/* * QEMU AVR CPU * * Copyright (c) 2019-2020 Michael Rolnik * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see * */ #include "qemu/osdep.h" #include "qemu/qemu-print.h" #include "tcg/tcg.h" #include "cpu.h" #include "exec/exec-all.h" #include "tcg/tcg-op.h" #include "exec/cpu_ldst.h" #include "exec/helper-proto.h" #include "exec/helper-gen.h" #include "exec/log.h" #include "exec/translator.h" #include "exec/gen-icount.h" /* * Define if you want a BREAK instruction translated to a breakpoint * Active debugging connection is assumed * This is for * https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests * tests */ #undef BREAKPOINT_ON_BREAK static TCGv cpu_pc; static TCGv cpu_Cf; static TCGv cpu_Zf; static TCGv cpu_Nf; static TCGv cpu_Vf; static TCGv cpu_Sf; static TCGv cpu_Hf; static TCGv cpu_Tf; static TCGv cpu_If; static TCGv cpu_rampD; static TCGv cpu_rampX; static TCGv cpu_rampY; static TCGv cpu_rampZ; static TCGv cpu_r[NUMBER_OF_CPU_REGISTERS]; static TCGv cpu_eind; static TCGv cpu_sp; static TCGv cpu_skip; static const char reg_names[NUMBER_OF_CPU_REGISTERS][8] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", }; #define REG(x) (cpu_r[x]) enum { DISAS_EXIT = DISAS_TARGET_0, /* We want return to the cpu main loop. */ DISAS_LOOKUP = DISAS_TARGET_1, /* We have a variable condition exit. */ DISAS_CHAIN = DISAS_TARGET_2, /* We have a single condition exit. */ }; typedef struct DisasContext DisasContext; /* This is the state at translation time. */ struct DisasContext { DisasContextBase base; CPUAVRState *env; CPUState *cs; target_long npc; uint32_t opcode; /* Routine used to access memory */ int memidx; /* * some AVR instructions can make the following instruction to be skipped * Let's name those instructions * A - instruction that can skip the next one * B - instruction that can be skipped. this depends on execution of A * there are two scenarios * 1. A and B belong to the same translation block * 2. A is the last instruction in the translation block and B is the last * * following variables are used to simplify the skipping logic, they are * used in the following manner (sketch) * * TCGLabel *skip_label = NULL; * if (ctx.skip_cond != TCG_COND_NEVER) { * skip_label = gen_new_label(); * tcg_gen_brcond_tl(skip_cond, skip_var0, skip_var1, skip_label); * } * * if (free_skip_var0) { * tcg_temp_free(skip_var0); * free_skip_var0 = false; * } * * translate(&ctx); * * if (skip_label) { * gen_set_label(skip_label); * } */ TCGv skip_var0; TCGv skip_var1; TCGCond skip_cond; bool free_skip_var0; }; void avr_cpu_tcg_init(void) { int i; #define AVR_REG_OFFS(x) offsetof(CPUAVRState, x) cpu_pc = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(pc_w), "pc"); cpu_Cf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregC), "Cf"); cpu_Zf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregZ), "Zf"); cpu_Nf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregN), "Nf"); cpu_Vf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregV), "Vf"); cpu_Sf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregS), "Sf"); cpu_Hf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregH), "Hf"); cpu_Tf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregT), "Tf"); cpu_If = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregI), "If"); cpu_rampD = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampD), "rampD"); cpu_rampX = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampX), "rampX"); cpu_rampY = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampY), "rampY"); cpu_rampZ = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampZ), "rampZ"); cpu_eind = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(eind), "eind"); cpu_sp = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sp), "sp"); cpu_skip = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(skip), "skip"); for (i = 0; i < NUMBER_OF_CPU_REGISTERS; i++) { cpu_r[i] = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(r[i]), reg_names[i]); } #undef AVR_REG_OFFS } static int to_regs_16_31_by_one(DisasContext *ctx, int indx) { return 16 + (indx % 16); } static int to_regs_16_23_by_one(DisasContext *ctx, int indx) { return 16 + (indx % 8); } static int to_regs_24_30_by_two(DisasContext *ctx, int indx) { return 24 + (indx % 4) * 2; } static int to_regs_00_30_by_two(DisasContext *ctx, int indx) { return (indx % 16) * 2; } static uint16_t next_word(DisasContext *ctx) { return cpu_lduw_code(ctx->env, ctx->npc++ * 2); } static int append_16(DisasContext *ctx, int x) { return x << 16 | next_word(ctx); } static bool avr_have_feature(DisasContext *ctx, int feature) { if (!avr_feature(ctx->env, feature)) { gen_helper_unsupported(cpu_env); ctx->base.is_jmp = DISAS_NORETURN; return false; } return true; } static bool decode_insn(DisasContext *ctx, uint16_t insn); #include "decode-insn.c.inc" /* * Arithmetic Instructions */ /* * Utility functions for updating status registers: * * - gen_add_CHf() * - gen_add_Vf() * - gen_sub_CHf() * - gen_sub_Vf() * - gen_NSf() * - gen_ZNSf() * */ static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr) { TCGv t1 = tcg_temp_new_i32(); TCGv t2 = tcg_temp_new_i32(); TCGv t3 = tcg_temp_new_i32(); tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */ tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */ tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */ tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */ tcg_gen_or_tl(t1, t1, t3); tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */ tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */ tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); tcg_temp_free_i32(t3); tcg_temp_free_i32(t2); tcg_temp_free_i32(t1); } static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr) { TCGv t1 = tcg_temp_new_i32(); TCGv t2 = tcg_temp_new_i32(); /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */ /* = (Rd ^ R) & ~(Rd ^ Rr) */ tcg_gen_xor_tl(t1, Rd, R); tcg_gen_xor_tl(t2, Rd, Rr); tcg_gen_andc_tl(t1, t1, t2); tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ tcg_temp_free_i32(t2); tcg_temp_free_i32(t1); } static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr) { TCGv t1 = tcg_temp_new_i32(); TCGv t2 = tcg_temp_new_i32(); TCGv t3 = tcg_temp_new_i32(); tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */ tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */ tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */ tcg_gen_and_tl(t3, t3, R); tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */ tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */ tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */ tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); tcg_temp_free_i32(t3); tcg_temp_free_i32(t2); tcg_temp_free_i32(t1); } static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr) { TCGv t1 = tcg_temp_new_i32(); TCGv t2 = tcg_temp_new_i32(); /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */ /* = (Rd ^ R) & (Rd ^ R) */ tcg_gen_xor_tl(t1, Rd, R); tcg_gen_xor_tl(t2, Rd, Rr); tcg_gen_and_tl(t1, t1, t2); tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ tcg_temp_free_i32(t2); tcg_temp_free_i32(t1); } static void gen_NSf(TCGv R) { tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ } static void gen_ZNSf(TCGv R) { tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ /* update status register */ tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ } /* * Adds two registers without the C Flag and places the result in the * destination register Rd. */ static bool trans_ADD(DisasContext *ctx, arg_ADD *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ /* update status register */ gen_add_CHf(R, Rd, Rr); gen_add_Vf(R, Rd, Rr); gen_ZNSf(R); /* update output registers */ tcg_gen_mov_tl(Rd, R); tcg_temp_free_i32(R); return true; } /* * Adds two registers and the contents of the C Flag and places the result in * the destination register Rd. */ static bool trans_ADC(DisasContext *ctx, arg_ADC *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */ tcg_gen_add_tl(R, R, cpu_Cf); tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ /* update status register */ gen_add_CHf(R, Rd, Rr); gen_add_Vf(R, Rd, Rr); gen_ZNSf(R); /* update output registers */ tcg_gen_mov_tl(Rd, R); tcg_temp_free_i32(R); return true; } /* * Adds an immediate value (0 - 63) to a register pair and places the result * in the register pair. This instruction operates on the upper four register * pairs, and is well suited for operations on the pointer registers. This * instruction is not available in all devices. Refer to the device specific * instruction set summary. */ static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a) { if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { return true; } TCGv RdL = cpu_r[a->rd]; TCGv RdH = cpu_r[a->rd + 1]; int Imm = (a->imm); TCGv R = tcg_temp_new_i32(); TCGv Rd = tcg_temp_new_i32(); tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ /* update status register */ tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */ tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */ /* update output registers */ tcg_gen_andi_tl(RdL, R, 0xff); tcg_gen_shri_tl(RdH, R, 8); tcg_temp_free_i32(Rd); tcg_temp_free_i32(R); return true; } /* * Subtracts two registers and places the result in the destination * register Rd. */ static bool trans_SUB(DisasContext *ctx, arg_SUB *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ /* update status register */ tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ gen_sub_CHf(R, Rd, Rr); gen_sub_Vf(R, Rd, Rr); gen_ZNSf(R); /* update output registers */ tcg_gen_mov_tl(Rd, R); tcg_temp_free_i32(R); return true; } /* * Subtracts a register and a constant and places the result in the * destination register Rd. This instruction is working on Register R16 to R31 * and is very well suited for operations on the X, Y, and Z-pointers. */ static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = tcg_const_i32(a->imm); TCGv R = tcg_temp_new_i32(); tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ /* update status register */ gen_sub_CHf(R, Rd, Rr); gen_sub_Vf(R, Rd, Rr); gen_ZNSf(R); /* update output registers */ tcg_gen_mov_tl(Rd, R); tcg_temp_free_i32(R); tcg_temp_free_i32(Rr); return true; } /* * Subtracts two registers and subtracts with the C Flag and places the * result in the destination register Rd. */ static bool trans_SBC(DisasContext *ctx, arg_SBC *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); TCGv zero = tcg_const_i32(0); tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ tcg_gen_sub_tl(R, R, cpu_Cf); tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ /* update status register */ gen_sub_CHf(R, Rd, Rr); gen_sub_Vf(R, Rd, Rr); gen_NSf(R); /* * Previous value remains unchanged when the result is zero; * cleared otherwise. */ tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); /* update output registers */ tcg_gen_mov_tl(Rd, R); tcg_temp_free_i32(zero); tcg_temp_free_i32(R); return true; } /* * SBCI -- Subtract Immediate with Carry */ static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = tcg_const_i32(a->imm); TCGv R = tcg_temp_new_i32(); TCGv zero = tcg_const_i32(0); tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ tcg_gen_sub_tl(R, R, cpu_Cf); tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ /* update status register */ gen_sub_CHf(R, Rd, Rr); gen_sub_Vf(R, Rd, Rr); gen_NSf(R); /* * Previous value remains unchanged when the result is zero; * cleared otherwise. */ tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); /* update output registers */ tcg_gen_mov_tl(Rd, R); tcg_temp_free_i32(zero); tcg_temp_free_i32(R); tcg_temp_free_i32(Rr); return true; } /* * Subtracts an immediate value (0-63) from a register pair and places the * result in the register pair. This instruction operates on the upper four * register pairs, and is well suited for operations on the Pointer Registers. * This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a) { if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { return true; } TCGv RdL = cpu_r[a->rd]; TCGv RdH = cpu_r[a->rd + 1]; int Imm = (a->imm); TCGv R = tcg_temp_new_i32(); TCGv Rd = tcg_temp_new_i32(); tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ /* update status register */ tcg_gen_andc_tl(cpu_Cf, R, Rd); tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */ tcg_gen_andc_tl(cpu_Vf, Rd, R); tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ /* update output registers */ tcg_gen_andi_tl(RdL, R, 0xff); tcg_gen_shri_tl(RdH, R, 8); tcg_temp_free_i32(Rd); tcg_temp_free_i32(R); return true; } /* * Performs the logical AND between the contents of register Rd and register * Rr and places the result in the destination register Rd. */ static bool trans_AND(DisasContext *ctx, arg_AND *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */ /* update status register */ tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ gen_ZNSf(R); /* update output registers */ tcg_gen_mov_tl(Rd, R); tcg_temp_free_i32(R); return true; } /* * Performs the logical AND between the contents of register Rd and a constant * and places the result in the destination register Rd. */ static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a) { TCGv Rd = cpu_r[a->rd]; int Imm = (a->imm); tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */ /* update status register */ tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ gen_ZNSf(Rd); return true; } /* * Performs the logical OR between the contents of register Rd and register * Rr and places the result in the destination register Rd. */ static bool trans_OR(DisasContext *ctx, arg_OR *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); tcg_gen_or_tl(R, Rd, Rr); /* update status register */ tcg_gen_movi_tl(cpu_Vf, 0); gen_ZNSf(R); /* update output registers */ tcg_gen_mov_tl(Rd, R); tcg_temp_free_i32(R); return true; } /* * Performs the logical OR between the contents of register Rd and a * constant and places the result in the destination register Rd. */ static bool trans_ORI(DisasContext *ctx, arg_ORI *a) { TCGv Rd = cpu_r[a->rd]; int Imm = (a->imm); tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */ /* update status register */ tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ gen_ZNSf(Rd); return true; } /* * Performs the logical EOR between the contents of register Rd and * register Rr and places the result in the destination register Rd. */ static bool trans_EOR(DisasContext *ctx, arg_EOR *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; tcg_gen_xor_tl(Rd, Rd, Rr); /* update status register */ tcg_gen_movi_tl(cpu_Vf, 0); gen_ZNSf(Rd); return true; } /* * Clears the specified bits in register Rd. Performs the logical AND * between the contents of register Rd and the complement of the constant mask * K. The result will be placed in register Rd. */ static bool trans_COM(DisasContext *ctx, arg_COM *a) { TCGv Rd = cpu_r[a->rd]; TCGv R = tcg_temp_new_i32(); tcg_gen_xori_tl(Rd, Rd, 0xff); /* update status register */ tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */ tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ gen_ZNSf(Rd); tcg_temp_free_i32(R); return true; } /* * Replaces the contents of register Rd with its two's complement; the * value $80 is left unchanged. */ static bool trans_NEG(DisasContext *ctx, arg_NEG *a) { TCGv Rd = cpu_r[a->rd]; TCGv t0 = tcg_const_i32(0); TCGv R = tcg_temp_new_i32(); tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ /* update status register */ gen_sub_CHf(R, t0, Rd); gen_sub_Vf(R, t0, Rd); gen_ZNSf(R); /* update output registers */ tcg_gen_mov_tl(Rd, R); tcg_temp_free_i32(t0); tcg_temp_free_i32(R); return true; } /* * Adds one -1- to the contents of register Rd and places the result in the * destination register Rd. The C Flag in SREG is not affected by the * operation, thus allowing the INC instruction to be used on a loop counter in * multiple-precision computations. When operating on unsigned numbers, only * BREQ and BRNE branches can be expected to perform consistently. When * operating on two's complement values, all signed branches are available. */ static bool trans_INC(DisasContext *ctx, arg_INC *a) { TCGv Rd = cpu_r[a->rd]; tcg_gen_addi_tl(Rd, Rd, 1); tcg_gen_andi_tl(Rd, Rd, 0xff); /* update status register */ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */ gen_ZNSf(Rd); return true; } /* * Subtracts one -1- from the contents of register Rd and places the result * in the destination register Rd. The C Flag in SREG is not affected by the * operation, thus allowing the DEC instruction to be used on a loop counter in * multiple-precision computations. When operating on unsigned values, only * BREQ and BRNE branches can be expected to perform consistently. When * operating on two's complement values, all signed branches are available. */ static bool trans_DEC(DisasContext *ctx, arg_DEC *a) { TCGv Rd = cpu_r[a->rd]; tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */ tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */ /* update status register */ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */ gen_ZNSf(Rd); return true; } /* * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication. */ static bool trans_MUL(DisasContext *ctx, arg_MUL *a) { if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { return true; } TCGv R0 = cpu_r[0]; TCGv R1 = cpu_r[1]; TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ tcg_gen_andi_tl(R0, R, 0xff); tcg_gen_shri_tl(R1, R, 8); /* update status register */ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ tcg_temp_free_i32(R); return true; } /* * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication. */ static bool trans_MULS(DisasContext *ctx, arg_MULS *a) { if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { return true; } TCGv R0 = cpu_r[0]; TCGv R1 = cpu_r[1]; TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); TCGv t0 = tcg_temp_new_i32(); TCGv t1 = tcg_temp_new_i32(); tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ tcg_gen_andi_tl(R0, R, 0xff); tcg_gen_shri_tl(R1, R, 8); /* update status register */ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); tcg_temp_free_i32(R); return true; } /* * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a * signed and an unsigned number. */ static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a) { if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { return true; } TCGv R0 = cpu_r[0]; TCGv R1 = cpu_r[1]; TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); TCGv t0 = tcg_temp_new_i32(); tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */ tcg_gen_andi_tl(R0, R, 0xff); tcg_gen_shri_tl(R1, R, 8); /* update status register */ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ tcg_temp_free_i32(t0); tcg_temp_free_i32(R); return true; } /* * This instruction performs 8-bit x 8-bit -> 16-bit unsigned * multiplication and shifts the result one bit left. */ static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a) { if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { return true; } TCGv R0 = cpu_r[0]; TCGv R1 = cpu_r[1]; TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ /* update status register */ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ /* update output registers */ tcg_gen_shli_tl(R, R, 1); tcg_gen_andi_tl(R0, R, 0xff); tcg_gen_shri_tl(R1, R, 8); tcg_gen_andi_tl(R1, R1, 0xff); tcg_temp_free_i32(R); return true; } /* * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication * and shifts the result one bit left. */ static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a) { if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { return true; } TCGv R0 = cpu_r[0]; TCGv R1 = cpu_r[1]; TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); TCGv t0 = tcg_temp_new_i32(); TCGv t1 = tcg_temp_new_i32(); tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ /* update status register */ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ /* update output registers */ tcg_gen_shli_tl(R, R, 1); tcg_gen_andi_tl(R0, R, 0xff); tcg_gen_shri_tl(R1, R, 8); tcg_gen_andi_tl(R1, R1, 0xff); tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); tcg_temp_free_i32(R); return true; } /* * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication * and shifts the result one bit left. */ static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a) { if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { return true; } TCGv R0 = cpu_r[0]; TCGv R1 = cpu_r[1]; TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); TCGv t0 = tcg_temp_new_i32(); tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ /* update status register */ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ /* update output registers */ tcg_gen_shli_tl(R, R, 1); tcg_gen_andi_tl(R0, R, 0xff); tcg_gen_shri_tl(R1, R, 8); tcg_gen_andi_tl(R1, R1, 0xff); tcg_temp_free_i32(t0); tcg_temp_free_i32(R); return true; } /* * The module is an instruction set extension to the AVR CPU, performing * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in * the CPU register file, registers R0-R7, where LSB of data is placed in LSB * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including * parity bits) is placed in registers R8- R15, organized in the register file * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES * instruction performs one round in the DES algorithm. Sixteen rounds must be * executed in increasing order to form the correct DES ciphertext or * plaintext. Intermediate results are stored in the register file (R0-R15) * after each DES instruction. The instruction's operand (K) determines which * round is executed, and the half carry flag (H) determines whether encryption * or decryption is performed. The DES algorithm is described in * "Specifications for the Data Encryption Standard" (Federal Information * Processing Standards Publication 46). Intermediate results in this * implementation differ from the standard because the initial permutation and * the inverse initial permutation are performed each iteration. This does not * affect the result in the final ciphertext or plaintext, but reduces * execution time. */ static bool trans_DES(DisasContext *ctx, arg_DES *a) { /* TODO */ if (!avr_have_feature(ctx, AVR_FEATURE_DES)) { return true; } qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); return true; } /* * Branch Instructions */ static void gen_jmp_ez(DisasContext *ctx) { tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind); ctx->base.is_jmp = DISAS_LOOKUP; } static void gen_jmp_z(DisasContext *ctx) { tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); ctx->base.is_jmp = DISAS_LOOKUP; } static void gen_push_ret(DisasContext *ctx, int ret) { if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { TCGv t0 = tcg_const_i32((ret & 0x0000ff)); tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB); tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); tcg_temp_free_i32(t0); } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { TCGv t0 = tcg_const_i32((ret & 0x00ffff)); tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW); tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); tcg_temp_free_i32(t0); } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { TCGv lo = tcg_const_i32((ret & 0x0000ff)); TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8); tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); tcg_gen_subi_tl(cpu_sp, cpu_sp, 2); tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); tcg_temp_free_i32(lo); tcg_temp_free_i32(hi); } } static void gen_pop_ret(DisasContext *ctx, TCGv ret) { if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB); } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW); tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { TCGv lo = tcg_temp_new_i32(); TCGv hi = tcg_temp_new_i32(); tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); tcg_gen_addi_tl(cpu_sp, cpu_sp, 2); tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); tcg_gen_deposit_tl(ret, lo, hi, 8, 16); tcg_temp_free_i32(lo); tcg_temp_free_i32(hi); } } static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) { const TranslationBlock *tb = ctx->base.tb; if (!ctx->base.singlestep_enabled) { tcg_gen_goto_tb(n); tcg_gen_movi_i32(cpu_pc, dest); tcg_gen_exit_tb(tb, n); } else { tcg_gen_movi_i32(cpu_pc, dest); gen_helper_debug(cpu_env); tcg_gen_exit_tb(NULL, 0); } ctx->base.is_jmp = DISAS_NORETURN; } /* * Relative jump to an address within PC - 2K +1 and PC + 2K (words). For * AVR microcontrollers with Program memory not exceeding 4K words (8KB) this * instruction can address the entire memory from every address location. See * also JMP. */ static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a) { int dst = ctx->npc + a->imm; gen_goto_tb(ctx, 0, dst); return true; } /* * Indirect jump to the address pointed to by the Z (16 bits) Pointer * Register in the Register File. The Z-pointer Register is 16 bits wide and * allows jump within the lowest 64K words (128KB) section of Program memory. * This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a) { if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { return true; } gen_jmp_z(ctx); return true; } /* * Indirect jump to the address pointed to by the Z (16 bits) Pointer * Register in the Register File and the EIND Register in the I/O space. This * instruction allows for indirect jumps to the entire 4M (words) Program * memory space. See also IJMP. This instruction is not available in all * devices. Refer to the device specific instruction set summary. */ static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a) { if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { return true; } gen_jmp_ez(ctx); return true; } /* * Jump to an address within the entire 4M (words) Program memory. See also * RJMP. This instruction is not available in all devices. Refer to the device * specific instruction set summary.0 */ static bool trans_JMP(DisasContext *ctx, arg_JMP *a) { if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { return true; } gen_goto_tb(ctx, 0, a->imm); return true; } /* * Relative call to an address within PC - 2K + 1 and PC + 2K (words). The * return address (the instruction after the RCALL) is stored onto the Stack. * See also CALL. For AVR microcontrollers with Program memory not exceeding 4K * words (8KB) this instruction can address the entire memory from every * address location. The Stack Pointer uses a post-decrement scheme during * RCALL. */ static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a) { int ret = ctx->npc; int dst = ctx->npc + a->imm; gen_push_ret(ctx, ret); gen_goto_tb(ctx, 0, dst); return true; } /* * Calls to a subroutine within the entire 4M (words) Program memory. The * return address (to the instruction after the CALL) will be stored onto the * Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during * CALL. This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a) { if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { return true; } int ret = ctx->npc; gen_push_ret(ctx, ret); gen_jmp_z(ctx); return true; } /* * Indirect call of a subroutine pointed to by the Z (16 bits) Pointer * Register in the Register File and the EIND Register in the I/O space. This * instruction allows for indirect calls to the entire 4M (words) Program * memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme * during EICALL. This instruction is not available in all devices. Refer to * the device specific instruction set summary. */ static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a) { if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { return true; } int ret = ctx->npc; gen_push_ret(ctx, ret); gen_jmp_ez(ctx); return true; } /* * Calls to a subroutine within the entire Program memory. The return * address (to the instruction after the CALL) will be stored onto the Stack. * (See also RCALL). The Stack Pointer uses a post-decrement scheme during * CALL. This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ static bool trans_CALL(DisasContext *ctx, arg_CALL *a) { if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { return true; } int Imm = a->imm; int ret = ctx->npc; gen_push_ret(ctx, ret); gen_goto_tb(ctx, 0, Imm); return true; } /* * Returns from subroutine. The return address is loaded from the STACK. * The Stack Pointer uses a preincrement scheme during RET. */ static bool trans_RET(DisasContext *ctx, arg_RET *a) { gen_pop_ret(ctx, cpu_pc); ctx->base.is_jmp = DISAS_LOOKUP; return true; } /* * Returns from interrupt. The return address is loaded from the STACK and * the Global Interrupt Flag is set. Note that the Status Register is not * automatically stored when entering an interrupt routine, and it is not * restored when returning from an interrupt routine. This must be handled by * the application program. The Stack Pointer uses a pre-increment scheme * during RETI. */ static bool trans_RETI(DisasContext *ctx, arg_RETI *a) { gen_pop_ret(ctx, cpu_pc); tcg_gen_movi_tl(cpu_If, 1); /* Need to return to main loop to re-evaluate interrupts. */ ctx->base.is_jmp = DISAS_EXIT; return true; } /* * This instruction performs a compare between two registers Rd and Rr, and * skips the next instruction if Rd = Rr. */ static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a) { ctx->skip_cond = TCG_COND_EQ; ctx->skip_var0 = cpu_r[a->rd]; ctx->skip_var1 = cpu_r[a->rr]; return true; } /* * This instruction performs a compare between two registers Rd and Rr. * None of the registers are changed. All conditional branches can be used * after this instruction. */ static bool trans_CP(DisasContext *ctx, arg_CP *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ /* update status register */ gen_sub_CHf(R, Rd, Rr); gen_sub_Vf(R, Rd, Rr); gen_ZNSf(R); tcg_temp_free_i32(R); return true; } /* * This instruction performs a compare between two registers Rd and Rr and * also takes into account the previous carry. None of the registers are * changed. All conditional branches can be used after this instruction. */ static bool trans_CPC(DisasContext *ctx, arg_CPC *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; TCGv R = tcg_temp_new_i32(); TCGv zero = tcg_const_i32(0); tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ tcg_gen_sub_tl(R, R, cpu_Cf); tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ /* update status register */ gen_sub_CHf(R, Rd, Rr); gen_sub_Vf(R, Rd, Rr); gen_NSf(R); /* * Previous value remains unchanged when the result is zero; * cleared otherwise. */ tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); tcg_temp_free_i32(zero); tcg_temp_free_i32(R); return true; } /* * This instruction performs a compare between register Rd and a constant. * The register is not changed. All conditional branches can be used after this * instruction. */ static bool trans_CPI(DisasContext *ctx, arg_CPI *a) { TCGv Rd = cpu_r[a->rd]; int Imm = a->imm; TCGv Rr = tcg_const_i32(Imm); TCGv R = tcg_temp_new_i32(); tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ /* update status register */ gen_sub_CHf(R, Rd, Rr); gen_sub_Vf(R, Rd, Rr); gen_ZNSf(R); tcg_temp_free_i32(R); tcg_temp_free_i32(Rr); return true; } /* * This instruction tests a single bit in a register and skips the next * instruction if the bit is cleared. */ static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a) { TCGv Rr = cpu_r[a->rr]; ctx->skip_cond = TCG_COND_EQ; ctx->skip_var0 = tcg_temp_new(); ctx->free_skip_var0 = true; tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); return true; } /* * This instruction tests a single bit in a register and skips the next * instruction if the bit is set. */ static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a) { TCGv Rr = cpu_r[a->rr]; ctx->skip_cond = TCG_COND_NE; ctx->skip_var0 = tcg_temp_new(); ctx->free_skip_var0 = true; tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); return true; } /* * This instruction tests a single bit in an I/O Register and skips the * next instruction if the bit is cleared. This instruction operates on the * lower 32 I/O Registers -- addresses 0-31. */ static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a) { TCGv temp = tcg_const_i32(a->reg); gen_helper_inb(temp, cpu_env, temp); tcg_gen_andi_tl(temp, temp, 1 << a->bit); ctx->skip_cond = TCG_COND_EQ; ctx->skip_var0 = temp; ctx->free_skip_var0 = true; return true; } /* * This instruction tests a single bit in an I/O Register and skips the * next instruction if the bit is set. This instruction operates on the lower * 32 I/O Registers -- addresses 0-31. */ static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a) { TCGv temp = tcg_const_i32(a->reg); gen_helper_inb(temp, cpu_env, temp); tcg_gen_andi_tl(temp, temp, 1 << a->bit); ctx->skip_cond = TCG_COND_NE; ctx->skip_var0 = temp; ctx->free_skip_var0 = true; return true; } /* * Conditional relative branch. Tests a single bit in SREG and branches * relatively to PC if the bit is cleared. This instruction branches relatively * to PC in either direction (PC - 63 < = destination <= PC + 64). The * parameter k is the offset from PC and is represented in two's complement * form. */ static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a) { TCGLabel *not_taken = gen_new_label(); TCGv var; switch (a->bit) { case 0x00: var = cpu_Cf; break; case 0x01: var = cpu_Zf; break; case 0x02: var = cpu_Nf; break; case 0x03: var = cpu_Vf; break; case 0x04: var = cpu_Sf; break; case 0x05: var = cpu_Hf; break; case 0x06: var = cpu_Tf; break; case 0x07: var = cpu_If; break; default: g_assert_not_reached(); } tcg_gen_brcondi_i32(TCG_COND_NE, var, 0, not_taken); gen_goto_tb(ctx, 0, ctx->npc + a->imm); gen_set_label(not_taken); ctx->base.is_jmp = DISAS_CHAIN; return true; } /* * Conditional relative branch. Tests a single bit in SREG and branches * relatively to PC if the bit is set. This instruction branches relatively to * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k * is the offset from PC and is represented in two's complement form. */ static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a) { TCGLabel *not_taken = gen_new_label(); TCGv var; switch (a->bit) { case 0x00: var = cpu_Cf; break; case 0x01: var = cpu_Zf; break; case 0x02: var = cpu_Nf; break; case 0x03: var = cpu_Vf; break; case 0x04: var = cpu_Sf; break; case 0x05: var = cpu_Hf; break; case 0x06: var = cpu_Tf; break; case 0x07: var = cpu_If; break; default: g_assert_not_reached(); } tcg_gen_brcondi_i32(TCG_COND_EQ, var, 0, not_taken); gen_goto_tb(ctx, 0, ctx->npc + a->imm); gen_set_label(not_taken); ctx->base.is_jmp = DISAS_CHAIN; return true; } /* * Data Transfer Instructions */ /* * in the gen_set_addr & gen_get_addr functions * H assumed to be in 0x00ff0000 format * M assumed to be in 0x000000ff format * L assumed to be in 0x000000ff format */ static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L) { tcg_gen_andi_tl(L, addr, 0x000000ff); tcg_gen_andi_tl(M, addr, 0x0000ff00); tcg_gen_shri_tl(M, M, 8); tcg_gen_andi_tl(H, addr, 0x00ff0000); } static void gen_set_xaddr(TCGv addr) { gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]); } static void gen_set_yaddr(TCGv addr) { gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]); } static void gen_set_zaddr(TCGv addr) { gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]); } static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L) { TCGv addr = tcg_temp_new_i32(); tcg_gen_deposit_tl(addr, M, H, 8, 8); tcg_gen_deposit_tl(addr, L, addr, 8, 16); return addr; } static TCGv gen_get_xaddr(void) { return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]); } static TCGv gen_get_yaddr(void) { return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]); } static TCGv gen_get_zaddr(void) { return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]); } /* * Load one byte indirect from data space to register and stores an clear * the bits in data space specified by the register. The instruction can only * be used towards internal SRAM. The data location is pointed to by the Z (16 * bits) Pointer Register in the Register File. Memory access is limited to the * current data segment of 64KB. To access another data segment in devices with * more than 64KB data space, the RAMPZ in register in the I/O area has to be * changed. The Z-pointer Register is left unchanged by the operation. This * instruction is especially suited for clearing status bits stored in SRAM. */ static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr) { if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) { gen_helper_fullwr(cpu_env, data, addr); } else { tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */ } } static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr) { if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) { gen_helper_fullrd(data, cpu_env, addr); } else { tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */ } } /* * This instruction makes a copy of one register into another. The source * register Rr is left unchanged, while the destination register Rd is loaded * with a copy of Rr. */ static bool trans_MOV(DisasContext *ctx, arg_MOV *a) { TCGv Rd = cpu_r[a->rd]; TCGv Rr = cpu_r[a->rr]; tcg_gen_mov_tl(Rd, Rr); return true; } /* * This instruction makes a copy of one register pair into another register * pair. The source register pair Rr+1:Rr is left unchanged, while the * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This * instruction is not available in all devices. Refer to the device specific * instruction set summary. */ static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a) { if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) { return true; } TCGv RdL = cpu_r[a->rd]; TCGv RdH = cpu_r[a->rd + 1]; TCGv RrL = cpu_r[a->rr]; TCGv RrH = cpu_r[a->rr + 1]; tcg_gen_mov_tl(RdH, RrH); tcg_gen_mov_tl(RdL, RrL); return true; } /* * Loads an 8 bit constant directly to register 