/* * ARM NEON vector operations. * * Copyright (c) 2007, 2008 CodeSourcery. * Written by Paul Brook * * This code is licensed under the GNU GPL v2. */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" #include "tcg/tcg-gvec-desc.h" #include "fpu/softfloat.h" #include "vec_internal.h" #define SIGNBIT (uint32_t)0x80000000 #define SIGNBIT64 ((uint64_t)1 << 63) #define SET_QC() env->vfp.qc[0] = 1 #define NEON_TYPE1(name, type) \ typedef struct \ { \ type v1; \ } neon_##name; #if HOST_BIG_ENDIAN #define NEON_TYPE2(name, type) \ typedef struct \ { \ type v2; \ type v1; \ } neon_##name; #define NEON_TYPE4(name, type) \ typedef struct \ { \ type v4; \ type v3; \ type v2; \ type v1; \ } neon_##name; #else #define NEON_TYPE2(name, type) \ typedef struct \ { \ type v1; \ type v2; \ } neon_##name; #define NEON_TYPE4(name, type) \ typedef struct \ { \ type v1; \ type v2; \ type v3; \ type v4; \ } neon_##name; #endif NEON_TYPE4(s8, int8_t) NEON_TYPE4(u8, uint8_t) NEON_TYPE2(s16, int16_t) NEON_TYPE2(u16, uint16_t) NEON_TYPE1(s32, int32_t) NEON_TYPE1(u32, uint32_t) #undef NEON_TYPE4 #undef NEON_TYPE2 #undef NEON_TYPE1 /* Copy from a uint32_t to a vector structure type. */ #define NEON_UNPACK(vtype, dest, val) do { \ union { \ vtype v; \ uint32_t i; \ } conv_u; \ conv_u.i = (val); \ dest = conv_u.v; \ } while(0) /* Copy from a vector structure type to a uint32_t. */ #define NEON_PACK(vtype, dest, val) do { \ union { \ vtype v; \ uint32_t i; \ } conv_u; \ conv_u.v = (val); \ dest = conv_u.i; \ } while(0) #define NEON_DO1 \ NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); #define NEON_DO2 \ NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); #define NEON_DO4 \ NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \ NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \ NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4); #define NEON_VOP_BODY(vtype, n) \ { \ uint32_t res; \ vtype vsrc1; \ vtype vsrc2; \ vtype vdest; \ NEON_UNPACK(vtype, vsrc1, arg1); \ NEON_UNPACK(vtype, vsrc2, arg2); \ NEON_DO##n; \ NEON_PACK(vtype, res, vdest); \ return res; \ } #define NEON_VOP(name, vtype, n) \ uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \ NEON_VOP_BODY(vtype, n) #define NEON_VOP_ENV(name, vtype, n) \ uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \ NEON_VOP_BODY(vtype, n) #define NEON_GVEC_VOP2(name, vtype) \ void HELPER(name)(void *vd, void *vn, void *vm, uint32_t desc) \ { \ intptr_t i, opr_sz = simd_oprsz(desc); \ vtype *d = vd, *n = vn, *m = vm; \ for (i = 0; i < opr_sz / sizeof(vtype); i++) { \ NEON_FN(d[i], n[i], m[i]); \ } \ clear_tail(d, opr_sz, simd_maxsz(desc)); \ } #define NEON_GVEC_VOP2_ENV(name, vtype) \ void HELPER(name)(void *vd, void *vn, void *vm, CPUARMState *env, uint32_t desc) \ { \ intptr_t i, opr_sz = simd_oprsz(desc); \ vtype *d = vd, *n = vn, *m = vm; \ for (i = 0; i < opr_sz / sizeof(vtype); i++) { \ NEON_FN(d[i], n[i], m[i]); \ } \ clear_tail(d, opr_sz, simd_maxsz(desc)); \ } #define NEON_GVEC_VOP2i_ENV(name, vtype) \ void HELPER(name)(void *vd, void *vn, CPUARMState *env, uint32_t desc) \ { \ intptr_t i, opr_sz = simd_oprsz(desc); \ int imm = simd_data(desc); \ vtype *d = vd, *n = vn; \ for (i = 0; i < opr_sz / sizeof(vtype); i++) { \ NEON_FN(d[i], n[i], imm); \ } \ clear_tail(d, opr_sz, simd_maxsz(desc)); \ } /* Pairwise operations. */ /* For 32-bit elements each segment only contains a single element, so the elementwise and pairwise operations are the same. */ #define NEON_PDO2 \ NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2); #define NEON_PDO4 \ NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \ NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \ NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \ #define NEON_POP(name, vtype, n) \ uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \ { \ uint32_t res; \ vtype vsrc1; \ vtype vsrc2; \ vtype vdest; \ NEON_UNPACK(vtype, vsrc1, arg1); \ NEON_UNPACK(vtype, vsrc2, arg2); \ NEON_PDO##n; \ NEON_PACK(vtype, res, vdest); \ return res; \ } /* Unary operators. */ #define NEON_VOP1(name, vtype, n) \ uint32_t