insn, 14, 2); unsigned t0 = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); /* FLDW with modification. */ return do_floadw(ctx, t1 * 32 + t0, rb, 0, 0, i, sp, (a ? -1 : 1)); } static DisasJumpType trans_store(DisasContext *ctx, uint32_t insn, bool is_mod, TCGMemOp mop) { unsigned rb = extract32(insn, 21, 5); unsigned rt = extract32(insn, 16, 5); unsigned sp = extract32(insn, 14, 2); target_sreg i = assemble_16(insn); return do_store(ctx, rt, rb, i, sp, is_mod ? (i < 0 ? -1 : 1) : 0, mop); } static DisasJumpType trans_store_w(DisasContext *ctx, uint32_t insn) { unsigned rb = extract32(insn, 21, 5); unsigned rt = extract32(insn, 16, 5); unsigned sp = extract32(insn, 14, 2); target_sreg i = assemble_16a(insn); unsigned ext2 = extract32(insn, 1, 2); switch (ext2) { case 0: case 1: /* FSTW without modification. */ return do_fstorew(ctx, ext2 * 32 + rt, rb, 0, 0, i, sp, 0); case 2: /* STW with modification. */ return do_store(ctx, rt, rb, i, sp, (i < 0 ? 1 : -1), MO_TEUL); default: return gen_illegal(ctx); } } static DisasJumpType trans_fstore_mod(DisasContext *ctx, uint32_t insn) { target_sreg i = assemble_16a(insn); unsigned t1 = extract32(insn, 1, 1); unsigned a = extract32(insn, 2, 1); unsigned sp = extract32(insn, 14, 2); unsigned t0 = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); /* FSTW with modification. */ return do_fstorew(ctx, t1 * 32 + t0, rb, 0, 0, i, sp, (a ? -1 : 1)); } static DisasJumpType trans_copr_w(DisasContext *ctx, uint32_t insn) { unsigned t0 = extract32(insn, 0, 5); unsigned m = extract32(insn, 5, 1); unsigned t1 = extract32(insn, 6, 1); unsigned ext3 = extract32(insn, 7, 3); /* unsigned cc = extract32(insn, 10, 2); */ unsigned i = extract32(insn, 12, 1); unsigned ua = extract32(insn, 13, 1); unsigned sp = extract32(insn, 14, 2); unsigned rx = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); unsigned rt = t1 * 32 + t0; int modify = (m ? (ua ? -1 : 1) : 0); int disp, scale; if (i == 0) { scale = (ua ? 2 : 0); disp = 0; modify = m; } else { disp = low_sextract(rx, 0, 5); scale = 0; rx = 0; modify = (m ? (ua ? -1 : 1) : 0); } switch (ext3) { case 0: /* FLDW */ return do_floadw(ctx, rt, rb, rx, scale, disp, sp, modify); case 4: /* FSTW */ return do_fstorew(ctx, rt, rb, rx, scale, disp, sp, modify); } return gen_illegal(ctx); } static DisasJumpType trans_copr_dw(DisasContext *ctx, uint32_t insn) { unsigned rt = extract32(insn, 0, 5); unsigned m = extract32(insn, 5, 1); unsigned ext4 = extract32(insn, 6, 4); /* unsigned cc = extract32(insn, 10, 2); */ unsigned i = extract32(insn, 12, 1); unsigned ua = extract32(insn, 13, 1); unsigned sp = extract32(insn, 14, 2); unsigned rx = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); int modify = (m ? (ua ? -1 : 1) : 0); int disp, scale; if (i == 0) { scale = (ua ? 3 : 0); disp = 0; modify = m; } else { disp = low_sextract(rx, 0, 5); scale = 0; rx = 0; modify = (m ? (ua ? -1 : 1) : 0); } switch (ext4) { case 0: /* FLDD */ return do_floadd(ctx, rt, rb, rx, scale, disp, sp, modify); case 8: /* FSTD */ return do_fstored(ctx, rt, rb, rx, scale, disp, sp, modify); default: return gen_illegal(ctx); } } static DisasJumpType trans_cmpb(DisasContext *ctx, uint32_t insn, bool is_true, bool is_imm, bool is_dw) { target_sreg disp = assemble_12(insn) * 4; unsigned n = extract32(insn, 1, 1); unsigned c = extract32(insn, 13, 3); unsigned r = extract32(insn, 21, 5); unsigned cf = c * 2 + !is_true; TCGv_reg dest, in1, in2, sv; DisasCond cond; nullify_over(ctx); if (is_imm) { in1 = load_const(ctx, low_sextract(insn, 16, 5)); } else { in1 = load_gpr(ctx, extract32(insn, 16, 5)); } in2 = load_gpr(ctx, r); dest = get_temp(ctx); tcg_gen_sub_reg(dest, in1, in2); sv = NULL; if (c == 6) { sv = do_sub_sv(ctx, dest, in1, in2); } cond = do_sub_cond(cf, dest, in1, in2, sv); return do_cbranch(ctx, disp, n, &cond); } static DisasJumpType trans_addb(DisasContext *ctx, uint32_t insn, bool is_true, bool is_imm) { target_sreg disp = assemble_12(insn) * 4; unsigned n = extract32(insn, 1, 1); unsigned c = extract32(insn, 13, 3); unsigned r = extract32(insn, 21, 5); unsigned cf = c * 2 + !is_true; TCGv_reg dest, in1, in2, sv, cb_msb; DisasCond cond; nullify_over(ctx); if (is_imm) { in1 = load_const(ctx, low_sextract(insn, 16, 5)); } else { in1 = load_gpr(ctx, extract32(insn, 16, 5)); } in2 = load_gpr(ctx, r); dest = dest_gpr(ctx, r); sv = NULL; cb_msb = NULL; switch (c) { default: tcg_gen_add_reg(dest, in1, in2); break; case 4: case 5: cb_msb = get_temp(ctx); tcg_gen_movi_reg(cb_msb, 0); tcg_gen_add2_reg(dest, cb_msb, in1, cb_msb, in2, cb_msb); break; case 6: tcg_gen_add_reg(dest, in1, in2); sv = do_add_sv(ctx, dest, in1, in2); break; } cond = do_cond(cf, dest, cb_msb, sv); return do_cbranch(ctx, disp, n, &cond); } static DisasJumpType trans_bb(DisasContext *ctx, uint32_t insn) { target_sreg disp = assemble_12(insn) * 4; unsigned n = extract32(insn, 1, 1); unsigned c = extract32(insn, 15, 1); unsigned r = extract32(insn, 16, 5); unsigned p = extract32(insn, 21, 5); unsigned i = extract32(insn, 26, 1); TCGv_reg tmp, tcg_r; DisasCond cond; nullify_over(ctx); tmp = tcg_temp_new(); tcg_r = load_gpr(ctx, r); if (i) { tcg_gen_shli_reg(tmp, tcg_r, p); } else { tcg_gen_shl_reg(tmp, tcg_r, cpu_sar); } cond = cond_make_0(c ? TCG_COND_GE : TCG_COND_LT, tmp); tcg_temp_free(tmp); return do_cbranch(ctx, disp, n, &cond); } static DisasJumpType trans_movb(DisasContext *ctx, uint32_t insn, bool is_imm) { target_sreg disp = assemble_12(insn) * 4; unsigned n = extract32(insn, 1, 