/* * ARM implementation of KVM hooks, 64 bit specific code * * Copyright Mian-M. Hamayun 2013, Virtual Open Systems * Copyright Alex BennĂ©e 2014, Linaro * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include #include #include #include #include "qemu-common.h" #include "cpu.h" #include "qemu/timer.h" #include "qemu/error-report.h" #include "qemu/host-utils.h" #include "qemu/main-loop.h" #include "exec/gdbstub.h" #include "sysemu/runstate.h" #include "sysemu/kvm.h" #include "sysemu/kvm_int.h" #include "kvm_arm.h" #include "internals.h" #include "hw/acpi/acpi.h" #include "hw/acpi/ghes.h" #include "hw/arm/virt.h" static bool have_guest_debug; /* * Although the ARM implementation of hardware assisted debugging * allows for different breakpoints per-core, the current GDB * interface treats them as a global pool of registers (which seems to * be the case for x86, ppc and s390). As a result we store one copy * of registers which is used for all active cores. * * Write access is serialised by virtue of the GDB protocol which * updates things. Read access (i.e. when the values are copied to the * vCPU) is also gated by GDB's run control. * * This is not unreasonable as most of the time debugging kernels you * never know which core will eventually execute your function. */ typedef struct { uint64_t bcr; uint64_t bvr; } HWBreakpoint; /* The watchpoint registers can cover more area than the requested * watchpoint so we need to store the additional information * somewhere. We also need to supply a CPUWatchpoint to the GDB stub * when the watchpoint is hit. */ typedef struct { uint64_t wcr; uint64_t wvr; CPUWatchpoint details; } HWWatchpoint; /* Maximum and current break/watch point counts */ int max_hw_bps, max_hw_wps; GArray *hw_breakpoints, *hw_watchpoints; #define cur_hw_wps (hw_watchpoints->len) #define cur_hw_bps (hw_breakpoints->len) #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i)) #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i)) /** * kvm_arm_init_debug() - check for guest debug capabilities * @cs: CPUState * * kvm_check_extension returns the number of debug registers we have * or 0 if we have none. * */ static void kvm_arm_init_debug(CPUState *cs) { have_guest_debug = kvm_check_extension(cs->kvm_state, KVM_CAP_SET_GUEST_DEBUG); max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS); hw_watchpoints = g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps); max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS); hw_breakpoints = g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps); return; } /** * insert_hw_breakpoint() * @addr: address of breakpoint * * See ARM ARM D2.9.1 for details but here we are only going to create * simple un-linked breakpoints (i.e. we don't chain breakpoints * together to match address and context or vmid). The hardware is * capable of fancier matching but that will require exposing that * fanciness to GDB's interface * * DBGBCR_EL1, Debug Breakpoint Control Registers * * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0 * +------+------+-------+-----+----+------+-----+------+-----+---+ * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E | * +------+------+-------+-----+----+------+-----+------+-----+---+ * * BT: Breakpoint type (0 = unlinked address match) * LBN: Linked BP number (0 = unused) * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12) * BAS: Byte Address Select (RES1 for AArch64) * E: Enable bit * * DBGBVR_EL1, Debug Breakpoint Value Registers * * 63 53 52 49 48 2 1 0 * +------+-----------+----------+-----+ * | RESS | VA[52:49] | VA[48:2] | 0 0 | * +------+-----------+----------+-----+ * * Depending on the addressing mode bits the top bits of the register * are a sign extension of the highest applicable VA bit. Some * versions of GDB don't do it correctly so we ensure they are correct * here so future PC comparisons will work properly. */ static int insert_hw_breakpoint(target_ulong addr) { HWBreakpoint brk = { .bcr = 0x1, /* BCR E=1, enable */ .bvr = sextract64(addr, 0, 53) }; if (cur_hw_bps >= max_hw_bps) { return -ENOBUFS; } brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */ brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */ g_array_append_val(hw_breakpoints, brk); return 0; } /** * delete_hw_breakpoint() * @pc: address of breakpoint * * Delete a breakpoint and shuffle any above down */ static int delete_hw_breakpoint(target_ulong pc) { int i; for (i = 0; i < hw_breakpoints->len; i++) { HWBreakpoint *brk = get_hw_bp(i); if (brk->bvr == pc) { g_array_remove_index(hw_breakpoints, i); return 0; } } return -ENOENT; } /** * insert_hw_watchpoint() * @addr: address of watch point * @len: size of area * @type: type of watch point * * See ARM ARM D2.10. As with the breakpoints we can do some advanced * stuff if we want to. The watch points can be linked with the break * points above to make them context aware. However for simplicity * currently we only deal with simple read/write watch points. * * D7.3.11 DBGWCR_EL1, Debug Watchpoint Control Registers * * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+ * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E | * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+ * * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes)) * WT: 0 - unlinked, 1 - linked (not currently used) * LBN: Linked BP number (not currently used) * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11) * BAS: Byte Address Select * LSC: Load/Store control (01: load, 10: store, 11: both) * E: Enable * * The bottom 2 bits of the value register are masked. Therefore to * break on any sizes smaller than an unaligned word you need to set * MASK=0, BAS=bit per byte in question. For larger regions (^2) you * need to ensure you mask the address as required and set BAS=0xff */ static int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type) { HWWatchpoint wp = { .wcr = 1, /* E=1, enable */ .wvr = addr & (~0x7ULL), .details = { .vaddr = addr, .len = len } }; if (cur_hw_wps >= max_hw_wps) { return -ENOBUFS; } /* * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state, * valid whether EL3 is implemented or not */ wp.wcr = deposit32(wp.wcr, 1, 2, 3); switch (type) { case GDB_WATCHPOINT_READ: wp.wcr = deposit32(wp.wcr, 3, 2, 1); wp.details.flags = BP_MEM_READ; break; case GDB_WATCHPOINT_WRITE: wp.wcr = deposit32(wp.wcr, 3, 2, 2); wp.details.flags = BP_MEM_WRITE; break; case GDB_WATCHPOINT_ACCESS: wp.wcr = deposit32(wp.wcr, 3, 2, 3); wp.details.flags = BP_MEM_ACCESS; break; default: g_assert_not_reached(); break; } if (len <= 8) { /* we align the address and set the bits in BAS */ int off = addr & 0x7; int bas = (1 << len) - 1; wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas); } else { /* For ranges above 8 bytes we need to be a power of 2 */ if (is_power_of_2(len)) { int bits = ctz64(len); wp.wvr &= ~((1 << bits) - 1); wp.wcr = deposit32(wp.wcr, 24, 4, bits); wp.wcr = deposit32(wp.wcr, 5, 8, 0xff); } else { return -ENOBUFS; } } g_array_append_val(hw_watchpoints, wp); return 0; } static bool check_watchpoint_in_range(int i, target_ulong addr) { HWWatchpoint *wp = get_hw_wp(i); uint64_t addr_top, addr_bottom = wp->wvr; int bas = extract32(wp->wcr, 5, 8); int mask = extract32(wp->wcr, 24, 4); if (mask) { addr_top = addr_bottom + (1 << mask); } else { /* BAS must be contiguous but can offset against the base * address in DBGWVR */ addr_bottom = addr_bottom + ctz32(bas); addr_top = addr_bottom + clo32(bas); } if (addr >= addr_bottom && addr <= addr_top) { return true; } return false; } /** * delete_hw_watchpoint() * @addr: address of breakpoint * * Delete a breakpoint and shuffle any above down */ static int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type) { int i; for (i = 0; i < cur_hw_wps; i++) { if (check_watchpoint_in_range(i, addr)) { g_array_remove_index(hw_watchpoints, i); return 0; } } return -ENOENT; } int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) { switch (type) { case GDB_BREAKPOINT_HW: return insert_hw_breakpoint(addr); break; case GDB_WATCHPOINT_READ: case GDB_WATCHPOINT_WRITE: case GDB_WATCHPOINT_ACCESS: return insert_hw_watchpoint(addr, len, type); default: return -ENOSYS; } } int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) { switch (type) { case GDB_BREAKPOINT_HW: return delete_hw_breakpoint(addr); case GDB_WATCHPOINT_READ: case GDB_WATCHPOINT_WRITE: case GDB_WATCHPOINT_ACCESS: return delete_hw_watchpoint(addr, len, type); default: return -ENOSYS; } } void kvm_arch_remove_all_hw_breakpoints(void) { if (cur_hw_wps > 0) { g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); } if (cur_hw_bps > 0) { g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); } } void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr) { int i; memset(ptr, 0, sizeof(struct kvm_guest_debug_arch)); for (i = 0; i < max_hw_wps; i++) { HWWatchpoint *wp = get_hw_wp(i); ptr->dbg_wcr[i] = wp->wcr; ptr->dbg_wvr[i] = wp->wvr; } for (i = 0; i < max_hw_bps; i++) { HWBreakpoint *bp = get_hw_bp(i); ptr->dbg_bcr[i] = bp->bcr; ptr->dbg_bvr[i] = bp->bvr; } } bool