HELPER(glue(neon_,name))(uint32_t arg) \ { \ vtype vsrc1; \ vtype vdest; \ NEON_UNPACK(vtype, vsrc1, arg); \ NEON_DO##n; \ NEON_PACK(vtype, arg, vdest); \ return arg; \ } #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2 NEON_POP(pmin_s8, neon_s8, 4) NEON_POP(pmin_u8, neon_u8, 4) NEON_POP(pmin_s16, neon_s16, 2) NEON_POP(pmin_u16, neon_u16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2 NEON_POP(pmax_s8, neon_s8, 4) NEON_POP(pmax_u8, neon_u8, 4) NEON_POP(pmax_s16, neon_s16, 2) NEON_POP(pmax_u16, neon_u16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_bhs(src1, (int8_t)src2, 16, false, NULL)) NEON_VOP(shl_u16, neon_u16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_bhs(src1, (int8_t)src2, 16, false, NULL)) NEON_VOP(shl_s16, neon_s16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_bhs(src1, (int8_t)src2, 8, true, NULL)) NEON_VOP(rshl_s8, neon_s8, 4) NEON_GVEC_VOP2(gvec_srshl_b, int8_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_bhs(src1, (int8_t)src2, 16, true, NULL)) NEON_VOP(rshl_s16, neon_s16, 2) NEON_GVEC_VOP2(gvec_srshl_h, int16_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_bhs(src1, (int8_t)src2, 32, true, NULL)) NEON_GVEC_VOP2(gvec_srshl_s, int32_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_d(src1, (int8_t)src2, true, NULL)) NEON_GVEC_VOP2(gvec_srshl_d, int64_t) #undef NEON_FN uint32_t HELPER(neon_rshl_s32)(uint32_t val, uint32_t shift) { return do_sqrshl_bhs(val, (int8_t)shift, 32, true, NULL); } uint64_t HELPER(neon_rshl_s64)(uint64_t val, uint64_t shift) { return do_sqrshl_d(val, (int8_t)shift, true, NULL); } #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_bhs(src1, (int8_t)src2, 8, true, NULL)) NEON_VOP(rshl_u8, neon_u8, 4) NEON_GVEC_VOP2(gvec_urshl_b, uint8_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_bhs(src1, (int8_t)src2, 16, true, NULL)) NEON_VOP(rshl_u16, neon_u16, 2) NEON_GVEC_VOP2(gvec_urshl_h, uint16_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_bhs(src1, (int8_t)src2, 32, true, NULL)) NEON_GVEC_VOP2(gvec_urshl_s, int32_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_d(src1, (int8_t)src2, true, NULL)) NEON_GVEC_VOP2(gvec_urshl_d, int64_t) #undef NEON_FN uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shift) { return do_uqrshl_bhs(val, (int8_t)shift, 32, true, NULL); } uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shift) { return do_uqrshl_d(val, (int8_t)shift, true, NULL); } #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_bhs(src1, (int8_t)src2, 8, false, env->vfp.qc)) NEON_VOP_ENV(qshl_u8, neon_u8, 4) NEON_GVEC_VOP2_ENV(neon_uqshl_b, uint8_t) NEON_GVEC_VOP2i_ENV(neon_uqshli_b, uint8_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_bhs(src1, (int8_t)src2, 16, false, env->vfp.qc)) NEON_VOP_ENV(qshl_u16, neon_u16, 2) NEON_GVEC_VOP2_ENV(neon_uqshl_h, uint16_t) NEON_GVEC_VOP2i_ENV(neon_uqshli_h, uint16_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_bhs(src1, (int8_t)src2, 32, false, env->vfp.qc)) NEON_GVEC_VOP2_ENV(neon_uqshl_s, uint32_t) NEON_GVEC_VOP2i_ENV(neon_uqshli_s, uint32_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_d(src1, (int8_t)src2, false, env->vfp.qc)) NEON_GVEC_VOP2_ENV(neon_uqshl_d, uint64_t) NEON_GVEC_VOP2i_ENV(neon_uqshli_d, uint64_t) #undef NEON_FN uint32_t HELPER(neon_qshl_u32)(CPUARMState *env, uint32_t val, uint32_t shift) { return do_uqrshl_bhs(val, (int8_t)shift, 32, false, env->vfp.qc); } uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shift) { return do_uqrshl_d(val, (int8_t)shift, false, env->vfp.qc); } #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_bhs(src1, (int8_t)src2, 8, false, env->vfp.qc)) NEON_VOP_ENV(qshl_s8, neon_s8, 4) NEON_GVEC_VOP2_ENV(neon_sqshl_b, int8_t) NEON_GVEC_VOP2i_ENV(neon_sqshli_b, int8_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_bhs(src1, (int8_t)src2, 16, false, env->vfp.qc)) NEON_VOP_ENV(qshl_s16, neon_s16, 2) NEON_GVEC_VOP2_ENV(neon_sqshl_h, int16_t) NEON_GVEC_VOP2i_ENV(neon_sqshli_h, int16_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_bhs(src1, (int8_t)src2, 