#!/usr/bin/env python3 ## ## Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sys import re import string behdict = {} # tag ->behavior semdict = {} # tag -> semantics attribdict = {} # tag -> attributes macros = {} # macro -> macro information... attribinfo = {} # Register information and misc tags = [] # list of all tags overrides = {} # tags with helper overrides # We should do this as a hash for performance, # but to keep order let's keep it as a list. def uniquify(seq): seen = set() seen_add = seen.add return [x for x in seq if x not in seen and not seen_add(x)] regre = re.compile( r"((?" % l) macro.attribs |= expand_macro_attribs( macros[submacro], allmac_re) finished_macros.add(macro.key) return macro.attribs # When qemu needs an attribute that isn't in the imported files, # we'll add it here. def add_qemu_macro_attrib(name, attrib): macros[name].attribs.add(attrib) immextre = re.compile(r'f(MUST_)?IMMEXT[(]([UuSsRr])') def is_cond_jump(tag): if tag == 'J2_rte': return False if ('A_HWLOOP0_END' in attribdict[tag] or 'A_HWLOOP1_END' in attribdict[tag]): return False return \ re.compile(r"(if.*fBRANCH)|(if.*fJUMPR)").search(semdict[tag]) != None def is_cond_call(tag): return re.compile(r"(if.*fCALL)").search(semdict[tag]) != None def calculate_attribs(): add_qemu_macro_attrib('fREAD_PC', 'A_IMPLICIT_READS_PC') add_qemu_macro_attrib('fTRAP', 'A_IMPLICIT_READS_PC') add_qemu_macro_attrib('fWRITE_P0', 'A_WRITES_PRED_REG') add_qemu_macro_attrib('fWRITE_P1', 'A_WRITES_PRED_REG') add_qemu_macro_attrib('fWRITE_P2', 'A_WRITES_PRED_REG') add_qemu_macro_attrib('fWRITE_P3', 'A_WRITES_PRED_REG') add_qemu_macro_attrib('fSET_OVERFLOW', 'A_IMPLICIT_WRITES_USR') add_qemu_macro_attrib('fSET_LPCFG', 'A_IMPLICIT_WRITES_USR') add_qemu_macro_attrib('fSTORE', 'A_SCALAR_STORE') # Recurse down macros, find attributes from sub-macros macroValues = list(macros.values()) allmacros_restr = "|".join(set([ m.re.pattern for m in macroValues ])) allmacros_re = re.compile(allmacros_restr) for macro in macroValues: expand_macro_attribs(macro,allmacros_re) # Append attributes to all instructions for tag in tags: for macname in allmacros_re.findall(semdict[tag]): if not macname: continue macro = macros[macname] attribdict[tag] |= set(macro.attribs) # Figure out which instructions write predicate registers tagregs = get_tagregs() for tag in tags: regs = tagregs[tag] for regtype, regid, toss, numregs in regs: if regtype == "P" and is_written(regid): attribdict[tag].add('A_WRITES_PRED_REG') # Mark conditional jumps and calls # Not all instructions are properly marked with A_CONDEXEC for tag in tags: if is_cond_jump(tag) or is_cond_call(tag): attribdict[tag].add('A_CONDEXEC') def SEMANTICS(tag, beh, sem): #print tag,beh,sem behdict[tag] = beh semdict[tag] = sem attribdict[tag] = set() tags.append(tag) # dicts have no order, this is for order def ATTRIBUTES(tag, attribstring): attribstring = \ attribstring.replace("ATTRIBS","").replace("(","").replace(")","") if not attribstring: return attribs = attribstring.split(",") for attrib in attribs: attribdict[tag].add(attrib.strip()) class Macro(object): __slots__ = ['key','name', 'beh', 'attribs', 're'] def __init__(self, name, beh, attribs): self.key = name self.name = name self.beh = beh self.attribs = set(attribs) self.re = re.compile("\\b" + name + "\\b") def MACROATTRIB(macname,beh,attribstring): attribstring = attribstring.replace("(","").replace(")","") if attribstring: attribs = attribstring.split(",") else: attribs = [] macros[macname] = Macro(macname,beh,attribs) def compute_tag_regs(tag): return uniquify(regre.findall(behdict[tag])) def compute_tag_immediates(tag): return uniquify(immre.findall(behdict[tag])) ## ## tagregs is the main data structure we'll use ## tagregs[tag] will contain the registers used by an instruction ## Within each entry, we'll use the regtype and regid fields ## regtype can be one of the following ## C control register ## N new register value ## P predicate register ## R GPR register ## M modifier register ## Q HVX predicate vector ## V HVX vector register ## O HVX new vector register ## regid can be one of the following ## d, e destination register ## dd destination register pair ## s, t, u, v, w source register ## ss, tt, uu, vv source register pair ## x, y read-write register ## xx, yy read-write register pair ## def get_tagregs(): return dict(zip(tags, list(map(compute_tag_regs, tags)))) def get_tagimms(): return dict(zip(tags, list(map(compute_tag_immediates, tags)))) def is_pair(regid): return len(regid) == 2 def is_single(regid): return len(regid) == 1 def is_written(regid): return regid[0] in "dexy" def is_writeonly(regid): return regid[0] in "de" def is_read(regid): return regid[0] in "stuvwxy" def is_readwrite(regid): return regid[0] in "xy" def is_scalar_reg(regtype): return regtype in "RPC" def is_hvx_reg(regtype): return regtype in "VQ" def is_old_val(regtype, regid, tag): return regtype+regid+'V' in semdict[tag] def is_new_val(regtype, regid, tag): return regtype+regid+'N' in semdict[tag] def need_slot(tag): if (('A_CONDEXEC' in attribdict[tag] and 'A_JUMP' not in attribdict[tag]) or 'A_STORE' in attribdict[tag] or 'A_LOAD' in attribdict[tag]): return 1 else: return 0 def need_part1(tag): return re.compile(r"fPART1").search(semdict[tag]) def need_ea(tag): return re.compile(r"\bEA\b").search(semdict[tag]) def need_PC(tag): return 'A_IMPLICIT_READS_PC' in attribdict[tag] def helper_needs_next_PC(tag): return 'A_CALL' in attribdict[tag] def need_pkt_has_multi_cof(tag): return 'A_COF' in attribdict[tag] def skip_qemu_helper(tag): return tag in overrides.keys() def is_tmp_result(tag): return ('A_CVI_TMP' in attribdict[tag] or 'A_CVI_TMP_DST' in attribdict[tag]) def is_new_result(tag): return ('A_CVI_NEW' in attribdict[tag]) def imm_name(immlett): return "%siV" % immlett def read_semantics_file(name): eval_line = "" for line in open(name, 'rt').readlines(): if not line.startswith("#"): eval_line += line if line.endswith("\\\n"): eval_line.rstrip("\\\n") else: eval(eval_line.strip()) eval_line = "" def read_attribs_file(name): attribre = re.compile(r'DEF_ATTRIB\(([A-Za-z0-9_]+), ([^,]*), ' + r'"([A-Za-z0-9_\.]*)", "([A-Za-z0-9_\.]*)"\)') for line in open(name, 'rt').readlines(): if not attribre.match(line): continue (attrib_base,descr,rreg,wreg) = attribre.findall(line)[0] attrib_base = 'A_' + attrib_base attribinfo[attrib_base] = {'rreg':rreg, 'wreg':wreg, 'descr':descr} def read_overrides_file(name): overridere = re.compile("#define fGEN_TCG_([A-Za-z0-9_]+)\(.*") for line in open(name, 'rt').readlines(): if not overridere.match(line): continue tag = overridere.findall(line)[0] overrides[tag] = True