kvm_arm_hw_debug_active(CPUState *cs) { return ((cur_hw_wps > 0) || (cur_hw_bps > 0)); } static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc) { int i; for (i = 0; i < cur_hw_bps; i++) { HWBreakpoint *bp = get_hw_bp(i); if (bp->bvr == pc) { return true; } } return false; } static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr) { int i; for (i = 0; i < cur_hw_wps; i++) { if (check_watchpoint_in_range(i, addr)) { return &get_hw_wp(i)->details; } } return NULL; } static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr) { int err; err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr); if (err != 0) { error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err)); return false; } err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr); if (err != 0) { error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err)); return false; } return true; } void kvm_arm_pmu_init(CPUState *cs) { struct kvm_device_attr attr = { .group = KVM_ARM_VCPU_PMU_V3_CTRL, .attr = KVM_ARM_VCPU_PMU_V3_INIT, }; if (!ARM_CPU(cs)->has_pmu) { return; } if (!kvm_arm_pmu_set_attr(cs, &attr)) { error_report("failed to init PMU"); abort(); } } void kvm_arm_pmu_set_irq(CPUState *cs, int irq) { struct kvm_device_attr attr = { .group = KVM_ARM_VCPU_PMU_V3_CTRL, .addr = (intptr_t)&irq, .attr = KVM_ARM_VCPU_PMU_V3_IRQ, }; if (!ARM_CPU(cs)->has_pmu) { return; } if (!kvm_arm_pmu_set_attr(cs, &attr)) { error_report("failed to set irq for PMU"); abort(); } } static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id) { uint64_t ret; struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret }; int err; assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64); err = ioctl(fd, KVM_GET_ONE_REG, &idreg); if (err < 0) { return -1; } *pret = ret; return 0; } static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id) { struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret }; assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64); return ioctl(fd, KVM_GET_ONE_REG, &idreg); } bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) { /* Identify the feature bits corresponding to the host CPU, and * fill out the ARMHostCPUClass fields accordingly. To do this * we have to create a scratch VM, create a single CPU inside it, * and then query that CPU for the relevant ID registers. */ int fdarray[3]; bool sve_supported; uint64_t features = 0; uint64_t t; int err; /* Old kernels may not know about the PREFERRED_TARGET ioctl: however * we know these will only support creating one kind of guest CPU, * which is its preferred CPU type. Fortunately these old kernels * support only a very limited number of CPUs. */ static const uint32_t cpus_to_try[] = { KVM_ARM_TARGET_AEM_V8, KVM_ARM_TARGET_FOUNDATION_V8, KVM_ARM_TARGET_CORTEX_A57, QEMU_KVM_ARM_TARGET_NONE }; /* * target = -1 informs kvm_arm_create_scratch_host_vcpu() * to use the preferred target */ struct kvm_vcpu_init init = { .target = -1, }; if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { return false; } ahcf->target = init.target; ahcf->dtb_compatible = "arm,arm-v8"; err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0, ARM64_SYS_REG(3, 0, 0, 4, 0)); if (unlikely(err < 0)) { /* * Before v4.15, the kernel only exposed a limited number of system * registers, not including any of the interesting AArch64 ID regs. * For the most part we could leave these fields as zero with minimal * effect, since this does not affect the values seen by the guest. * * However, it could cause problems down the line for QEMU, * so provide a minimal v8.0 default. * * ??? Could read MIDR and use knowledge from cpu64.c. * ??? Could map a page of memory into our temp guest and * run the tiniest of hand-crafted kernels to extract * the values seen by the guest. * ??? Either of these sounds like too much effort just * to work around running a modern host kernel. */ ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */ err = 0; } else { err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1, ARM64_SYS_REG(3, 0, 0, 4, 1)); err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0, ARM64_SYS_REG(3, 0, 0, 5, 0)); err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1, ARM64_SYS_REG(3, 0, 0, 5, 1)); err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0, ARM64_SYS_REG(3, 0, 0, 6, 0)); err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1, ARM64_SYS_REG(3, 0, 0, 6, 1)); err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0, ARM64_SYS_REG(3, 0, 0, 7, 