32, false, env->vfp.qc)) NEON_GVEC_VOP2_ENV(neon_sqshl_s, int32_t) NEON_GVEC_VOP2i_ENV(neon_sqshli_s, int32_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_d(src1, (int8_t)src2, false, env->vfp.qc)) NEON_GVEC_VOP2_ENV(neon_sqshl_d, int64_t) NEON_GVEC_VOP2i_ENV(neon_sqshli_d, int64_t) #undef NEON_FN uint32_t HELPER(neon_qshl_s32)(CPUARMState *env, uint32_t val, uint32_t shift) { return do_sqrshl_bhs(val, (int8_t)shift, 32, false, env->vfp.qc); } uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t val, uint64_t shift) { return do_sqrshl_d(val, (int8_t)shift, false, env->vfp.qc); } #define NEON_FN(dest, src1, src2) \ (dest = do_suqrshl_bhs(src1, (int8_t)src2, 8, false, env->vfp.qc)) NEON_VOP_ENV(qshlu_s8, neon_s8, 4) NEON_GVEC_VOP2i_ENV(neon_sqshlui_b, int8_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_suqrshl_bhs(src1, (int8_t)src2, 16, false, env->vfp.qc)) NEON_VOP_ENV(qshlu_s16, neon_s16, 2) NEON_GVEC_VOP2i_ENV(neon_sqshlui_h, int16_t) #undef NEON_FN uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t val, uint32_t shift) { return do_suqrshl_bhs(val, (int8_t)shift, 32, false, env->vfp.qc); } uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t val, uint64_t shift) { return do_suqrshl_d(val, (int8_t)shift, false, env->vfp.qc); } #define NEON_FN(dest, src1, src2) \ (dest = do_suqrshl_bhs(src1, (int8_t)src2, 32, false, env->vfp.qc)) NEON_GVEC_VOP2i_ENV(neon_sqshlui_s, int32_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_suqrshl_d(src1, (int8_t)src2, false, env->vfp.qc)) NEON_GVEC_VOP2i_ENV(neon_sqshlui_d, int64_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_bhs(src1, (int8_t)src2, 8, true, env->vfp.qc)) NEON_VOP_ENV(qrshl_u8, neon_u8, 4) NEON_GVEC_VOP2_ENV(neon_uqrshl_b, uint8_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_bhs(src1, (int8_t)src2, 16, true, env->vfp.qc)) NEON_VOP_ENV(qrshl_u16, neon_u16, 2) NEON_GVEC_VOP2_ENV(neon_uqrshl_h, uint16_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_bhs(src1, (int8_t)src2, 32, true, env->vfp.qc)) NEON_GVEC_VOP2_ENV(neon_uqrshl_s, uint32_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_uqrshl_d(src1, (int8_t)src2, true, env->vfp.qc)) NEON_GVEC_VOP2_ENV(neon_uqrshl_d, uint64_t) #undef NEON_FN uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shift) { return do_uqrshl_bhs(val, (int8_t)shift, 32, true, env->vfp.qc); } uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shift) { return do_uqrshl_d(val, (int8_t)shift, true, env->vfp.qc); } #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_bhs(src1, (int8_t)src2, 8, true, env->vfp.qc)) NEON_VOP_ENV(qrshl_s8, neon_s8, 4) NEON_GVEC_VOP2_ENV(neon_sqrshl_b, int8_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_bhs(src1, (int8_t)src2, 16, true, env->vfp.qc)) NEON_VOP_ENV(qrshl_s16, neon_s16, 2) NEON_GVEC_VOP2_ENV(neon_sqrshl_h, int16_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_bhs(src1, (int8_t)src2, 32, true, env->vfp.qc)) NEON_GVEC_VOP2_ENV(neon_sqrshl_s, int32_t) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ (dest = do_sqrshl_d(src1, (int8_t)src2, true, env->vfp.qc)) NEON_GVEC_VOP2_ENV(neon_sqrshl_d, int64_t) #undef NEON_FN uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t val, uint32_t shift) { return do_sqrshl_bhs(val, (int8_t)shift, 32, true, env->vfp.qc); } uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t val, uint64_t shift) { return do_sqrshl_d(val, (int8_t)shift, true, env->vfp.qc); } uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b) { uint32_t mask; mask = (a ^ b) & 0x80808080u; a &= ~0x80808080u; b &= ~0x80808080u; return (a + b) ^ mask; } uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b) { uint32_t mask; mask = (a ^ b) & 0x80008000u; a &= ~0x80008000u; b &= ~0x80008000u; return (a + b) ^ mask; } #define NEON_FN(dest, src1, src2) dest = src1 - src2 NEON_VOP(sub_u8, neon_u8, 4) NEON_VOP(sub_u16, neon_u16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) dest = src1 * src2 NEON_VOP(mul_u8, neon_u8, 4) NEON_VOP(mul_u16, neon_u16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0 NEON_VOP(tst_u8, neon_u8, 4) NEON_VOP(tst_u16, neon_u16, 