16 to 31. */ static bool trans_LDI(DisasContext *ctx, arg_LDI *a) { TCGv Rd = cpu_r[a->rd]; int imm = a->imm; tcg_gen_movi_tl(Rd, imm); return true; } /* * Loads one byte from the data space to a register. For parts with SRAM, * the data space consists of the Register File, I/O memory and internal SRAM * (and external SRAM if applicable). For parts without SRAM, the data space * consists of the register file only. The EEPROM has a separate address space. * A 16-bit address must be supplied. Memory access is limited to the current * data segment of 64KB. The LDS instruction uses the RAMPD Register to access * memory above 64KB. To access another data segment in devices with more than * 64KB data space, the RAMPD in register in the I/O area has to be changed. * This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ static bool trans_LDS(DisasContext *ctx, arg_LDS *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = tcg_temp_new_i32(); TCGv H = cpu_rampD; a->imm = next_word(ctx); tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ tcg_gen_shli_tl(addr, addr, 16); tcg_gen_ori_tl(addr, addr, a->imm); gen_data_load(ctx, Rd, addr); tcg_temp_free_i32(addr); return true; } /* * Loads one byte indirect from the data space to a register. For parts * with SRAM, the data space consists of the Register File, I/O memory and * internal SRAM (and external SRAM if applicable). For parts without SRAM, the * data space consists of the Register File only. In some parts the Flash * Memory has been mapped to the data space and can be read using this command. * The EEPROM has a separate address space. The data location is pointed to by * the X (16 bits) Pointer Register in the Register File. Memory access is * limited to the current data segment of 64KB. To access another data segment * in devices with more than 64KB data space, the RAMPX in register in the I/O * area has to be changed. The X-pointer Register can either be left unchanged * by the operation, or it can be post-incremented or predecremented. These * features are especially suited for accessing arrays, tables, and Stack * Pointer usage of the X-pointer Register. Note that only the low byte of the * X-pointer is updated in devices with no more than 256 bytes data space. For * such devices, the high byte of the pointer is not used by this instruction * and can be used for other purposes. The RAMPX Register in the I/O area is * updated in parts with more than 64KB data space or more than 64KB Program * memory, and the increment/decrement is added to the entire 24-bit address on * such devices. Not all variants of this instruction is available in all * devices. Refer to the device specific instruction set summary. In the * Reduced Core tinyAVR the LD instruction can be used to achieve the same * operation as LPM since the program memory is mapped to the data memory * space. */ static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_xaddr(); gen_data_load(ctx, Rd, addr); tcg_temp_free_i32(addr); return true; } static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_xaddr(); gen_data_load(ctx, Rd, addr); tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ gen_set_xaddr(addr); tcg_temp_free_i32(addr); return true; } static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_xaddr(); tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ gen_data_load(ctx, Rd, addr); gen_set_xaddr(addr); tcg_temp_free_i32(addr); return true; } /* * Loads one byte indirect with or without displacement from the data space * to a register. For parts with SRAM, the data space consists of the Register * File, I/O memory and internal SRAM (and external SRAM if applicable). For * parts without SRAM, the data space consists of the Register File only. In * some parts the Flash Memory has been mapped to the data space and can be * read using this command. The EEPROM has a separate address space. The data * location is pointed to by the Y (16 bits) Pointer Register in the Register * File. Memory access is limited to the current data segment of 64KB. To * access another data segment in devices with more than 64KB data space, the * RAMPY in register in the I/O area has to be changed. The Y-pointer Register * can either be left unchanged by the operation, or it can be post-incremented * or predecremented. These features are especially suited for accessing * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that * only the low byte of the Y-pointer is updated in devices with no more than * 256 bytes data space. For such devices, the high byte of the pointer is not * used by this instruction and can be used for other purposes. The RAMPY * Register in the I/O area is updated in parts with more than 64KB data space * or more than 64KB Program memory, and the increment/decrement/displacement * is added to the entire 24-bit address on such devices. Not all variants of * this instruction is available in all devices. Refer to the device specific * instruction set summary. In the Reduced Core tinyAVR the LD instruction can * be used to achieve the same operation as LPM since the program memory is * mapped to the data memory space. */ static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_yaddr(); gen_data_load(ctx, Rd, addr); tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ gen_set_yaddr(addr); tcg_temp_free_i32(addr); return true; } static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_yaddr(); tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ gen_data_load(ctx, Rd, addr); gen_set_yaddr(addr); tcg_temp_free_i32(addr); return true; } static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_yaddr(); tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ gen_data_load(ctx, Rd, addr); tcg_temp_free_i32(addr); return true; } /* * Loads one byte indirect with or without displacement from the data space * to a register. For parts with SRAM, the data space consists of the Register * File, I/O memory and internal SRAM (and external SRAM if applicable). For * parts without SRAM, the data space consists of the Register File only. In * some parts the Flash Memory has been mapped to the data space and can be * read using this command. The EEPROM has a separate address space. The data * location is pointed to by the Z (16 bits) Pointer Register in the Register * File. Memory access is limited to the current data segment of 64KB. To * access another data segment in devices with more than 64KB data space, the * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register * can either be left unchanged by the operation, or it can be post-incremented * or predecremented. These features are especially suited for Stack Pointer * usage of the Z-pointer Register, however because the Z-pointer Register can * be used for indirect subroutine calls, indirect jumps and table lookup, it * is often more convenient to use the X or Y-pointer as a dedicated Stack * Pointer. Note that only the low byte of the Z-pointer is updated in devices * with no more than 256 bytes data space. For such devices, the high byte of * the pointer is not used by this instruction and can be used for other * purposes. The RAMPZ Register in the I/O area is updated in parts with more * than 64KB data space or more than 64KB Program memory, and the * increment/decrement/displacement is added to the entire 24-bit address on * such devices. Not all variants of this instruction is available in all * devices. Refer to the device specific instruction set summary. In the * Reduced Core tinyAVR the LD instruction can be used to achieve the same * operation as LPM since the program memory is mapped to the data memory * space. For using the Z-pointer for table lookup in Program memory see the * LPM and ELPM instructions. */ static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_zaddr(); gen_data_load(ctx, Rd, addr); tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ gen_set_zaddr(addr); tcg_temp_free_i32(addr); return true; } static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_zaddr(); tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ gen_data_load(ctx, Rd, addr); gen_set_zaddr(addr); tcg_temp_free_i32(addr); return true; } static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_zaddr(); tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ gen_data_load(ctx, Rd, addr); tcg_temp_free_i32(addr); return true; } /* * Stores one byte from a Register to the data space. For parts with SRAM, * the data space consists of the Register File, I/O memory and internal SRAM * (and external SRAM if applicable). For parts without SRAM, the data space * consists of the Register File only. The EEPROM has a separate address space. * A 16-bit address must be supplied. Memory access is limited to the current * data segment of 64KB. The STS instruction uses the RAMPD Register to access * memory above 64KB. To access another data segment in devices with more than * 64KB data space, the RAMPD in register in the I/O area has to be changed. * This instruction is not available in all devices. Refer to the device * specific instruction set summary. */ static bool trans_STS(DisasContext *ctx, arg_STS *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = tcg_temp_new_i32(); TCGv H = cpu_rampD; a->imm = next_word(ctx); tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ tcg_gen_shli_tl(addr, addr, 16); tcg_gen_ori_tl(addr, addr, a->imm); gen_data_store(ctx, Rd, addr); tcg_temp_free_i32(addr); return