0)); err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1, ARM64_SYS_REG(3, 0, 0, 7, 1)); err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2, ARM64_SYS_REG(3, 0, 0, 7, 2)); /* * Note that if AArch32 support is not present in the host, * the AArch32 sysregs are present to be read, but will * return UNKNOWN values. This is neither better nor worse * than skipping the reads and leaving 0, as we must avoid * considering the values in every case. */ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0, ARM64_SYS_REG(3, 0, 0, 1, 0)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1, ARM64_SYS_REG(3, 0, 0, 1, 1)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0, ARM64_SYS_REG(3, 0, 0, 1, 2)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0, ARM64_SYS_REG(3, 0, 0, 1, 4)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1, ARM64_SYS_REG(3, 0, 0, 1, 5)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2, ARM64_SYS_REG(3, 0, 0, 1, 6)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3, ARM64_SYS_REG(3, 0, 0, 1, 7)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0, ARM64_SYS_REG(3, 0, 0, 2, 0)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1, ARM64_SYS_REG(3, 0, 0, 2, 1)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2, ARM64_SYS_REG(3, 0, 0, 2, 2)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3, ARM64_SYS_REG(3, 0, 0, 2, 3)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4, ARM64_SYS_REG(3, 0, 0, 2, 4)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5, ARM64_SYS_REG(3, 0, 0, 2, 5)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4, ARM64_SYS_REG(3, 0, 0, 2, 6)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6, ARM64_SYS_REG(3, 0, 0, 2, 7)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0, ARM64_SYS_REG(3, 0, 0, 3, 0)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1, ARM64_SYS_REG(3, 0, 0, 3, 1)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2, ARM64_SYS_REG(3, 0, 0, 3, 2)); /* * DBGDIDR is a bit complicated because the kernel doesn't * provide an accessor for it in 64-bit mode, which is what this * scratch VM is in, and there's no architected "64-bit sysreg * which reads the same as the 32-bit register" the way there is * for other ID registers. Instead we synthesize a value from the * AArch64 ID_AA64DFR0, the same way the kernel code in * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does. * We only do this if the CPU supports AArch32 at EL1. */ if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) { int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS); int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS); int ctx_cmps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS); int version = 6; /* ARMv8 debug architecture */ bool has_el3 = !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3); uint32_t dbgdidr = 0; dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps); dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps); dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps); dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version); dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3); dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3); dbgdidr |= (1 << 15); /* RES1 bit */ ahcf->isar.dbgdidr = dbgdidr; } } sve_supported = ioctl(fdarray[0], KVM_CHECK_EXTENSION, KVM_CAP_ARM_SVE) > 0; kvm_arm_destroy_scratch_host_vcpu(fdarray); if (err < 0) { return false; } /* Add feature bits that can't appear until after VCPU init. */ if (sve_supported) { t = ahcf->isar.id_aa64pfr0; t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); ahcf->isar.id_aa64pfr0 = t; } /* * We can assume any KVM supporting CPU is at least a v8 * with VFPv4+Neon; this in turn implies most of the other * feature bits. */ features |= 1ULL << ARM_FEATURE_V8; features |= 1ULL << ARM_FEATURE_NEON; features |= 1ULL << ARM_FEATURE_AARCH64; features |= 1ULL << ARM_FEATURE_PMU; features |= 1ULL << ARM_FEATURE_GENERIC_TIMER; ahcf->features = features; return true; } bool kvm_arm_aarch32_supported(void) { return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT); } bool kvm_arm_sve_supported(void) { return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE); } QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1); void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map) { /* Only call this function if kvm_arm_sve_supported() returns true. */ static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS]; static bool probed; uint32_t vq = 0; int i, j; bitmap_clear(map, 