2) NEON_VOP(tst_u32, neon_u32, 1) #undef NEON_FN /* Count Leading Sign/Zero Bits. */ static inline int do_clz8(uint8_t x) { int n; for (n = 8; x; n--) x >>= 1; return n; } static inline int do_clz16(uint16_t x) { int n; for (n = 16; x; n--) x >>= 1; return n; } #define NEON_FN(dest, src, dummy) dest = do_clz8(src) NEON_VOP1(clz_u8, neon_u8, 4) #undef NEON_FN #define NEON_FN(dest, src, dummy) dest = do_clz16(src) NEON_VOP1(clz_u16, neon_u16, 2) #undef NEON_FN #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1 NEON_VOP1(cls_s8, neon_s8, 4) #undef NEON_FN #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1 NEON_VOP1(cls_s16, neon_s16, 2) #undef NEON_FN uint32_t HELPER(neon_cls_s32)(uint32_t x) { int count; if ((int32_t)x < 0) x = ~x; for (count = 32; x; count--) x = x >> 1; return count - 1; } #define NEON_QDMULH16(dest, src1, src2, round) do { \ uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \ if ((tmp ^ (tmp << 1)) & SIGNBIT) { \ SET_QC(); \ tmp = (tmp >> 31) ^ ~SIGNBIT; \ } else { \ tmp <<= 1; \ } \ if (round) { \ int32_t old = tmp; \ tmp += 1 << 15; \ if ((int32_t)tmp < old) { \ SET_QC(); \ tmp = SIGNBIT - 1; \ } \ } \ dest = tmp >> 16; \ } while(0) #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0) NEON_VOP_ENV(qdmulh_s16, neon_s16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1) NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2) #undef NEON_FN #undef NEON_QDMULH16 #define NEON_QDMULH32(dest, src1, src2, round) do { \ uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \ if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \ SET_QC(); \ tmp = (tmp >> 63) ^ ~SIGNBIT64; \ } else { \ tmp <<= 1; \ } \ if (round) { \ int64_t old = tmp; \ tmp += (int64_t)1 << 31; \ if ((int64_t)tmp < old) { \ SET_QC(); \ tmp = SIGNBIT64 - 1; \ } \ } \ dest = tmp >> 32; \ } while(0) #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0) NEON_VOP_ENV(qdmulh_s32, neon_s32, 1) #undef NEON_FN #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1) NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1) #undef NEON_FN #undef NEON_QDMULH32 /* Only the low 32-bits of output are significant. */ uint64_t HELPER(neon_narrow_u8)(uint64_t x) { return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u) | ((x >> 24) & 0xff000000u); } /* Only the low 32-bits of output are significant. */ uint64_t HELPER(neon_narrow_u16)(uint64_t x) { return (x & 0xffffu) | ((x >> 16) & 0xffff0000u); } uint32_t HELPER(neon_narrow_high_u8)(uint64_t x) { return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); } uint32_t HELPER(neon_narrow_high_u16)(uint64_t x) { return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); } uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x) { x &= 0xff80ff80ff80ff80ull; x += 0x0080008000800080ull; return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); } uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x) { x &= 0xffff8000ffff8000ull; x += 0x0000800000008000ull; return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); } /* Only the low 32-bits of output are significant. */ uint64_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x) { uint16_t s; uint8_t d; uint32_t res = 0; #define SAT8(n) \ s = x >> n; \ if (s & 0x8000) { \ SET_QC(); \ } else { \ if (s > 0xff) { \ d = 0xff; \ SET_QC(); \ } else { \ d = s; \ } \ res |= (uint32_t)d << (n / 2); \ } SAT8(0); SAT8(16); SAT8(32); SAT8(48); #undef SAT8 return res; } /* Only the low 32-bits of output are significant. */ uint64_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x) { uint16_t s; uint8_t d; uint32_t res = 0; #define SAT8(n) \ s = x >> n; \ if (s > 0xff) { \ d = 0xff; \ SET_QC(); \ } else { \ d = s; \ } \ res |= (uint32_t)d << (n / 2); SAT8(0); SAT8(16); SAT8(32); SAT8(48); #undef SAT8 return res; } /* Only the low 32-bits of output are significant. */ uint64_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x) { int16_t s; uint8_t d; uint32_t res = 0; #define SAT8(n) \ s = x >> n; \ if (s != (int8_t)s) { \ d = (s >> 15) ^ 0x7f; \ SET_QC(); \ } else { \ d = s; \ } \ res |= (uint32_t)d << (n / 