true; } /* * Stores one byte indirect from a register to data space. For parts with SRAM, * the data space consists of the Register File, I/O memory, and internal SRAM * (and external SRAM if applicable). For parts without SRAM, the data space * consists of the Register File only. The EEPROM has a separate address space. * * The data location is pointed to by the X (16 bits) Pointer Register in the * Register File. Memory access is limited to the current data segment of 64KB. * To access another data segment in devices with more than 64KB data space, the * RAMPX in register in the I/O area has to be changed. * * The X-pointer Register can either be left unchanged by the operation, or it * can be post-incremented or pre-decremented. These features are especially * suited for accessing arrays, tables, and Stack Pointer usage of the * X-pointer Register. Note that only the low byte of the X-pointer is updated * in devices with no more than 256 bytes data space. For such devices, the high * byte of the pointer is not used by this instruction and can be used for other * purposes. The RAMPX Register in the I/O area is updated in parts with more * than 64KB data space or more than 64KB Program memory, and the increment / * decrement is added to the entire 24-bit address on such devices. */ static bool trans_STX1(DisasContext *ctx, arg_STX1 *a) { TCGv Rd = cpu_r[a->rr]; TCGv addr = gen_get_xaddr(); gen_data_store(ctx, Rd, addr); tcg_temp_free_i32(addr); return true; } static bool trans_STX2(DisasContext *ctx, arg_STX2 *a) { TCGv Rd = cpu_r[a->rr]; TCGv addr = gen_get_xaddr(); gen_data_store(ctx, Rd, addr); tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ gen_set_xaddr(addr); tcg_temp_free_i32(addr); return true; } static bool trans_STX3(DisasContext *ctx, arg_STX3 *a) { TCGv Rd = cpu_r[a->rr]; TCGv addr = gen_get_xaddr(); tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ gen_data_store(ctx, Rd, addr); gen_set_xaddr(addr); tcg_temp_free_i32(addr); return true; } /* * Stores one byte indirect with or without displacement from a register to data * space. For parts with SRAM, the data space consists of the Register File, I/O * memory, and internal SRAM (and external SRAM if applicable). For parts * without SRAM, the data space consists of the Register File only. The EEPROM * has a separate address space. * * The data location is pointed to by the Y (16 bits) Pointer Register in the * Register File. Memory access is limited to the current data segment of 64KB. * To access another data segment in devices with more than 64KB data space, the * RAMPY in register in the I/O area has to be changed. * * The Y-pointer Register can either be left unchanged by the operation, or it * can be post-incremented or pre-decremented. These features are especially * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer * Register. Note that only the low byte of the Y-pointer is updated in devices * with no more than 256 bytes data space. For such devices, the high byte of * the pointer is not used by this instruction and can be used for other * purposes. The RAMPY Register in the I/O area is updated in parts with more * than 64KB data space or more than 64KB Program memory, and the increment / * decrement / displacement is added to the entire 24-bit address on such * devices. */ static bool trans_STY2(DisasContext *ctx, arg_STY2 *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_yaddr(); gen_data_store(ctx, Rd, addr); tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ gen_set_yaddr(addr); tcg_temp_free_i32(addr); return true; } static bool trans_STY3(DisasContext *ctx, arg_STY3 *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_yaddr(); tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ gen_data_store(ctx, Rd, addr); gen_set_yaddr(addr); tcg_temp_free_i32(addr); return true; } static bool trans_STDY(DisasContext *ctx, arg_STDY *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_yaddr(); tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ gen_data_store(ctx, Rd, addr); tcg_temp_free_i32(addr); return true; } /* * Stores one byte indirect with or without displacement from a register to data * space. For parts with SRAM, the data space consists of the Register File, I/O * memory, and internal SRAM (and external SRAM if applicable). For parts * without SRAM, the data space consists of the Register File only. The EEPROM * has a separate address space. * * The data location is pointed to by the Y (16 bits) Pointer Register in the * Register File. Memory access is limited to the current data segment of 64KB. * To access another data segment in devices with more than 64KB data space, the * RAMPY in register in the I/O area has to be changed. * * The Y-pointer Register can either be left unchanged by the operation, or it * can be post-incremented or pre-decremented. These features are especially * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer * Register. Note that only the low byte of the Y-pointer is updated in devices * with no more than 256 bytes data space. For such devices, the high byte of * the pointer is not used by this instruction and can be used for other * purposes. The RAMPY Register in the I/O area is updated in parts with more * than 64KB data space or more than 64KB Program memory, and the increment / * decrement / displacement is added to the entire 24-bit address on such * devices. */ static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_zaddr(); gen_data_store(ctx, Rd, addr); tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ gen_set_zaddr(addr); tcg_temp_free_i32(addr); return true; } static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_zaddr(); tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ gen_data_store(ctx, Rd, addr); gen_set_zaddr(addr); tcg_temp_free_i32(addr); return true; } static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a) { TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_zaddr(); tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ gen_data_store(ctx, Rd, addr); tcg_temp_free_i32(addr); return true; } /* * Loads one byte pointed to by the Z-register into the destination * register Rd. This instruction features a 100% space effective constant * initialization or constant data fetch. The Program memory is organized in * 16-bit words while the Z-pointer is a byte address. Thus, the least * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of * Program memory. The Zpointer Register can either be left unchanged by the * operation, or it can be incremented. The incrementation does not apply to * the RAMPZ Register. * * Devices with Self-Programming capability can use the LPM instruction to read * the Fuse and Lock bit values. */ static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a) { if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { return true; } TCGv Rd = cpu_r[0]; TCGv addr = tcg_temp_new_i32(); TCGv H = cpu_r[31]; TCGv L = cpu_r[30]; tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ tcg_gen_or_tl(addr, addr, L); tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ tcg_temp_free_i32(addr); return true; } static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a) { if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { return true; } TCGv Rd = cpu_r[a->rd]; TCGv addr = tcg_temp_new_i32(); TCGv H = cpu_r[31]; TCGv L = cpu_r[30]; tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ tcg_gen_or_tl(addr, addr, L); tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ tcg_temp_free_i32(addr); return true; } static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a) { if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) { return true; } TCGv Rd = cpu_r[a->rd]; TCGv addr = tcg_temp_new_i32(); TCGv H = cpu_r[31]; TCGv L = cpu_r[30]; tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ tcg_gen_or_tl(addr, addr, L); tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ tcg_gen_andi_tl(L, addr, 0xff); tcg_gen_shri_tl(addr, addr, 8); tcg_gen_andi_tl(H, addr, 0xff); tcg_temp_free_i32(addr); return true; } /* * Loads one byte pointed to by the Z-register and the RAMPZ Register in * the I/O space, and places this byte in the destination register Rd. This * instruction features a 100% space effective constant initialization or * constant data fetch. The Program memory is organized in 16-bit words while * the Z-pointer is a byte address. Thus, the least significant bit of the * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This * instruction can address the entire Program memory space. The Z-pointer * Register can either be left unchanged by the operation, or it can be * incremented. The incrementation applies to the entire 24-bit concatenation * of the RAMPZ and Z-pointer Registers. * * Devices with Self-Programming capability can use the ELPM instruction to * read the Fuse and Lock bit value. */ static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a) { if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { return true; } TCGv Rd = cpu_r[0]; TCGv addr = gen_get_zaddr(); tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ tcg_temp_free_i32(addr); return true; } static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a) { if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { return true; } TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_zaddr(); tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ tcg_temp_free_i32(addr); return