/*
* ARM AdvSIMD / SVE Vector Helpers
*
* Copyright (c) 2020 Linaro
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#ifndef TARGET_ARM_VEC_INTERNAL_H
#define TARGET_ARM_VEC_INTERNAL_H
/*
* Note that vector data is stored in host-endian 64-bit chunks,
* so addressing units smaller than that needs a host-endian fixup.
*
* The H macros are used when indexing an array of elements of size N.
*
* The H1_ macros are used when performing byte arithmetic and then
* casting the final pointer to a type of size N.
*/
#if HOST_BIG_ENDIAN
#define H1(x) ((x) ^ 7)
#define H1_2(x) ((x) ^ 6)
#define H1_4(x) ((x) ^ 4)
#define H2(x) ((x) ^ 3)
#define H4(x) ((x) ^ 1)
#else
#define H1(x) (x)
#define H1_2(x) (x)
#define H1_4(x) (x)
#define H2(x) (x)
#define H4(x) (x)
#endif
/*
* Access to 64-bit elements isn't host-endian dependent; we provide H8
* and H1_8 so that when a function is being generated from a macro we
* can pass these rather than an empty macro argument, for clarity.
*/
#define H8(x) (x)
#define H1_8(x) (x)
/*
* Expand active predicate bits to bytes, for byte elements.
*/
extern const uint64_t expand_pred_b_data[256];
static inline uint64_t expand_pred_b(uint8_t byte)
{
return expand_pred_b_data[byte];
}
/* Similarly for half-word elements. */
extern const uint64_t expand_pred_h_data[0x55 + 1];
static inline uint64_t expand_pred_h(uint8_t byte)
{
return expand_pred_h_data[byte & 0x55];
}
static inline void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
{
uint64_t *d = vd + opr_sz;
uintptr_t i;
for (i = opr_sz; i < max_sz; i += 8) {
*d++ = 0;
}
}
static inline int32_t do_sqrshl_bhs(int32_t src, int32_t shift, int bits,
bool round, uint32_t *sat)
{
if (shift <= -bits) {
/* Rounding the sign bit always produces 0. */
if (round) {
return 0;
}
return src >> 31;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < bits) {
int32_t val = src << shift;
if (bits == 32) {
if (!sat || val >> shift == src) {
return val;
}
} else {
int32_t extval = sextract32(val, 0, bits);
if (!sat || val == extval) {
return extval;
}
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return (1u << (bits - 1)) - (src >= 0);
}
static inline uint32_t do_uqrshl_bhs(uint32_t src, int32_t shift, int bits,
bool round, uint32_t *sat)
{
if (shift <= -(bits + round)) {
return 0;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < bits) {
uint32_t val = src << shift;
if (bits == 32) {
if (!sat || val >> shift == src) {
return val;
}
} else {
uint32_t extval = extract32(val, 0, bits);
if (!sat || val == extval) {
return extval;
}
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return MAKE_64BIT_MASK(0, bits);
}
static inline int32_t do_suqrshl_bhs(int32_t src, int32_t shift, int bits,
bool round, uint32_t *sat)
{
if (sat && src < 0) {
*sat = 1;
return 0;
}
return do_uqrshl_bhs(src, shift, bits, round, sat);
}
static inline int64_t do_sqrshl_d(int64_t src, int64_t shift,
bool round, uint32_t *sat)
{
if (shift <= -64) {
/* Rounding the sign bit always produces 0. */
if (round) {
return 0;
}
return src >> 63;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < 64) {
int64_t val = src << shift;
if (!sat || val >> shift == src) {
return val;
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return src < 0 ? INT64_MIN : INT64_MAX;
}
static inline uint64_t do_uqrshl_d(uint64_t src, int64_t shift,
bool round, uint32_t *sat)
{
if (shift <= -(64 + round)) {
return 0;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < 64) {
uint64_t val = src << shift;
if (!sat || val >> shift == src) {
return val;
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return UINT64_MAX;
}
static inline int64_t do_suqrshl_d(int64_t src, int64_t shift,
bool round, uint32_t *sat)
{
if (sat && src < 0) {
*sat = 1;
return 0;
}
return do_uqrshl_d(src, shift, round, sat);
}
int8_t do_sqrdmlah_b(int8_t, int8_t, int8_t, bool, bool);
int16_t do_sqrdmlah_h(int16_t, int16_t, int16_t, bool, bool, uint32_t *);
int32_t do_sqrdmlah_s(int32_t, int32_t, int32_t, bool, bool, uint32_t *);
int64_t do_sqrdmlah_d(int64_t, int64_t, int64_t, bool, bool);
/**
* bfdotadd:
* @sum: addend
* @e1, @e2: multiplicand vectors
* @fpst: floating-point status to use
*
* BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum.
* The @e1 and @e2 operands correspond to the 32-bit source vector
* slots and contain two Bfloat16 values each.
*
* Corresponds to the ARM pseudocode function BFDotAdd, specialized
* for the FPCR.EBF == 0 case.
*/
float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst);
/**
* bfdotadd_ebf:
* @sum: addend
* @e1, @e2: multiplicand vectors
* @fpst: floating-point status to use
* @fpst_odd: floating-point status to use for round-to-odd operations
*
* BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum.
* The @e1 and @e2 operands correspond to the 32-bit source vector
* slots and contain two Bfloat16 values each.
*
* Corresponds to the ARM pseudocode function BFDotAdd, specialized
* for the FPCR.EBF == 1 case.
*/
float32 bfdotadd_ebf(float32 sum, uint32_t e1, uint32_t e2,
float_status *fpst, float_status *fpst_odd);
/**
* is_ebf:
* @env: CPU state
* @statusp: pointer to floating point status to fill in
* @oddstatusp: pointer to floating point status to fill in for round-to-odd
*
* Determine whether a BFDotAdd operation should use FPCR.EBF = 0
* or FPCR.EBF = 1 semantics. On return, has initialized *statusp
* and *oddstatusp to suitable float_status arguments to use with either
* bfdotadd() or bfdotadd_ebf().
* Returns true for EBF = 1, false for EBF = 0. (The caller should use this
* to decide whether to call bfdotadd() or bfdotadd_ebf().)
*/
bool is_ebf(CPUARMState *env, float_status *statusp, float_status *oddstatusp);
#endif /* TARGET_ARM_VEC_INTERNAL_H */