2); SAT8(0); SAT8(16); SAT8(32); SAT8(48); #undef SAT8 return res; } /* Only the low 32-bits of output are significant. */ uint64_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x) { uint32_t high; uint32_t low; low = x; if (low & 0x80000000) { low = 0; SET_QC(); } else if (low > 0xffff) { low = 0xffff; SET_QC(); } high = x >> 32; if (high & 0x80000000) { high = 0; SET_QC(); } else if (high > 0xffff) { high = 0xffff; SET_QC(); } return deposit32(low, 16, 16, high); } /* Only the low 32-bits of output are significant. */ uint64_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x) { uint32_t high; uint32_t low; low = x; if (low > 0xffff) { low = 0xffff; SET_QC(); } high = x >> 32; if (high > 0xffff) { high = 0xffff; SET_QC(); } return deposit32(low, 16, 16, high); } /* Only the low 32-bits of output are significant. */ uint64_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x) { int32_t low; int32_t high; low = x; if (low != (int16_t)low) { low = (low >> 31) ^ 0x7fff; SET_QC(); } high = x >> 32; if (high != (int16_t)high) { high = (high >> 31) ^ 0x7fff; SET_QC(); } return deposit32(low, 16, 16, high); } /* Only the low 32-bits of output are significant. */ uint64_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x) { if (x & 0x8000000000000000ull) { SET_QC(); return 0; } if (x > 0xffffffffu) { SET_QC(); return 0xffffffffu; } return x; } /* Only the low 32-bits of output are significant. */ uint64_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x) { if (x > 0xffffffffu) { SET_QC(); return 0xffffffffu; } return x; } /* Only the low 32-bits of output are significant. */ uint64_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x) { if ((int64_t)x != (int32_t)x) { SET_QC(); return (uint32_t)((int64_t)x >> 63) ^ 0x7fffffff; } return (uint32_t)x; } uint64_t HELPER(neon_widen_u8)(uint32_t x) { uint64_t tmp; uint64_t ret; ret = (uint8_t)x; tmp = (uint8_t)(x >> 8); ret |= tmp << 16; tmp = (uint8_t)(x >> 16); ret |= tmp << 32; tmp = (uint8_t)(x >> 24); ret |= tmp << 48; return ret; } uint64_t HELPER(neon_widen_s8)(uint32_t x) { uint64_t tmp; uint64_t ret; ret = (uint16_t)(int8_t)x; tmp = (uint16_t)(int8_t)(x >> 8); ret |= tmp << 16; tmp = (uint16_t)(int8_t)(x >> 16); ret |= tmp << 32; tmp = (uint16_t)(int8_t)(x >> 24); ret |= tmp << 48; return ret; } uint64_t HELPER(neon_widen_u16)(uint32_t x) { uint64_t high = (uint16_t)(x >> 16); return ((uint16_t)x) | (high << 32); } uint64_t HELPER(neon_widen_s16)(uint32_t x) { uint64_t high = (int16_t)(x >> 16); return ((uint32_t)(int16_t)x) | (high << 32); } /* Pairwise long add: add pairs of adjacent elements into * double-width elements in the result (eg _s8 is an 8x8->16 op) */ uint64_t HELPER(neon_addlp_s8)(uint64_t a) { uint64_t nsignmask = 0x0080008000800080ULL; uint64_t wsignmask = 0x8000800080008000ULL; uint64_t elementmask = 0x00ff00ff00ff00ffULL; uint64_t tmp1, tmp2; uint64_t res, signres; /* Extract odd elements, sign extend each to a 16 bit field */ tmp1 = a & elementmask; tmp1 ^= nsignmask; tmp1 |= wsignmask; tmp1 = (tmp1 - nsignmask) ^ wsignmask; /* Ditto for the even elements */ tmp2 = (a >> 8) & elementmask; tmp2 ^= nsignmask; tmp2 |= wsignmask; tmp2 = (tmp2 - nsignmask) ^ wsignmask; /* calculate the result by summing bits 0..14, 16..22, etc, * and then adjusting the sign bits 15, 23, etc manually. * This ensures the addition can't overflow the 16 bit field. */ signres = (tmp1 ^ tmp2) & wsignmask; res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); res ^= signres; return res; } uint64_t HELPER(neon_addlp_s16)(uint64_t a) { int32_t reslo, reshi; reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); return (uint32_t)reslo | (((uint64_t)reshi) << 32); } uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b) { uint32_t x, y; uint32_t low, high; x = a; y = b; low = x + y; if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { SET_QC(); low = ((int32_t)x >> 31) ^ ~SIGNBIT; } x = a >> 32; y = b >> 32; high = x + y; if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { SET_QC(); high = ((int32_t)x >> 31) ^ ~SIGNBIT; } return low | ((uint64_t)high << 32); } uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b) { uint64_t result; result = a + b; if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) { SET_QC(); result = ((int64_t)a >> 63) ^ ~SIGNBIT64; } return result; } /* We have to do the arithmetic in a larger type than * the input type, because for example with a signed 32 bit * op the absolute difference can overflow a signed 32 bit value. */ #define DO_ABD(dest, x, y, intype, arithtype) do { \ arithtype tmp_x = (intype)(x); \ arithtype tmp_y = (intype)(y); \ dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \ } while(0) uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_ABD(result, a, b, uint8_t, uint32_t); DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t); result |= tmp << 16; DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t); result |= tmp << 32; DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t); result |= tmp << 48; return result; } uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_ABD(result, a, b, int8_t, int32_t); DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t); result |= tmp << 16; DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t); result |= tmp << 32; DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t); result |= tmp << 48; return result; } uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_ABD(result, a, b, uint16_t, uint32_t); DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t); return result | (tmp << 32); } uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_ABD(result, a, b, int16_t, int32_t); DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t); return result | (tmp << 32); } uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b) { uint64_t result; DO_ABD(result, a, b, uint32_t, uint64_t); return result; } uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b) { uint64_t result; DO_ABD(result, a, b, int32_t, int64_t); return result; } #undef DO_ABD /* Widening multiply. Named type is the source type. */ #define DO_MULL(dest, x, y, type1, type2) do { \ type1 tmp_x = x; \ type1 tmp_y = y; \ dest = (type2)((type2)tmp_x * (type2)tmp_y); \ } while(0) uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_MULL(result, a, b, uint8_t, uint16_t); DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t); result |= tmp << 16; DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t); result |= tmp << 32; DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t); result |= tmp << 48; return result; } uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_MULL(result, a, b, int8_t, uint16_t); DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t); result |= tmp << 16; DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t); result |= tmp << 32; DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t); result |= tmp << 48; return result; } uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_MULL(result, a, b, uint16_t, uint32_t); DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t); return result | (tmp << 32); } uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_MULL(result, a, b, int16_t, uint32_t); DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t); return result | (tmp << 32); } uint64_t HELPER(neon_negl_u16)(uint64_t x) { uint16_t tmp; uint64_t result; result = (uint16_t)-x; tmp = -(x >> 16); result |= (uint64_t)tmp << 16; tmp = -(x >> 32); result |= (uint64_t)tmp << 32; tmp = -(x >> 48); result |= (uint64_t)tmp << 48; return result; } uint64_t HELPER(neon_negl_u32)(uint64_t x) { uint32_t low = -x; uint32_t high = -(x >> 32); return low | ((uint64_t)high << 32); } /* Saturating sign manipulation. */ /* ??? Make these use NEON_VOP1 */ #define DO_QABS8(x) do { \ if (x == (int8_t)0x80) { \ x = 0x7f; \ SET_QC(); \ } else if (x < 0) { \ x = -x; \ }} while (0) uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x) { neon_s8 vec; NEON_UNPACK(neon_s8, vec, x); DO_QABS8(vec.v1); DO_QABS8(vec.v2); DO_QABS8(vec.v3); DO_QABS8(vec.v4); NEON_PACK(neon_s8, x, vec); return x; } #undef DO_QABS8 #define DO_QNEG8(x) do { \ if (x == (int8_t)0x80) { \ x = 0x7f; \ SET_QC(); \ } else { \ x = -x; \ }} while (0) uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x) { neon_s8 vec; NEON_UNPACK(neon_s8, vec, x); DO_QNEG8(vec.v1); DO_QNEG8(vec.v2); DO_QNEG8(vec.v3); DO_QNEG8(vec.v4); NEON_PACK(neon_s8, x, vec); return x; } #undef DO_QNEG8 #define DO_QABS16(x) do { \ if (x == (int16_t)0x8000) { \ x = 0x7fff; \ SET_QC(); \ } else if (x < 0) { \ x = -x; \ }} while (0) uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x) { neon_s16 vec; NEON_UNPACK(neon_s16, vec, x); DO_QABS16(vec.v1); DO_QABS16(vec.v2); NEON_PACK(neon_s16, x, vec); return x; } #undef DO_QABS16 #define DO_QNEG16(x) do { \ if (x == (int16_t)0x8000) { \ x = 0x7fff; \ SET_QC(); \ } else { \ x = -x; \ }} while (0) uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x) { neon_s16 vec; NEON_UNPACK(neon_s16, vec, x); DO_QNEG16(vec.v1); DO_QNEG16(vec.v2); NEON_PACK(neon_s16, x, vec); return x; } #undef DO_QNEG16 uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x) { if (x == SIGNBIT) { SET_QC(); x = ~SIGNBIT; } else if ((int32_t)x < 0) { x = -x; } return x; } uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x) { if (x == SIGNBIT) { SET_QC(); x = ~SIGNBIT; } else { x = -x; } return x; } uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x) { if (x == SIGNBIT64) { SET_QC(); x = ~SIGNBIT64; } else if ((int64_t)x < 0) { x = -x; } return x; } uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x) { if (x == SIGNBIT64) { SET_QC(); x = ~SIGNBIT64; } else { x = -x; } return x; } /* NEON Float helpers. */ /* Floating point comparisons produce an integer result. * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do. * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires. */ uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, float_status *fpst) { return -float32_eq_quiet(make_float32(a), make_float32(b), fpst); } uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, float_status *fpst) { return -float32_le(make_float32(b), make_float32(a), fpst); } uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, float_status *fpst) { return -float32_lt(make_float32(b), make_float32(a), fpst); } uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, float_status *fpst) { float32 f0 = float32_abs(make_float32(a)); float32 f1 = float32_abs(make_float32(b)); return -float32_le(f1, f0, fpst); } uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, float_status *fpst) { float32 f0 = float32_abs(make_float32(a)); float32 f1 = float32_abs(make_float32(b)); return -float32_lt(f1, f0, fpst); } uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, float_status *fpst) { float64 f0 = float64_abs(make_float64(a)); float64 f1 = float64_abs(make_float64(b)); return -float64_le(f1, f0, fpst); } uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, float_status *fpst) { float64 f0 = float64_abs(make_float64(a)); float64 f1 = float64_abs(make_float64(b)); return -float64_lt(f1, f0, fpst); } #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1)) void HELPER(neon_qunzip8)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8) | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24) | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40) | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56); uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8) | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24) | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40) | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56); uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8) | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24) | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40) | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56); uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8) | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24) | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40) | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_qunzip16)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16) | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48); uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16) | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48); uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16) | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48); uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16) | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_qunzip32)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32); uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32); uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32); uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_unzip8)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd = rd[0], zm = rm[0]; uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8) | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24) | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40) | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56); uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8) | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24) | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40) | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56); rm[0] = m0; rd[0] = d0; } void HELPER(neon_unzip16)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd = rd[0], zm = rm[0]; uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16) | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48); uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16) | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48); rm[0] = m0; rd[0] = d0; } void HELPER(neon_qzip8)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8) | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24) | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40) | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56); uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8) | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24) | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40) | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56); uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8) | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24) | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40) | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56); uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8) | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24) | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40) | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_qzip16)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16) | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48); uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16) | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48); uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16) | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48); uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16) | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_qzip32)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32); uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32); uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32); uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_zip8)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd = rd[0], zm = rm[0]; uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8) | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24) | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40) | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56); uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8) | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24) | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40) | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56); rm[0] = m0; rd[0] = d0; } void HELPER(neon_zip16)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd = rd[0], zm = rm[0]; uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16) | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48); uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16) | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48); rm[0] = m0; rd[0] = d0; }