1); unsigned c = extract32(insn, 13, 3); unsigned t = extract32(insn, 16, 5); unsigned r = extract32(insn, 21, 5); TCGv_reg dest; DisasCond cond; nullify_over(ctx); dest = dest_gpr(ctx, r); if (is_imm) { tcg_gen_movi_reg(dest, low_sextract(t, 0, 5)); } else if (t == 0) { tcg_gen_movi_reg(dest, 0); } else { tcg_gen_mov_reg(dest, cpu_gr[t]); } cond = do_sed_cond(c, dest); return do_cbranch(ctx, disp, n, &cond); } static DisasJumpType trans_shrpw_sar(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned c = extract32(insn, 13, 3); unsigned r1 = extract32(insn, 16, 5); unsigned r2 = extract32(insn, 21, 5); TCGv_reg dest; if (c) { nullify_over(ctx); } dest = dest_gpr(ctx, rt); if (r1 == 0) { tcg_gen_ext32u_reg(dest, load_gpr(ctx, r2)); tcg_gen_shr_reg(dest, dest, cpu_sar); } else if (r1 == r2) { TCGv_i32 t32 = tcg_temp_new_i32(); tcg_gen_trunc_reg_i32(t32, load_gpr(ctx, r2)); tcg_gen_rotr_i32(t32, t32, cpu_sar); tcg_gen_extu_i32_reg(dest, t32); tcg_temp_free_i32(t32); } else { TCGv_i64 t = tcg_temp_new_i64(); TCGv_i64 s = tcg_temp_new_i64(); tcg_gen_concat_reg_i64(t, load_gpr(ctx, r2), load_gpr(ctx, r1)); tcg_gen_extu_reg_i64(s, cpu_sar); tcg_gen_shr_i64(t, t, s); tcg_gen_trunc_i64_reg(dest, t); tcg_temp_free_i64(t); tcg_temp_free_i64(s); } save_gpr(ctx, rt, dest); /* Install the new nullification. */ cond_free(&ctx->null_cond); if (c) { ctx->null_cond = do_sed_cond(c, dest); } return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_shrpw_imm(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned cpos = extract32(insn, 5, 5); unsigned c = extract32(insn, 13, 3); unsigned r1 = extract32(insn, 16, 5); unsigned r2 = extract32(insn, 21, 5); unsigned sa = 31 - cpos; TCGv_reg dest, t2; if (c) { nullify_over(ctx); } dest = dest_gpr(ctx, rt); t2 = load_gpr(ctx, r2); if (r1 == r2) { TCGv_i32 t32 = tcg_temp_new_i32(); tcg_gen_trunc_reg_i32(t32, t2); tcg_gen_rotri_i32(t32, t32, sa); tcg_gen_extu_i32_reg(dest, t32); tcg_temp_free_i32(t32); } else if (r1 == 0) { tcg_gen_extract_reg(dest, t2, sa, 32 - sa); } else { TCGv_reg t0 = tcg_temp_new(); tcg_gen_extract_reg(t0, t2, sa, 32 - sa); tcg_gen_deposit_reg(dest, t0, cpu_gr[r1], 32 - sa, sa); tcg_temp_free(t0); } save_gpr(ctx, rt, dest); /* Install the new nullification. */ cond_free(&ctx->null_cond); if (c) { ctx->null_cond = do_sed_cond(c, dest); } return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_extrw_sar(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned clen = extract32(insn, 0, 5); unsigned is_se = extract32(insn, 10, 1); unsigned c = extract32(insn, 13, 3); unsigned rt = extract32(insn, 16, 5); unsigned rr = extract32(insn, 21, 5); unsigned len = 32 - clen; TCGv_reg dest, src, tmp; if (c) { nullify_over(ctx); } dest = dest_gpr(ctx, rt); src = load_gpr(ctx, rr); tmp = tcg_temp_new(); /* Recall that SAR is using big-endian bit numbering. */ tcg_gen_xori_reg(tmp, cpu_sar, TARGET_REGISTER_BITS - 1); if (is_se) { tcg_gen_sar_reg(dest, src, tmp); tcg_gen_sextract_reg(dest, dest, 0, len); } else { tcg_gen_shr_reg(dest, src, tmp); tcg_gen_extract_reg(dest, dest, 0, len); } tcg_temp_free(tmp); save_gpr(ctx, rt, dest); /* Install the new nullification. */ cond_free(&ctx->null_cond); if (c) { ctx->null_cond = do_sed_cond(c, dest); } return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_extrw_imm(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned clen = extract32(insn, 0, 5); unsigned pos = extract32(insn, 5, 5); unsigned is_se = extract32(insn, 10, 1); unsigned c = extract32(insn, 13, 3); unsigned rt = extract32(insn, 16, 5); unsigned rr = extract32(insn, 21, 5); unsigned len = 32 - clen; unsigned cpos = 31 - pos; TCGv_reg dest, src; if (c) { nullify_over(ctx); } dest = dest_gpr(ctx, rt); src = load_gpr(ctx, rr); if (is_se) { tcg_gen_sextract_reg(dest, src, cpos, len); } else { tcg_gen_extract_reg(dest, src, cpos, len); } save_gpr(ctx, rt, dest); /* Install the new nullification. */ cond_free(&ctx->null_cond); if (c) { ctx->null_cond = do_sed_cond(c, dest); } return nullify_end(ctx, DISAS_NEXT); } static const DisasInsn table_sh_ex[] = { { 0xd0000000u, 0xfc001fe0u, trans_shrpw_sar }, { 0xd0000800u, 0xfc001c00u, trans_shrpw_imm }, { 0xd0001000u, 0xfc001be0u, trans_extrw_sar }, { 0xd0001800u, 0xfc001800u, trans_extrw_imm }, }; static DisasJumpType trans_depw_imm_c(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned clen = extract32(insn, 0, 5); unsigned cpos = extract32(insn, 5, 5); unsigned nz = extract32(insn, 10, 1); unsigned c = extract32(insn, 13, 3); target_sreg val = low_sextract(insn, 16, 5); unsigned rt = extract32(insn, 21, 5); unsigned len = 32 - clen; target_sreg mask0, mask1; TCGv_reg dest; if (c) { nullify_over(ctx); } if (cpos + len > 32) { len = 32 - cpos; } dest = dest_gpr(ctx, rt); mask0 = deposit64(0, cpos, len, val); mask1 = deposit64(-1, cpos, len, val); if (nz) { TCGv_reg src = load_gpr(ctx, rt); if (mask1 != -1) { tcg_gen_andi_reg(dest, src, mask1); src = dest; } tcg_gen_ori_reg(dest, src, mask0); } else { tcg_gen_movi_reg(dest, mask0); } save_gpr(ctx, rt, dest); /* Install the new nullification. */ cond_free(&ctx->null_cond); if (c) { ctx->null_cond = do_sed_cond(c, dest); } return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_depw_imm(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned clen = extract32(insn, 0, 5); unsigned cpos = extract32(insn, 5, 5); unsigned nz = extract32(insn, 10, 1); unsigned c = extract32(insn, 13, 3); unsigned rr = extract32(insn, 16, 5); unsigned rt = extract32(insn, 21, 5); unsigned