/* * QEMU HPPA CPU * * Copyright (c) 2016 Richard Henderson * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/qemu-print.h" #include "qemu/timer.h" #include "cpu.h" #include "qemu/module.h" #include "exec/exec-all.h" #include "fpu/softfloat.h" #include "tcg/tcg.h" static void hppa_cpu_set_pc(CPUState *cs, vaddr value) { HPPACPU *cpu = HPPA_CPU(cs); #ifdef CONFIG_USER_ONLY value |= PRIV_USER; #endif cpu->env.iaoq_f = value; cpu->env.iaoq_b = value + 4; } static vaddr hppa_cpu_get_pc(CPUState *cs) { CPUHPPAState *env = cpu_env(cs); return hppa_form_gva_psw(env->psw, (env->psw & PSW_C ? env->iasq_f : 0), env->iaoq_f & -4); } void cpu_get_tb_cpu_state(CPUHPPAState *env, vaddr *pc, uint64_t *pcsbase, uint32_t *pflags) { uint32_t flags = 0; uint64_t cs_base = 0; /* * TB lookup assumes that PC contains the complete virtual address. * If we leave space+offset separate, we'll get ITLB misses to an * incomplete virtual address. This also means that we must separate * out current cpu privilege from the low bits of IAOQ_F. */ *pc = hppa_cpu_get_pc(env_cpu(env)); flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT; /* * The only really interesting case is if IAQ_Back is on the same page * as IAQ_Front, so that we can use goto_tb between the blocks. In all * other cases, we'll be ending the TranslationBlock with one insn and * not linking between them. */ if (env->iasq_f != env->iasq_b) { cs_base |= CS_BASE_DIFFSPACE; } else if ((env->iaoq_f ^ env->iaoq_b) & TARGET_PAGE_MASK) { cs_base |= CS_BASE_DIFFPAGE; } else { cs_base |= env->iaoq_b & ~TARGET_PAGE_MASK; } /* ??? E, T, H, L bits need to be here, when implemented. */ flags |= env->psw_n * PSW_N; flags |= env->psw_xb; flags |= env->psw & (PSW_W | PSW_C | PSW_D | PSW_P); #ifdef CONFIG_USER_ONLY flags |= TB_FLAG_UNALIGN * !env_cpu(env)->prctl_unalign_sigbus; #else if ((env->sr[4] == env->sr[5]) & (env->sr[4] == env->sr[6]) & (env->sr[4] == env->sr[7])) { flags |= TB_FLAG_SR_SAME; } #endif *pcsbase = cs_base; *pflags = flags; } static void hppa_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb) { HPPACPU *cpu = HPPA_CPU(cs); /* IAQ is always up-to-date before goto_tb. */ cpu->env.psw_n = (tb->flags & PSW_N) != 0; cpu->env.psw_xb = tb->flags & (PSW_X | PSW_B); } static void hppa_restore_state_to_opc(CPUState *cs, const TranslationBlock *tb, const uint64_t *data) { CPUHPPAState *env = cpu_env(cs); env->iaoq_f = (env->iaoq_f & TARGET_PAGE_MASK) | data[0]; if (data[1] != INT32_MIN) { env->iaoq_b = env->iaoq_f + data[1]; } env->unwind_breg = data[2]; /* * Since we were executing the instruction at IAOQ_F, and took some * sort of action that provoked the cpu_restore_state, we can infer * that the instruction was not nullified. */ env->psw_n = 0; } static bool hppa_cpu_has_work(CPUState *cs) { return cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI); } static int hppa_cpu_mmu_index(CPUState *cs, bool ifetch) { CPUHPPAState *env = cpu_env(cs); if (env->psw & (ifetch ? PSW_C : PSW_D)) { return PRIV_P_TO_MMU_IDX(env->iaoq_f & 3, env->psw & PSW_P); } /* mmu disabled */ return env->psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX; } static void hppa_cpu_disas_set_info(CPUState *cs, disassemble_info *info) { info->mach = bfd_mach_hppa20; info->print_insn = print_insn_hppa; } #ifndef CONFIG_USER_ONLY static G_NORETURN void hppa_cpu_do_unaligned_access(CPUState *cs, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { HPPACPU *cpu = HPPA_CPU(cs); CPUHPPAState *env = &cpu->env; cs->exception_index = EXCP_UNALIGN; cpu_restore_state(cs, retaddr); hppa_set_ior_and_isr(env, addr, MMU_IDX_MMU_DISABLED(mmu_idx)); cpu_loop_exit(cs); } #endif /* CONFIG_USER_ONLY */ static void hppa_cpu_realizefn(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); HPPACPUClass *acc = HPPA_CPU_GET_CLASS(dev); Error *local_err = NULL; cpu_exec_realizefn(cs, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } qemu_init_vcpu(cs); acc->parent_realize(dev, errp); #ifndef CONFIG_USER_ONLY { HPPACPU *cpu = HPPA_CPU(cs); cpu->alarm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hppa_cpu_alarm_timer, cpu); hppa_ptlbe(&cpu->env); } #endif /* Use pc-relative instructions always to simplify the translator. */ tcg_cflags_set(cs, CF_PCREL); } static void hppa_cpu_initfn(Object *obj) { CPUState *cs = CPU(obj); HPPACPU *cpu = HPPA_CPU(obj); CPUHPPAState *env = &cpu->env; cs->exception_index = -1; cpu_hppa_loaded_fr0(env); cpu_hppa_put_psw(env, PSW_W); } static ObjectClass *hppa_cpu_class_by_name(const char *cpu_model) { g_autofree char *typename = g_strconcat(cpu_model, "-cpu", NULL); return object_class_by_name(typename); } #ifndef CONFIG_USER_ONLY #include "hw/core/sysemu-cpu-ops.h" static const struct SysemuCPUOps hppa_sysemu_ops = { .get_phys_page_debug = hppa_cpu_get_phys_page_debug, }; #endif #include "hw/core/tcg-cpu-ops.h" static const TCGCPUOps hppa_tcg_ops = { .initialize = hppa_translate_init, .synchronize_from_tb = hppa_cpu_synchronize_from_tb, .restore_state_to_opc = hppa_restore_state_to_opc, #ifndef CONFIG_USER_ONLY .tlb_fill_align = hppa_cpu_tlb_fill_align, .cpu_exec_interrupt = hppa_cpu_exec_interrupt, .cpu_exec_halt = hppa_cpu_has_work, .do_interrupt = hppa_cpu_do_interrupt, .do_unaligned_access = hppa_cpu_do_unaligned_access, .do_transaction_failed = hppa_cpu_do_transaction_failed, #endif /* !CONFIG_USER_ONLY */ }; static void hppa_cpu_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); CPUClass *cc = CPU_CLASS(oc); HPPACPUClass *acc = HPPA_CPU_CLASS(oc); device_class_set_parent_realize(dc, hppa_cpu_realizefn, &acc->parent_realize); cc->class_by_name = hppa_cpu_class_by_name; cc->has_work = hppa_cpu_has_work; cc->mmu_index = hppa_cpu_mmu_index; cc->dump_state = hppa_cpu_dump_state; cc->set_pc = hppa_cpu_set_pc; cc->get_pc = hppa_cpu_get_pc; cc->gdb_read_register = hppa_cpu_gdb_read_register; cc->gdb_write_register = hppa_cpu_gdb_write_register; #ifndef CONFIG_USER_ONLY dc->vmsd = &vmstate_hppa_cpu; cc->sysemu_ops = &hppa_sysemu_ops; #endif cc->disas_set_info = hppa_cpu_disas_set_info; cc->gdb_num_core_regs = 128; cc->tcg_ops = &hppa_tcg_ops; } static const TypeInfo hppa_cpu_type_infos[] = { { .name = TYPE_HPPA_CPU, .parent = TYPE_CPU, .instance_size = sizeof(HPPACPU), .instance_align = __alignof(HPPACPU), .instance_init = hppa_cpu_initfn, .abstract = false, .class_size = sizeof(HPPACPUClass), .class_init = hppa_cpu_class_init, }, { .name = TYPE_HPPA64_CPU, .parent = TYPE_HPPA_CPU, }, }; DEFINE_TYPES(hppa_cpu_type_infos)