0, ARM_MAX_VQ); /* * KVM ensures all host CPUs support the same set of vector lengths. * So we only need to create the scratch VCPUs once and then cache * the results. */ if (!probed) { struct kvm_vcpu_init init = { .target = -1, .features[0] = (1 << KVM_ARM_VCPU_SVE), }; struct kvm_one_reg reg = { .id = KVM_REG_ARM64_SVE_VLS, .addr = (uint64_t)&vls[0], }; int fdarray[3], ret; probed = true; if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) { error_report("failed to create scratch VCPU with SVE enabled"); abort(); } ret = ioctl(fdarray[2], KVM_GET_ONE_REG, ®); kvm_arm_destroy_scratch_host_vcpu(fdarray); if (ret) { error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s", strerror(errno)); abort(); } for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) { if (vls[i]) { vq = 64 - clz64(vls[i]) + i * 64; break; } } if (vq > ARM_MAX_VQ) { warn_report("KVM supports vector lengths larger than " "QEMU can enable"); } } for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) { if (!vls[i]) { continue; } for (j = 1; j <= 64; ++j) { vq = j + i * 64; if (vq > ARM_MAX_VQ) { return; } if (vls[i] & (1UL << (j - 1))) { set_bit(vq - 1, map); } } } } static int kvm_arm_sve_set_vls(CPUState *cs) { uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0}; struct kvm_one_reg reg = { .id = KVM_REG_ARM64_SVE_VLS, .addr = (uint64_t)&vls[0], }; ARMCPU *cpu = ARM_CPU(cs); uint32_t vq; int i, j; assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX); for (vq = 1; vq <= cpu->sve_max_vq; ++vq) { if (test_bit(vq - 1, cpu->sve_vq_map)) { i = (vq - 1) / 64; j = (vq - 1) % 64; vls[i] |= 1UL << j; } } return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); } #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5 int kvm_arch_init_vcpu(CPUState *cs) { int ret; uint64_t mpidr; ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) { error_report("KVM is not supported for this guest CPU type"); return -EINVAL; } qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs); /* Determine init features for this CPU */ memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); if (cs->start_powered_off) { cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; } if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { cpu->psci_version = 2; cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; } if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT; } if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) { cpu->has_pmu = false; } if (cpu->has_pmu) { cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; } else { env->features &= ~(1ULL << ARM_FEATURE_PMU); } if (cpu_isar_feature(aa64_sve, cpu)) { assert(kvm_arm_sve_supported()); cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE; } /* Do KVM_ARM_VCPU_INIT ioctl */ ret = kvm_arm_vcpu_init(cs); if (ret) { return ret; } if (cpu_isar_feature(aa64_sve, cpu)) { ret = kvm_arm_sve_set_vls(cs); if (ret) { return ret; } ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE); if (ret) { return ret; } } /* * When KVM is in use, PSCI is emulated in-kernel and not by qemu. * Currently KVM has its own idea about MPIDR assignment, so we * override our defaults with what we get from KVM. */ ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr); if (ret) { return ret; } cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK; kvm_arm_init_debug(cs); /* Check whether user space can specify guest syndrome value */ kvm_arm_init_serror_injection(cs); return kvm_arm_init_cpreg_list(cpu); } int kvm_arch_destroy_vcpu(CPUState *cs) { return 0; } bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) { /* Return true if the regidx is a register we should synchronize * via the cpreg_tuples array (ie is not a core or sve reg that * we sync by hand in kvm_arch_get/put_registers()) */ switch (regidx & KVM_REG_ARM_COPROC_MASK) { case KVM_REG_ARM_CORE: case KVM_REG_ARM64_SVE: return false; default: return true; } } typedef struct CPRegStateLevel { uint64_t regidx; int level; } CPRegStateLevel; /* All system registers not listed in the following table are assumed to be * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less * often, you must add it to this table with a state of either * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. */ static const CPRegStateLevel non_runtime_cpregs[] = { { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE }, }; int kvm_arm_cpreg_level(uint64_t regidx) { int i; for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) { const CPRegStateLevel *l = &non_runtime_cpregs[i]; if (l->regidx == regidx) { return l->level; } } return KVM_PUT_RUNTIME_STATE; } /* Callers must hold the iothread mutex lock */ static void kvm_inject_arm_sea(CPUState *c) { ARMCPU *cpu = ARM_CPU(c); CPUARMState *env = &cpu->env; CPUClass *cc = CPU_GET_CLASS(c); uint32_t esr; bool same_el; c->exception_index = EXCP_DATA_ABORT; env->exception.target_el = 1; /* * Set the DFSC to synchronous external abort and set FnV to not valid, * this will tell guest the FAR_ELx is UNKNOWN for this abort. */ same_el = arm_current_el(env) == env->exception.target_el; esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10); env->exception.syndrome = esr; cc->do_interrupt(c); } #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) static int kvm_arch_put_fpsimd(CPUState *cs) { CPUARMState *env = &ARM_CPU(cs)->env; struct kvm_one_reg reg; int i, ret; for (i = 0; i < 32; i++) { uint64_t *q = aa64_vfp_qreg(env, i); #ifdef HOST_WORDS_BIGENDIAN uint64_t fp_val[2] = { q[1], q[0] }; reg.addr = (uintptr_t)fp_val; #else reg.addr = (uintptr_t)q; #endif reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } } return 0; } /* * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits * and PREGS and the FFR have a slice size of 256 bits. However we simply hard * code the slice index to zero for now as it's unlikely we'll need more than * one slice for quite some time. */ static int kvm_arch_put_sve(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint64_t tmp[ARM_MAX_VQ * 2]; uint64_t *r; struct kvm_one_reg reg; int n, ret; for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2); reg.addr = (uintptr_t)r; reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } } for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0], DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); reg.addr = (uintptr_t)r; reg.id = KVM_REG_ARM64_SVE_PREG(n, 0); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } } r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0], DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); reg.addr = (uintptr_t)r; reg.id = KVM_REG_ARM64_SVE_FFR(0); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } return 0; } int kvm_arch_put_registers(CPUState *cs, int level) { struct kvm_one_reg reg; uint64_t val; uint32_t fpr; int i, ret; unsigned int el; ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; /* If we are in AArch32 mode then we need to copy the AArch32 regs to the * AArch64 registers before pushing them out to 64-bit KVM. */ if (!is_a64(env)) { aarch64_sync_32_to_64(env); } for (i = 0; i < 31; i++) { reg.id = AARCH64_CORE_REG(regs.regs[i]); reg.addr = (uintptr_t) &env->xregs[i]; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } } /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the * QEMU side we keep the current SP in xregs[31] as well. */ aarch64_save_sp(env, 1); reg.id = AARCH64_CORE_REG(regs.sp); reg.addr = (uintptr_t) &env->sp_el[0]; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } reg.id = AARCH64_CORE_REG(sp_el1); reg.addr = (uintptr_t) &env->sp_el[1]; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ if (is_a64(env)) { val = pstate_read(env); } else { val = cpsr_read(env); } reg.id = AARCH64_CORE_REG(regs.pstate); reg.addr = (uintptr_t) &val; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } reg.id = AARCH64_CORE_REG(regs.pc); reg.addr = (uintptr_t) &env->pc; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } reg.id = AARCH64_CORE_REG(elr_el1); reg.addr = (uintptr_t) &env->elr_el[1]; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } /* Saved Program State Registers * * Before we restore from the banked_spsr[] array we need to * ensure that any modifications to env->spsr are correctly * reflected in the banks. */ el = arm_current_el(env); if (el > 0 && !is_a64(env)) { i = bank_number(env->uncached_cpsr & CPSR_M); env->banked_spsr[i] = env->spsr; } /* KVM 0-4 map to QEMU banks 1-5 */ for (i = 0; i < KVM_NR_SPSR; i++) { reg.id = AARCH64_CORE_REG(spsr[i]); reg.addr = (uintptr_t) &env->banked_spsr[i + 1]; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } } if (cpu_isar_feature(aa64_sve, cpu)) { ret = kvm_arch_put_sve(cs); } else { ret = kvm_arch_put_fpsimd(cs); } if (ret) { return ret; } reg.addr = (uintptr_t)(&fpr); fpr = vfp_get_fpsr(env); reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } reg.addr = (uintptr_t)(&fpr); fpr = vfp_get_fpcr(env); reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } write_cpustate_to_list(cpu, true); if (!write_list_to_kvmstate(cpu, level)) { return -EINVAL; } /* * Setting VCPU events should be triggered after syncing the registers * to avoid overwriting potential changes made by KVM upon calling * KVM_SET_VCPU_EVENTS ioctl */ ret = kvm_put_vcpu_events(cpu); if (ret) { return ret; } kvm_arm_sync_mpstate_to_kvm(cpu); return ret; } static int kvm_arch_get_fpsimd(CPUState *cs) { CPUARMState *env = &ARM_CPU(cs)->env; struct kvm_one_reg reg; int i, ret; for (i = 0; i < 32; i++) { uint64_t *q = aa64_vfp_qreg(env, i); reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]); reg.addr = (uintptr_t)q; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } else { #ifdef HOST_WORDS_BIGENDIAN uint64_t t; t = q[0], q[0] = q[1], q[1] = t; #endif } } return 0; } /* * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits * and PREGS and the FFR have a slice size of 256 bits. However we simply hard * code the slice index to zero for now as it's unlikely we'll need more than * one slice for quite some time. */ static int kvm_arch_get_sve(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; struct kvm_one_reg reg; uint64_t *r; int n, ret; for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { r = &env->vfp.zregs[n].d[0]; reg.addr = (uintptr_t)r; reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } sve_bswap64(r, r, cpu->sve_max_vq * 2); } for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { r = &env->vfp.pregs[n].p[0]; reg.addr = (uintptr_t)r; reg.id = KVM_REG_ARM64_SVE_PREG(n, 0); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); } r = &env->vfp.pregs[FFR_PRED_NUM].p[0]; reg.addr = (uintptr_t)r; reg.id = KVM_REG_ARM64_SVE_FFR(0); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); return 0; } int kvm_arch_get_registers(CPUState *cs) { struct kvm_one_reg reg; uint64_t val; unsigned int el; uint32_t fpr; int i, ret; ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; for (i = 0; i < 31; i++) { reg.id = AARCH64_CORE_REG(regs.regs[i]); reg.addr = (uintptr_t) &env->xregs[i]; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } } reg.id = AARCH64_CORE_REG(regs.sp); reg.addr = (uintptr_t) &env->sp_el[0]; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } reg.id = AARCH64_CORE_REG(sp_el1); reg.addr = (uintptr_t) &env->sp_el[1]; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } reg.id = AARCH64_CORE_REG(regs.pstate); reg.addr = (uintptr_t) &val; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } env->aarch64 = ((val & PSTATE_nRW) == 0); if (is_a64(env)) { pstate_write(env, val); } else { cpsr_write(env, val, 0xffffffff, CPSRWriteRaw); } /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the * QEMU side we keep the current SP in xregs[31] as well. */ aarch64_restore_sp(env, 1); reg.id = AARCH64_CORE_REG(regs.pc); reg.addr = (uintptr_t) &env->pc; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } /* If we are in AArch32 mode then we need to sync the AArch32 regs with the * incoming AArch64 regs received from 64-bit KVM. * We must perform this after all of the registers have been acquired from * the kernel. */ if (!is_a64(env)) { aarch64_sync_64_to_32(env); } reg.id = AARCH64_CORE_REG(elr_el1); reg.addr = (uintptr_t) &env->elr_el[1]; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } /* Fetch the SPSR registers * * KVM SPSRs 0-4 map to QEMU banks 1-5 */ for (i = 0; i < KVM_NR_SPSR; i++) { reg.id = AARCH64_CORE_REG(spsr[i]); reg.addr = (uintptr_t) &env->banked_spsr[i + 1]; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } } el = arm_current_el(env); if (el > 0 && !is_a64(env)) { i = bank_number(env->uncached_cpsr & CPSR_M); env->spsr = env->banked_spsr[i]; } if (cpu_isar_feature(aa64_sve, cpu)) { ret = kvm_arch_get_sve(cs); } else { ret = kvm_arch_get_fpsimd(cs); } if (ret) { return ret; } reg.addr = (uintptr_t)(&fpr); reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } vfp_set_fpsr(env, fpr); reg.addr = (uintptr_t)(&fpr); reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } vfp_set_fpcr(env, fpr); ret = kvm_get_vcpu_events(cpu); if (ret) { return ret; } if (!write_kvmstate_to_list(cpu)) { return -EINVAL; } /* Note that it's OK to have registers which aren't in CPUState, * so we can ignore a failure return here. */ write_list_to_cpustate(cpu); kvm_arm_sync_mpstate_to_qemu(cpu); /* TODO: other registers */ return ret; } void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) { ram_addr_t ram_addr; hwaddr paddr; Object *obj = qdev_get_machine(); VirtMachineState *vms = VIRT_MACHINE(obj); bool acpi_enabled = virt_is_acpi_enabled(vms); assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); if (acpi_enabled && addr && object_property_get_bool(obj, "ras", NULL)) { ram_addr = qemu_ram_addr_from_host(addr); if (ram_addr != RAM_ADDR_INVALID && kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { kvm_hwpoison_page_add(ram_addr); /* * If this is a BUS_MCEERR_AR, we know we have been called * synchronously from the vCPU thread, so we can easily * synchronize the state and inject an error. * * TODO: we currently don't tell the guest at all about * BUS_MCEERR_AO. In that case we might either be being * called synchronously from the vCPU thread, or a bit * later from the main thread, so doing the injection of * the error would be more complicated. */ if (code == BUS_MCEERR_AR) { kvm_cpu_synchronize_state(c); if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) { kvm_inject_arm_sea(c); } else { error_report("failed to record the error"); abort(); } } return; } if (code == BUS_MCEERR_AO) { error_report("Hardware memory error at addr %p for memory used by " "QEMU itself instead of guest system!", addr); } } if (code == BUS_MCEERR_AR) { error_report("Hardware memory error!"); exit(1); } } /* C6.6.29 BRK instruction */ static const uint32_t brk_insn = 0xd4200000; int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { if (have_guest_debug) { if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { return -EINVAL; } return 0; } else { error_report("guest debug not supported on this kernel"); return -EINVAL; } } int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { static uint32_t brk; if (have_guest_debug) { if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) || brk != brk_insn || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { return -EINVAL; } return 0; } else { error_report("guest debug not supported on this kernel"); return -EINVAL; } } /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register * * To minimise translating between kernel and user-space the kernel * ABI just provides user-space with the full exception syndrome * register value to be decoded in QEMU. */ bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit) { int hsr_ec = syn_get_ec(debug_exit->hsr); ARMCPU *cpu = ARM_CPU(cs); CPUClass *cc = CPU_GET_CLASS(cs); CPUARMState *env = &cpu->env; /* Ensure PC is synchronised */ kvm_cpu_synchronize_state(cs); switch (hsr_ec) { case EC_SOFTWARESTEP: if (cs->singlestep_enabled) { return true; } else { /* * The kernel should have suppressed the guest's ability to * single step at this point so something has gone wrong. */ error_report("%s: guest single-step while debugging unsupported" " (%"PRIx64", %"PRIx32")", __func__, env->pc, debug_exit->hsr); return false; } break; case EC_AA64_BKPT: if (kvm_find_sw_breakpoint(cs, env->pc)) { return true; } break; case EC_BREAKPOINT: if (find_hw_breakpoint(cs, env->pc)) { return true; } break; case EC_WATCHPOINT: { CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far); if (wp) { cs->watchpoint_hit = wp; return true; } break; } default: error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")", __func__, debug_exit->hsr, env->pc); } /* If we are not handling the debug exception it must belong to * the guest. Let's re-use the existing TCG interrupt code to set * everything up properly. */ cs->exception_index = EXCP_BKPT; env->exception.syndrome = debug_exit->hsr; env->exception.vaddress = debug_exit->far; env->exception.target_el = 1; qemu_mutex_lock_iothread(); cc->do_interrupt(cs); qemu_mutex_unlock_iothread(); return false; } #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0) #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2) /* * ESR_EL1 * ISS encoding * AARCH64: DFSC, bits [5:0] * AARCH32: * TTBCR.EAE == 0 * FS[4] - DFSR[10] * FS[3:0] - DFSR[3:0] * TTBCR.EAE == 1 * FS, bits [5:0] */ #define ESR_DFSC(aarch64, lpae, v) \ ((aarch64 || (lpae)) ? ((v) & 0x3F) \ : (((v) >> 6) | ((v) & 0x1F))) #define ESR_DFSC_EXTABT(aarch64, lpae) \ ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8) bool kvm_arm_verify_ext_dabt_pending(CPUState *cs) { uint64_t dfsr_val; if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64); int lpae = 0; if (!aarch64_mode) { uint64_t ttbcr; if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) { lpae = arm_feature(env, ARM_FEATURE_LPAE) && (ttbcr & TTBCR_EAE); } } /* * The verification here is based on the DFSC bits * of the ESR_EL1 reg only */ return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) == ESR_DFSC_EXTABT(aarch64_mode, lpae)); } return false; }