rs = nz ? rt : 0; unsigned len = 32 - clen; TCGv_reg dest, val; if (c) { nullify_over(ctx); } if (cpos + len > 32) { len = 32 - cpos; } dest = dest_gpr(ctx, rt); val = load_gpr(ctx, rr); if (rs == 0) { tcg_gen_deposit_z_reg(dest, val, cpos, len); } else { tcg_gen_deposit_reg(dest, cpu_gr[rs], val, cpos, len); } save_gpr(ctx, rt, dest); /* Install the new nullification. */ cond_free(&ctx->null_cond); if (c) { ctx->null_cond = do_sed_cond(c, dest); } return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_depw_sar(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned clen = extract32(insn, 0, 5); unsigned nz = extract32(insn, 10, 1); unsigned i = extract32(insn, 12, 1); unsigned c = extract32(insn, 13, 3); unsigned rt = extract32(insn, 21, 5); unsigned rs = nz ? rt : 0; unsigned len = 32 - clen; TCGv_reg val, mask, tmp, shift, dest; unsigned msb = 1U << (len - 1); if (c) { nullify_over(ctx); } if (i) { val = load_const(ctx, low_sextract(insn, 16, 5)); } else { val = load_gpr(ctx, extract32(insn, 16, 5)); } dest = dest_gpr(ctx, rt); shift = tcg_temp_new(); tmp = tcg_temp_new(); /* Convert big-endian bit numbering in SAR to left-shift. */ tcg_gen_xori_reg(shift, cpu_sar, TARGET_REGISTER_BITS - 1); mask = tcg_const_reg(msb + (msb - 1)); tcg_gen_and_reg(tmp, val, mask); if (rs) { tcg_gen_shl_reg(mask, mask, shift); tcg_gen_shl_reg(tmp, tmp, shift); tcg_gen_andc_reg(dest, cpu_gr[rs], mask); tcg_gen_or_reg(dest, dest, tmp); } else { tcg_gen_shl_reg(dest, tmp, shift); } tcg_temp_free(shift); tcg_temp_free(mask); tcg_temp_free(tmp); save_gpr(ctx, rt, dest); /* Install the new nullification. */ cond_free(&ctx->null_cond); if (c) { ctx->null_cond = do_sed_cond(c, dest); } return nullify_end(ctx, DISAS_NEXT); } static const DisasInsn table_depw[] = { { 0xd4000000u, 0xfc000be0u, trans_depw_sar }, { 0xd4000800u, 0xfc001800u, trans_depw_imm }, { 0xd4001800u, 0xfc001800u, trans_depw_imm_c }, }; static DisasJumpType trans_be(DisasContext *ctx, uint32_t insn, bool is_l) { unsigned n = extract32(insn, 1, 1); unsigned b = extract32(insn, 21, 5); target_sreg disp = assemble_17(insn); TCGv_reg tmp; #ifdef CONFIG_USER_ONLY /* ??? It seems like there should be a good way of using "be disp(sr2, r0)", the canonical gateway entry mechanism to our advantage. But that appears to be inconvenient to manage along side branch delay slots. Therefore we handle entry into the gateway page via absolute address. */ /* Since we don't implement spaces, just branch. Do notice the special case of "be disp(*,r0)" using a direct branch to disp, so that we can goto_tb to the TB containing the syscall. */ if (b == 0) { return do_dbranch(ctx, disp, is_l ? 31 : 0, n); } #else int sp = assemble_sr3(insn); nullify_over(ctx); #endif tmp = get_temp(ctx); tcg_gen_addi_reg(tmp, load_gpr(ctx, b), disp); tmp = do_ibranch_priv(ctx, tmp); #ifdef CONFIG_USER_ONLY return do_ibranch(ctx, tmp, is_l ? 31 : 0, n); #else TCGv_i64 new_spc = tcg_temp_new_i64(); load_spr(ctx, new_spc, sp); if (is_l) { copy_iaoq_entry(cpu_gr[31], ctx->iaoq_n, ctx->iaoq_n_var); tcg_gen_mov_i64(cpu_sr[0], cpu_iasq_f); } if (n && use_nullify_skip(ctx)) { tcg_gen_mov_reg(cpu_iaoq_f, tmp); tcg_gen_addi_reg(cpu_iaoq_b, cpu_iaoq_f, 4); tcg_gen_mov_i64(cpu_iasq_f, new_spc); tcg_gen_mov_i64(cpu_iasq_b, cpu_iasq_f); } else { copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); if (ctx->iaoq_b == -1) { tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); } tcg_gen_mov_reg(cpu_iaoq_b, tmp); tcg_gen_mov_i64(cpu_iasq_b, new_spc); nullify_set(ctx, n); } tcg_temp_free_i64(new_spc); tcg_gen_lookup_and_goto_ptr(); return nullify_end(ctx, DISAS_NORETURN); #endif } static DisasJumpType trans_bl(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned n = extract32(insn, 1, 1); unsigned link = extract32(insn, 21, 5); target_sreg disp = assemble_17(insn); return do_dbranch(ctx, iaoq_dest(ctx, disp), link, n); } static DisasJumpType trans_b_gate(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned n = extract32(insn, 1, 1); unsigned link = extract32(insn, 21, 5); target_sreg disp = assemble_17(insn); target_ureg dest = iaoq_dest(ctx, disp); /* Make sure the caller hasn't done something weird with the queue. * ??? This is not quite the same as the PSW[B] bit, which would be * expensive to track. Real hardware will trap for * b gateway * b gateway+4 (in delay slot of first branch) * However, checking for a non-sequential instruction queue *will* * diagnose the security hole * b gateway * b evil * in which instructions at evil would run with increased privs. */ if (ctx->iaoq_b == -1 || ctx->iaoq_b != ctx->iaoq_f + 4) { return gen_illegal(ctx); } #ifndef CONFIG_USER_ONLY if (ctx->tb_flags & PSW_C) { CPUHPPAState *env = ctx->cs->env_ptr; int type = hppa_artype_for_page(env, ctx->base.pc_next); /* If we could not find a TLB entry, then we need to generate an ITLB miss exception so the kernel will provide it. The resulting TLB fill operation will invalidate this TB and we will re-translate, at which point we *will* be able to find the TLB entry and determine if this is in fact a gateway page. */ if (type < 0) { return gen_excp(ctx, EXCP_ITLB_MISS); } /* No change for non-gateway pages or for priv decrease. */ if (type >= 4 && type - 4 < ctx->privilege) { dest = deposit32(dest, 0, 2, type - 4); } } else { dest &= -4; /* priv = 0 */ } #endif return do_dbranch(ctx, dest, link, n); } static DisasJumpType trans_bl_long(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned n = extract32(insn, 1, 