/* * QEMU AVR CPU * * Copyright (c) 2016-2020 Michael Rolnik * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see * */ #ifndef QEMU_AVR_CPU_H #define QEMU_AVR_CPU_H #include "cpu-qom.h" #include "exec/cpu-defs.h" #ifdef CONFIG_USER_ONLY #error "AVR 8-bit does not support user mode" #endif #define CPU_RESOLVING_TYPE TYPE_AVR_CPU #define TCG_GUEST_DEFAULT_MO 0 /* * AVR has two memory spaces, data & code. * e.g. both have 0 address * ST/LD instructions access data space * LPM/SPM and instruction fetching access code memory space */ #define MMU_CODE_IDX 0 #define MMU_DATA_IDX 1 #define EXCP_RESET 1 #define EXCP_INT(n) (EXCP_RESET + (n) + 1) /* Number of CPU registers */ #define NUMBER_OF_CPU_REGISTERS 32 /* Number of IO registers accessible by ld/st/in/out */ #define NUMBER_OF_IO_REGISTERS 64 /* * Offsets of AVR memory regions in host memory space. * * This is needed because the AVR has separate code and data address * spaces that both have start from zero but have to go somewhere in * host memory. * * It's also useful to know where some things are, like the IO registers. */ /* Flash program memory */ #define OFFSET_CODE 0x00000000 /* CPU registers, IO registers, and SRAM */ #define OFFSET_DATA 0x00800000 /* CPU registers specifically, these are mapped at the start of data */ #define OFFSET_CPU_REGISTERS OFFSET_DATA /* * IO registers, including status register, stack pointer, and memory * mapped peripherals, mapped just after CPU registers */ #define OFFSET_IO_REGISTERS (OFFSET_DATA + NUMBER_OF_CPU_REGISTERS) typedef enum AVRFeature { AVR_FEATURE_SRAM, AVR_FEATURE_1_BYTE_PC, AVR_FEATURE_2_BYTE_PC, AVR_FEATURE_3_BYTE_PC, AVR_FEATURE_1_BYTE_SP, AVR_FEATURE_2_BYTE_SP, AVR_FEATURE_BREAK, AVR_FEATURE_DES, AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */ AVR_FEATURE_EIJMP_EICALL, AVR_FEATURE_IJMP_ICALL, AVR_FEATURE_JMP_CALL, AVR_FEATURE_ADIW_SBIW, AVR_FEATURE_SPM, AVR_FEATURE_SPMX, AVR_FEATURE_ELPMX, AVR_FEATURE_ELPM, AVR_FEATURE_LPMX, AVR_FEATURE_LPM, AVR_FEATURE_MOVW, AVR_FEATURE_MUL, AVR_FEATURE_RAMPD, AVR_FEATURE_RAMPX, AVR_FEATURE_RAMPY, AVR_FEATURE_RAMPZ, } AVRFeature; typedef struct CPUArchState { uint32_t pc_w; /* 0x003fffff up to 22 bits */ uint32_t sregC; /* 0x00000001 1 bit */ uint32_t sregZ; /* 0x00000001 1 bit */ uint32_t sregN; /* 0x00000001 1 bit */ uint32_t sregV; /* 0x00000001 1 bit */ uint32_t sregS; /* 0x00000001 1 bit */ uint32_t sregH; /* 0x00000001 1 bit */ uint32_t sregT; /* 0x00000001 1 bit */ uint32_t sregI; /* 0x00000001 1 bit */ uint32_t rampD; /* 0x00ff0000 8 bits */ uint32_t rampX; /* 0x00ff0000 8 bits */ uint32_t rampY; /* 0x00ff0000 8 bits */ uint32_t rampZ; /* 0x00ff0000 8 bits */ uint32_t eind; /* 0x00ff0000 8 bits */ uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */ uint32_t sp; /* 16 bits */ uint32_t skip; /* if set skip instruction */ uint64_t intsrc; /* interrupt sources */ bool fullacc; /* CPU/MEM if true MEM only otherwise */ uint64_t features; } CPUAVRState; /** * AVRCPU: * @env: #CPUAVRState * * A AVR CPU. */ struct ArchCPU { CPUState parent_obj; CPUAVRState env; }; /** * AVRCPUClass: * @parent_realize: The parent class' realize handler. * @parent_phases: The parent class' reset phase handlers. * * A AVR CPU model. */ struct AVRCPUClass { CPUClass parent_class; DeviceRealize parent_realize; ResettablePhases parent_phases; }; extern const struct VMStateDescription vms_avr_cpu; void avr_cpu_do_interrupt(CPUState *cpu); bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req); hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); int avr_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); int avr_print_insn(bfd_vma addr, disassemble_info *info); vaddr avr_cpu_gdb_adjust_breakpoint(CPUState *cpu, vaddr addr); static inline int avr_feature(CPUAVRState *env, AVRFeature feature) { return (env->features & (1U << feature)) != 0; } static inline void set_avr_feature(CPUAVRState *env, int feature) { env->features |= (1U << feature); } #define cpu_list avr_cpu_list #define cpu_mmu_index avr_cpu_mmu_index static inline int avr_cpu_mmu_index(CPUAVRState *env, bool ifetch) { return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX; } void avr_cpu_tcg_init(void); void avr_cpu_list(void); int cpu_avr_exec(CPUState *cpu); enum { TB_FLAGS_FULL_ACCESS = 1, TB_FLAGS_SKIP = 2, }; static inline void cpu_get_tb_cpu_state(CPUAVRState *env, vaddr *pc, uint64_t *cs_base, uint32_t *pflags) { uint32_t flags = 0; *pc = env->pc_w * 2; *cs_base = 0; if (env->fullacc) { flags |= TB_FLAGS_FULL_ACCESS; } if (env->skip) { flags |= TB_FLAGS_SKIP; } *pflags = flags; } static inline int cpu_interrupts_enabled(CPUAVRState *env) { return env->sregI != 0; } static inline uint8_t cpu_get_sreg(CPUAVRState *env) { return (env->sregC) << 0 | (env->sregZ) << 1 | (env->sregN) << 2 | (env->sregV) << 3 | (env->sregS) << 4 | (env->sregH) << 5 | (env->sregT) << 6 | (env->sregI) << 7; } static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg) { env->sregC = (sreg >> 0) & 0x01; env->sregZ = (sreg >> 1) & 0x01; env->sregN = (sreg >> 2) & 0x01; env->sregV = (sreg >> 3) & 0x01; env->sregS = (sreg >> 4) & 0x01; env->sregH = (sreg >> 5) & 0x01; env->sregT = (sreg >> 6) & 0x01; env->sregI = (sreg >> 7) & 0x01; } bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr); #include "exec/cpu-all.h" #endif /* QEMU_AVR_CPU_H */