true; } static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a) { if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) { return true; } TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_zaddr(); tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ gen_set_zaddr(addr); tcg_temp_free_i32(addr); return true; } /* * SPM can be used to erase a page in the Program memory, to write a page * in the Program memory (that is already erased), and to set Boot Loader Lock * bits. In some devices, the Program memory can be written one word at a time, * in other devices an entire page can be programmed simultaneously after first * filling a temporary page buffer. In all cases, the Program memory must be * erased one page at a time. When erasing the Program memory, the RAMPZ and * Z-register are used as page address. When writing the Program memory, the * RAMPZ and Z-register are used as page or word address, and the R1:R0 * register pair is used as data(1). When setting the Boot Loader Lock bits, * the R1:R0 register pair is used as data. Refer to the device documentation * for detailed description of SPM usage. This instruction can address the * entire Program memory. * * The SPM instruction is not available in all devices. Refer to the device * specific instruction set summary. * * Note: 1. R1 determines the instruction high byte, and R0 determines the * instruction low byte. */ static bool trans_SPM(DisasContext *ctx, arg_SPM *a) { /* TODO */ if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) { return true; } return true; } static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a) { /* TODO */ if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) { return true; } return true; } /* * Loads data from the I/O Space (Ports, Timers, Configuration Registers, * etc.) into register Rd in the Register File. */ static bool trans_IN(DisasContext *ctx, arg_IN *a) { TCGv Rd = cpu_r[a->rd]; TCGv port = tcg_const_i32(a->imm); gen_helper_inb(Rd, cpu_env, port); tcg_temp_free_i32(port); return true; } /* * Stores data from register Rr in the Register File to I/O Space (Ports, * Timers, Configuration Registers, etc.). */ static bool trans_OUT(DisasContext *ctx, arg_OUT *a) { TCGv Rd = cpu_r[a->rd]; TCGv port = tcg_const_i32(a->imm); gen_helper_outb(cpu_env, port, Rd); tcg_temp_free_i32(port); return true; } /* * This instruction stores the contents of register Rr on the STACK. The * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is * not available in all devices. Refer to the device specific instruction set * summary. */ static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a) { TCGv Rd = cpu_r[a->rd]; gen_data_store(ctx, Rd, cpu_sp); tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); return true; } /* * This instruction loads register Rd with a byte from the STACK. The Stack * Pointer is pre-incremented by 1 before the POP. This instruction is not * available in all devices. Refer to the device specific instruction set * summary. */ static bool trans_POP(DisasContext *ctx, arg_POP *a) { /* * Using a temp to work around some strange behaviour: * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); * gen_data_load(ctx, Rd, cpu_sp); * seems to cause the add to happen twice. * This doesn't happen if either the add or the load is removed. */ TCGv t1 = tcg_temp_new_i32(); TCGv Rd = cpu_r[a->rd]; tcg_gen_addi_tl(t1, cpu_sp, 1); gen_data_load(ctx, Rd, t1); tcg_gen_mov_tl(cpu_sp, t1); return true; } /* * Exchanges one byte indirect between register and data space. The data * location is pointed to by the Z (16 bits) Pointer Register in the Register * File. Memory access is limited to the current data segment of 64KB. To * access another data segment in devices with more than 64KB data space, the * RAMPZ in register in the I/O area has to be changed. * * The Z-pointer Register is left unchanged by the operation. This instruction * is especially suited for writing/reading status bits stored in SRAM. */ static bool trans_XCH(DisasContext *ctx, arg_XCH *a) { if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { return true; } TCGv Rd = cpu_r[a->rd]; TCGv t0 = tcg_temp_new_i32(); TCGv addr = gen_get_zaddr(); gen_data_load(ctx, t0, addr); gen_data_store(ctx, Rd, addr); tcg_gen_mov_tl(Rd, t0); tcg_temp_free_i32(t0); tcg_temp_free_i32(addr); return true; } /* * Load one byte indirect from data space to register and set bits in data * space specified by the register. The instruction can only be used towards * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer * Register in the Register File. Memory access is limited to the current data * segment of 64KB. To access another data segment in devices with more than * 64KB data space, the RAMPZ in register in the I/O area has to be changed. * * The Z-pointer Register is left unchanged by the operation. This instruction * is especially suited for setting status bits stored in SRAM. */ static bool trans_LAS(DisasContext *ctx, arg_LAS *a) { if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { return true; } TCGv Rr = cpu_r[a->rd]; TCGv addr = gen_get_zaddr(); TCGv t0 = tcg_temp_new_i32(); TCGv t1 = tcg_temp_new_i32(); gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ tcg_gen_or_tl(t1, t0, Rr); tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); tcg_temp_free_i32(addr); return true; } /* * Load one byte indirect from data space to register and stores and clear * the bits in data space specified by the register. The instruction can * only be used towards internal SRAM. The data location is pointed to by * the Z (16 bits) Pointer Register in the Register File. Memory access is * limited to the current data segment of 64KB. To access another data * segment in devices with more than 64KB data space, the RAMPZ in register * in the I/O area has to be changed. * * The Z-pointer Register is left unchanged by the operation. This instruction * is especially suited for clearing status bits stored in SRAM. */ static bool trans_LAC(DisasContext *ctx, arg_LAC *a) { if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { return true; } TCGv Rr = cpu_r[a->rd]; TCGv addr = gen_get_zaddr(); TCGv t0 = tcg_temp_new_i32(); TCGv t1 = tcg_temp_new_i32(); gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */ tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); tcg_temp_free_i32(addr); return true; } /* * Load one byte indirect from data space to register and toggles bits in * the data space specified by the register. The instruction can only be used * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer * Register in the Register File. Memory access is limited to the current data * segment of 64KB. To access another data segment in devices with more than * 64KB data space, the RAMPZ in register in the I/O area has to be changed. * * The Z-pointer Register is left unchanged by the operation. This instruction * is especially suited for changing status bits stored in SRAM. */ static bool trans_LAT(DisasContext *ctx, arg_LAT *a) { if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { return true; } TCGv Rd = cpu_r[a->rd]; TCGv addr = gen_get_zaddr(); TCGv t0 = tcg_temp_new_i32(); TCGv t1 = tcg_temp_new_i32(); gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ tcg_gen_xor_tl(t1, t0, Rd); tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); tcg_temp_free_i32(addr); return true; } /* * Bit and Bit-test Instructions */ static void gen_rshift_ZNVSf(TCGv R) { tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf); tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ } /* * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is * loaded into the C Flag of the SREG. This operation effectively divides an * unsigned value by two. The C Flag can be used to round the result. */ static bool trans_LSR(DisasContext *ctx, arg_LSR *a) { TCGv Rd = cpu_r[a->rd]; tcg_gen_andi_tl(cpu_Cf, Rd, 1); tcg_gen_shri_tl(Rd, Rd, 1); /* update status register */ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */ tcg_gen_movi_tl(cpu_Nf, 0); tcg_gen_mov_tl(cpu_Vf, cpu_Cf); tcg_gen_mov_tl(cpu_Sf, cpu_Vf); return true; } /* * Shifts all bits in Rd one place to the right. The C Flag is shifted into * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined * with ASR, effectively divides multi-byte signed values by two. Combined with * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag * can be used to round the result. */ static bool trans_ROR(DisasContext *ctx, arg_ROR *a) { TCGv Rd = cpu_r[a->rd]; TCGv t0 = tcg_temp_new_i32(); tcg_gen_shli_tl(t0, cpu_Cf, 7); /* update status register */ tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* update output register */ tcg_gen_shri_tl(Rd, Rd, 1); tcg_gen_or_tl(Rd, Rd, t0); /* update status register */ gen_rshift_ZNVSf(Rd); tcg_temp_free_i32(t0); return true; } /* * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 * is loaded into the C Flag of the SREG. This operation effectively divides a * signed value by two without changing its sign. The Carry Flag can be used to * round the result. */ static bool trans_ASR(DisasContext *ctx, arg_ASR *a) { TCGv Rd = cpu_r[a->rd]; TCGv t0 = tcg_temp_new_i32(); /* update status register */ tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */ /* update output register */ tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */ tcg_gen_shri_tl(Rd, Rd, 1); tcg_gen_or_tl(Rd, Rd, t0); /* update status register */ gen_rshift_ZNVSf(Rd); tcg_temp_free_i32(t0); return true; } /* * Swaps high and