1); target_sreg disp = assemble_22(insn); return do_dbranch(ctx, iaoq_dest(ctx, disp), 2, n); } static DisasJumpType trans_blr(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned n = extract32(insn, 1, 1); unsigned rx = extract32(insn, 16, 5); unsigned link = extract32(insn, 21, 5); TCGv_reg tmp = get_temp(ctx); tcg_gen_shli_reg(tmp, load_gpr(ctx, rx), 3); tcg_gen_addi_reg(tmp, tmp, ctx->iaoq_f + 8); /* The computation here never changes privilege level. */ return do_ibranch(ctx, tmp, link, n); } static DisasJumpType trans_bv(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned n = extract32(insn, 1, 1); unsigned rx = extract32(insn, 16, 5); unsigned rb = extract32(insn, 21, 5); TCGv_reg dest; if (rx == 0) { dest = load_gpr(ctx, rb); } else { dest = get_temp(ctx); tcg_gen_shli_reg(dest, load_gpr(ctx, rx), 3); tcg_gen_add_reg(dest, dest, load_gpr(ctx, rb)); } dest = do_ibranch_priv(ctx, dest); return do_ibranch(ctx, dest, 0, n); } static DisasJumpType trans_bve(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned n = extract32(insn, 1, 1); unsigned rb = extract32(insn, 21, 5); unsigned link = extract32(insn, 13, 1) ? 2 : 0; TCGv_reg dest; #ifdef CONFIG_USER_ONLY dest = do_ibranch_priv(ctx, load_gpr(ctx, rb)); return do_ibranch(ctx, dest, link, n); #else nullify_over(ctx); dest = do_ibranch_priv(ctx, load_gpr(ctx, rb)); copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); if (ctx->iaoq_b == -1) { tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); } copy_iaoq_entry(cpu_iaoq_b, -1, dest); tcg_gen_mov_i64(cpu_iasq_b, space_select(ctx, 0, dest)); if (link) { copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); } nullify_set(ctx, n); tcg_gen_lookup_and_goto_ptr(); return nullify_end(ctx, DISAS_NORETURN); #endif } static const DisasInsn table_branch[] = { { 0xe8000000u, 0xfc006000u, trans_bl }, /* B,L and B,L,PUSH */ { 0xe800a000u, 0xfc00e000u, trans_bl_long }, { 0xe8004000u, 0xfc00fffdu, trans_blr }, { 0xe800c000u, 0xfc00fffdu, trans_bv }, { 0xe800d000u, 0xfc00dffcu, trans_bve }, { 0xe8002000u, 0xfc00e000u, trans_b_gate }, }; static DisasJumpType trans_fop_wew_0c(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned ra = extract32(insn, 21, 5); return do_fop_wew(ctx, rt, ra, di->f.wew); } static DisasJumpType trans_fop_wew_0e(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = assemble_rt64(insn); unsigned ra = assemble_ra64(insn); return do_fop_wew(ctx, rt, ra, di->f.wew); } static DisasJumpType trans_fop_ded(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned ra = extract32(insn, 21, 5); return do_fop_ded(ctx, rt, ra, di->f.ded); } static DisasJumpType trans_fop_wed_0c(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned ra = extract32(insn, 21, 5); return do_fop_wed(ctx, rt, ra, di->f.wed); } static DisasJumpType trans_fop_wed_0e(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = assemble_rt64(insn); unsigned ra = extract32(insn, 21, 5); return do_fop_wed(ctx, rt, ra, di->f.wed); } static DisasJumpType trans_fop_dew_0c(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned ra = extract32(insn, 21, 5); return do_fop_dew(ctx, rt, ra, di->f.dew); } static DisasJumpType trans_fop_dew_0e(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned ra = assemble_ra64(insn); return do_fop_dew(ctx, rt, ra, di->f.dew); } static DisasJumpType trans_fop_weww_0c(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned rb = extract32(insn, 16, 5); unsigned ra = extract32(insn, 21, 5); return do_fop_weww(ctx, rt, ra, rb, di->f.weww); } static DisasJumpType trans_fop_weww_0e(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = assemble_rt64(insn); unsigned rb = assemble_rb64(insn); unsigned ra = assemble_ra64(insn); return do_fop_weww(ctx, rt, ra, rb, di->f.weww); } static DisasJumpType trans_fop_dedd(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned rb = extract32(insn, 16, 5); unsigned ra = extract32(insn, 21, 5); return do_fop_dedd(ctx, rt, ra, rb, di->f.dedd); } static void gen_fcpy_s(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) { tcg_gen_mov_i32(dst, src); } static void gen_fcpy_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) { tcg_gen_mov_i64(dst, src); } static void gen_fabs_s(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) { tcg_gen_andi_i32(dst, src, INT32_MAX); } static void gen_fabs_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) { tcg_gen_andi_i64(dst, src, INT64_MAX); } static void gen_fneg_s(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) { tcg_gen_xori_i32(dst, src, INT32_MIN); } static void gen_fneg_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) { tcg_gen_xori_i64(dst, src, INT64_MIN); } static void gen_fnegabs_s(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) { tcg_gen_ori_i32(dst, src, INT32_MIN); } static void gen_fnegabs_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) { tcg_gen_ori_i64(dst, src, INT64_MIN); } static DisasJumpType do_fcmp_s(DisasContext *ctx, unsigned ra, unsigned rb, unsigned y, unsigned c) { TCGv_i32 ta, tb, tc, ty; nullify_over(ctx); ta = load_frw0_i32(ra); tb = load_frw0_i32(rb); ty = tcg_const_i32(y); tc = tcg_const_i32(c); gen_helper_fcmp_s(cpu_env, ta, tb, ty, tc); tcg_temp_free_i32(ta); tcg_temp_free_i32(tb); tcg_temp_free_i32(ty); tcg_temp_free_i32(tc); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_fcmp_s_0c(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned c = extract32(insn, 0, 5); unsigned y = extract32(insn, 13, 3); unsigned rb = extract32(insn, 16, 5); unsigned ra = extract32(insn, 21, 5); return do_fcmp_s(ctx, ra, rb, y, c); } static DisasJumpType trans_fcmp_s_0e(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned c = extract32(insn, 0, 5); unsigned y = extract32(insn, 13, 3); unsigned rb = assemble_rb64(insn); unsigned ra = assemble_ra64(insn); return do_fcmp_s(ctx, ra, rb, y, c); } static DisasJumpType trans_fcmp_d(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned c = extract32(insn, 0, 5); unsigned y = extract32(insn, 13, 3); unsigned rb = extract32(insn, 16, 5); unsigned ra = extract32(insn, 21, 5); TCGv_i64 ta, tb; TCGv_i32 tc, ty; nullify_over(ctx); ta = load_frd0(ra); tb = load_frd0(rb); ty = tcg_const_i32(y); tc = tcg_const_i32(c); gen_helper_fcmp_d(cpu_env, ta, tb, ty, tc); tcg_temp_free_i64(ta); tcg_temp_free_i64(tb); tcg_temp_free_i32(ty); tcg_temp_free_i32(tc); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_ftest_t(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned y = extract32(insn, 13, 3); unsigned cbit = (y ^ 1) - 1; TCGv_reg t; nullify_over(ctx); t = tcg_temp_new(); tcg_gen_ld32u_reg(t, cpu_env, offsetof(CPUHPPAState, fr0_shadow)); tcg_gen_extract_reg(t, t, 21 - cbit, 1); ctx->null_cond = cond_make_0(TCG_COND_NE, t); tcg_temp_free(t); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_ftest_q(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned c = extract32(insn, 0, 5); int mask; bool inv = false; TCGv_reg t; nullify_over(ctx); t = tcg_temp_new(); tcg_gen_ld32u_reg(t, cpu_env, offsetof(CPUHPPAState, fr0_shadow)); switch (c) { case 0: /* simple */ tcg_gen_andi_reg(t, t, 0x4000000); ctx->null_cond = cond_make_0(TCG_COND_NE, t); goto done; case 2: /* rej */ inv = true; /* fallthru */ case 1: /* acc */ mask = 0x43ff800; break; case 6: /* rej8 */ inv = true; /* fallthru */ case 5: /* acc8 */ mask = 0x43f8000; break; case 9: /* acc6 */ mask = 0x43e0000; break; case 13: /* acc4 */ mask = 0x4380000; break; case 17: /* acc2 */ mask = 0x4200000; break; default: return gen_illegal(ctx); } if (inv) { TCGv_reg c = load_const(ctx, mask); tcg_gen_or_reg(t, t, c); ctx->null_cond = cond_make(TCG_COND_EQ, t, c); } else { tcg_gen_andi_reg(t, t, mask); ctx->null_cond = cond_make_0(TCG_COND_EQ, t); } done: return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_xmpyu(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned rb = assemble_rb64(insn); unsigned ra = assemble_ra64(insn); TCGv_i64 a, b; nullify_over(ctx); a = load_frw0_i64(ra); b = load_frw0_i64(rb); tcg_gen_mul_i64(a, a, b); save_frd(rt, a); tcg_temp_free_i64(a); tcg_temp_free_i64(b); return nullify_end(ctx, DISAS_NEXT); } #define FOP_DED trans_fop_ded, .f.ded #define FOP_DEDD trans_fop_dedd, .f.dedd #define FOP_WEW trans_fop_wew_0c, .f.wew #define FOP_DEW trans_fop_dew_0c, .f.dew #define FOP_WED trans_fop_wed_0c, .f.wed #define FOP_WEWW trans_fop_weww_0c, .f.weww static const DisasInsn table_float_0c[] = { /* floating point class zero */ { 0x30004000, 0xfc1fffe0, FOP_WEW = gen_fcpy_s }, { 0x30006000, 0xfc1fffe0, FOP_WEW = gen_fabs_s }, { 0x30008000, 0xfc1fffe0, FOP_WEW = gen_helper_fsqrt_s }, { 0x3000a000, 0xfc1fffe0, FOP_WEW = gen_helper_frnd_s }, { 0x3000c000, 0xfc1fffe0, FOP_WEW = gen_fneg_s }, { 0x3000e000, 0xfc1fffe0, FOP_WEW = gen_fnegabs_s }, { 0x30004800, 0xfc1fffe0, FOP_DED = gen_fcpy_d }, { 0x30006800, 0xfc1fffe0, FOP_DED = gen_fabs_d }, { 0x30008800, 0xfc1fffe0, FOP_DED = gen_helper_fsqrt_d }, { 0x3000a800, 0xfc1fffe0, FOP_DED = gen_helper_frnd_d }, { 0x3000c800, 0xfc1fffe0, FOP_DED = gen_fneg_d }, { 0x3000e800, 0xfc1fffe0, FOP_DED = gen_fnegabs_d }, /* floating point class three */ { 0x30000600, 0xfc00ffe0, FOP_WEWW = gen_helper_fadd_s }, { 0x30002600, 0xfc00ffe0, FOP_WEWW = gen_helper_fsub_s }, { 0x30004600, 0xfc00ffe0, FOP_WEWW = gen_helper_fmpy_s }, { 0x30006600, 0xfc00ffe0, FOP_WEWW = gen_helper_fdiv_s }, { 0x30000e00, 0xfc00ffe0, FOP_DEDD = gen_helper_fadd_d }, { 0x30002e00, 0xfc00ffe0, FOP_DEDD = gen_helper_fsub_d }, { 0x30004e00, 0xfc00ffe0, FOP_DEDD = gen_helper_fmpy_d }, { 0x30006e00, 0xfc00ffe0, FOP_DEDD = gen_helper_fdiv_d }, /* floating point class one */ /* float/float */ { 0x30000a00, 0xfc1fffe0, FOP_WED = gen_helper_fcnv_d_s }, { 0x30002200, 0xfc1fffe0, FOP_DEW = gen_helper_fcnv_s_d }, /* int/float */ { 0x30008200, 0xfc1fffe0, FOP_WEW = gen_helper_fcnv_w_s }, { 0x30008a00, 0xfc1fffe0, FOP_WED = gen_helper_fcnv_dw_s }, { 0x3000a200, 0xfc1fffe0, FOP_DEW = gen_helper_fcnv_w_d }, { 0x3000aa00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_dw_d }, /* float/int */ { 0x30010200, 0xfc1fffe0, FOP_WEW = gen_helper_fcnv_s_w }, { 0x30010a00, 0xfc1fffe0, FOP_WED = gen_helper_fcnv_d_w }, { 0x30012200, 0xfc1fffe0, FOP_DEW = gen_helper_fcnv_s_dw }, { 0x30012a00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_d_dw }, /* float/int truncate */ { 0x30018200, 0xfc1fffe0, FOP_WEW = gen_helper_fcnv_t_s_w }, { 0x30018a00, 0xfc1fffe0, FOP_WED = gen_helper_fcnv_t_d_w }, { 0x3001a200, 0xfc1fffe0, FOP_DEW = gen_helper_fcnv_t_s_dw }, { 0x3001aa00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_t_d_dw }, /* uint/float */ { 0x30028200, 0xfc1fffe0, FOP_WEW = gen_helper_fcnv_uw_s }, { 0x30028a00, 0xfc1fffe0, FOP_WED = gen_helper_fcnv_udw_s }, { 0x3002a200, 0xfc1fffe0, FOP_DEW = gen_helper_fcnv_uw_d }, { 0x3002aa00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_udw_d }, /* float/uint */ { 0x30030200, 0xfc1fffe0, FOP_WEW = gen_helper_fcnv_s_uw }, { 0x30030a00, 0xfc1fffe0, FOP_WED = gen_helper_fcnv_d_uw }, { 0x30032200, 0xfc1fffe0, FOP_DEW = gen_helper_fcnv_s_udw }, { 0x30032a00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_d_udw }, /* float/uint truncate */ { 0x30038200, 0xfc1fffe0, FOP_WEW = gen_helper_fcnv_t_s_uw }, { 0x30038a00, 0xfc1fffe0, FOP_WED = gen_helper_fcnv_t_d_uw }, { 0x3003a200, 0xfc1fffe0, FOP_DEW = gen_helper_fcnv_t_s_udw }, { 0x3003aa00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_t_d_udw }, /* floating point class two */ { 0x30000400, 0xfc001fe0, trans_fcmp_s_0c }, { 0x30000c00, 0xfc001fe0, trans_fcmp_d }, { 0x30002420, 0xffffffe0, trans_ftest_q }, { 0x30000420, 0xffff1fff, trans_ftest_t }, /* FID. Note that ra == rt == 0, which via fcpy puts 0 into fr0. This is machine/revision == 0, which is reserved for simulator. */ { 0x30000000, 0xffffffff, FOP_WEW = gen_fcpy_s }, }; #undef FOP_WEW #undef FOP_DEW #undef FOP_WED #undef FOP_WEWW #define FOP_WEW trans_fop_wew_0e, .f.wew #define FOP_DEW trans_fop_dew_0e, .f.dew #define FOP_WED trans_fop_wed_0e, .f.wed #define FOP_WEWW trans_fop_weww_0e, .f.weww static const DisasInsn table_float_0e[] = { /* floating point class zero */ { 0x38004000, 0xfc1fff20, FOP_WEW = gen_fcpy_s }, { 0x38006000, 0xfc1fff20, FOP_WEW = gen_fabs_s }, { 0x38008000, 0xfc1fff20, FOP_WEW = gen_helper_fsqrt_s }, { 0x3800a000, 0xfc1fff20, FOP_WEW = gen_helper_frnd_s }, { 0x3800c000, 0xfc1fff20, FOP_WEW = gen_fneg_s }, { 0x3800e000, 0xfc1fff20, FOP_WEW = gen_fnegabs_s }, { 0x38004800, 0xfc1fffe0, FOP_DED = gen_fcpy_d }, { 0x38006800, 0xfc1fffe0, FOP_DED = gen_fabs_d }, { 0x38008800, 0xfc1fffe0, FOP_DED = gen_helper_fsqrt_d }, { 0x3800a800, 0xfc1fffe0, FOP_DED = gen_helper_frnd_d }, { 0x3800c800, 0xfc1fffe0, FOP_DED = gen_fneg_d }, { 0x3800e800, 0xfc1fffe0, FOP_DED = gen_fnegabs_d }, /* floating point class three */ { 0x38000600, 0xfc00ef20, FOP_WEWW = gen_helper_fadd_s }, { 0x38002600, 0xfc00ef20, FOP_WEWW = gen_helper_fsub_s }, { 0x38004600, 0xfc00ef20, FOP_WEWW = gen_helper_fmpy_s }, { 0x38006600, 0xfc00ef20, FOP_WEWW = gen_helper_fdiv_s }, { 0x38000e00, 0xfc00ffe0, FOP_DEDD = gen_helper_fadd_d }, { 0x38002e00, 0xfc00ffe0, FOP_DEDD = gen_helper_fsub_d }, { 0x38004e00, 0xfc00ffe0, FOP_DEDD = gen_helper_fmpy_d }, { 0x38006e00, 0xfc00ffe0, FOP_DEDD = gen_helper_fdiv_d }, { 0x38004700, 0xfc00ef60, trans_xmpyu }, /* floating point class one */ /* float/float */ { 0x38000a00, 0xfc1fffa0, FOP_WED = gen_helper_fcnv_d_s }, { 0x38002200, 0xfc1fffc0, FOP_DEW = gen_helper_fcnv_s_d }, /* int/float */ { 0x38008200, 0xfc1ffe60, FOP_WEW = gen_helper_fcnv_w_s }, { 0x38008a00, 0xfc1fffa0, FOP_WED = gen_helper_fcnv_dw_s }, { 0x3800a200, 0xfc1fff60, FOP_DEW = gen_helper_fcnv_w_d }, { 0x3800aa00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_dw_d }, /* float/int */ { 0x38010200, 0xfc1ffe60, FOP_WEW = gen_helper_fcnv_s_w }, { 0x38010a00, 0xfc1fffa0, FOP_WED = gen_helper_fcnv_d_w }, { 0x38012200, 0xfc1fff60, FOP_DEW = gen_helper_fcnv_s_dw }, { 0x38012a00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_d_dw }, /* float/int truncate */ { 0x38018200, 0xfc1ffe60, FOP_WEW = gen_helper_fcnv_t_s_w }, { 0x38018a00, 0xfc1fffa0, FOP_WED = gen_helper_fcnv_t_d_w }, { 0x3801a200, 0xfc1fff60, FOP_DEW = gen_helper_fcnv_t_s_dw }, { 0x3801aa00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_t_d_dw }, /* uint/float */ { 0x38028200, 0xfc1ffe60, FOP_WEW = gen_helper_fcnv_uw_s }, { 0x38028a00, 0xfc1fffa0, FOP_WED = gen_helper_fcnv_udw_s }, { 0x3802a200, 0xfc1fff60, FOP_DEW = gen_helper_fcnv_uw_d }, { 0x3802aa00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_udw_d }, /* float/uint */ { 0x38030200, 0xfc1ffe60, FOP_WEW = gen_helper_fcnv_s_uw }, { 0x38030a00, 0xfc1fffa0, FOP_WED = gen_helper_fcnv_d_uw }, { 0x38032200, 0xfc1fff60, FOP_DEW = gen_helper_fcnv_s_udw }, { 0x38032a00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_d_udw }, /* float/uint truncate */ { 0x38038200, 0xfc1ffe60, FOP_WEW = gen_helper_fcnv_t_s_uw }, { 0x38038a00, 0xfc1fffa0, FOP_WED = gen_helper_fcnv_t_d_uw }, { 0x3803a200, 0xfc1fff60, FOP_DEW = gen_helper_fcnv_t_s_udw }, { 0x3803aa00, 0xfc1fffe0, FOP_DED = gen_helper_fcnv_t_d_udw }, /* floating point class two */ { 0x38000400, 0xfc000f60, trans_fcmp_s_0e }, { 0x38000c00, 0xfc001fe0, trans_fcmp_d }, }; #undef FOP_WEW #undef FOP_DEW #undef FOP_WED #undef FOP_WEWW #undef FOP_DED #undef FOP_DEDD /* Convert the fmpyadd single-precision register encodings to standard. */ static inline int fmpyadd_s_reg(unsigned r) { return (r & 16) * 2 + 16 + (r & 15); } static DisasJumpType trans_fmpyadd(DisasContext *ctx, uint32_t insn, bool is_sub) { unsigned tm = extract32(insn, 0, 5); unsigned f = extract32(insn, 5, 1); unsigned ra = extract32(insn, 6, 5); unsigned ta = extract32(insn, 11, 5); unsigned rm2 = extract32(insn, 16, 5); unsigned rm1 = extract32(insn, 21, 5); nullify_over(ctx); /* Independent multiply & add/sub, with undefined behaviour if outputs overlap inputs. */ if (f == 0) { tm = fmpyadd_s_reg(tm); ra = fmpyadd_s_reg(ra); ta = fmpyadd_s_reg(ta); rm2 = fmpyadd_s_reg(rm2); rm1 = fmpyadd_s_reg(rm1); do_fop_weww(ctx, tm, rm1, rm2, gen_helper_fmpy_s); do_fop_weww(ctx, ta, ta, ra, is_sub ? gen_helper_fsub_s : gen_helper_fadd_s); } else { do_fop_dedd(ctx, tm, rm1, rm2, gen_helper_fmpy_d); do_fop_dedd(ctx, ta, ta, ra, is_sub ? gen_helper_fsub_d : gen_helper_fadd_d); } return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_fmpyfadd_s(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = assemble_rt64(insn); unsigned neg = extract32(insn, 5, 1); unsigned rm1 = assemble_ra64(insn); unsigned rm2 = assemble_rb64(insn); unsigned ra3 = assemble_rc64(insn); TCGv_i32 a, b, c; nullify_over(ctx); a = load_frw0_i32(rm1); b = load_frw0_i32(rm2); c = load_frw0_i32(ra3); if (neg) { gen_helper_fmpynfadd_s(a, cpu_env, a, b, c); } else { gen_helper_fmpyfadd_s(a, cpu_env, a, b, c); } tcg_temp_free_i32(b); tcg_temp_free_i32(c); save_frw_i32(rt, a); tcg_temp_free_i32(a); return nullify_end(ctx, DISAS_NEXT); } static DisasJumpType trans_fmpyfadd_d(DisasContext *ctx, uint32_t insn, const DisasInsn *di) { unsigned rt = extract32(insn, 0, 5); unsigned neg = extract32(insn, 5, 1); unsigned rm1 = extract32(insn, 21, 5); unsigned rm2 = extract32(insn, 16, 5); unsigned ra3 = assemble_rc64(insn); TCGv_i64 a, b, c; nullify_over(ctx); a = load_frd0(rm1); b = load_frd0(rm2); c = load_frd0(ra3); if (neg) { gen_helper_fmpynfadd_d(a, cpu_env, a, b, c); } else { gen_helper_fmpyfadd_d(a, cpu_env, a, b, c); } tcg_temp_free_i64(b); tcg_temp_free_i64(c); save_frd(rt, a); tcg_temp_free_i64(a); return nullify_end(ctx, DISAS_NEXT); } static const DisasInsn table_fp_fused[] = { { 0xb8000000u, 0xfc000800u, trans_fmpyfadd_s }, { 0xb8000800u, 0xfc0019c0u, trans_fmpyfadd_d } }; static DisasJumpType translate_table_int(DisasContext *ctx, uint32_t insn, const DisasInsn table[], size_t n) { size_t i; for (i = 0; i < n; ++i) { if ((insn & table[i].mask) == table[i].insn) { return table[i].trans(ctx, insn, &table[i]); } } qemu_log_mask(LOG_UNIMP, "UNIMP insn %08x @ " TARGET_FMT_lx "\n", insn, ctx->base.pc_next); return gen_illegal(ctx); } #define translate_table(ctx, insn, table) \ translate_table_int(ctx, insn, table, ARRAY_SIZE(table)) static DisasJumpType translate_one(DisasContext *ctx, uint32_t insn) { uint32_t opc = extract32(insn, 26, 6); switch (opc) { case 0x00: /* system op */ return translate_table(ctx, insn, table_system); case 0x01: return translate_table(ctx, insn, table_mem_mgmt); case 0x02: return translate_table(ctx, insn, table_arith_log); case 0x03: return translate_table(ctx, insn, table_index_mem); case 0x06: return trans_fmpyadd(ctx, insn, false); case 0x08: return trans_ldil(ctx, insn); case 0x09: return trans_copr_w(ctx, insn); case 0x0A: return trans_addil(ctx, insn); case 0x0B: return trans_copr_dw(ctx, insn); case 0x0C: return translate_table(ctx, insn, table_float_0c); case 0x0D: return trans_ldo(ctx, insn); case 0x0E: return translate_table(ctx, insn, table_float_0e); case 0x10: return trans_load(ctx, insn, false, MO_UB); case 0x11: return trans_load(ctx, insn, false, MO_TEUW); case 0x12: return trans_load(ctx, insn, false, MO_TEUL); case 0x13: return trans_load(ctx, insn, true, MO_TEUL); case 0x16: return trans_fload_mod(ctx, insn); case 0x17: return trans_load_w(ctx, insn); case 0x18: return trans_store(ctx, insn, false, MO_UB); case 0x19: return trans_store(ctx, insn, false, MO_TEUW); case 0x1A: return trans_store(ctx, insn, false, MO_TEUL); case 0x1B: return trans_store(ctx, insn, true, MO_TEUL); case 0x1E: return trans_fstore_mod(ctx, insn); case 0x1F: return trans_store_w(ctx, insn); case 0x20: return trans_cmpb(ctx, insn, true, false, false); case 0x21: return trans_cmpb(ctx, insn, true, true, false); case 0x22: return trans_cmpb(ctx, insn, false, false, false); case 0x23: return trans_cmpb(ctx, insn, false, true, false); case 0x24: return trans_cmpiclr(ctx, insn); case 0x25: return trans_subi(ctx, insn); case 0x26: return trans_fmpyadd(ctx, insn, true); case 0x27: return trans_cmpb(ctx, insn, true, false, true); case 0x28: return trans_addb(ctx, insn, true, false); case 0x29: return trans_addb(ctx, insn, true, true); case 0x2A: return trans_addb(ctx, insn, false, false); case 0x2B: return trans_addb(ctx, insn, false, true); case 0x2C: case 0x2D: return trans_addi(ctx, insn); case 0x2E: return translate_table(ctx, insn, table_fp_fused); case 0x2F: return trans_cmpb(ctx, insn, false, false, true); case 0x30: case 0x31: return trans_bb(ctx, insn); case 0x32: return trans_movb(ctx, insn, false); case 0x33: return trans_movb(ctx, insn, true); case 0x34: return translate_table(ctx, insn, table_sh_ex); case 0x35: return translate_table(ctx, insn, table_depw); case 0x38: return trans_be(ctx, insn, false); case 0x39: return trans_be(ctx, insn, true); case 0x3A: return translate_table(ctx, insn, table_branch); case 0x04: /* spopn */ case 0x05: /* diag */ case 0x0F: /* product specific */ break; case 0x07: /* unassigned */ case 0x15: /* unassigned */ case 0x1D: /* unassigned */ case 0x37: /* unassigned */ break; case 0x3F: #ifndef CONFIG_USER_ONLY /* Unassigned, but use as system-halt. */ if (insn == 0xfffdead0) { return gen_hlt(ctx, 0); /* halt system */ } if (insn == 0xfffdead1) { return gen_hlt(ctx, 1); /* reset system */ } #endif break; default: break; } return gen_illegal(ctx); } static int hppa_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs, int max_insns) { DisasContext *ctx = container_of(dcbase, DisasContext, base); int bound; ctx->cs = cs; ctx->tb_flags = ctx->base.tb->flags; #ifdef CONFIG_USER_ONLY ctx->privilege = MMU_USER_IDX; ctx->mmu_idx = MMU_USER_IDX; ctx->iaoq_f = ctx->base.pc_first; ctx->iaoq_b = ctx->base.tb->cs_base; #else ctx->privilege = (ctx->tb_flags >> TB_FLAG_PRIV_SHIFT) & 3; ctx->mmu_idx = (ctx->tb_flags & PSW_D ? ctx->privilege : MMU_PHYS_IDX); /* Recover the IAOQ values from the GVA + PRIV. */ uint64_t cs_base = ctx->base.tb->cs_base; uint64_t iasq_f = cs_base & ~0xffffffffull; int32_t diff = cs_base; ctx->iaoq_f = (ctx->base.pc_first & ~iasq_f) + ctx->privilege; ctx->iaoq_b = (diff ? ctx->iaoq_f + diff : -1); #endif ctx->iaoq_n = -1; ctx->iaoq_n_var = NULL; /* Bound the number of instructions by those left on the page. */ bound = -(ctx->base.pc_first | TARGET_PAGE_MASK) / 4; bound = MIN(max_insns, bound); ctx->ntempr = 0; ctx->ntempl = 0; memset(ctx->tempr, 0, sizeof(ctx->tempr)); memset(ctx->templ, 0, sizeof(ctx->templ)); return bound; } static void hppa_tr_tb_start(DisasContextBase *dcbase, CPUState *cs) { DisasContext *ctx = container_of(dcbase, DisasContext, base); /* Seed the nullification status from PSW[N], as saved in TB->FLAGS. */ ctx->null_cond = cond_make_f(); ctx->psw_n_nonzero = false; if (ctx->tb_flags & PSW_N) { ctx->null_cond.c = TCG_COND_ALWAYS; ctx->psw_n_nonzero = true; } ctx->null_lab = NULL; } static void hppa_tr_insn_start(DisasContextBase *dcbase, CPUState *cs) { DisasContext *ctx = container_of(dcbase, DisasContext, base); tcg_gen_insn_start(ctx->iaoq_f, ctx->iaoq_b); } static bool hppa_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cs, const CPUBreakpoint *bp) { DisasContext *ctx = container_of(dcbase, DisasContext, base); ctx->base.is_jmp = gen_excp(ctx, EXCP_DEBUG); ctx->base.pc_next += 4; return true; } static void hppa_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs) { DisasContext *ctx = container_of(dcbase, DisasContext, base); CPUHPPAState *env = cs->env_ptr; DisasJumpType ret; int i, n; /* Execute one insn. */ #ifdef CONFIG_USER_ONLY if (ctx->base.pc_next < TARGET_PAGE_SIZE) { ret = do_page_zero(ctx); assert(ret != DISAS_NEXT); } else #endif { /* Always fetch the insn, even if nullified, so that we check the page permissions for execute. */ uint32_t insn = cpu_ldl_code(env, ctx->base.pc_next); /* Set up the IA queue for the next insn. This will be overwritten by a branch. */ if (ctx->iaoq_b == -1) { ctx->iaoq_n = -1; ctx->iaoq_n_var = get_temp(ctx); tcg_gen_addi_reg(ctx->iaoq_n_var, cpu_iaoq_b, 4); } else { ctx->iaoq_n = ctx->iaoq_b + 4; ctx->iaoq_n_var = NULL; } if (unlikely(ctx->null_cond.c == TCG_COND_ALWAYS)) { ctx->null_cond.c = TCG_COND_NEVER; ret = DISAS_NEXT; } else { ctx->insn = insn; ret = translate_one(ctx, insn); assert(ctx->null_lab == NULL); } } /* Free any temporaries allocated. */ for (i = 0, n = ctx->ntempr; i < n; ++i) { tcg_temp_free(ctx->tempr[i]); ctx->tempr[i] = NULL; } for (i = 0, n = ctx->ntempl; i < n; ++i) { tcg_temp_free_tl(ctx->templ[i]); ctx->templ[i] = NULL; } ctx->ntempr = 0; ctx->ntempl = 0; /* Advance the insn queue. Note that this check also detects a priority change within the instruction queue. */ if (ret == DISAS_NEXT && ctx->iaoq_b != ctx->iaoq_f + 4) { if (ctx->iaoq_b != -1 && ctx->iaoq_n != -1 && use_goto_tb(ctx, ctx->iaoq_b) && (ctx->null_cond.c == TCG_COND_NEVER || ctx->null_cond.c == TCG_COND_ALWAYS)) { nullify_set(ctx, ctx->null_cond.c == TCG_COND_ALWAYS); gen_goto_tb(ctx, 0, ctx->iaoq_b, ctx->iaoq_n); ret = DISAS_NORETURN; } else { ret = DISAS_IAQ_N_STALE; } } ctx->iaoq_f = ctx->iaoq_b; ctx->iaoq_b = ctx->iaoq_n; ctx->base.is_jmp = ret; ctx->base.pc_next += 4; if (ret == DISAS_NORETURN || ret == DISAS_IAQ_N_UPDATED) { return; } if (ctx->iaoq_f == -1) { tcg_gen_mov_reg(cpu_iaoq_f, cpu_iaoq_b); copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_n, ctx->iaoq_n_var); #ifndef CONFIG_USER_ONLY tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); #endif nullify_save(ctx); ctx->base.is_jmp = DISAS_IAQ_N_UPDATED; } else if (ctx->iaoq_b == -1) { tcg_gen_mov_reg(cpu_iaoq_b, ctx->iaoq_n_var); } } static void hppa_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs) { DisasContext *ctx = container_of(dcbase, DisasContext, base); DisasJumpType is_jmp = ctx->base.is_jmp; switch (is_jmp) { case DISAS_NORETURN: break; case DISAS_TOO_MANY: case DISAS_IAQ_N_STALE: case DISAS_IAQ_N_STALE_EXIT: copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_f, cpu_iaoq_f); copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_b, cpu_iaoq_b); nullify_save(ctx); /* FALLTHRU */ case DISAS_IAQ_N_UPDATED: if (ctx->base.singlestep_enabled) { gen_excp_1(EXCP_DEBUG); } else if (is_jmp == DISAS_IAQ_N_STALE_EXIT) { tcg_gen_exit_tb(0); } else { tcg_gen_lookup_and_goto_ptr(); } break; default: g_assert_not_reached(); } } static void hppa_tr_disas_log(const DisasContextBase *dcbase, CPUState *cs) { target_ulong pc = dcbase->pc_first; #ifdef CONFIG_USER_ONLY switch (pc) { case 0x00: qemu_log("IN:\n0x00000000: (null)\n"); return; case 0xb0: qemu_log("IN:\n0x000000b0: light-weight-syscall\n"); return; case 0xe0: qemu_log("IN:\n0x000000e0: set-thread-pointer-syscall\n"); return; case 0x100: qemu_log("IN:\n0x00000100: syscall\n"); return; } #endif qemu_log("IN: %s\n", lookup_symbol(pc)); log_target_disas(cs, pc, dcbase->tb->size); } static const TranslatorOps hppa_tr_ops = { .init_disas_context = hppa_tr_init_disas_context, .tb_start = hppa_tr_tb_start, .insn_start = hppa_tr_insn_start, .breakpoint_check = hppa_tr_breakpoint_check, .translate_insn = hppa_tr_translate_insn, .tb_stop = hppa_tr_tb_stop, .disas_log = hppa_tr_disas_log, }; void gen_intermediate_code(CPUState *cs, struct TranslationBlock *tb) { DisasContext ctx; translator_loop(&hppa_tr_ops, &ctx.base, cs, tb); } void restore_state_to_opc(CPUHPPAState *env, TranslationBlock *tb, target_ulong *data) { env->iaoq_f = data[0]; if (data[1] != (target_ureg)-1) { env->iaoq_b = data[1]; } /* Since we were executing the instruction at IAOQ_F, and took some sort of action that provoked the cpu_restore_state, we can infer that the instruction was not nullified. */ env->psw_n = 0; }