low nibbles in a register. */ static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a) { TCGv Rd = cpu_r[a->rd]; TCGv t0 = tcg_temp_new_i32(); TCGv t1 = tcg_temp_new_i32(); tcg_gen_andi_tl(t0, Rd, 0x0f); tcg_gen_shli_tl(t0, t0, 4); tcg_gen_andi_tl(t1, Rd, 0xf0); tcg_gen_shri_tl(t1, t1, 4); tcg_gen_or_tl(Rd, t0, t1); tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); return true; } /* * Sets a specified bit in an I/O Register. This instruction operates on * the lower 32 I/O Registers -- addresses 0-31. */ static bool trans_SBI(DisasContext *ctx, arg_SBI *a) { TCGv data = tcg_temp_new_i32(); TCGv port = tcg_const_i32(a->reg); gen_helper_inb(data, cpu_env, port); tcg_gen_ori_tl(data, data, 1 << a->bit); gen_helper_outb(cpu_env, port, data); tcg_temp_free_i32(port); tcg_temp_free_i32(data); return true; } /* * Clears a specified bit in an I/O Register. This instruction operates on * the lower 32 I/O Registers -- addresses 0-31. */ static bool trans_CBI(DisasContext *ctx, arg_CBI *a) { TCGv data = tcg_temp_new_i32(); TCGv port = tcg_const_i32(a->reg); gen_helper_inb(data, cpu_env, port); tcg_gen_andi_tl(data, data, ~(1 << a->bit)); gen_helper_outb(cpu_env, port, data); tcg_temp_free_i32(data); tcg_temp_free_i32(port); return true; } /* * Stores bit b from Rd to the T Flag in SREG (Status Register). */ static bool trans_BST(DisasContext *ctx, arg_BST *a) { TCGv Rd = cpu_r[a->rd]; tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit); tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit); return true; } /* * Copies the T Flag in the SREG (Status Register) to bit b in register Rd. */ static bool trans_BLD(DisasContext *ctx, arg_BLD *a) { TCGv Rd = cpu_r[a->rd]; TCGv t1 = tcg_temp_new_i32(); tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */ tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */ tcg_gen_or_tl(Rd, Rd, t1); tcg_temp_free_i32(t1); return true; } /* * Sets a single Flag or bit in SREG. */ static bool trans_BSET(DisasContext *ctx, arg_BSET *a) { switch (a->bit) { case 0x00: tcg_gen_movi_tl(cpu_Cf, 0x01); break; case 0x01: tcg_gen_movi_tl(cpu_Zf, 0x01); break; case 0x02: tcg_gen_movi_tl(cpu_Nf, 0x01); break; case 0x03: tcg_gen_movi_tl(cpu_Vf, 0x01); break; case 0x04: tcg_gen_movi_tl(cpu_Sf, 0x01); break; case 0x05: tcg_gen_movi_tl(cpu_Hf, 0x01); break; case 0x06: tcg_gen_movi_tl(cpu_Tf, 0x01); break; case 0x07: tcg_gen_movi_tl(cpu_If, 0x01); break; } return true; } /* * Clears a single Flag in SREG. */ static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a) { switch (a->bit) { case 0x00: tcg_gen_movi_tl(cpu_Cf, 0x00); break; case 0x01: tcg_gen_movi_tl(cpu_Zf, 0x00); break; case 0x02: tcg_gen_movi_tl(cpu_Nf, 0x00); break; case 0x03: tcg_gen_movi_tl(cpu_Vf, 0x00); break; case 0x04: tcg_gen_movi_tl(cpu_Sf, 0x00); break; case 0x05: tcg_gen_movi_tl(cpu_Hf, 0x00); break; case 0x06: tcg_gen_movi_tl(cpu_Tf, 0x00); break; case 0x07: tcg_gen_movi_tl(cpu_If, 0x00); break; } return true; } /* * MCU Control Instructions */ /* * The BREAK instruction is used by the On-chip Debug system, and is * normally not used in the application software. When the BREAK instruction is * executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip * Debugger access to internal resources. If any Lock bits are set, or either * the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK * instruction as a NOP and will not enter the Stopped mode. This instruction * is not available in all devices. Refer to the device specific instruction * set summary. */ static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a) { if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) { return true; } #ifdef BREAKPOINT_ON_BREAK tcg_gen_movi_tl(cpu_pc, ctx->npc - 1); gen_helper_debug(cpu_env); ctx->base.is_jmp = DISAS_EXIT; #else /* NOP */ #endif return true; } /* * This instruction performs a single cycle No Operation. */ static bool trans_NOP(DisasContext *ctx, arg_NOP *a) { /* NOP */ return true; } /* * This instruction sets the circuit in sleep mode defined by the MCU * Control Register. */ static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a) { gen_helper_sleep(cpu_env); ctx->base.is_jmp = DISAS_NORETURN; return true; } /* * This instruction resets the Watchdog Timer. This instruction must be * executed within a limited time given by the WD prescaler. See the Watchdog * Timer hardware specification. */ static bool trans_WDR(DisasContext *ctx, arg_WDR *a) { gen_helper_wdr(cpu_env); return true; } /* * Core translation mechanism functions: * * - translate() * - canonicalize_skip() * - gen_intermediate_code() * - restore_state_to_opc() * */ static void translate(DisasContext *ctx) { uint32_t opcode = next_word(ctx); if (!decode_insn(ctx, opcode)) { gen_helper_unsupported(cpu_env); ctx->base.is_jmp = DISAS_NORETURN; } } /* Standardize the cpu_skip condition to NE. */ static bool canonicalize_skip(DisasContext *ctx) { switch (ctx->skip_cond) { case TCG_COND_NEVER: /* Normal case: cpu_skip is known to be false. */ return false; case TCG_COND_ALWAYS: /* * Breakpoint case: cpu_skip is known to be true, via TB_FLAGS_SKIP. * The breakpoint is on the instruction being skipped, at the start * of the TranslationBlock. No need to update. */ return false; case TCG_COND_NE: if (ctx->skip_var1 == NULL) { tcg_gen_mov_tl(cpu_skip, ctx->skip_var0); } else { tcg_gen_xor_tl(cpu_skip, ctx->skip_var0, ctx->skip_var1); ctx->skip_var1 = NULL; } break; default: /* Convert to a NE condition vs 0. */ if (ctx->skip_var1 == NULL) { tcg_gen_setcondi_tl(ctx->skip_cond, cpu_skip, ctx->skip_var0, 0); } else { tcg_gen_setcond_tl(ctx->skip_cond, cpu_skip, ctx->skip_var0, ctx->skip_var1); ctx->skip_var1 = NULL; } ctx->skip_cond = TCG_COND_NE; break; } if (ctx->free_skip_var0) { tcg_temp_free(ctx->skip_var0); ctx->free_skip_var0 = false; } ctx->skip_var0 = cpu_skip; return true; } void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) { CPUAVRState *env = cs->env_ptr; DisasContext ctx = { .base.tb = tb, .base.is_jmp = DISAS_NEXT, .base.pc_first = tb->pc, .base.pc_next = tb->pc, .base.singlestep_enabled = cs->singlestep_enabled, .cs = cs, .env = env, .memidx = 0, .skip_cond = TCG_COND_NEVER, }; target_ulong pc_start = tb->pc / 2; int num_insns = 0; if (tb->flags & TB_FLAGS_FULL_ACCESS) { /* * This flag is set by ST/LD instruction we will regenerate it ONLY * with mem/cpu memory access instead of mem access */ max_insns = 1; } if (ctx.base.singlestep_enabled) { max_insns = 1; } gen_tb_start(tb); ctx.npc = pc_start; if (tb->flags & TB_FLAGS_SKIP) { ctx.skip_cond = TCG_COND_ALWAYS; ctx.skip_var0 = cpu_skip; } do { TCGLabel *skip_label = NULL; /* translate current instruction */ tcg_gen_insn_start(ctx.npc); num_insns++; /* * this is due to some strange GDB behavior * let's assume main has address 0x100 * b main - sets breakpoint at address 0x00000100 (code) * b *0x100 - sets breakpoint at address 0x00800100 (data) */ if (unlikely(!ctx.base.singlestep_enabled && (cpu_breakpoint_test(cs, OFFSET_CODE + ctx.npc * 2, BP_ANY) || cpu_breakpoint_test(cs, OFFSET_DATA + ctx.npc * 2, BP_ANY)))) { canonicalize_skip(&ctx); tcg_gen_movi_tl(cpu_pc, ctx.npc); gen_helper_debug(cpu_env); goto done_generating; } /* Conditionally skip the next instruction, if indicated. */ if (ctx.skip_cond != TCG_COND_NEVER) { skip_label = gen_new_label(); if (ctx.skip_var0 == cpu_skip) { /* * Copy cpu_skip so that we may zero it before the branch. * This ensures that cpu_skip is non-zero after the label * if and only if the skipped insn itself sets a skip. */ ctx.free_skip_var0 = true; ctx.skip_var0 = tcg_temp_new(); tcg_gen_mov_tl(ctx.skip_var0, cpu_skip); tcg_gen_movi_tl(cpu_skip, 0); } if (ctx.skip_var1 == NULL) { tcg_gen_brcondi_tl(ctx.skip_cond, ctx.skip_var0, 0, skip_label); } else { tcg_gen_brcond_tl(ctx.skip_cond, ctx.skip_var0, ctx.skip_var1, skip_label); ctx.skip_var1 = NULL; } if (ctx.free_skip_var0) { tcg_temp_free(ctx.skip_var0); ctx.free_skip_var0 = false; } ctx.skip_cond = TCG_COND_NEVER; ctx.skip_var0 = NULL; } translate(&ctx); if (skip_label) { canonicalize_skip(&ctx); gen_set_label(skip_label); if (ctx.base.is_jmp == DISAS_NORETURN) { ctx.base.is_jmp = DISAS_CHAIN; } } } while (ctx.base.is_jmp == DISAS_NEXT && num_insns < max_insns && (ctx.npc - pc_start) * 2 < TARGET_PAGE_SIZE - 4 && !tcg_op_buf_full()); if (tb->cflags & CF_LAST_IO) { gen_io_end(); } bool nonconst_skip = canonicalize_skip(&ctx); switch (ctx.base.is_jmp) { case DISAS_NORETURN: assert(!nonconst_skip); break; case DISAS_NEXT: case DISAS_TOO_MANY: case DISAS_CHAIN: if (!nonconst_skip) { /* Note gen_goto_tb checks singlestep. */ gen_goto_tb(&ctx, 1, ctx.npc); break; } tcg_gen_movi_tl(cpu_pc, ctx.npc); /* fall through */ case DISAS_LOOKUP: if (!ctx.base.singlestep_enabled) { tcg_gen_lookup_and_goto_ptr(); break; } /* fall through */ case DISAS_EXIT: if (ctx.base.singlestep_enabled) { gen_helper_debug(cpu_env); } else { tcg_gen_exit_tb(NULL, 0); } break; default: g_assert_not_reached(); } done_generating: gen_tb_end(tb, num_insns); tb->size = (ctx.npc - pc_start) * 2; tb->icount = num_insns; #ifdef DEBUG_DISAS if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) && qemu_log_in_addr_range(tb->pc)) { FILE *fd; fd = qemu_log_lock(); qemu_log("IN: %s\n", lookup_symbol(tb->pc)); log_target_disas(cs, tb->pc, tb->size); qemu_log("\n"); qemu_log_unlock(fd); } #endif } void restore_state_to_opc(CPUAVRState *env, TranslationBlock *tb, target_ulong *data) { env->pc_w = data[0]; }